sched.c 212.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
96
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
97
 */
98
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
99

I
Ingo Molnar 已提交
100 101 102
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
103 104 105
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
106
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
107 108 109
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
110

111 112 113 114 115
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

137 138
static inline int rt_policy(int policy)
{
139
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
140 141 142 143 144 145 146 147 148
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
149
/*
I
Ingo Molnar 已提交
150
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
151
 */
I
Ingo Molnar 已提交
152 153 154 155 156
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

157
struct rt_bandwidth {
I
Ingo Molnar 已提交
158 159 160 161 162
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
196 197
	spin_lock_init(&rt_b->rt_runtime_lock);

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

235 236 237 238 239 240
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

241
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
242

243 244
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
245 246
struct cfs_rq;

P
Peter Zijlstra 已提交
247 248
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
249
/* task group related information */
250
struct task_group {
251
#ifdef CONFIG_CGROUP_SCHED
252 253
	struct cgroup_subsys_state css;
#endif
254 255

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
256 257 258 259 260
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
261 262 263 264 265 266
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

267
	struct rt_bandwidth rt_bandwidth;
268
#endif
269

270
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
271
	struct list_head list;
P
Peter Zijlstra 已提交
272 273 274 275

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
276 277
};

D
Dhaval Giani 已提交
278
#ifdef CONFIG_USER_SCHED
279 280 281 282 283 284 285 286

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

287
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
288 289 290 291
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
292 293 294 295 296 297
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
#endif
298 299
#else
#define root_task_group init_task_group
D
Dhaval Giani 已提交
300
#endif
P
Peter Zijlstra 已提交
301

302
/* task_group_lock serializes add/remove of task groups and also changes to
303 304
 * a task group's cpu shares.
 */
305
static DEFINE_SPINLOCK(task_group_lock);
306

307 308 309 310 311 312 313
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

314
/*
315 316 317 318
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
319 320 321
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
322
#define MIN_SHARES	2
323
#define MAX_SHARES	(1UL << 18)
324

325 326 327
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
328
/* Default task group.
I
Ingo Molnar 已提交
329
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
330
 */
331
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
332 333

/* return group to which a task belongs */
334
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
335
{
336
	struct task_group *tg;
337

338
#ifdef CONFIG_USER_SCHED
339
	tg = p->user->tg;
340
#elif defined(CONFIG_CGROUP_SCHED)
341 342
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
343
#else
I
Ingo Molnar 已提交
344
	tg = &init_task_group;
345
#endif
346
	return tg;
S
Srivatsa Vaddagiri 已提交
347 348 349
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
350
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
351
{
352
#ifdef CONFIG_FAIR_GROUP_SCHED
353 354
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
355
#endif
P
Peter Zijlstra 已提交
356

357
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
358 359
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
360
#endif
S
Srivatsa Vaddagiri 已提交
361 362 363 364
}

#else

P
Peter Zijlstra 已提交
365
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
366

367
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
368

I
Ingo Molnar 已提交
369 370 371 372 373 374
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
375
	u64 min_vruntime;
I
Ingo Molnar 已提交
376 377 378

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
379 380 381 382 383 384

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
385 386
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
387
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
388 389 390

	unsigned long nr_spread_over;

391
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
392 393
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
394 395
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
396 397 398 399 400 401
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
402 403
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
404 405
#endif
};
L
Linus Torvalds 已提交
406

I
Ingo Molnar 已提交
407 408 409
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
410
	unsigned long rt_nr_running;
411
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
412 413
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
414
#ifdef CONFIG_SMP
415
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
416
	int overloaded;
P
Peter Zijlstra 已提交
417
#endif
P
Peter Zijlstra 已提交
418
	int rt_throttled;
P
Peter Zijlstra 已提交
419
	u64 rt_time;
P
Peter Zijlstra 已提交
420
	u64 rt_runtime;
I
Ingo Molnar 已提交
421
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
422
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
423

424
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
425 426
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
427 428 429 430 431
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
432 433
};

G
Gregory Haskins 已提交
434 435 436 437
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
438 439
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
440 441 442 443 444 445 446 447
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
448

I
Ingo Molnar 已提交
449
	/*
450 451 452 453
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
454
	atomic_t rto_count;
G
Gregory Haskins 已提交
455 456
};

457 458 459 460
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
461 462 463 464
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
465 466 467 468 469 470 471
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
472
struct rq {
473 474
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
475 476 477 478 479 480

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
481 482
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
483
	unsigned char idle_at_tick;
484
#ifdef CONFIG_NO_HZ
485
	unsigned long last_tick_seen;
486 487
	unsigned char in_nohz_recently;
#endif
488 489
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
490 491 492 493
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
494 495
	struct rt_rq rt;

I
Ingo Molnar 已提交
496
#ifdef CONFIG_FAIR_GROUP_SCHED
497 498
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
499 500
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
501
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
502 503 504 505 506 507 508 509 510 511
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

512
	struct task_struct *curr, *idle;
513
	unsigned long next_balance;
L
Linus Torvalds 已提交
514
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
515

516
	u64 clock;
I
Ingo Molnar 已提交
517

L
Linus Torvalds 已提交
518 519 520
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
521
	struct root_domain *rd;
L
Linus Torvalds 已提交
522 523 524 525 526
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
527 528
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
529

530
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
531 532 533
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
534 535 536 537 538 539
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
540 541 542 543 544
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
545 546 547 548
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
549 550

	/* schedule() stats */
551 552 553
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
554 555

	/* try_to_wake_up() stats */
556 557
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
558 559

	/* BKL stats */
560
	unsigned int bkl_count;
L
Linus Torvalds 已提交
561
#endif
562
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
563 564
};

565
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
566

I
Ingo Molnar 已提交
567 568 569 570 571
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

572 573 574 575 576 577 578 579 580
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
581 582
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
583
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
584 585 586 587
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
588 589
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
590 591 592 593 594 595

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

596 597 598 599 600
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
601 602 603 604 605 606 607 608 609 610 611 612
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
613 614 615 616

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
617
enum {
P
Peter Zijlstra 已提交
618
#include "sched_features.h"
I
Ingo Molnar 已提交
619 620
};

P
Peter Zijlstra 已提交
621 622 623 624 625
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
626
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
627 628 629 630 631 632 633 634 635
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

636
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
637 638 639 640 641 642
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

643
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
671
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
701
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
744

745 746 747 748 749 750
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
751
/*
P
Peter Zijlstra 已提交
752
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
753 754
 * default: 1s
 */
P
Peter Zijlstra 已提交
755
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
756

757 758
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
759 760 761 762 763
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
764

765 766 767 768 769 770 771 772 773 774 775 776
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
777

778
unsigned long long time_sync_thresh = 100000;
779 780 781 782

static DEFINE_PER_CPU(unsigned long long, time_offset);
static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);

783
/*
784 785 786 787
 * Global lock which we take every now and then to synchronize
 * the CPUs time. This method is not warp-safe, but it's good
 * enough to synchronize slowly diverging time sources and thus
 * it's good enough for tracing:
788
 */
789 790 791
static DEFINE_SPINLOCK(time_sync_lock);
static unsigned long long prev_global_time;

I
Ingo Molnar 已提交
792
static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
793
{
I
Ingo Molnar 已提交
794 795 796 797 798 799
	/*
	 * We want this inlined, to not get tracer function calls
	 * in this critical section:
	 */
	spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
	__raw_spin_lock(&time_sync_lock.raw_lock);
800 801 802 803 804 805 806 807

	if (time < prev_global_time) {
		per_cpu(time_offset, cpu) += prev_global_time - time;
		time = prev_global_time;
	} else {
		prev_global_time = time;
	}

I
Ingo Molnar 已提交
808 809
	__raw_spin_unlock(&time_sync_lock.raw_lock);
	spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
810 811 812 813 814

	return time;
}

static unsigned long long __cpu_clock(int cpu)
815 816 817
{
	unsigned long long now;

818 819 820 821
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
822 823 824
	if (unlikely(!scheduler_running))
		return 0;

825
	now = sched_clock_cpu(cpu);
826 827 828

	return now;
}
829 830 831 832 833 834 835 836

/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long prev_cpu_time, time, delta_time;
I
Ingo Molnar 已提交
837
	unsigned long flags;
838

I
Ingo Molnar 已提交
839
	local_irq_save(flags);
840 841 842 843
	prev_cpu_time = per_cpu(prev_cpu_time, cpu);
	time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
	delta_time = time-prev_cpu_time;

I
Ingo Molnar 已提交
844
	if (unlikely(delta_time > time_sync_thresh)) {
845
		time = __sync_cpu_clock(time, cpu);
I
Ingo Molnar 已提交
846 847 848
		per_cpu(prev_cpu_time, cpu) = time;
	}
	local_irq_restore(flags);
849 850 851

	return time;
}
P
Paul E. McKenney 已提交
852
EXPORT_SYMBOL_GPL(cpu_clock);
853

L
Linus Torvalds 已提交
854
#ifndef prepare_arch_switch
855 856 857 858 859 860
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

861 862 863 864 865
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

866
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
867
static inline int task_running(struct rq *rq, struct task_struct *p)
868
{
869
	return task_current(rq, p);
870 871
}

872
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 874 875
{
}

876
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
877
{
878 879 880 881
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
882 883 884 885 886 887 888
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

889 890 891 892
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
893
static inline int task_running(struct rq *rq, struct task_struct *p)
894 895 896 897
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
898
	return task_current(rq, p);
899 900 901
#endif
}

902
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

919
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
920 921 922 923 924 925 926 927 928 929 930 931
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
932
#endif
933 934
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
935

936 937 938 939
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
940
static inline struct rq *__task_rq_lock(struct task_struct *p)
941 942
	__acquires(rq->lock)
{
943 944 945 946 947
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
948 949 950 951
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
952 953
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
954
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
955 956
 * explicitly disabling preemption.
 */
957
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
958 959
	__acquires(rq->lock)
{
960
	struct rq *rq;
L
Linus Torvalds 已提交
961

962 963 964 965 966 967
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
968 969 970 971
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
972
static void __task_rq_unlock(struct rq *rq)
973 974 975 976 977
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

978
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
979 980 981 982 983 984
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
985
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
986
 */
A
Alexey Dobriyan 已提交
987
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
988 989
	__acquires(rq->lock)
{
990
	struct rq *rq;
L
Linus Torvalds 已提交
991 992 993 994 995 996 997 998

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
1034
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1046 1047
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1123
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1124 1125 1126 1127 1128 1129
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1130
#ifdef CONFIG_SMP
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1186
#endif /* CONFIG_SMP */
1187 1188

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1225 1226 1227 1228

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1229 1230
#endif

I
Ingo Molnar 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1244
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1245 1246 1247 1248 1249
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1250
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1251 1252
		return;

P
Peter Zijlstra 已提交
1253
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
#endif

I
Ingo Molnar 已提交
1318
#else
P
Peter Zijlstra 已提交
1319
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1320 1321
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1322
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1323 1324 1325
}
#endif

1326 1327 1328 1329 1330 1331 1332 1333
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1334 1335 1336
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1337
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1338

1339
static unsigned long
1340 1341 1342 1343 1344
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1345 1346 1347 1348 1349 1350 1351
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1352 1353 1354 1355 1356

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1357
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1358
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1359 1360
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1361
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1362

1363
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1364 1365
}

1366 1367 1368 1369 1370 1371
static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1372
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1373 1374
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1375
	lw->inv_weight = 0;
1376 1377
}

1378
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1379 1380
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1381
	lw->inv_weight = 0;
1382 1383
}

1384 1385 1386 1387
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1388
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1389 1390 1391 1392
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1404 1405 1406
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1407 1408
 */
static const int prio_to_weight[40] = {
1409 1410 1411 1412 1413 1414 1415 1416
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1417 1418
};

1419 1420 1421 1422 1423 1424 1425
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1426
static const u32 prio_to_wmult[40] = {
1427 1428 1429 1430 1431 1432 1433 1434
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1435
};
1436

I
Ingo Molnar 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1462

1463 1464 1465 1466 1467 1468
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1479 1480 1481 1482 1483
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1484 1485 1486 1487 1488 1489 1490 1491
#else /* CONFIG_SMP */

#ifdef CONFIG_FAIR_GROUP_SCHED
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
}
#endif

1492 1493
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1494 1495
#include "sched_stats.h"
#include "sched_idletask.c"
1496 1497
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1498 1499 1500 1501 1502 1503
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
static inline void inc_load(struct rq *rq, const struct task_struct *p)
{
	update_load_add(&rq->load, p->se.load.weight);
}

static inline void dec_load(struct rq *rq, const struct task_struct *p)
{
	update_load_sub(&rq->load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq)
1515 1516
{
	rq->nr_running++;
1517
	inc_load(rq, p);
1518 1519
}

1520
static void dec_nr_running(struct task_struct *p, struct rq *rq)
1521 1522
{
	rq->nr_running--;
1523
	dec_load(rq, p);
1524 1525
}

1526 1527 1528
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1529 1530 1531 1532
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1533

I
Ingo Molnar 已提交
1534 1535 1536 1537 1538 1539 1540 1541
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1542

I
Ingo Molnar 已提交
1543 1544
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1545 1546
}

1547
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1548
{
I
Ingo Molnar 已提交
1549
	sched_info_queued(p);
1550
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1551
	p->se.on_rq = 1;
1552 1553
}

1554
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1555
{
1556
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1557
	p->se.on_rq = 0;
1558 1559
}

1560
/*
I
Ingo Molnar 已提交
1561
 * __normal_prio - return the priority that is based on the static prio
1562 1563 1564
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1565
	return p->static_prio;
1566 1567
}

1568 1569 1570 1571 1572 1573 1574
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1575
static inline int normal_prio(struct task_struct *p)
1576 1577 1578
{
	int prio;

1579
	if (task_has_rt_policy(p))
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1593
static int effective_prio(struct task_struct *p)
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1606
/*
I
Ingo Molnar 已提交
1607
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1608
 */
I
Ingo Molnar 已提交
1609
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1610
{
1611
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1612
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1613

1614
	enqueue_task(rq, p, wakeup);
1615
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1616 1617 1618 1619 1620
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1621
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1622
{
1623
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1624 1625
		rq->nr_uninterruptible++;

1626
	dequeue_task(rq, p, sleep);
1627
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1628 1629 1630 1631 1632 1633
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1634
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1635 1636 1637 1638
{
	return cpu_curr(task_cpu(p)) == p;
}

1639 1640 1641
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1642
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1643 1644 1645 1646
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1647
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1648
#ifdef CONFIG_SMP
1649 1650 1651 1652 1653 1654
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1655 1656
	task_thread_info(p)->cpu = cpu;
#endif
1657 1658
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1671
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1672

1673 1674 1675
/*
 * Is this task likely cache-hot:
 */
1676
static int
1677 1678 1679 1680
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1681 1682 1683
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1684
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1685 1686
		return 1;

1687 1688 1689
	if (p->sched_class != &fair_sched_class)
		return 0;

1690 1691 1692 1693 1694
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1695 1696 1697 1698 1699 1700
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1701
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1702
{
I
Ingo Molnar 已提交
1703 1704
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1705 1706
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1707
	u64 clock_offset;
I
Ingo Molnar 已提交
1708 1709

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1710 1711 1712 1713

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1714 1715 1716 1717
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1718 1719 1720 1721 1722
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1723
#endif
1724 1725
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1726 1727

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1728 1729
}

1730
struct migration_req {
L
Linus Torvalds 已提交
1731 1732
	struct list_head list;

1733
	struct task_struct *task;
L
Linus Torvalds 已提交
1734 1735 1736
	int dest_cpu;

	struct completion done;
1737
};
L
Linus Torvalds 已提交
1738 1739 1740 1741 1742

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1743
static int
1744
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1745
{
1746
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1747 1748 1749 1750 1751

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1752
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1753 1754 1755 1756 1757 1758 1759 1760
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1761

L
Linus Torvalds 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1774
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1775 1776
{
	unsigned long flags;
I
Ingo Molnar 已提交
1777
	int running, on_rq;
1778
	struct rq *rq;
L
Linus Torvalds 已提交
1779

1780 1781 1782 1783 1784 1785 1786 1787
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1788

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1802

1803 1804 1805 1806 1807 1808 1809 1810 1811
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1812

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1823

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1837

1838 1839 1840 1841 1842 1843 1844
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1860
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1872 1873
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1874 1875 1876 1877
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1878
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1879
{
1880
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1881
	unsigned long total = weighted_cpuload(cpu);
1882

1883
	if (type == 0)
I
Ingo Molnar 已提交
1884
		return total;
1885

I
Ingo Molnar 已提交
1886
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1887 1888 1889
}

/*
1890 1891
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1892
 */
A
Alexey Dobriyan 已提交
1893
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1894
{
1895
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1896
	unsigned long total = weighted_cpuload(cpu);
1897

N
Nick Piggin 已提交
1898
	if (type == 0)
I
Ingo Molnar 已提交
1899
		return total;
1900

I
Ingo Molnar 已提交
1901
	return max(rq->cpu_load[type-1], total);
1902 1903 1904 1905 1906
}

/*
 * Return the average load per task on the cpu's run queue
 */
1907
static unsigned long cpu_avg_load_per_task(int cpu)
1908
{
1909
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1910
	unsigned long total = weighted_cpuload(cpu);
1911 1912
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1913
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1914 1915
}

N
Nick Piggin 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1933 1934
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1935
			continue;
1936

N
Nick Piggin 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1953 1954
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1955 1956 1957 1958 1959 1960 1961 1962

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1963
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1964 1965 1966 1967 1968 1969 1970

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1971
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1972
 */
I
Ingo Molnar 已提交
1973
static int
1974 1975
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
1976 1977 1978 1979 1980
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1981
	/* Traverse only the allowed CPUs */
1982
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
1983

1984
	for_each_cpu_mask(i, *tmp) {
1985
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2011

2012
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2013 2014 2015
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2016 2017
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2018 2019
		if (tmp->flags & flag)
			sd = tmp;
2020
	}
N
Nick Piggin 已提交
2021 2022

	while (sd) {
2023
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2024
		struct sched_group *group;
2025 2026 2027 2028 2029 2030
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2031 2032 2033

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2034 2035 2036 2037
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2038

2039
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2040 2041 2042 2043 2044
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2045

2046
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2078
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2079
{
2080
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2081 2082
	unsigned long flags;
	long old_state;
2083
	struct rq *rq;
L
Linus Torvalds 已提交
2084

2085 2086 2087
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2088
	smp_wmb();
L
Linus Torvalds 已提交
2089 2090 2091 2092 2093
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2094
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2095 2096 2097
		goto out_running;

	cpu = task_cpu(p);
2098
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2105 2106 2107
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2108 2109 2110 2111 2112 2113
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2114
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2115 2116 2117 2118 2119 2120
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
2136 2137
out_activate:
#endif /* CONFIG_SMP */
2138 2139 2140 2141 2142 2143 2144 2145 2146
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2147
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2148
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2149 2150 2151
	success = 1;

out_running:
I
Ingo Molnar 已提交
2152 2153
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2154
	p->state = TASK_RUNNING;
2155 2156 2157 2158
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2159 2160 2161 2162 2163 2164
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2165
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2166
{
2167
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2168 2169 2170
}
EXPORT_SYMBOL(wake_up_process);

2171
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2172 2173 2174 2175 2176 2177 2178
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2179 2180 2181 2182 2183 2184 2185
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2186
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2187 2188
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2189 2190 2191

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2192 2193 2194 2195 2196 2197
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2198
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2199
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2200
#endif
N
Nick Piggin 已提交
2201

P
Peter Zijlstra 已提交
2202
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2203
	p->se.on_rq = 0;
2204
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2205

2206 2207 2208 2209
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2210 2211 2212 2213 2214 2215 2216
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2231
	set_task_cpu(p, cpu);
2232 2233 2234 2235 2236

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2237 2238
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2239

2240
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2241
	if (likely(sched_info_on()))
2242
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2243
#endif
2244
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2245 2246
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2247
#ifdef CONFIG_PREEMPT
2248
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2249
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2250
#endif
N
Nick Piggin 已提交
2251
	put_cpu();
L
Linus Torvalds 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2261
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2262 2263
{
	unsigned long flags;
I
Ingo Molnar 已提交
2264
	struct rq *rq;
L
Linus Torvalds 已提交
2265 2266

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2267
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2268
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2269 2270 2271

	p->prio = effective_prio(p);

2272
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2273
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2274 2275
	} else {
		/*
I
Ingo Molnar 已提交
2276 2277
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2278
		 */
2279
		p->sched_class->task_new(rq, p);
2280
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
2281
	}
I
Ingo Molnar 已提交
2282
	check_preempt_curr(rq, p);
2283 2284 2285 2286
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2287
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2288 2289
}

2290 2291 2292
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2293 2294
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2295 2296 2297 2298 2299 2300 2301 2302 2303
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2304
 * @notifier: notifier struct to unregister
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2348 2349 2350
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2351
 * @prev: the current task that is being switched out
2352 2353 2354 2355 2356 2357 2358 2359 2360
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2361 2362 2363
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2364
{
2365
	fire_sched_out_preempt_notifiers(prev, next);
2366 2367 2368 2369
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2370 2371
/**
 * finish_task_switch - clean up after a task-switch
2372
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2373 2374
 * @prev: the thread we just switched away from.
 *
2375 2376 2377 2378
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2379 2380
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2381
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2382 2383 2384
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2385
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2386 2387 2388
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2389
	long prev_state;
L
Linus Torvalds 已提交
2390 2391 2392 2393 2394

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2395
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2396 2397
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2398
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2399 2400 2401 2402 2403
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2404
	prev_state = prev->state;
2405 2406
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2407 2408 2409 2410
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2411

2412
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2413 2414
	if (mm)
		mmdrop(mm);
2415
	if (unlikely(prev_state == TASK_DEAD)) {
2416 2417 2418
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2419
		 */
2420
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2421
		put_task_struct(prev);
2422
	}
L
Linus Torvalds 已提交
2423 2424 2425 2426 2427 2428
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2429
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2430 2431
	__releases(rq->lock)
{
2432 2433
	struct rq *rq = this_rq();

2434 2435 2436 2437 2438
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2439
	if (current->set_child_tid)
2440
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2441 2442 2443 2444 2445 2446
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2447
static inline void
2448
context_switch(struct rq *rq, struct task_struct *prev,
2449
	       struct task_struct *next)
L
Linus Torvalds 已提交
2450
{
I
Ingo Molnar 已提交
2451
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2452

2453
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2454 2455
	mm = next->mm;
	oldmm = prev->active_mm;
2456 2457 2458 2459 2460 2461 2462
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2463
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2464 2465 2466 2467 2468 2469
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2470
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2471 2472 2473
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2474 2475 2476 2477 2478 2479 2480
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2481
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2482
#endif
L
Linus Torvalds 已提交
2483 2484 2485 2486

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2487 2488 2489 2490 2491 2492 2493
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2517
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2532 2533
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2534

2535
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2536 2537 2538 2539 2540 2541 2542 2543 2544
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2545
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2546 2547 2548 2549 2550
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2566
/*
I
Ingo Molnar 已提交
2567 2568
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2569
 */
I
Ingo Molnar 已提交
2570
static void update_cpu_load(struct rq *this_rq)
2571
{
2572
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2585 2586 2587 2588 2589 2590 2591
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2592 2593
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2594 2595
}

I
Ingo Molnar 已提交
2596 2597
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2598 2599 2600 2601 2602 2603
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2604
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2605 2606 2607
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2608
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2609 2610 2611 2612
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2613
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2614 2615 2616 2617 2618 2619 2620
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2621 2622
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2623 2624 2625 2626 2627 2628 2629 2630
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2631
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2645
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2646 2647 2648 2649
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2650 2651
	int ret = 0;

2652 2653 2654 2655 2656
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2657
	if (unlikely(!spin_trylock(&busiest->lock))) {
2658
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2659 2660 2661
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2662
			ret = 1;
L
Linus Torvalds 已提交
2663 2664 2665
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2666
	return ret;
L
Linus Torvalds 已提交
2667 2668 2669 2670 2671
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2672
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2673 2674
 * the cpu_allowed mask is restored.
 */
2675
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2676
{
2677
	struct migration_req req;
L
Linus Torvalds 已提交
2678
	unsigned long flags;
2679
	struct rq *rq;
L
Linus Torvalds 已提交
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2690

L
Linus Torvalds 已提交
2691 2692 2693 2694 2695
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2696

L
Linus Torvalds 已提交
2697 2698 2699 2700 2701 2702 2703
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2704 2705
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2706 2707 2708 2709
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2710
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2711
	put_cpu();
N
Nick Piggin 已提交
2712 2713
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2714 2715 2716 2717 2718 2719
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2720 2721
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2722
{
2723
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2724
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2725
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2726 2727 2728 2729
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2730
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2731 2732 2733 2734 2735
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2736
static
2737
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2738
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2739
		     int *all_pinned)
L
Linus Torvalds 已提交
2740 2741 2742 2743 2744 2745 2746
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2747 2748
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2749
		return 0;
2750
	}
2751 2752
	*all_pinned = 0;

2753 2754
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2755
		return 0;
2756
	}
L
Linus Torvalds 已提交
2757

2758 2759 2760 2761 2762 2763
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2764 2765
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2766
#ifdef CONFIG_SCHEDSTATS
2767
		if (task_hot(p, rq->clock, sd)) {
2768
			schedstat_inc(sd, lb_hot_gained[idle]);
2769 2770
			schedstat_inc(p, se.nr_forced_migrations);
		}
2771 2772 2773 2774
#endif
		return 1;
	}

2775 2776
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2777
		return 0;
2778
	}
L
Linus Torvalds 已提交
2779 2780 2781
	return 1;
}

2782 2783 2784 2785 2786
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2787
{
2788
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2789 2790
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2791

2792
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2793 2794
		goto out;

2795 2796
	pinned = 1;

L
Linus Torvalds 已提交
2797
	/*
I
Ingo Molnar 已提交
2798
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2799
	 */
I
Ingo Molnar 已提交
2800 2801
	p = iterator->start(iterator->arg);
next:
2802
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2803
		goto out;
2804
	/*
2805
	 * To help distribute high priority tasks across CPUs we don't
2806 2807 2808
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2809 2810
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2811
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2812 2813 2814
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2815 2816
	}

I
Ingo Molnar 已提交
2817
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2818
	pulled++;
I
Ingo Molnar 已提交
2819
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2820

2821
	/*
2822
	 * We only want to steal up to the prescribed amount of weighted load.
2823
	 */
2824
	if (rem_load_move > 0) {
2825 2826
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2827 2828
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2829 2830 2831
	}
out:
	/*
2832
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2833 2834 2835 2836
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2837 2838 2839

	if (all_pinned)
		*all_pinned = pinned;
2840 2841

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2842 2843
}

I
Ingo Molnar 已提交
2844
/*
P
Peter Williams 已提交
2845 2846 2847
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2848 2849 2850 2851
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2852
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2853 2854 2855
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2856
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2857
	unsigned long total_load_moved = 0;
2858
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2859 2860

	do {
P
Peter Williams 已提交
2861 2862
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2863
				max_load_move - total_load_moved,
2864
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2865
		class = class->next;
P
Peter Williams 已提交
2866
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2867

P
Peter Williams 已提交
2868 2869 2870
	return total_load_moved > 0;
}

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2907
	const struct sched_class *class;
P
Peter Williams 已提交
2908 2909

	for (class = sched_class_highest; class; class = class->next)
2910
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2911 2912 2913
			return 1;

	return 0;
I
Ingo Molnar 已提交
2914 2915
}

L
Linus Torvalds 已提交
2916 2917
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2918 2919
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2920 2921 2922
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2923
		   unsigned long *imbalance, enum cpu_idle_type idle,
2924
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2925 2926 2927
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2928
	unsigned long max_pull;
2929 2930
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2931
	int load_idx, group_imb = 0;
2932 2933 2934 2935 2936 2937
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2938 2939

	max_load = this_load = total_load = total_pwr = 0;
2940 2941
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2942
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2943
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2944
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2945 2946 2947
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2948 2949

	do {
2950
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2951 2952
		int local_group;
		int i;
2953
		int __group_imb = 0;
2954
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2955
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2956 2957 2958

		local_group = cpu_isset(this_cpu, group->cpumask);

2959 2960 2961
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2962
		/* Tally up the load of all CPUs in the group */
2963
		sum_weighted_load = sum_nr_running = avg_load = 0;
2964 2965
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2966 2967

		for_each_cpu_mask(i, group->cpumask) {
2968 2969 2970 2971 2972 2973
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2974

2975
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2976 2977
				*sd_idle = 0;

L
Linus Torvalds 已提交
2978
			/* Bias balancing toward cpus of our domain */
2979 2980 2981 2982 2983 2984
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2985
				load = target_load(i, load_idx);
2986
			} else {
N
Nick Piggin 已提交
2987
				load = source_load(i, load_idx);
2988 2989 2990 2991 2992
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2993 2994

			avg_load += load;
2995
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2996
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2997 2998
		}

2999 3000 3001
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3002 3003
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3004
		 */
3005 3006
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3007 3008 3009 3010
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3011
		total_load += avg_load;
3012
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3013 3014

		/* Adjust by relative CPU power of the group */
3015 3016
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3017

3018 3019 3020
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

3021
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3022

L
Linus Torvalds 已提交
3023 3024 3025
		if (local_group) {
			this_load = avg_load;
			this = group;
3026 3027 3028
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3029
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3030 3031
			max_load = avg_load;
			busiest = group;
3032 3033
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3034
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3035
		}
3036 3037 3038 3039 3040 3041

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3042 3043 3044
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3045 3046 3047 3048 3049 3050 3051 3052 3053

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3054
		/*
3055 3056
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3057 3058
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3059
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3060
			goto group_next;
3061

I
Ingo Molnar 已提交
3062
		/*
3063
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3064 3065 3066 3067 3068
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3069 3070
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3071 3072
			group_min = group;
			min_nr_running = sum_nr_running;
3073 3074
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3075
		}
3076

I
Ingo Molnar 已提交
3077
		/*
3078
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3090
		}
3091 3092
group_next:
#endif
L
Linus Torvalds 已提交
3093 3094 3095
		group = group->next;
	} while (group != sd->groups);

3096
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3097 3098 3099 3100 3101 3102 3103 3104
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3105
	busiest_load_per_task /= busiest_nr_running;
3106 3107 3108
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3109 3110 3111 3112 3113 3114 3115 3116
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3117
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3118 3119
	 * appear as very large values with unsigned longs.
	 */
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3132 3133

	/* Don't want to pull so many tasks that a group would go idle */
3134
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3135

L
Linus Torvalds 已提交
3136
	/* How much load to actually move to equalise the imbalance */
3137 3138
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3139 3140
			/ SCHED_LOAD_SCALE;

3141 3142 3143 3144 3145 3146
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3147
	if (*imbalance < busiest_load_per_task) {
3148
		unsigned long tmp, pwr_now, pwr_move;
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3160

I
Ingo Molnar 已提交
3161 3162
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3163
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3164 3165 3166 3167 3168 3169 3170 3171 3172
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3173 3174 3175 3176
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3177 3178 3179
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3180 3181
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3182
		if (max_load > tmp)
3183
			pwr_move += busiest->__cpu_power *
3184
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3185 3186

		/* Amount of load we'd add */
3187
		if (max_load * busiest->__cpu_power <
3188
				busiest_load_per_task * SCHED_LOAD_SCALE)
3189 3190
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3191
		else
3192 3193 3194 3195
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3196 3197 3198
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3199 3200
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3201 3202 3203 3204 3205
	}

	return busiest;

out_balanced:
3206
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3207
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3208
		goto ret;
L
Linus Torvalds 已提交
3209

3210 3211 3212 3213 3214
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3215
ret:
L
Linus Torvalds 已提交
3216 3217 3218 3219 3220 3221 3222
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3223
static struct rq *
I
Ingo Molnar 已提交
3224
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3225
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3226
{
3227
	struct rq *busiest = NULL, *rq;
3228
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3229 3230 3231
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3232
		unsigned long wl;
3233 3234 3235 3236

		if (!cpu_isset(i, *cpus))
			continue;

3237
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3238
		wl = weighted_cpuload(i);
3239

I
Ingo Molnar 已提交
3240
		if (rq->nr_running == 1 && wl > imbalance)
3241
			continue;
L
Linus Torvalds 已提交
3242

I
Ingo Molnar 已提交
3243 3244
		if (wl > max_load) {
			max_load = wl;
3245
			busiest = rq;
L
Linus Torvalds 已提交
3246 3247 3248 3249 3250 3251
		}
	}

	return busiest;
}

3252 3253 3254 3255 3256 3257
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3258 3259 3260 3261
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3262
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3263
			struct sched_domain *sd, enum cpu_idle_type idle,
3264
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3265
{
P
Peter Williams 已提交
3266
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3267 3268
	struct sched_group *group;
	unsigned long imbalance;
3269
	struct rq *busiest;
3270
	unsigned long flags;
N
Nick Piggin 已提交
3271

3272 3273
	cpus_setall(*cpus);

3274 3275 3276
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3277
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3278
	 * portraying it as CPU_NOT_IDLE.
3279
	 */
I
Ingo Molnar 已提交
3280
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3281
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3282
		sd_idle = 1;
L
Linus Torvalds 已提交
3283

3284
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3285

3286 3287
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3288
				   cpus, balance);
3289

3290
	if (*balance == 0)
3291 3292
		goto out_balanced;

L
Linus Torvalds 已提交
3293 3294 3295 3296 3297
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3298
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3299 3300 3301 3302 3303
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3304
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3305 3306 3307

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3308
	ld_moved = 0;
L
Linus Torvalds 已提交
3309 3310 3311 3312
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3313
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3314 3315
		 * correctly treated as an imbalance.
		 */
3316
		local_irq_save(flags);
N
Nick Piggin 已提交
3317
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3318
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3319
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3320
		double_rq_unlock(this_rq, busiest);
3321
		local_irq_restore(flags);
3322

3323 3324 3325
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3326
		if (ld_moved && this_cpu != smp_processor_id())
3327 3328
			resched_cpu(this_cpu);

3329
		/* All tasks on this runqueue were pinned by CPU affinity */
3330
		if (unlikely(all_pinned)) {
3331 3332
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3333
				goto redo;
3334
			goto out_balanced;
3335
		}
L
Linus Torvalds 已提交
3336
	}
3337

P
Peter Williams 已提交
3338
	if (!ld_moved) {
L
Linus Torvalds 已提交
3339 3340 3341 3342 3343
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3344
			spin_lock_irqsave(&busiest->lock, flags);
3345 3346 3347 3348 3349

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3350
				spin_unlock_irqrestore(&busiest->lock, flags);
3351 3352 3353 3354
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3355 3356 3357
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3358
				active_balance = 1;
L
Linus Torvalds 已提交
3359
			}
3360
			spin_unlock_irqrestore(&busiest->lock, flags);
3361
			if (active_balance)
L
Linus Torvalds 已提交
3362 3363 3364 3365 3366 3367
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3368
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3369
		}
3370
	} else
L
Linus Torvalds 已提交
3371 3372
		sd->nr_balance_failed = 0;

3373
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3374 3375
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3376 3377 3378 3379 3380 3381 3382 3383 3384
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3385 3386
	}

P
Peter Williams 已提交
3387
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3388
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3389 3390
		return -1;
	return ld_moved;
L
Linus Torvalds 已提交
3391 3392 3393 3394

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3395
	sd->nr_balance_failed = 0;
3396 3397

out_one_pinned:
L
Linus Torvalds 已提交
3398
	/* tune up the balancing interval */
3399 3400
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3401 3402
		sd->balance_interval *= 2;

3403
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3404
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3405 3406
		return -1;
	return 0;
L
Linus Torvalds 已提交
3407 3408 3409 3410 3411 3412
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3413
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3414 3415
 * this_rq is locked.
 */
3416
static int
3417 3418
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3419 3420
{
	struct sched_group *group;
3421
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3422
	unsigned long imbalance;
P
Peter Williams 已提交
3423
	int ld_moved = 0;
N
Nick Piggin 已提交
3424
	int sd_idle = 0;
3425
	int all_pinned = 0;
3426 3427

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3428

3429 3430 3431 3432
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3433
	 * portraying it as CPU_NOT_IDLE.
3434 3435 3436
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3437
		sd_idle = 1;
L
Linus Torvalds 已提交
3438

3439
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3440
redo:
I
Ingo Molnar 已提交
3441
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3442
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3443
	if (!group) {
I
Ingo Molnar 已提交
3444
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3445
		goto out_balanced;
L
Linus Torvalds 已提交
3446 3447
	}

3448
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3449
	if (!busiest) {
I
Ingo Molnar 已提交
3450
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3451
		goto out_balanced;
L
Linus Torvalds 已提交
3452 3453
	}

N
Nick Piggin 已提交
3454 3455
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3456
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3457

P
Peter Williams 已提交
3458
	ld_moved = 0;
3459 3460 3461
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3462 3463
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3464
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3465 3466
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3467
		spin_unlock(&busiest->lock);
3468

3469
		if (unlikely(all_pinned)) {
3470 3471
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3472 3473
				goto redo;
		}
3474 3475
	}

P
Peter Williams 已提交
3476
	if (!ld_moved) {
I
Ingo Molnar 已提交
3477
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3478 3479
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3480 3481
			return -1;
	} else
3482
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3483

P
Peter Williams 已提交
3484
	return ld_moved;
3485 3486

out_balanced:
I
Ingo Molnar 已提交
3487
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3488
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3489
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3490
		return -1;
3491
	sd->nr_balance_failed = 0;
3492

3493
	return 0;
L
Linus Torvalds 已提交
3494 3495 3496 3497 3498 3499
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3500
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3501 3502
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3503 3504
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3505
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3506 3507

	for_each_domain(this_cpu, sd) {
3508 3509 3510 3511 3512 3513
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3514
			/* If we've pulled tasks over stop searching: */
3515 3516
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3517 3518 3519 3520 3521 3522

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3523
	}
I
Ingo Molnar 已提交
3524
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3525 3526 3527 3528 3529
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3530
	}
L
Linus Torvalds 已提交
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3541
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3542
{
3543
	int target_cpu = busiest_rq->push_cpu;
3544 3545
	struct sched_domain *sd;
	struct rq *target_rq;
3546

3547
	/* Is there any task to move? */
3548 3549 3550 3551
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3552 3553

	/*
3554
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3555
	 * we need to fix it. Originally reported by
3556
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3557
	 */
3558
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3559

3560 3561
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3562 3563
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3564 3565

	/* Search for an sd spanning us and the target CPU. */
3566
	for_each_domain(target_cpu, sd) {
3567
		if ((sd->flags & SD_LOAD_BALANCE) &&
3568
		    cpu_isset(busiest_cpu, sd->span))
3569
				break;
3570
	}
3571

3572
	if (likely(sd)) {
3573
		schedstat_inc(sd, alb_count);
3574

P
Peter Williams 已提交
3575 3576
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3577 3578 3579 3580
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3581
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3582 3583
}

3584 3585 3586
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3587
	cpumask_t cpu_mask;
3588 3589 3590 3591 3592
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3593
/*
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3604
 *
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3661 3662 3663 3664 3665
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3666
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3667
{
3668 3669
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3670 3671
	unsigned long interval;
	struct sched_domain *sd;
3672
	/* Earliest time when we have to do rebalance again */
3673
	unsigned long next_balance = jiffies + 60*HZ;
3674
	int update_next_balance = 0;
3675
	cpumask_t tmp;
L
Linus Torvalds 已提交
3676

3677
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3678 3679 3680 3681
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3682
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3683 3684 3685 3686 3687 3688
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3689 3690 3691
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3692

3693 3694 3695 3696 3697
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3698
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3699
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3700 3701
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3702 3703 3704
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3705
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3706
			}
3707
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3708
		}
3709 3710 3711
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3712
		if (time_after(next_balance, sd->last_balance + interval)) {
3713
			next_balance = sd->last_balance + interval;
3714 3715
			update_next_balance = 1;
		}
3716 3717 3718 3719 3720 3721 3722 3723

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3724
	}
3725 3726 3727 3728 3729 3730 3731 3732

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3733 3734 3735 3736 3737 3738 3739 3740 3741
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3742 3743 3744 3745
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3746

I
Ingo Molnar 已提交
3747
	rebalance_domains(this_cpu, idle);
3748 3749 3750 3751 3752 3753 3754

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3755 3756
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3757 3758 3759 3760
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3761
		cpu_clear(this_cpu, cpus);
3762 3763 3764 3765 3766 3767 3768 3769 3770
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3771
			rebalance_domains(balance_cpu, CPU_IDLE);
3772 3773

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3774 3775
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3788
static inline void trigger_load_balance(struct rq *rq, int cpu)
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3815
			if (ilb < nr_cpu_ids)
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3840
}
I
Ingo Molnar 已提交
3841 3842 3843

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3844 3845 3846
/*
 * on UP we do not need to balance between CPUs:
 */
3847
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3848 3849
{
}
I
Ingo Molnar 已提交
3850

L
Linus Torvalds 已提交
3851 3852 3853 3854 3855 3856 3857
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3858 3859
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3860
 */
3861
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3862 3863
{
	unsigned long flags;
3864 3865
	u64 ns, delta_exec;
	struct rq *rq;
3866

3867 3868
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3869
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3870 3871
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3872 3873 3874 3875
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3876

L
Linus Torvalds 已提交
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3900 3901 3902 3903 3904
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3905
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3939
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3940 3941
	cputime64_t tmp;

3942 3943 3944 3945
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
3946

L
Linus Torvalds 已提交
3947 3948 3949 3950 3951 3952 3953 3954
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3955
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3956
		cpustat->system = cputime64_add(cpustat->system, tmp);
3957
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3958 3959 3960 3961 3962 3963 3964
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3985
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3986 3987 3988 3989 3990 3991 3992

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3993
	} else
L
Linus Torvalds 已提交
3994 3995 3996
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4008
	struct task_struct *curr = rq->curr;
4009 4010

	sched_clock_tick();
I
Ingo Molnar 已提交
4011 4012

	spin_lock(&rq->lock);
4013
	update_rq_clock(rq);
4014
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4015
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4016
	spin_unlock(&rq->lock);
4017

4018
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4019 4020
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4021
#endif
L
Linus Torvalds 已提交
4022 4023 4024 4025
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4026
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4027 4028 4029 4030
{
	/*
	 * Underflow?
	 */
4031 4032
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4033 4034 4035 4036
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4037 4038
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4039 4040 4041
}
EXPORT_SYMBOL(add_preempt_count);

4042
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4043 4044 4045 4046
{
	/*
	 * Underflow?
	 */
4047 4048
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4049 4050 4051
	/*
	 * Is the spinlock portion underflowing?
	 */
4052 4053 4054 4055
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4056 4057 4058 4059 4060 4061 4062
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4063
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4064
 */
I
Ingo Molnar 已提交
4065
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4066
{
4067 4068 4069 4070 4071
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4072 4073 4074
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
4075 4076 4077 4078 4079

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4080
}
L
Linus Torvalds 已提交
4081

I
Ingo Molnar 已提交
4082 4083 4084 4085 4086
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4087
	/*
I
Ingo Molnar 已提交
4088
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4089 4090 4091
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4092
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4093 4094
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4095 4096
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4097
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4098 4099
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4100 4101
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4102 4103
	}
#endif
I
Ingo Molnar 已提交
4104 4105 4106 4107 4108 4109
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4110
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4111
{
4112
	const struct sched_class *class;
I
Ingo Molnar 已提交
4113
	struct task_struct *p;
L
Linus Torvalds 已提交
4114 4115

	/*
I
Ingo Molnar 已提交
4116 4117
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4118
	 */
I
Ingo Molnar 已提交
4119
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4120
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4121 4122
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4123 4124
	}

I
Ingo Molnar 已提交
4125 4126
	class = sched_class_highest;
	for ( ; ; ) {
4127
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4128 4129 4130 4131 4132 4133 4134 4135 4136
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4137

I
Ingo Molnar 已提交
4138 4139 4140 4141 4142 4143
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4144
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4160

P
Peter Zijlstra 已提交
4161 4162
	hrtick_clear(rq);

4163 4164 4165 4166
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4167
	update_rq_clock(rq);
4168 4169
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4170 4171

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4172
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4173
			prev->state = TASK_RUNNING;
4174
		else
4175
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4176
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4177 4178
	}

4179 4180 4181 4182
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4183

I
Ingo Molnar 已提交
4184
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4185 4186
		idle_balance(cpu, rq);

4187
	prev->sched_class->put_prev_task(rq, prev);
4188
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4189 4190

	if (likely(prev != next)) {
4191 4192
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4193 4194 4195 4196
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4197
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4198 4199 4200 4201 4202 4203
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4204 4205 4206
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4207 4208 4209
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4210
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4211

L
Linus Torvalds 已提交
4212 4213 4214 4215 4216 4217 4218 4219
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4220
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4221
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4222 4223 4224 4225 4226
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4227

L
Linus Torvalds 已提交
4228 4229
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4230
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4231
	 */
N
Nick Piggin 已提交
4232
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4233 4234
		return;

4235 4236 4237 4238
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4239

4240 4241 4242 4243 4244 4245
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4246 4247 4248 4249
}
EXPORT_SYMBOL(preempt_schedule);

/*
4250
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4251 4252 4253 4254 4255 4256 4257
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4258

4259
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4260 4261
	BUG_ON(ti->preempt_count || !irqs_disabled());

4262 4263 4264 4265 4266 4267
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4268

4269 4270 4271 4272 4273 4274
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4275 4276 4277 4278
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4279 4280
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4281
{
4282
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4283 4284 4285 4286
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4287 4288
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4289 4290 4291
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4292
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4293 4294 4295 4296 4297
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4298
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4299

4300
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4301 4302
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4303
		if (curr->func(curr, mode, sync, key) &&
4304
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4305 4306 4307 4308 4309 4310 4311 4312 4313
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4314
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4315
 */
4316
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4317
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4330
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4331 4332 4333 4334 4335
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4336
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4348
void
I
Ingo Molnar 已提交
4349
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4366
void complete(struct completion *x)
L
Linus Torvalds 已提交
4367 4368 4369 4370 4371
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4372
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4373 4374 4375 4376
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4377
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4378 4379 4380 4381 4382
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4383
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4384 4385 4386 4387
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4388 4389
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4390 4391 4392 4393 4394 4395 4396
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4397 4398 4399 4400
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4401 4402 4403 4404
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4405 4406 4407 4408 4409
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4410
				return timeout;
L
Linus Torvalds 已提交
4411 4412 4413 4414 4415 4416 4417 4418
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4419 4420
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4421 4422 4423 4424
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4425
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4426
	spin_unlock_irq(&x->wait.lock);
4427 4428
	return timeout;
}
L
Linus Torvalds 已提交
4429

4430
void __sched wait_for_completion(struct completion *x)
4431 4432
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4433
}
4434
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4435

4436
unsigned long __sched
4437
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4438
{
4439
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4440
}
4441
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4442

4443
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4444
{
4445 4446 4447 4448
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4449
}
4450
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4451

4452
unsigned long __sched
4453 4454
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4455
{
4456
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4457
}
4458
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4459

M
Matthew Wilcox 已提交
4460 4461 4462 4463 4464 4465 4466 4467 4468
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4469 4470
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4471
{
I
Ingo Molnar 已提交
4472 4473 4474 4475
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4476

4477
	__set_current_state(state);
L
Linus Torvalds 已提交
4478

4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4493 4494 4495
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4496
long __sched
I
Ingo Molnar 已提交
4497
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4498
{
4499
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4500 4501 4502
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4503
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4504
{
4505
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4506 4507 4508
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4509
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4510
{
4511
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4512 4513 4514
}
EXPORT_SYMBOL(sleep_on_timeout);

4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4527
void rt_mutex_setprio(struct task_struct *p, int prio)
4528 4529
{
	unsigned long flags;
4530
	int oldprio, on_rq, running;
4531
	struct rq *rq;
4532
	const struct sched_class *prev_class = p->sched_class;
4533 4534 4535 4536

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4537
	update_rq_clock(rq);
4538

4539
	oldprio = p->prio;
I
Ingo Molnar 已提交
4540
	on_rq = p->se.on_rq;
4541
	running = task_current(rq, p);
4542
	if (on_rq)
4543
		dequeue_task(rq, p, 0);
4544 4545
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4546 4547 4548 4549 4550 4551

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4552 4553
	p->prio = prio;

4554 4555
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4556
	if (on_rq) {
4557
		enqueue_task(rq, p, 0);
4558 4559

		check_class_changed(rq, p, prev_class, oldprio, running);
4560 4561 4562 4563 4564 4565
	}
	task_rq_unlock(rq, &flags);
}

#endif

4566
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4567
{
I
Ingo Molnar 已提交
4568
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4569
	unsigned long flags;
4570
	struct rq *rq;
L
Linus Torvalds 已提交
4571 4572 4573 4574 4575 4576 4577 4578

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4579
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4580 4581 4582 4583
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4584
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4585
	 */
4586
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4587 4588 4589
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4590
	on_rq = p->se.on_rq;
4591
	if (on_rq) {
4592
		dequeue_task(rq, p, 0);
4593 4594
		dec_load(rq, p);
	}
L
Linus Torvalds 已提交
4595 4596

	p->static_prio = NICE_TO_PRIO(nice);
4597
	set_load_weight(p);
4598 4599 4600
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4601

I
Ingo Molnar 已提交
4602
	if (on_rq) {
4603
		enqueue_task(rq, p, 0);
4604
		inc_load(rq, p);
L
Linus Torvalds 已提交
4605
		/*
4606 4607
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4608
		 */
4609
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4610 4611 4612 4613 4614 4615 4616
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4617 4618 4619 4620 4621
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4622
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4623
{
4624 4625
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4626

M
Matt Mackall 已提交
4627 4628 4629 4630
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4642
	long nice, retval;
L
Linus Torvalds 已提交
4643 4644 4645 4646 4647 4648

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4649 4650
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4651 4652 4653 4654 4655 4656 4657 4658 4659
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4660 4661 4662
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4681
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4682 4683 4684 4685 4686 4687 4688 4689
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4690
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4691 4692 4693
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4694
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4709
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4710 4711 4712 4713 4714 4715 4716 4717
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4718
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4719
{
4720
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4721 4722 4723
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4724 4725
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4726
{
I
Ingo Molnar 已提交
4727
	BUG_ON(p->se.on_rq);
4728

L
Linus Torvalds 已提交
4729
	p->policy = policy;
I
Ingo Molnar 已提交
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4742
	p->rt_priority = prio;
4743 4744 4745
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4746
	set_load_weight(p);
L
Linus Torvalds 已提交
4747 4748 4749
}

/**
4750
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4751 4752 4753
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4754
 *
4755
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4756
 */
I
Ingo Molnar 已提交
4757 4758
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4759
{
4760
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4761
	unsigned long flags;
4762
	const struct sched_class *prev_class = p->sched_class;
4763
	struct rq *rq;
L
Linus Torvalds 已提交
4764

4765 4766
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4767 4768 4769 4770 4771
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4772 4773
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4774
		return -EINVAL;
L
Linus Torvalds 已提交
4775 4776
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4777 4778
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4779 4780
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4781
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4782
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4783
		return -EINVAL;
4784
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4785 4786
		return -EINVAL;

4787 4788 4789 4790
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4791
		if (rt_policy(policy)) {
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4808 4809 4810 4811 4812 4813
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4814

4815 4816 4817 4818 4819
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4820

4821 4822 4823 4824 4825
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
4826
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4827 4828 4829
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4830 4831 4832
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4833 4834 4835 4836 4837
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4838 4839 4840 4841
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4842
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4843 4844 4845
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4846 4847
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4848 4849
		goto recheck;
	}
I
Ingo Molnar 已提交
4850
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4851
	on_rq = p->se.on_rq;
4852
	running = task_current(rq, p);
4853
	if (on_rq)
4854
		deactivate_task(rq, p, 0);
4855 4856
	if (running)
		p->sched_class->put_prev_task(rq, p);
4857

L
Linus Torvalds 已提交
4858
	oldprio = p->prio;
I
Ingo Molnar 已提交
4859
	__setscheduler(rq, p, policy, param->sched_priority);
4860

4861 4862
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4863 4864
	if (on_rq) {
		activate_task(rq, p, 0);
4865 4866

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4867
	}
4868 4869 4870
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4871 4872
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4873 4874 4875 4876
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4877 4878
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4879 4880 4881
{
	struct sched_param lparam;
	struct task_struct *p;
4882
	int retval;
L
Linus Torvalds 已提交
4883 4884 4885 4886 4887

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4888 4889 4890

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4891
	p = find_process_by_pid(pid);
4892 4893 4894
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4895

L
Linus Torvalds 已提交
4896 4897 4898 4899 4900 4901 4902 4903 4904
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4905 4906
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4907
{
4908 4909 4910 4911
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4931
	struct task_struct *p;
4932
	int retval;
L
Linus Torvalds 已提交
4933 4934

	if (pid < 0)
4935
		return -EINVAL;
L
Linus Torvalds 已提交
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4957
	struct task_struct *p;
4958
	int retval;
L
Linus Torvalds 已提交
4959 4960

	if (!param || pid < 0)
4961
		return -EINVAL;
L
Linus Torvalds 已提交
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4988
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
4989 4990
{
	cpumask_t cpus_allowed;
4991
	cpumask_t new_mask = *in_mask;
4992 4993
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4994

4995
	get_online_cpus();
L
Linus Torvalds 已提交
4996 4997 4998 4999 5000
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5001
		put_online_cpus();
L
Linus Torvalds 已提交
5002 5003 5004 5005 5006
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5007
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5018 5019 5020 5021
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5022
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5023
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5024
 again:
5025
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5026

P
Paul Menage 已提交
5027
	if (!retval) {
5028
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5039 5040
out_unlock:
	put_task_struct(p);
5041
	put_online_cpus();
L
Linus Torvalds 已提交
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5072
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5073 5074 5075 5076 5077 5078 5079 5080 5081
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

5082
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
5083 5084 5085
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
5086
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5087 5088
EXPORT_SYMBOL(cpu_online_map);

5089
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5090
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
5091 5092 5093 5094
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5095
	struct task_struct *p;
L
Linus Torvalds 已提交
5096 5097
	int retval;

5098
	get_online_cpus();
L
Linus Torvalds 已提交
5099 5100 5101 5102 5103 5104 5105
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5106 5107 5108 5109
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5110
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5111 5112 5113

out_unlock:
	read_unlock(&tasklist_lock);
5114
	put_online_cpus();
L
Linus Torvalds 已提交
5115

5116
	return retval;
L
Linus Torvalds 已提交
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5147 5148
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5149 5150 5151
 */
asmlinkage long sys_sched_yield(void)
{
5152
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5153

5154
	schedstat_inc(rq, yld_count);
5155
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5156 5157 5158 5159 5160 5161

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5162
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5163 5164 5165 5166 5167 5168 5169 5170
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5171
static void __cond_resched(void)
L
Linus Torvalds 已提交
5172
{
5173 5174 5175
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5176 5177 5178 5179 5180
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5181 5182 5183 5184 5185 5186 5187
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5188
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5189
{
5190 5191
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5192 5193 5194 5195 5196
		__cond_resched();
		return 1;
	}
	return 0;
}
5197
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5198 5199 5200 5201 5202

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5203
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5204 5205 5206
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5207
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5208
{
N
Nick Piggin 已提交
5209
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5210 5211
	int ret = 0;

N
Nick Piggin 已提交
5212
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5213
		spin_unlock(lock);
N
Nick Piggin 已提交
5214 5215 5216 5217
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5218
		ret = 1;
L
Linus Torvalds 已提交
5219 5220
		spin_lock(lock);
	}
J
Jan Kara 已提交
5221
	return ret;
L
Linus Torvalds 已提交
5222 5223 5224 5225 5226 5227 5228
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5229
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5230
		local_bh_enable();
L
Linus Torvalds 已提交
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5242
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5253
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5254 5255 5256 5257 5258 5259 5260
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5261
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5262

5263
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5264 5265 5266
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5267
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5268 5269 5270 5271 5272
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5273
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5274 5275
	long ret;

5276
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5277 5278 5279
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5280
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5301
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5302
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5326
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5327
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5344
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5345
	unsigned int time_slice;
5346
	int retval;
L
Linus Torvalds 已提交
5347 5348 5349
	struct timespec t;

	if (pid < 0)
5350
		return -EINVAL;
L
Linus Torvalds 已提交
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5362 5363 5364 5365 5366 5367
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5368
		time_slice = DEF_TIMESLICE;
5369
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5370 5371 5372 5373 5374
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5375 5376
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5377 5378
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5379
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5380
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5381 5382
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5383

L
Linus Torvalds 已提交
5384 5385 5386 5387 5388
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5389
static const char stat_nam[] = "RSDTtZX";
5390

5391
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5392 5393
{
	unsigned long free = 0;
5394
	unsigned state;
L
Linus Torvalds 已提交
5395 5396

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5397
	printk(KERN_INFO "%-13.13s %c", p->comm,
5398
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5399
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5400
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5401
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5402
	else
I
Ingo Molnar 已提交
5403
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5404 5405
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5406
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5407
	else
I
Ingo Molnar 已提交
5408
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5409 5410 5411
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5412
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5413 5414
		while (!*n)
			n++;
5415
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5416 5417
	}
#endif
5418
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5419
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5420

5421
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5422 5423
}

I
Ingo Molnar 已提交
5424
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5425
{
5426
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5427

5428 5429 5430
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5431
#else
5432 5433
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5434 5435 5436 5437 5438 5439 5440 5441
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5442
		if (!state_filter || (p->state & state_filter))
5443
			sched_show_task(p);
L
Linus Torvalds 已提交
5444 5445
	} while_each_thread(g, p);

5446 5447
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5448 5449 5450
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5451
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5452 5453 5454 5455 5456
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5457 5458
}

I
Ingo Molnar 已提交
5459 5460
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5461
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5462 5463
}

5464 5465 5466 5467 5468 5469 5470 5471
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5472
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5473
{
5474
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5475 5476
	unsigned long flags;

I
Ingo Molnar 已提交
5477 5478 5479
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5480
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5481
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5482
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5483 5484 5485

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5486 5487 5488
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5489 5490 5491
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5492 5493 5494
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5495
	task_thread_info(idle)->preempt_count = 0;
5496
#endif
I
Ingo Molnar 已提交
5497 5498 5499 5500
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5537 5538 5539 5540
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5541
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5560
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5561 5562
 * call is not atomic; no spinlocks may be held.
 */
5563
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5564
{
5565
	struct migration_req req;
L
Linus Torvalds 已提交
5566
	unsigned long flags;
5567
	struct rq *rq;
5568
	int ret = 0;
L
Linus Torvalds 已提交
5569 5570

	rq = task_rq_lock(p, &flags);
5571
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5572 5573 5574 5575
		ret = -EINVAL;
		goto out;
	}

5576
	if (p->sched_class->set_cpus_allowed)
5577
		p->sched_class->set_cpus_allowed(p, new_mask);
5578
	else {
5579 5580
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5581 5582
	}

L
Linus Torvalds 已提交
5583
	/* Can the task run on the task's current CPU? If so, we're done */
5584
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5585 5586
		goto out;

5587
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5588 5589 5590 5591 5592 5593 5594 5595 5596
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5597

L
Linus Torvalds 已提交
5598 5599
	return ret;
}
5600
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5601 5602

/*
I
Ingo Molnar 已提交
5603
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5604 5605 5606 5607 5608 5609
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5610 5611
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5612
 */
5613
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5614
{
5615
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5616
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5617 5618

	if (unlikely(cpu_is_offline(dest_cpu)))
5619
		return ret;
L
Linus Torvalds 已提交
5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5632
	on_rq = p->se.on_rq;
5633
	if (on_rq)
5634
		deactivate_task(rq_src, p, 0);
5635

L
Linus Torvalds 已提交
5636
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5637 5638 5639
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5640
	}
5641
	ret = 1;
L
Linus Torvalds 已提交
5642 5643
out:
	double_rq_unlock(rq_src, rq_dest);
5644
	return ret;
L
Linus Torvalds 已提交
5645 5646 5647 5648 5649 5650 5651
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5652
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5653 5654
{
	int cpu = (long)data;
5655
	struct rq *rq;
L
Linus Torvalds 已提交
5656 5657 5658 5659 5660 5661

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5662
		struct migration_req *req;
L
Linus Torvalds 已提交
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5685
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5686 5687
		list_del_init(head->next);

N
Nick Piggin 已提交
5688 5689 5690
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5720
/*
5721
 * Figure out where task on dead CPU should go, use force if necessary.
5722 5723
 * NOTE: interrupts should be disabled by the caller
 */
5724
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5725
{
5726
	unsigned long flags;
L
Linus Torvalds 已提交
5727
	cpumask_t mask;
5728 5729
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5730

5731 5732 5733 5734 5735 5736 5737
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
5738
		if (dest_cpu >= nr_cpu_ids)
5739 5740 5741
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
5742
		if (dest_cpu >= nr_cpu_ids) {
5743 5744 5745
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
5746 5747 5748 5749
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5750
			 * cpuset_cpus_allowed() will not block. It must be
5751 5752
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5753
			rq = task_rq_lock(p, &flags);
5754
			p->cpus_allowed = cpus_allowed;
5755 5756
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5757

5758 5759 5760 5761 5762
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5763
			if (p->mm && printk_ratelimit()) {
5764 5765
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5766 5767
					task_pid_nr(p), p->comm, dead_cpu);
			}
5768
		}
5769
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5770 5771 5772 5773 5774 5775 5776 5777 5778
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5779
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5780
{
5781
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5795
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5796

5797
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5798

5799 5800
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5801 5802
			continue;

5803 5804 5805
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5806

5807
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5808 5809
}

I
Ingo Molnar 已提交
5810 5811
/*
 * Schedules idle task to be the next runnable task on current CPU.
5812 5813
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5814 5815 5816
 */
void sched_idle_next(void)
{
5817
	int this_cpu = smp_processor_id();
5818
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5819 5820 5821 5822
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5823
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5824

5825 5826 5827
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5828 5829 5830
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5831
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5832

5833 5834
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5835 5836 5837 5838

	spin_unlock_irqrestore(&rq->lock, flags);
}

5839 5840
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5854
/* called under rq->lock with disabled interrupts */
5855
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5856
{
5857
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5858 5859

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5860
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5861 5862

	/* Cannot have done final schedule yet: would have vanished. */
5863
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5864

5865
	get_task_struct(p);
L
Linus Torvalds 已提交
5866 5867 5868

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5869
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5870 5871
	 * fine.
	 */
5872
	spin_unlock_irq(&rq->lock);
5873
	move_task_off_dead_cpu(dead_cpu, p);
5874
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5875

5876
	put_task_struct(p);
L
Linus Torvalds 已提交
5877 5878 5879 5880 5881
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5882
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5883
	struct task_struct *next;
5884

I
Ingo Molnar 已提交
5885 5886 5887
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5888
		update_rq_clock(rq);
5889
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5890 5891 5892
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5893

L
Linus Torvalds 已提交
5894 5895 5896 5897
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5898 5899 5900
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5901 5902
	{
		.procname	= "sched_domain",
5903
		.mode		= 0555,
5904
	},
I
Ingo Molnar 已提交
5905
	{0, },
5906 5907 5908
};

static struct ctl_table sd_ctl_root[] = {
5909
	{
5910
		.ctl_name	= CTL_KERN,
5911
		.procname	= "kernel",
5912
		.mode		= 0555,
5913 5914
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5915
	{0, },
5916 5917 5918 5919 5920
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5921
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5922 5923 5924 5925

	return entry;
}

5926 5927
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5928
	struct ctl_table *entry;
5929

5930 5931 5932
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5933
	 * will always be set. In the lowest directory the names are
5934 5935 5936
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5937 5938
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5939 5940 5941
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5942 5943 5944 5945 5946

	kfree(*tablep);
	*tablep = NULL;
}

5947
static void
5948
set_table_entry(struct ctl_table *entry,
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5962
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5963

5964 5965 5966
	if (table == NULL)
		return NULL;

5967
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5968
		sizeof(long), 0644, proc_doulongvec_minmax);
5969
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5970
		sizeof(long), 0644, proc_doulongvec_minmax);
5971
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5972
		sizeof(int), 0644, proc_dointvec_minmax);
5973
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5974
		sizeof(int), 0644, proc_dointvec_minmax);
5975
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5976
		sizeof(int), 0644, proc_dointvec_minmax);
5977
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5978
		sizeof(int), 0644, proc_dointvec_minmax);
5979
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5980
		sizeof(int), 0644, proc_dointvec_minmax);
5981
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5982
		sizeof(int), 0644, proc_dointvec_minmax);
5983
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5984
		sizeof(int), 0644, proc_dointvec_minmax);
5985
	set_table_entry(&table[9], "cache_nice_tries",
5986 5987
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5988
	set_table_entry(&table[10], "flags", &sd->flags,
5989
		sizeof(int), 0644, proc_dointvec_minmax);
5990
	/* &table[11] is terminator */
5991 5992 5993 5994

	return table;
}

5995
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5996 5997 5998 5999 6000 6001 6002 6003 6004
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6005 6006
	if (table == NULL)
		return NULL;
6007 6008 6009 6010 6011

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6012
		entry->mode = 0555;
6013 6014 6015 6016 6017 6018 6019 6020
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6021
static void register_sched_domain_sysctl(void)
6022 6023 6024 6025 6026
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6027 6028 6029
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6030 6031 6032
	if (entry == NULL)
		return;

6033
	for_each_online_cpu(i) {
6034 6035
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6036
		entry->mode = 0555;
6037
		entry->child = sd_alloc_ctl_cpu_table(i);
6038
		entry++;
6039
	}
6040 6041

	WARN_ON(sd_sysctl_header);
6042 6043
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6044

6045
/* may be called multiple times per register */
6046 6047
static void unregister_sched_domain_sysctl(void)
{
6048 6049
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6050
	sd_sysctl_header = NULL;
6051 6052
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6053
}
6054
#else
6055 6056 6057 6058
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6059 6060 6061 6062
{
}
#endif

L
Linus Torvalds 已提交
6063 6064 6065 6066
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6067 6068
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6069 6070
{
	struct task_struct *p;
6071
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6072
	unsigned long flags;
6073
	struct rq *rq;
L
Linus Torvalds 已提交
6074 6075

	switch (action) {
6076

L
Linus Torvalds 已提交
6077
	case CPU_UP_PREPARE:
6078
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6079
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6080 6081 6082 6083 6084
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6085
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6086 6087 6088
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6089

L
Linus Torvalds 已提交
6090
	case CPU_ONLINE:
6091
	case CPU_ONLINE_FROZEN:
6092
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6093
		wake_up_process(cpu_rq(cpu)->migration_thread);
6094 6095 6096 6097 6098 6099 6100 6101 6102

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6103
		break;
6104

L
Linus Torvalds 已提交
6105 6106
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6107
	case CPU_UP_CANCELED_FROZEN:
6108 6109
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6110
		/* Unbind it from offline cpu so it can run. Fall thru. */
6111 6112
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6113 6114 6115
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6116

L
Linus Torvalds 已提交
6117
	case CPU_DEAD:
6118
	case CPU_DEAD_FROZEN:
6119
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6120 6121 6122 6123 6124
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6125
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6126
		update_rq_clock(rq);
6127
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6128
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6129 6130
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6131
		migrate_dead_tasks(cpu);
6132
		spin_unlock_irq(&rq->lock);
6133
		cpuset_unlock();
L
Linus Torvalds 已提交
6134 6135 6136
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6137 6138 6139 6140 6141
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6142 6143
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6144 6145
			struct migration_req *req;

L
Linus Torvalds 已提交
6146
			req = list_entry(rq->migration_queue.next,
6147
					 struct migration_req, list);
L
Linus Torvalds 已提交
6148 6149 6150 6151 6152
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6153

6154 6155
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6156 6157 6158 6159 6160 6161 6162 6163 6164
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6165 6166 6167 6168 6169 6170 6171 6172
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6173
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6174 6175 6176 6177
	.notifier_call = migration_call,
	.priority = 10
};

6178
void __init migration_init(void)
L
Linus Torvalds 已提交
6179 6180
{
	void *cpu = (void *)(long)smp_processor_id();
6181
	int err;
6182 6183

	/* Start one for the boot CPU: */
6184 6185
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6186 6187 6188 6189 6190 6191
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6192

6193
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6194

6195 6196
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6197
{
I
Ingo Molnar 已提交
6198
	struct sched_group *group = sd->groups;
6199
	char str[256];
L
Linus Torvalds 已提交
6200

6201
	cpulist_scnprintf(str, sizeof(str), sd->span);
6202
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6203 6204 6205 6206 6207 6208 6209 6210 6211

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6212 6213
	}

I
Ingo Molnar 已提交
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6224

I
Ingo Molnar 已提交
6225
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6226
	do {
I
Ingo Molnar 已提交
6227 6228 6229
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6230 6231 6232
			break;
		}

I
Ingo Molnar 已提交
6233 6234 6235 6236 6237 6238
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6239

I
Ingo Molnar 已提交
6240 6241 6242 6243 6244
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6245

6246
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6247 6248 6249 6250
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6251

6252
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6253

6254
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6255
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6256

I
Ingo Molnar 已提交
6257 6258 6259
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6260

6261
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6262
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6263

6264
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6265 6266 6267 6268
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6269

I
Ingo Molnar 已提交
6270 6271
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6272
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6273
	int level = 0;
L
Linus Torvalds 已提交
6274

I
Ingo Molnar 已提交
6275 6276 6277 6278
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6279

I
Ingo Molnar 已提交
6280 6281
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6282 6283 6284 6285 6286 6287
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6288
	for (;;) {
6289
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6290
			break;
L
Linus Torvalds 已提交
6291 6292
		level++;
		sd = sd->parent;
6293
		if (!sd)
I
Ingo Molnar 已提交
6294 6295
			break;
	}
6296
	kfree(groupmask);
L
Linus Torvalds 已提交
6297 6298
}
#else
6299
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6300 6301
#endif

6302
static int sd_degenerate(struct sched_domain *sd)
6303 6304 6305 6306 6307 6308 6309 6310
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6311 6312 6313
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6327 6328
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6347 6348 6349
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6350 6351 6352 6353 6354 6355 6356
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6367
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6368 6369
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6370
		}
G
Gregory Haskins 已提交
6371

6372 6373 6374
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6375 6376 6377 6378 6379 6380 6381
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6382
	cpu_set(rq->cpu, rd->span);
6383 6384
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);
6385

I
Ingo Molnar 已提交
6386
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6387 6388
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6389
	}
G
Gregory Haskins 已提交
6390 6391 6392 6393

	spin_unlock_irqrestore(&rq->lock, flags);
}

6394
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6395 6396 6397
{
	memset(rd, 0, sizeof(*rd));

6398 6399
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6400 6401 6402 6403
}

static void init_defrootdomain(void)
{
6404
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6405 6406 6407
	atomic_set(&def_root_domain.refcount, 1);
}

6408
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6409 6410 6411 6412 6413 6414 6415
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6416
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6417 6418 6419 6420

	return rd;
}

L
Linus Torvalds 已提交
6421
/*
I
Ingo Molnar 已提交
6422
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6423 6424
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6425 6426
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6427
{
6428
	struct rq *rq = cpu_rq(cpu);
6429 6430 6431 6432 6433 6434 6435
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6436
		if (sd_parent_degenerate(tmp, parent)) {
6437
			tmp->parent = parent->parent;
6438 6439 6440
			if (parent->parent)
				parent->parent->child = tmp;
		}
6441 6442
	}

6443
	if (sd && sd_degenerate(sd)) {
6444
		sd = sd->parent;
6445 6446 6447
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6448 6449 6450

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6451
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6452
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6453 6454 6455
}

/* cpus with isolated domains */
6456
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6471
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6472 6473

/*
6474 6475 6476 6477
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6478 6479 6480 6481 6482
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6483
static void
6484
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6485
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6486 6487 6488
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6489 6490 6491 6492
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6493 6494 6495
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6496
		struct sched_group *sg;
6497
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6498 6499
		int j;

6500
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6501 6502
			continue;

6503
		cpus_clear(sg->cpumask);
6504
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6505

6506 6507
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6508 6509
				continue;

6510
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6522
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6523

6524
#ifdef CONFIG_NUMA
6525

6526 6527 6528 6529 6530
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6531
 * Find the next node to include in a given scheduling domain. Simply
6532 6533 6534 6535
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6536
static int find_next_best_node(int node, nodemask_t *used_nodes)
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6550
		if (node_isset(n, *used_nodes))
6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6562
	node_set(best_node, *used_nodes);
6563 6564 6565 6566 6567 6568
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6569
 * @span: resulting cpumask
6570
 *
I
Ingo Molnar 已提交
6571
 * Given a node, construct a good cpumask for its sched_domain to span. It
6572 6573 6574
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6575
static void sched_domain_node_span(int node, cpumask_t *span)
6576
{
6577 6578
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6579
	int i;
6580

6581
	cpus_clear(*span);
6582
	nodes_clear(used_nodes);
6583

6584
	cpus_or(*span, *span, *nodemask);
6585
	node_set(node, used_nodes);
6586 6587

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6588
		int next_node = find_next_best_node(node, &used_nodes);
6589

6590
		node_to_cpumask_ptr_next(nodemask, next_node);
6591
		cpus_or(*span, *span, *nodemask);
6592 6593 6594 6595
	}
}
#endif

6596
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6597

6598
/*
6599
 * SMT sched-domains:
6600
 */
L
Linus Torvalds 已提交
6601 6602
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6603
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6604

I
Ingo Molnar 已提交
6605
static int
6606 6607
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6608
{
6609 6610
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6611 6612 6613 6614
	return cpu;
}
#endif

6615 6616 6617
/*
 * multi-core sched-domains:
 */
6618 6619
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6620
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6621 6622 6623
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6624
static int
6625 6626
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6627
{
6628
	int group;
6629 6630 6631 6632

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6633 6634 6635
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6636 6637
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6638
static int
6639 6640
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6641
{
6642 6643
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6644 6645 6646 6647
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6648
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6649
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6650

I
Ingo Molnar 已提交
6651
static int
6652 6653
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6654
{
6655
	int group;
6656
#ifdef CONFIG_SCHED_MC
6657 6658 6659
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6660
#elif defined(CONFIG_SCHED_SMT)
6661 6662 6663
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6664
#else
6665
	group = cpu;
L
Linus Torvalds 已提交
6666
#endif
6667 6668 6669
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6670 6671 6672 6673
}

#ifdef CONFIG_NUMA
/*
6674 6675 6676
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6677
 */
6678
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6679
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6680

6681
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6682
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6683

6684
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6685
				 struct sched_group **sg, cpumask_t *nodemask)
6686
{
6687 6688
	int group;

6689 6690 6691
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
6692 6693 6694 6695

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6696
}
6697

6698 6699 6700 6701 6702 6703 6704
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6705 6706 6707
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6708

6709 6710 6711 6712 6713 6714 6715 6716
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6717

6718 6719 6720 6721
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6722
}
L
Linus Torvalds 已提交
6723 6724
#endif

6725
#ifdef CONFIG_NUMA
6726
/* Free memory allocated for various sched_group structures */
6727
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6728
{
6729
	int cpu, i;
6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6741 6742 6743
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6760
#else
6761
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6762 6763 6764
{
}
#endif
6765

6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6792 6793
	sd->groups->__cpu_power = 0;

6794 6795 6796 6797 6798 6799 6800 6801 6802 6803
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6804
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6805 6806 6807 6808 6809 6810 6811 6812
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6813
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6814 6815 6816 6817
		group = group->next;
	} while (group != child->groups);
}

6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6829
	sd->level = SD_LV_##type;				\
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
	default_relax_domain_level = simple_strtoul(str, NULL, 0);
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
6908
/*
6909 6910
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6911
 */
6912 6913
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
6914 6915
{
	int i;
G
Gregory Haskins 已提交
6916
	struct root_domain *rd;
6917 6918
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
6919 6920
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6921
	int sd_allnodes = 0;
6922 6923 6924 6925

	/*
	 * Allocate the per-node list of sched groups
	 */
6926
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6927
				    GFP_KERNEL);
6928 6929
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6930
		return -ENOMEM;
6931 6932
	}
#endif
L
Linus Torvalds 已提交
6933

6934
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6935 6936
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
6937 6938 6939
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
6940 6941 6942
		return -ENOMEM;
	}

6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
6962
	/*
6963
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6964
	 */
6965
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6966
		struct sched_domain *sd = NULL, *p;
6967
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
6968

6969 6970
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
6971 6972

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6973
		if (cpus_weight(*cpu_map) >
6974
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
6975
			sd = &per_cpu(allnodes_domains, i);
6976
			SD_INIT(sd, ALLNODES);
6977
			set_domain_attribute(sd, attr);
6978
			sd->span = *cpu_map;
6979
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
6980
			p = sd;
6981
			sd_allnodes = 1;
6982 6983 6984
		} else
			p = NULL;

L
Linus Torvalds 已提交
6985
		sd = &per_cpu(node_domains, i);
6986
		SD_INIT(sd, NODE);
6987
		set_domain_attribute(sd, attr);
6988
		sched_domain_node_span(cpu_to_node(i), &sd->span);
6989
		sd->parent = p;
6990 6991
		if (p)
			p->child = sd;
6992
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6993 6994 6995 6996
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
6997
		SD_INIT(sd, CPU);
6998
		set_domain_attribute(sd, attr);
6999
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7000
		sd->parent = p;
7001 7002
		if (p)
			p->child = sd;
7003
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7004

7005 7006 7007
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7008
		SD_INIT(sd, MC);
7009
		set_domain_attribute(sd, attr);
7010 7011 7012
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7013
		p->child = sd;
7014
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7015 7016
#endif

L
Linus Torvalds 已提交
7017 7018 7019
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7020
		SD_INIT(sd, SIBLING);
7021
		set_domain_attribute(sd, attr);
7022
		sd->span = per_cpu(cpu_sibling_map, i);
7023
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7024
		sd->parent = p;
7025
		p->child = sd;
7026
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7027 7028 7029 7030 7031
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7032
	for_each_cpu_mask(i, *cpu_map) {
7033 7034 7035 7036 7037 7038
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7039 7040
			continue;

I
Ingo Molnar 已提交
7041
		init_sched_build_groups(this_sibling_map, cpu_map,
7042 7043
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7044 7045 7046
	}
#endif

7047 7048 7049
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7050 7051 7052 7053 7054 7055
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7056
			continue;
7057

I
Ingo Molnar 已提交
7058
		init_sched_build_groups(this_core_map, cpu_map,
7059 7060
					&cpu_to_core_group,
					send_covered, tmpmask);
7061 7062 7063
	}
#endif

L
Linus Torvalds 已提交
7064 7065
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7066 7067
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7068

7069 7070 7071
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7072 7073
			continue;

7074 7075 7076
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7077 7078 7079 7080
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7081 7082 7083 7084 7085 7086 7087
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7088 7089 7090 7091

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7092 7093 7094
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7095 7096
		int j;

7097 7098 7099 7100 7101
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7102
			sched_group_nodes[i] = NULL;
7103
			continue;
7104
		}
7105

7106
		sched_domain_node_span(i, domainspan);
7107
		cpus_and(*domainspan, *domainspan, *cpu_map);
7108

7109
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7110 7111 7112 7113 7114
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7115
		sched_group_nodes[i] = sg;
7116
		for_each_cpu_mask(j, *nodemask) {
7117
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7118

7119 7120 7121
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7122
		sg->__cpu_power = 0;
7123
		sg->cpumask = *nodemask;
7124
		sg->next = sg;
7125
		cpus_or(*covered, *covered, *nodemask);
7126 7127 7128
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7129
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7130
			int n = (i + j) % MAX_NUMNODES;
7131
			node_to_cpumask_ptr(pnodemask, n);
7132

7133 7134 7135 7136
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7137 7138
				break;

7139 7140
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7141 7142
				continue;

7143 7144
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7145 7146 7147
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7148
				goto error;
7149
			}
7150
			sg->__cpu_power = 0;
7151
			sg->cpumask = *tmpmask;
7152
			sg->next = prev->next;
7153
			cpus_or(*covered, *covered, *tmpmask);
7154 7155 7156 7157
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7158 7159 7160
#endif

	/* Calculate CPU power for physical packages and nodes */
7161
#ifdef CONFIG_SCHED_SMT
7162
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7163 7164
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7165
		init_sched_groups_power(i, sd);
7166
	}
L
Linus Torvalds 已提交
7167
#endif
7168
#ifdef CONFIG_SCHED_MC
7169
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7170 7171
		struct sched_domain *sd = &per_cpu(core_domains, i);

7172
		init_sched_groups_power(i, sd);
7173 7174
	}
#endif
7175

7176
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7177 7178
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7179
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7180 7181
	}

7182
#ifdef CONFIG_NUMA
7183 7184
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7185

7186 7187
	if (sd_allnodes) {
		struct sched_group *sg;
7188

7189 7190
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7191 7192
		init_numa_sched_groups_power(sg);
	}
7193 7194
#endif

L
Linus Torvalds 已提交
7195
	/* Attach the domains */
7196
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7197 7198 7199
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7200 7201
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7202 7203 7204
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7205
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7206
	}
7207

7208
	SCHED_CPUMASK_FREE((void *)allmasks);
7209 7210
	return 0;

7211
#ifdef CONFIG_NUMA
7212
error:
7213 7214
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7215
	return -ENOMEM;
7216
#endif
L
Linus Torvalds 已提交
7217
}
P
Paul Jackson 已提交
7218

7219 7220 7221 7222 7223
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7224 7225
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7226 7227
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7228 7229 7230 7231 7232 7233 7234 7235

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7236 7237 7238 7239
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7240
/*
I
Ingo Molnar 已提交
7241
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7242 7243
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7244
 */
7245
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7246
{
7247 7248
	int err;

7249
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7250 7251 7252 7253 7254
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7255
	dattr_cur = NULL;
7256
	err = build_sched_domains(doms_cur);
7257
	register_sched_domain_sysctl();
7258 7259

	return err;
7260 7261
}

7262 7263
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7264
{
7265
	free_sched_groups(cpu_map, tmpmask);
7266
}
L
Linus Torvalds 已提交
7267

7268 7269 7270 7271
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7272
static void detach_destroy_domains(const cpumask_t *cpu_map)
7273
{
7274
	cpumask_t tmpmask;
7275 7276
	int i;

7277 7278
	unregister_sched_domain_sysctl();

7279
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7280
		cpu_attach_domain(NULL, &def_root_domain, i);
7281
	synchronize_sched();
7282
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7283 7284
}

7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7301 7302
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7303
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7304 7305 7306 7307
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7308 7309 7310
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7311 7312 7313
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7314 7315
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7316 7317 7318 7319 7320 7321
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7322 7323
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7324 7325 7326
{
	int i, j;

7327
	mutex_lock(&sched_domains_mutex);
7328

7329 7330 7331
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7332 7333 7334 7335
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7336
		dattr_new = NULL;
P
Paul Jackson 已提交
7337 7338 7339 7340 7341
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7342 7343
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7355 7356
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7357 7358 7359
				goto match2;
		}
		/* no match - add a new doms_new */
7360 7361
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7362 7363 7364 7365 7366 7367 7368
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7369
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7370
	doms_cur = doms_new;
7371
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7372
	ndoms_cur = ndoms_new;
7373 7374

	register_sched_domain_sysctl();
7375

7376
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7377 7378
}

7379
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7380
int arch_reinit_sched_domains(void)
7381 7382 7383
{
	int err;

7384
	get_online_cpus();
7385
	mutex_lock(&sched_domains_mutex);
7386 7387
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
7388
	mutex_unlock(&sched_domains_mutex);
7389
	put_online_cpus();
7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7416 7417
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7418 7419 7420
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7421 7422
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7423 7424 7425 7426 7427 7428 7429
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7430 7431
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7432 7433 7434
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7455 7456
#endif

L
Linus Torvalds 已提交
7457
/*
I
Ingo Molnar 已提交
7458
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7459
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7460
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7461 7462 7463 7464 7465 7466 7467
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7468
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7469
	case CPU_DOWN_PREPARE:
7470
	case CPU_DOWN_PREPARE_FROZEN:
7471
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7472 7473 7474
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7475
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7476
	case CPU_DOWN_FAILED:
7477
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7478
	case CPU_ONLINE:
7479
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7480
	case CPU_DEAD:
7481
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7482 7483 7484 7485 7486 7487 7488 7489 7490
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7491
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7492 7493 7494 7495 7496 7497

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7498 7499
	cpumask_t non_isolated_cpus;

7500 7501 7502 7503 7504
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7505
	get_online_cpus();
7506
	mutex_lock(&sched_domains_mutex);
7507
	arch_init_sched_domains(&cpu_online_map);
7508
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7509 7510
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7511
	mutex_unlock(&sched_domains_mutex);
7512
	put_online_cpus();
L
Linus Torvalds 已提交
7513 7514
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7515
	init_hrtick();
7516 7517

	/* Move init over to a non-isolated CPU */
7518
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7519
		BUG();
I
Ingo Molnar 已提交
7520
	sched_init_granularity();
L
Linus Torvalds 已提交
7521 7522 7523 7524
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7525
	sched_init_granularity();
L
Linus Torvalds 已提交
7526 7527 7528 7529 7530 7531 7532 7533 7534 7535
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7536
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7537 7538
{
	cfs_rq->tasks_timeline = RB_ROOT;
7539
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7540 7541 7542
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7543
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7544 7545
}

P
Peter Zijlstra 已提交
7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7559
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7560 7561
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7562 7563 7564 7565 7566 7567 7568
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7569 7570
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7571

7572
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7573
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7574 7575
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7576 7577
}

P
Peter Zijlstra 已提交
7578
#ifdef CONFIG_FAIR_GROUP_SCHED
7579 7580 7581
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7582
{
7583
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7584 7585 7586 7587 7588 7589 7590
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7591 7592 7593 7594
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7595 7596 7597 7598 7599
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7600 7601
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7602
	se->load.inv_weight = 0;
7603
	se->parent = parent;
P
Peter Zijlstra 已提交
7604
}
7605
#endif
P
Peter Zijlstra 已提交
7606

7607
#ifdef CONFIG_RT_GROUP_SCHED
7608 7609 7610
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7611
{
7612 7613
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7614 7615 7616 7617
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7618
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7619 7620 7621 7622
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7623 7624 7625
	if (!rt_se)
		return;

7626 7627 7628 7629 7630
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7631
	rt_se->my_q = rt_rq;
7632
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7633 7634 7635 7636
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7637 7638
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7639
	int i, j;
7640 7641 7642 7643 7644 7645 7646
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7647 7648 7649
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7650 7651 7652 7653 7654 7655
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
7656
		ptr = (unsigned long)alloc_bootmem(alloc_size);
7657 7658 7659 7660 7661 7662 7663

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7664 7665 7666 7667 7668 7669 7670 7671

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
7672 7673 7674 7675 7676 7677
#endif
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7678 7679 7680 7681 7682 7683 7684 7685 7686
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
7687 7688
#endif
	}
I
Ingo Molnar 已提交
7689

G
Gregory Haskins 已提交
7690 7691 7692 7693
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7694 7695 7696 7697 7698 7699
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7700 7701 7702 7703
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
#endif
7704 7705
#endif

7706
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7707
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7708 7709 7710 7711 7712 7713 7714
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
#endif
P
Peter Zijlstra 已提交
7715 7716
#endif

7717
	for_each_possible_cpu(i) {
7718
		struct rq *rq;
L
Linus Torvalds 已提交
7719 7720 7721

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7722
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7723
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7724
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7725
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7726
#ifdef CONFIG_FAIR_GROUP_SCHED
7727
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7728
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7749
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7750
#elif defined CONFIG_USER_SCHED
7751 7752
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
7764
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
7765
				&per_cpu(init_cfs_rq, i),
7766 7767
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
7768

7769
#endif
D
Dhaval Giani 已提交
7770 7771 7772
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7773
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7774
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7775
#ifdef CONFIG_CGROUP_SCHED
7776
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7777
#elif defined CONFIG_USER_SCHED
7778
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7779
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
7780
				&per_cpu(init_rt_rq, i),
7781 7782
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
7783
#endif
I
Ingo Molnar 已提交
7784
#endif
L
Linus Torvalds 已提交
7785

I
Ingo Molnar 已提交
7786 7787
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7788
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7789
		rq->sd = NULL;
G
Gregory Haskins 已提交
7790
		rq->rd = NULL;
L
Linus Torvalds 已提交
7791
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7792
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7793
		rq->push_cpu = 0;
7794
		rq->cpu = i;
L
Linus Torvalds 已提交
7795 7796
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7797
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7798
#endif
P
Peter Zijlstra 已提交
7799
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7800 7801 7802
		atomic_set(&rq->nr_iowait, 0);
	}

7803
	set_load_weight(&init_task);
7804

7805 7806 7807 7808
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7809 7810 7811 7812
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7813 7814 7815 7816
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
7830 7831 7832 7833
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7834 7835

	scheduler_running = 1;
L
Linus Torvalds 已提交
7836 7837 7838 7839 7840
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7841
#ifdef in_atomic
L
Linus Torvalds 已提交
7842 7843 7844 7845 7846 7847 7848
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7849
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7850 7851 7852
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7853
		debug_show_held_locks(current);
7854 7855
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7856 7857 7858 7859 7860 7861 7862 7863
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7864 7865 7866
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7867

7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7879 7880
void normalize_rt_tasks(void)
{
7881
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7882
	unsigned long flags;
7883
	struct rq *rq;
L
Linus Torvalds 已提交
7884

7885
	read_lock_irqsave(&tasklist_lock, flags);
7886
	do_each_thread(g, p) {
7887 7888 7889 7890 7891 7892
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7893 7894
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7895 7896 7897
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7898
#endif
I
Ingo Molnar 已提交
7899 7900 7901 7902 7903 7904 7905 7906

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7907
			continue;
I
Ingo Molnar 已提交
7908
		}
L
Linus Torvalds 已提交
7909

7910
		spin_lock(&p->pi_lock);
7911
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7912

7913
		normalize_task(rq, p);
7914

7915
		__task_rq_unlock(rq);
7916
		spin_unlock(&p->pi_lock);
7917 7918
	} while_each_thread(g, p);

7919
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7920 7921 7922
}

#endif /* CONFIG_MAGIC_SYSRQ */
7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7941
struct task_struct *curr_task(int cpu)
7942 7943 7944 7945 7946 7947 7948 7949 7950 7951
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7952 7953
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7954 7955 7956 7957 7958 7959 7960
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7961
void set_curr_task(int cpu, struct task_struct *p)
7962 7963 7964 7965 7966
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7967

7968 7969
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7984 7985
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7986 7987
{
	struct cfs_rq *cfs_rq;
7988
	struct sched_entity *se, *parent_se;
7989
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7990 7991
	int i;

7992
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7993 7994
	if (!tg->cfs_rq)
		goto err;
7995
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7996 7997
	if (!tg->se)
		goto err;
7998 7999

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8000 8001

	for_each_possible_cpu(i) {
8002
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8003

P
Peter Zijlstra 已提交
8004 8005
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8006 8007 8008
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8009 8010
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8011 8012 8013
		if (!se)
			goto err;

8014 8015
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8039 8040
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8052 8053 8054
#endif

#ifdef CONFIG_RT_GROUP_SCHED
8055 8056 8057 8058
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8059 8060
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8072 8073
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8074 8075
{
	struct rt_rq *rt_rq;
8076
	struct sched_rt_entity *rt_se, *parent_se;
8077 8078 8079
	struct rq *rq;
	int i;

8080
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8081 8082
	if (!tg->rt_rq)
		goto err;
8083
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8084 8085 8086
	if (!tg->rt_se)
		goto err;

8087 8088
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8089 8090 8091 8092

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8093 8094 8095 8096
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8097

P
Peter Zijlstra 已提交
8098 8099 8100 8101
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8102

8103 8104
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8105 8106
	}

8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8128 8129
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

8143
#ifdef CONFIG_GROUP_SCHED
8144 8145 8146 8147 8148 8149 8150 8151
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8152
struct task_group *sched_create_group(struct task_group *parent)
8153 8154 8155 8156 8157 8158 8159 8160 8161
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8162
	if (!alloc_fair_sched_group(tg, parent))
8163 8164
		goto err;

8165
	if (!alloc_rt_sched_group(tg, parent))
8166 8167
		goto err;

8168
	spin_lock_irqsave(&task_group_lock, flags);
8169
	for_each_possible_cpu(i) {
8170 8171
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8172
	}
P
Peter Zijlstra 已提交
8173
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8174 8175 8176 8177 8178 8179

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8180
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8181

8182
	return tg;
S
Srivatsa Vaddagiri 已提交
8183 8184

err:
P
Peter Zijlstra 已提交
8185
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8186 8187 8188
	return ERR_PTR(-ENOMEM);
}

8189
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8190
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8191 8192
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8193
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8194 8195
}

8196
/* Destroy runqueue etc associated with a task group */
8197
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8198
{
8199
	unsigned long flags;
8200
	int i;
S
Srivatsa Vaddagiri 已提交
8201

8202
	spin_lock_irqsave(&task_group_lock, flags);
8203
	for_each_possible_cpu(i) {
8204 8205
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8206
	}
P
Peter Zijlstra 已提交
8207
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8208
	list_del_rcu(&tg->siblings);
8209
	spin_unlock_irqrestore(&task_group_lock, flags);
8210 8211

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8212
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8213 8214
}

8215
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8216 8217 8218
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8219 8220
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8221 8222 8223 8224 8225 8226 8227 8228 8229
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8230
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8231 8232
	on_rq = tsk->se.on_rq;

8233
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8234
		dequeue_task(rq, tsk, 0);
8235 8236
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8237

P
Peter Zijlstra 已提交
8238
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8239

P
Peter Zijlstra 已提交
8240 8241 8242 8243 8244
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8245 8246 8247
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8248
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8249 8250 8251

	task_rq_unlock(rq, &flags);
}
8252
#endif
S
Srivatsa Vaddagiri 已提交
8253

8254
#ifdef CONFIG_FAIR_GROUP_SCHED
8255
static void set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8256 8257
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
8258
	struct rq *rq = cfs_rq->rq;
S
Srivatsa Vaddagiri 已提交
8259 8260
	int on_rq;

8261 8262
	spin_lock_irq(&rq->lock);

S
Srivatsa Vaddagiri 已提交
8263
	on_rq = se->on_rq;
8264
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8265 8266 8267
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8268
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8269

8270
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8271
		enqueue_entity(cfs_rq, se, 0);
8272

8273
	spin_unlock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
8274 8275
}

8276 8277
static DEFINE_MUTEX(shares_mutex);

8278
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8279 8280
{
	int i;
8281
	unsigned long flags;
8282

8283 8284 8285 8286 8287 8288
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8289 8290
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8291 8292
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8293

8294
	mutex_lock(&shares_mutex);
8295
	if (tg->shares == shares)
8296
		goto done;
S
Srivatsa Vaddagiri 已提交
8297

8298
	spin_lock_irqsave(&task_group_lock, flags);
8299 8300
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8301
	list_del_rcu(&tg->siblings);
8302
	spin_unlock_irqrestore(&task_group_lock, flags);
8303 8304 8305 8306 8307 8308 8309 8310

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8311
	tg->shares = shares;
8312
	for_each_possible_cpu(i)
8313
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
8314

8315 8316 8317 8318
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8319
	spin_lock_irqsave(&task_group_lock, flags);
8320 8321
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8322
	list_add_rcu(&tg->siblings, &tg->parent->children);
8323
	spin_unlock_irqrestore(&task_group_lock, flags);
8324
done:
8325
	mutex_unlock(&shares_mutex);
8326
	return 0;
S
Srivatsa Vaddagiri 已提交
8327 8328
}

8329 8330 8331 8332
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8333
#endif
8334

8335
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8336
/*
P
Peter Zijlstra 已提交
8337
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8338
 */
P
Peter Zijlstra 已提交
8339 8340 8341 8342 8343 8344 8345
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8346
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8347 8348
}

8349 8350 8351
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8352
	struct task_group *tgi, *parent = tg ? tg->parent : NULL;
8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

	return total + to_ratio(period, runtime) <
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8381
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8382 8383 8384
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8385
	unsigned long global_ratio =
8386
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8387 8388

	rcu_read_lock();
P
Peter Zijlstra 已提交
8389 8390 8391
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8392

8393 8394
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8395 8396
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8397

P
Peter Zijlstra 已提交
8398
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8399
}
8400
#endif
P
Peter Zijlstra 已提交
8401

8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8413 8414
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8415
{
P
Peter Zijlstra 已提交
8416
	int i, err = 0;
P
Peter Zijlstra 已提交
8417 8418

	mutex_lock(&rt_constraints_mutex);
8419
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8420
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8421 8422 8423
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8424 8425 8426 8427
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8428 8429

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8430 8431
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8432 8433 8434 8435 8436 8437 8438 8439 8440

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8441
 unlock:
8442
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8443 8444 8445
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8446 8447
}

8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8460 8461 8462 8463
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8464
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8465 8466
		return -1;

8467
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8468 8469 8470
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(NULL, 1, 0))
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
#else
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8518 8519
	return 0;
}
8520
#endif
8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8551

8552
#ifdef CONFIG_CGROUP_SCHED
8553 8554

/* return corresponding task_group object of a cgroup */
8555
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8556
{
8557 8558
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8559 8560 8561
}

static struct cgroup_subsys_state *
8562
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8563
{
8564
	struct task_group *tg, *parent;
8565

8566
	if (!cgrp->parent) {
8567
		/* This is early initialization for the top cgroup */
8568
		init_task_group.css.cgroup = cgrp;
8569 8570 8571
		return &init_task_group.css;
	}

8572 8573
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8574 8575 8576 8577
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8578
	tg->css.cgroup = cgrp;
8579 8580 8581 8582

	return &tg->css;
}

I
Ingo Molnar 已提交
8583 8584
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8585
{
8586
	struct task_group *tg = cgroup_tg(cgrp);
8587 8588 8589 8590

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8591 8592 8593
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8594
{
8595 8596
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8597
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8598 8599
		return -EINVAL;
#else
8600 8601 8602
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8603
#endif
8604 8605 8606 8607 8608

	return 0;
}

static void
8609
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8610 8611 8612 8613 8614
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8615
#ifdef CONFIG_FAIR_GROUP_SCHED
8616
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8617
				u64 shareval)
8618
{
8619
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8620 8621
}

8622
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8623
{
8624
	struct task_group *tg = cgroup_tg(cgrp);
8625 8626 8627

	return (u64) tg->shares;
}
8628
#endif
8629

8630
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8631
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8632
				s64 val)
P
Peter Zijlstra 已提交
8633
{
8634
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8635 8636
}

8637
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8638
{
8639
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8640
}
8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8652
#endif
P
Peter Zijlstra 已提交
8653

8654
static struct cftype cpu_files[] = {
8655
#ifdef CONFIG_FAIR_GROUP_SCHED
8656 8657
	{
		.name = "shares",
8658 8659
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8660
	},
8661 8662
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8663
	{
P
Peter Zijlstra 已提交
8664
		.name = "rt_runtime_us",
8665 8666
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8667
	},
8668 8669
	{
		.name = "rt_period_us",
8670 8671
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8672
	},
8673
#endif
8674 8675 8676 8677
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8678
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8679 8680 8681
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8682 8683 8684 8685 8686 8687 8688
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8689 8690 8691
	.early_init	= 1,
};

8692
#endif	/* CONFIG_CGROUP_SCHED */
8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8713
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8714
{
8715
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8728
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8745
static void
8746
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8747
{
8748
	struct cpuacct *ca = cgroup_ca(cgrp);
8749 8750 8751 8752 8753 8754

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
8755
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8756
{
8757
	struct cpuacct *ca = cgroup_ca(cgrp);
8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

8799 8800 8801
static struct cftype files[] = {
	{
		.name = "usage",
8802 8803
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8804 8805 8806
	},
};

8807
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8808
{
8809
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */