core.c 202.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93 94
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95

96
static void update_rq_clock_task(struct rq *rq, s64 delta);
97

98
void update_rq_clock(struct rq *rq)
99
{
100
	s64 delta;
101

102 103 104
	lockdep_assert_held(&rq->lock);

	if (rq->clock_skip_update & RQCF_ACT_SKIP)
105
		return;
106

107
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 109
	if (delta < 0)
		return;
110 111
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
112 113
}

I
Ingo Molnar 已提交
114 115 116
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
117 118 119 120

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
121
const_debug unsigned int sysctl_sched_features =
122
#include "features.h"
P
Peter Zijlstra 已提交
123 124 125 126 127 128 129 130
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

131
static const char * const sched_feat_names[] = {
132
#include "features.h"
P
Peter Zijlstra 已提交
133 134 135 136
};

#undef SCHED_FEAT

L
Li Zefan 已提交
137
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
138 139 140
{
	int i;

141
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
142 143 144
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
145
	}
L
Li Zefan 已提交
146
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
147

L
Li Zefan 已提交
148
	return 0;
P
Peter Zijlstra 已提交
149 150
}

151 152
#ifdef HAVE_JUMP_LABEL

153 154
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
155 156 157 158

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

159
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 161 162 163 164 165 166
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
167 168
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
169 170 171 172
}

static void sched_feat_enable(int i)
{
173 174
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
175 176 177 178 179 180
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

181
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
182 183
{
	int i;
184
	int neg = 0;
P
Peter Zijlstra 已提交
185

H
Hillf Danton 已提交
186
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
187 188 189 190
		neg = 1;
		cmp += 3;
	}

191
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
192
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
193
			if (neg) {
P
Peter Zijlstra 已提交
194
				sysctl_sched_features &= ~(1UL << i);
195 196
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
197
				sysctl_sched_features |= (1UL << i);
198 199
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
200 201 202 203
			break;
		}
	}

204 205 206 207 208 209 210 211 212 213
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;
214
	struct inode *inode;
215 216 217 218 219 220 221 222 223 224

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

225 226 227
	/* Ensure the static_key remains in a consistent state */
	inode = file_inode(filp);
	mutex_lock(&inode->i_mutex);
228
	i = sched_feat_set(cmp);
229
	mutex_unlock(&inode->i_mutex);
230
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
231 232
		return -EINVAL;

233
	*ppos += cnt;
P
Peter Zijlstra 已提交
234 235 236 237

	return cnt;
}

L
Li Zefan 已提交
238 239 240 241 242
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

243
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
244 245 246 247 248
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
249 250 251 252 253 254 255 256 257 258
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
259
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
260

261 262 263 264 265 266
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

267 268 269 270 271 272 273 274
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
275
/*
P
Peter Zijlstra 已提交
276
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
277 278
 * default: 1s
 */
P
Peter Zijlstra 已提交
279
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
280

281
__read_mostly int scheduler_running;
282

P
Peter Zijlstra 已提交
283 284 285 286 287
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
288

289 290 291
/* cpus with isolated domains */
cpumask_var_t cpu_isolated_map;

L
Linus Torvalds 已提交
292
/*
293
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
294
 */
A
Alexey Dobriyan 已提交
295
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
296 297
	__acquires(rq->lock)
{
298
	struct rq *rq;
L
Linus Torvalds 已提交
299 300 301

	local_irq_disable();
	rq = this_rq();
302
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
303 304 305 306

	return rq;
}

P
Peter Zijlstra 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

328
	raw_spin_lock(&rq->lock);
329
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
330
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
331
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
332 333 334 335

	return HRTIMER_NORESTART;
}

336
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
337

338
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
339 340 341
{
	struct hrtimer *timer = &rq->hrtick_timer;

342
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
343 344
}

345 346 347 348
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
349
{
350
	struct rq *rq = arg;
351

352
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
353
	__hrtick_restart(rq);
354
	rq->hrtick_csd_pending = 0;
355
	raw_spin_unlock(&rq->lock);
356 357
}

358 359 360 361 362
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
363
void hrtick_start(struct rq *rq, u64 delay)
364
{
365
	struct hrtimer *timer = &rq->hrtick_timer;
366 367 368 369 370 371 372 373 374
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
375

376
	hrtimer_set_expires(timer, time);
377 378

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
379
		__hrtick_restart(rq);
380
	} else if (!rq->hrtick_csd_pending) {
381
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
382 383
		rq->hrtick_csd_pending = 1;
	}
384 385 386 387 388 389 390 391 392 393 394 395 396 397
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
398
		hrtick_clear(cpu_rq(cpu));
399 400 401 402 403 404
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

405
static __init void init_hrtick(void)
406 407 408
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
409 410 411 412 413 414
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
415
void hrtick_start(struct rq *rq, u64 delay)
416
{
W
Wanpeng Li 已提交
417 418 419 420 421
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
422 423
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
424
}
425

A
Andrew Morton 已提交
426
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
427 428
{
}
429
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
430

431
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
432
{
433 434
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
435

436 437 438 439
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
440

441 442
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
443
}
A
Andrew Morton 已提交
444
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
445 446 447 448 449 450 451 452
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

453 454 455
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
456
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

472
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
473 474 475 476 477 478 479 480 481 482
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
483 484 485 486 487 488 489 490 491 492

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
493
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
494 495 496 497 498 499 500 501 502 503 504 505 506 507

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

508 509 510 511 512 513
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
514 515 516 517 518 519 520

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
521 522
#endif

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
	 * barrier implied by the wakeup in wake_up_list().
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
		/* task can safely be re-inserted now */
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
569
/*
570
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
571 572 573 574 575
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
576
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
577
{
578
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
579 580
	int cpu;

581
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
582

583
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
584 585
		return;

586
	cpu = cpu_of(rq);
587

588
	if (cpu == smp_processor_id()) {
589
		set_tsk_need_resched(curr);
590
		set_preempt_need_resched();
I
Ingo Molnar 已提交
591
		return;
592
	}
I
Ingo Molnar 已提交
593

594
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
595
		smp_send_reschedule(cpu);
596 597
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
598 599
}

600
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
601 602 603 604
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

605
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
606
		return;
607
	resched_curr(rq);
608
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
609
}
610

611
#ifdef CONFIG_SMP
612
#ifdef CONFIG_NO_HZ_COMMON
613 614 615 616 617 618 619 620
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
621
int get_nohz_timer_target(void)
622
{
623
	int i, cpu = smp_processor_id();
624 625
	struct sched_domain *sd;

626
	if (!idle_cpu(cpu))
627 628
		return cpu;

629
	rcu_read_lock();
630
	for_each_domain(cpu, sd) {
631 632 633 634 635 636
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
637
	}
638 639
unlock:
	rcu_read_unlock();
640 641
	return cpu;
}
642 643 644 645 646 647 648 649 650 651
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
652
static void wake_up_idle_cpu(int cpu)
653 654 655 656 657 658
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

659
	if (set_nr_and_not_polling(rq->idle))
660
		smp_send_reschedule(cpu);
661 662
	else
		trace_sched_wake_idle_without_ipi(cpu);
663 664
}

665
static bool wake_up_full_nohz_cpu(int cpu)
666
{
667 668 669 670 671 672
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
673
	if (tick_nohz_full_cpu(cpu)) {
674 675
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
676
			tick_nohz_full_kick_cpu(cpu);
677 678 679 680 681 682 683 684
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
685
	if (!wake_up_full_nohz_cpu(cpu))
686 687 688
		wake_up_idle_cpu(cpu);
}

689
static inline bool got_nohz_idle_kick(void)
690
{
691
	int cpu = smp_processor_id();
692 693 694 695 696 697 698 699 700 701 702 703 704

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
705 706
}

707
#else /* CONFIG_NO_HZ_COMMON */
708

709
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
710
{
711
	return false;
P
Peter Zijlstra 已提交
712 713
}

714
#endif /* CONFIG_NO_HZ_COMMON */
715

716 717 718
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	/*
	 * FIFO realtime policy runs the highest priority task. Other runnable
	 * tasks are of a lower priority. The scheduler tick does nothing.
	 */
	if (current->policy == SCHED_FIFO)
		return true;

	/*
	 * Round-robin realtime tasks time slice with other tasks at the same
	 * realtime priority. Is this task the only one at this priority?
	 */
	if (current->policy == SCHED_RR) {
		struct sched_rt_entity *rt_se = &current->rt;

		return rt_se->run_list.prev == rt_se->run_list.next;
	}

736 737 738 739 740
	/*
	 * More than one running task need preemption.
	 * nr_running update is assumed to be visible
	 * after IPI is sent from wakers.
	 */
741 742
	if (this_rq()->nr_running > 1)
		return false;
743

744
	return true;
745 746
}
#endif /* CONFIG_NO_HZ_FULL */
747

748
void sched_avg_update(struct rq *rq)
749
{
750 751
	s64 period = sched_avg_period();

752
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
753 754 755 756 757 758
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
759 760 761
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
762 763
}

764
#endif /* CONFIG_SMP */
765

766 767
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
768
/*
769 770 771 772
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
773
 */
774
int walk_tg_tree_from(struct task_group *from,
775
			     tg_visitor down, tg_visitor up, void *data)
776 777
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
778
	int ret;
779

780 781
	parent = from;

782
down:
P
Peter Zijlstra 已提交
783 784
	ret = (*down)(parent, data);
	if (ret)
785
		goto out;
786 787 788 789 790 791 792
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
793
	ret = (*up)(parent, data);
794 795
	if (ret || parent == from)
		goto out;
796 797 798 799 800

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
801
out:
P
Peter Zijlstra 已提交
802
	return ret;
803 804
}

805
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
806
{
807
	return 0;
P
Peter Zijlstra 已提交
808
}
809 810
#endif

811 812
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
813 814 815
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
816 817 818 819
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
820
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
821
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
822 823
		return;
	}
824

825
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
826
	load->inv_weight = prio_to_wmult[prio];
827 828
}

829
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
830
{
831
	update_rq_clock(rq);
832
	sched_info_queued(rq, p);
833
	p->sched_class->enqueue_task(rq, p, flags);
834 835
}

836
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
837
{
838
	update_rq_clock(rq);
839
	sched_info_dequeued(rq, p);
840
	p->sched_class->dequeue_task(rq, p, flags);
841 842
}

843
void activate_task(struct rq *rq, struct task_struct *p, int flags)
844 845 846 847
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

848
	enqueue_task(rq, p, flags);
849 850
}

851
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
852 853 854 855
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

856
	dequeue_task(rq, p, flags);
857 858
}

859
static void update_rq_clock_task(struct rq *rq, s64 delta)
860
{
861 862 863 864 865 866 867 868
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
869
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
891 892
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
893
	if (static_key_false((&paravirt_steal_rq_enabled))) {
894 895 896 897 898 899 900 901 902 903 904
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

905 906
	rq->clock_task += delta;

907
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
908
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
909 910
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
911 912
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

943
/*
I
Ingo Molnar 已提交
944
 * __normal_prio - return the priority that is based on the static prio
945 946 947
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
948
	return p->static_prio;
949 950
}

951 952 953 954 955 956 957
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
958
static inline int normal_prio(struct task_struct *p)
959 960 961
{
	int prio;

962 963 964
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
965 966 967 968 969 970 971 972 973 974 975 976 977
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
978
static int effective_prio(struct task_struct *p)
979 980 981 982 983 984 985 986 987 988 989 990
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
991 992 993
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
994 995
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
996
 */
997
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
998 999 1000 1001
{
	return cpu_curr(task_cpu(p)) == p;
}

1002
/*
1003 1004 1005 1006 1007
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
1008
 */
1009 1010
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1011
				       int oldprio)
1012 1013 1014
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1015
			prev_class->switched_from(rq, p);
1016

P
Peter Zijlstra 已提交
1017
		p->sched_class->switched_to(rq, p);
1018
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
1019
		p->sched_class->prio_changed(rq, p, oldprio);
1020 1021
}

1022
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
1033
				resched_curr(rq);
1034 1035 1036 1037 1038 1039 1040 1041 1042
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
1043
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1044
		rq_clock_skip_update(rq, true);
1045 1046
}

L
Linus Torvalds 已提交
1047
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
1067
static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
{
	lockdep_assert_held(&rq->lock);

	dequeue_task(rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	p->on_rq = TASK_ON_RQ_QUEUED;
	enqueue_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
 * Move (not current) task off this cpu, onto dest cpu. We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
1101
static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
1102 1103
{
	if (unlikely(!cpu_active(dest_cpu)))
1104
		return rq;
P
Peter Zijlstra 已提交
1105 1106 1107

	/* Affinity changed (again). */
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1108
		return rq;
P
Peter Zijlstra 已提交
1109

1110 1111 1112
	rq = move_queued_task(rq, p, dest_cpu);

	return rq;
P
Peter Zijlstra 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1123 1124
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

	raw_spin_lock(&p->pi_lock);
	raw_spin_lock(&rq->lock);
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
	if (task_rq(p) == rq && task_on_rq_queued(p))
		rq = __migrate_task(rq, p, arg->dest_cpu);
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	local_irq_enable();
	return 0;
}

void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);

	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	unsigned long flags;
	struct rq *rq;
	unsigned int dest_cpu;
	int ret = 0;

	rq = task_rq_lock(p, &flags);

	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, p, &flags);
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1203 1204 1205 1206 1207 1208
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
		lockdep_unpin_lock(&rq->lock);
1209
		rq = move_queued_task(rq, p, dest_cpu);
1210 1211
		lockdep_pin_lock(&rq->lock);
	}
P
Peter Zijlstra 已提交
1212 1213 1214 1215 1216 1217 1218
out:
	task_rq_unlock(rq, p, &flags);

	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1219
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1220
{
1221 1222 1223 1224 1225
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1226
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1227
			!p->on_rq);
1228 1229

#ifdef CONFIG_LOCKDEP
1230 1231 1232 1233 1234
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1235
	 * see task_group().
1236 1237 1238 1239
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1240 1241 1242
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1243 1244
#endif

1245
	trace_sched_migrate_task(p, new_cpu);
1246

1247
	if (task_cpu(p) != new_cpu) {
1248 1249
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1250
		p->se.nr_migrations++;
1251
		perf_event_task_migrate(p);
1252
	}
I
Ingo Molnar 已提交
1253 1254

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1255 1256
}

1257 1258
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1259
	if (task_on_rq_queued(p)) {
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1293 1294
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1315 1316
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1339 1340 1341 1342
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1343 1344 1345 1346 1347 1348 1349 1350 1351
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1352
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1353 1354 1355 1356 1357 1358
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1359 1360 1361
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1362 1363 1364 1365 1366 1367 1368
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1369 1370 1371 1372 1373 1374
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1375
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1376 1377
{
	unsigned long flags;
1378
	int running, queued;
R
Roland McGrath 已提交
1379
	unsigned long ncsw;
1380
	struct rq *rq;
L
Linus Torvalds 已提交
1381

1382 1383 1384 1385 1386 1387 1388 1389
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1390

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1402 1403 1404
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1405
			cpu_relax();
R
Roland McGrath 已提交
1406
		}
1407

1408 1409 1410 1411 1412 1413
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1414
		trace_sched_wait_task(p);
1415
		running = task_running(rq, p);
1416
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1417
		ncsw = 0;
1418
		if (!match_state || p->state == match_state)
1419
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1420
		task_rq_unlock(rq, p, &flags);
1421

R
Roland McGrath 已提交
1422 1423 1424 1425 1426 1427
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1438

1439 1440 1441 1442 1443
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1444
		 * So if it was still runnable (but just not actively
1445 1446 1447
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1448
		if (unlikely(queued)) {
1449 1450 1451 1452
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1453 1454
			continue;
		}
1455

1456 1457 1458 1459 1460 1461 1462
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1463 1464

	return ncsw;
L
Linus Torvalds 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1474
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1475 1476 1477 1478 1479
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1480
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1490
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1491

1492
/*
1493
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1494
 */
1495 1496
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1497 1498
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1499 1500
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1501

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1519
	}
1520

1521 1522
	for (;;) {
		/* Any allowed, online CPU? */
1523
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1524 1525 1526 1527 1528 1529
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1530

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1557
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1558 1559
					task_pid_nr(p), p->comm, cpu);
		}
1560 1561 1562 1563 1564
	}

	return dest_cpu;
}

1565
/*
1566
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1567
 */
1568
static inline
1569
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1570
{
1571 1572
	lockdep_assert_held(&p->pi_lock);

1573 1574
	if (p->nr_cpus_allowed > 1)
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1586
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1587
		     !cpu_online(cpu)))
1588
		cpu = select_fallback_rq(task_cpu(p), p);
1589 1590

	return cpu;
1591
}
1592 1593 1594 1595 1596 1597

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
P
Peter Zijlstra 已提交
1598
#endif /* CONFIG_SMP */
1599

P
Peter Zijlstra 已提交
1600
static void
1601
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1602
{
P
Peter Zijlstra 已提交
1603
#ifdef CONFIG_SCHEDSTATS
1604 1605
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1616
		rcu_read_lock();
P
Peter Zijlstra 已提交
1617 1618 1619 1620 1621 1622
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1623
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1624
	}
1625 1626 1627 1628

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1629 1630 1631
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1632
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1633 1634

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1635
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1636 1637 1638 1639 1640 1641

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1642
	activate_task(rq, p, en_flags);
1643
	p->on_rq = TASK_ON_RQ_QUEUED;
1644 1645 1646 1647

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1648 1649
}

1650 1651 1652
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1653
static void
1654
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1655 1656
{
	check_preempt_curr(rq, p, wake_flags);
1657
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1658 1659 1660

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
1661 1662
	if (p->sched_class->task_woken) {
		/*
1663 1664
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1665
		 */
1666
		lockdep_unpin_lock(&rq->lock);
T
Tejun Heo 已提交
1667
		p->sched_class->task_woken(rq, p);
1668
		lockdep_pin_lock(&rq->lock);
1669
	}
T
Tejun Heo 已提交
1670

1671
	if (rq->idle_stamp) {
1672
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1673
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1674

1675 1676 1677
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1678
			rq->avg_idle = max;
1679

T
Tejun Heo 已提交
1680 1681 1682 1683 1684
		rq->idle_stamp = 0;
	}
#endif
}

1685 1686 1687
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
1688 1689
	lockdep_assert_held(&rq->lock);

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1711
	if (task_on_rq_queued(p)) {
1712 1713
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1714 1715 1716 1717 1718 1719 1720 1721
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1722
#ifdef CONFIG_SMP
1723
void sched_ttwu_pending(void)
1724 1725
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1726 1727
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1728
	unsigned long flags;
1729

1730 1731 1732 1733
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1734
	lockdep_pin_lock(&rq->lock);
1735

P
Peter Zijlstra 已提交
1736 1737 1738
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1739 1740 1741
		ttwu_do_activate(rq, p, 0);
	}

1742
	lockdep_unpin_lock(&rq->lock);
1743
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1744 1745 1746 1747
}

void scheduler_ipi(void)
{
1748 1749 1750 1751 1752
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1753
	preempt_fold_need_resched();
1754

1755
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1772
	sched_ttwu_pending();
1773 1774 1775 1776

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1777
	if (unlikely(got_nohz_idle_kick())) {
1778
		this_rq()->idle_balance = 1;
1779
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1780
	}
1781
	irq_exit();
1782 1783 1784 1785
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1786 1787 1788 1789 1790 1791 1792 1793
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1794
}
1795

1796 1797 1798 1799 1800
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1801 1802 1803 1804
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1815 1816 1817

out:
	rcu_read_unlock();
1818 1819
}

1820
bool cpus_share_cache(int this_cpu, int that_cpu)
1821 1822 1823
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1824
#endif /* CONFIG_SMP */
1825

1826 1827 1828 1829
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1830
#if defined(CONFIG_SMP)
1831
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1832
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1833 1834 1835 1836 1837
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1838
	raw_spin_lock(&rq->lock);
1839
	lockdep_pin_lock(&rq->lock);
1840
	ttwu_do_activate(rq, p, 0);
1841
	lockdep_unpin_lock(&rq->lock);
1842
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1843 1844 1845
}

/**
L
Linus Torvalds 已提交
1846
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1847
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1848
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1849
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1850 1851 1852 1853 1854 1855 1856
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1857
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1858
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1859
 */
1860 1861
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1862 1863
{
	unsigned long flags;
1864
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1865

1866 1867 1868 1869 1870 1871 1872
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1873
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1874
	if (!(p->state & state))
L
Linus Torvalds 已提交
1875 1876
		goto out;

1877
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1878 1879
	cpu = task_cpu(p);

1880 1881
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1882 1883

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1884
	/*
1885 1886
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1887
	 */
1888
	while (p->on_cpu)
1889
		cpu_relax();
1890
	/*
1891
	 * Pairs with the smp_wmb() in finish_lock_switch().
1892
	 */
1893
	smp_rmb();
L
Linus Torvalds 已提交
1894

1895
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1896
	p->state = TASK_WAKING;
1897

1898
	if (p->sched_class->task_waking)
1899
		p->sched_class->task_waking(p);
1900

1901
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1902 1903
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1904
		set_task_cpu(p, cpu);
1905
	}
L
Linus Torvalds 已提交
1906 1907
#endif /* CONFIG_SMP */

1908 1909
	ttwu_queue(p, cpu);
stat:
1910
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1911
out:
1912
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1913 1914 1915 1916

	return success;
}

T
Tejun Heo 已提交
1917 1918 1919 1920
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1921
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1922
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1923
 * the current task.
T
Tejun Heo 已提交
1924 1925 1926 1927 1928
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1929 1930 1931 1932
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1933 1934
	lockdep_assert_held(&rq->lock);

1935
	if (!raw_spin_trylock(&p->pi_lock)) {
1936 1937 1938 1939 1940 1941 1942
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
		lockdep_unpin_lock(&rq->lock);
1943 1944 1945
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
1946
		lockdep_pin_lock(&rq->lock);
1947 1948
	}

T
Tejun Heo 已提交
1949
	if (!(p->state & TASK_NORMAL))
1950
		goto out;
T
Tejun Heo 已提交
1951

1952
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
1953 1954
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1955
	ttwu_do_wakeup(rq, p, 0);
1956
	ttwu_stat(p, smp_processor_id(), 0);
1957 1958
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1959 1960
}

1961 1962 1963 1964 1965
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1966 1967 1968
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1969 1970 1971 1972
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1973
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1974
{
1975 1976
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1977 1978 1979
}
EXPORT_SYMBOL(wake_up_process);

1980
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1981 1982 1983 1984
{
	return try_to_wake_up(p, state, 0);
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
1997 1998 1999 2000

	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
	dl_se->dl_yielded = 0;
2001 2002
}

L
Linus Torvalds 已提交
2003 2004 2005
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2006 2007 2008
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2009
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2010
{
P
Peter Zijlstra 已提交
2011 2012 2013
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2014 2015
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2016
	p->se.prev_sum_exec_runtime	= 0;
2017
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2018
	p->se.vruntime			= 0;
2019 2020 2021
#ifdef CONFIG_SMP
	p->se.avg.decay_count		= 0;
#endif
P
Peter Zijlstra 已提交
2022
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2023 2024

#ifdef CONFIG_SCHEDSTATS
2025
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2026
#endif
N
Nick Piggin 已提交
2027

2028
	RB_CLEAR_NODE(&p->dl.rb_node);
2029
	init_dl_task_timer(&p->dl);
2030
	__dl_clear_params(p);
2031

P
Peter Zijlstra 已提交
2032
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
2033

2034 2035 2036
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2037 2038 2039

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2040
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2041 2042 2043
		p->mm->numa_scan_seq = 0;
	}

2044 2045 2046 2047 2048
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2049 2050
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2051
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2052
	p->numa_work.next = &p->numa_work;
2053
	p->numa_faults = NULL;
2054 2055
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2056 2057

	p->numa_group = NULL;
2058
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2059 2060
}

2061
#ifdef CONFIG_NUMA_BALANCING
2062
#ifdef CONFIG_SCHED_DEBUG
2063 2064 2065 2066 2067 2068 2069
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
2070 2071 2072 2073 2074 2075
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
2076
}
2077
#endif /* CONFIG_SCHED_DEBUG */
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2101 2102 2103 2104

/*
 * fork()/clone()-time setup:
 */
2105
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2106
{
2107
	unsigned long flags;
I
Ingo Molnar 已提交
2108 2109
	int cpu = get_cpu();

2110
	__sched_fork(clone_flags, p);
2111
	/*
2112
	 * We mark the process as running here. This guarantees that
2113 2114 2115
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2116
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2117

2118 2119 2120 2121 2122
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2123 2124 2125 2126
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2127
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2128
			p->policy = SCHED_NORMAL;
2129
			p->static_prio = NICE_TO_PRIO(0);
2130 2131 2132 2133 2134 2135
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2136

2137 2138 2139 2140 2141 2142
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2143

2144 2145 2146 2147 2148 2149
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2150
		p->sched_class = &fair_sched_class;
2151
	}
2152

P
Peter Zijlstra 已提交
2153 2154 2155
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2156 2157 2158 2159 2160 2161 2162
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2163
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2164
	set_task_cpu(p, cpu);
2165
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2166

2167
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2168
	if (likely(sched_info_on()))
2169
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2170
#endif
P
Peter Zijlstra 已提交
2171 2172
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2173
#endif
2174
	init_task_preempt_count(p);
2175
#ifdef CONFIG_SMP
2176
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2177
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2178
#endif
2179

N
Nick Piggin 已提交
2180
	put_cpu();
2181
	return 0;
L
Linus Torvalds 已提交
2182 2183
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2203 2204
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2205 2206 2207
	return &cpu_rq(i)->rd->dl_bw;
}

2208
static inline int dl_bw_cpus(int i)
2209
{
2210 2211 2212
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2213 2214
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2215 2216 2217 2218
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2219 2220 2221 2222 2223 2224 2225
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2226
static inline int dl_bw_cpus(int i)
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2239 2240 2241
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2242 2243 2244 2245 2246 2247
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2248
	u64 period = attr->sched_period ?: attr->sched_deadline;
2249 2250
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2251
	int cpus, err = -1;
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2262
	cpus = dl_bw_cpus(task_cpu(p));
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2283 2284 2285 2286 2287 2288 2289
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2290
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2291 2292
{
	unsigned long flags;
I
Ingo Molnar 已提交
2293
	struct rq *rq;
2294

2295
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2296 2297 2298 2299 2300 2301
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2302
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2303 2304
#endif

2305 2306
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2307
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2308
	activate_task(rq, p, 0);
2309
	p->on_rq = TASK_ON_RQ_QUEUED;
2310
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2311
	check_preempt_curr(rq, p, WF_FORK);
2312
#ifdef CONFIG_SMP
2313 2314
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2315
#endif
2316
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2317 2318
}

2319 2320
#ifdef CONFIG_PREEMPT_NOTIFIERS

2321 2322
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2335
/**
2336
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2337
 * @notifier: notifier struct to register
2338 2339 2340
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2341 2342 2343
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2344 2345 2346 2347 2348 2349
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2350
 * @notifier: notifier struct to unregister
2351
 *
2352
 * This is *not* safe to call from within a preemption notifier.
2353 2354 2355 2356 2357 2358 2359
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2360
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2361 2362 2363
{
	struct preempt_notifier *notifier;

2364
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2365 2366 2367
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2368 2369 2370 2371 2372 2373
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2374
static void
2375 2376
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2377 2378 2379
{
	struct preempt_notifier *notifier;

2380
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2381 2382 2383
		notifier->ops->sched_out(notifier, next);
}

2384 2385 2386 2387 2388 2389 2390 2391
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2392
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2393

2394
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2395 2396 2397
{
}

2398
static inline void
2399 2400 2401 2402 2403
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2404
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2405

2406 2407 2408
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2409
 * @prev: the current task that is being switched out
2410 2411 2412 2413 2414 2415 2416 2417 2418
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2419 2420 2421
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2422
{
2423
	trace_sched_switch(prev, next);
2424
	sched_info_switch(rq, prev, next);
2425
	perf_event_task_sched_out(prev, next);
2426
	fire_sched_out_preempt_notifiers(prev, next);
2427 2428 2429 2430
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2431 2432 2433 2434
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2435 2436 2437 2438
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2439 2440
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2441
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2442 2443
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2444 2445 2446 2447 2448
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2449
 */
2450
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2451 2452
	__releases(rq->lock)
{
2453
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2454
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2455
	long prev_state;
L
Linus Torvalds 已提交
2456 2457 2458 2459 2460

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2461
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2462 2463
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2464
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2465 2466 2467 2468 2469
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2470
	prev_state = prev->state;
2471
	vtime_task_switch(prev);
2472
	finish_arch_switch(prev);
2473
	perf_event_task_sched_in(prev, current);
2474
	finish_lock_switch(rq, prev);
2475
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2476

2477
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2478 2479
	if (mm)
		mmdrop(mm);
2480
	if (unlikely(prev_state == TASK_DEAD)) {
2481 2482 2483
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2484 2485 2486
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2487
		 */
2488
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2489
		put_task_struct(prev);
2490
	}
2491 2492

	tick_nohz_task_switch(current);
2493
	return rq;
L
Linus Torvalds 已提交
2494 2495
}

2496 2497 2498
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2499
static void __balance_callback(struct rq *rq)
2500
{
2501 2502 2503
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2504

2505 2506 2507 2508 2509 2510 2511 2512
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2513

2514
		func(rq);
2515
	}
2516 2517 2518 2519 2520 2521 2522
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2523 2524 2525
}

#else
2526

2527
static inline void balance_callback(struct rq *rq)
2528
{
L
Linus Torvalds 已提交
2529 2530
}

2531 2532
#endif

L
Linus Torvalds 已提交
2533 2534 2535 2536
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2537
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2538 2539
	__releases(rq->lock)
{
2540
	struct rq *rq;
2541

2542 2543
	/* finish_task_switch() drops rq->lock and enables preemtion */
	preempt_disable();
2544
	rq = finish_task_switch(prev);
2545
	balance_callback(rq);
2546
	preempt_enable();
2547

L
Linus Torvalds 已提交
2548
	if (current->set_child_tid)
2549
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2550 2551 2552
}

/*
2553
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2554
 */
2555
static inline struct rq *
2556
context_switch(struct rq *rq, struct task_struct *prev,
2557
	       struct task_struct *next)
L
Linus Torvalds 已提交
2558
{
I
Ingo Molnar 已提交
2559
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2560

2561
	prepare_task_switch(rq, prev, next);
2562

I
Ingo Molnar 已提交
2563 2564
	mm = next->mm;
	oldmm = prev->active_mm;
2565 2566 2567 2568 2569
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2570
	arch_start_context_switch(prev);
2571

2572
	if (!mm) {
L
Linus Torvalds 已提交
2573 2574 2575 2576 2577 2578
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2579
	if (!prev->mm) {
L
Linus Torvalds 已提交
2580 2581 2582
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2583 2584 2585 2586 2587 2588
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2589
	lockdep_unpin_lock(&rq->lock);
2590
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2591 2592 2593

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2594
	barrier();
2595 2596

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2597 2598 2599
}

/*
2600
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2601 2602
 *
 * externally visible scheduler statistics: current number of runnable
2603
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2613
}
L
Linus Torvalds 已提交
2614

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
/*
 * Check if only the current task is running on the cpu.
 */
bool single_task_running(void)
{
	if (cpu_rq(smp_processor_id())->nr_running == 1)
		return true;
	else
		return false;
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2627
unsigned long long nr_context_switches(void)
2628
{
2629 2630
	int i;
	unsigned long long sum = 0;
2631

2632
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2633
		sum += cpu_rq(i)->nr_switches;
2634

L
Linus Torvalds 已提交
2635 2636
	return sum;
}
2637

L
Linus Torvalds 已提交
2638 2639 2640
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2641

2642
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2643
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2644

L
Linus Torvalds 已提交
2645 2646
	return sum;
}
2647

2648
unsigned long nr_iowait_cpu(int cpu)
2649
{
2650
	struct rq *this = cpu_rq(cpu);
2651 2652
	return atomic_read(&this->nr_iowait);
}
2653

2654 2655
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2656 2657 2658
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2659 2660
}

I
Ingo Molnar 已提交
2661
#ifdef CONFIG_SMP
2662

2663
/*
P
Peter Zijlstra 已提交
2664 2665
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2666
 */
P
Peter Zijlstra 已提交
2667
void sched_exec(void)
2668
{
P
Peter Zijlstra 已提交
2669
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2670
	unsigned long flags;
2671
	int dest_cpu;
2672

2673
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2674
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2675 2676
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2677

2678
	if (likely(cpu_active(dest_cpu))) {
2679
		struct migration_arg arg = { p, dest_cpu };
2680

2681 2682
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2683 2684
		return;
	}
2685
unlock:
2686
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2687
}
I
Ingo Molnar 已提交
2688

L
Linus Torvalds 已提交
2689 2690 2691
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2692
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2693 2694

EXPORT_PER_CPU_SYMBOL(kstat);
2695
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2696

2697 2698 2699 2700 2701 2702 2703 2704 2705
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
2706
	u64 ns;
2707

2708 2709 2710 2711 2712 2713 2714 2715 2716
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2717 2718
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2719
	 */
2720
	if (!p->on_cpu || !task_on_rq_queued(p))
2721 2722 2723
		return p->se.sum_exec_runtime;
#endif

2724
	rq = task_rq_lock(p, &flags);
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2735
	task_rq_unlock(rq, p, &flags);
2736 2737 2738

	return ns;
}
2739

2740 2741 2742 2743 2744 2745 2746 2747
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2748
	struct task_struct *curr = rq->curr;
2749 2750

	sched_clock_tick();
I
Ingo Molnar 已提交
2751

2752
	raw_spin_lock(&rq->lock);
2753
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2754
	curr->sched_class->task_tick(rq, curr, 0);
2755
	update_cpu_load_active(rq);
2756
	calc_global_load_tick(rq);
2757
	raw_spin_unlock(&rq->lock);
2758

2759
	perf_event_task_tick();
2760

2761
#ifdef CONFIG_SMP
2762
	rq->idle_balance = idle_cpu(cpu);
2763
	trigger_load_balance(rq);
2764
#endif
2765
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2766 2767
}

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2779 2780
 *
 * Return: Maximum deferment in nanoseconds.
2781 2782 2783 2784
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
2785
	unsigned long next, now = READ_ONCE(jiffies);
2786 2787 2788 2789 2790 2791

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2792
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2793
}
2794
#endif
L
Linus Torvalds 已提交
2795

2796
notrace unsigned long get_parent_ip(unsigned long addr)
2797 2798 2799 2800 2801 2802 2803 2804
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2805

2806 2807 2808
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2809
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2810
{
2811
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2812 2813 2814
	/*
	 * Underflow?
	 */
2815 2816
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2817
#endif
2818
	__preempt_count_add(val);
2819
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2820 2821 2822
	/*
	 * Spinlock count overflowing soon?
	 */
2823 2824
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2825
#endif
2826 2827 2828 2829 2830 2831 2832
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2833
}
2834
EXPORT_SYMBOL(preempt_count_add);
2835
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2836

2837
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
2838
{
2839
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2840 2841 2842
	/*
	 * Underflow?
	 */
2843
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2844
		return;
L
Linus Torvalds 已提交
2845 2846 2847
	/*
	 * Is the spinlock portion underflowing?
	 */
2848 2849 2850
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2851
#endif
2852

2853 2854
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2855
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2856
}
2857
EXPORT_SYMBOL(preempt_count_sub);
2858
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2859 2860 2861 2862

#endif

/*
I
Ingo Molnar 已提交
2863
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2864
 */
I
Ingo Molnar 已提交
2865
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2866
{
2867 2868 2869
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2870 2871
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2872

I
Ingo Molnar 已提交
2873
	debug_show_held_locks(prev);
2874
	print_modules();
I
Ingo Molnar 已提交
2875 2876
	if (irqs_disabled())
		print_irqtrace_events(prev);
2877 2878 2879 2880 2881 2882 2883
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2884
	dump_stack();
2885
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2886
}
L
Linus Torvalds 已提交
2887

I
Ingo Molnar 已提交
2888 2889 2890 2891 2892
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
2893 2894 2895
#ifdef CONFIG_SCHED_STACK_END_CHECK
	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
#endif
L
Linus Torvalds 已提交
2896
	/*
I
Ingo Molnar 已提交
2897
	 * Test if we are atomic. Since do_exit() needs to call into
2898 2899
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2900
	 */
2901
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2902
		__schedule_bug(prev);
2903
	rcu_sleep_check();
I
Ingo Molnar 已提交
2904

L
Linus Torvalds 已提交
2905 2906
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2907
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2908 2909 2910 2911 2912 2913
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2914
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2915
{
2916
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2917
	struct task_struct *p;
L
Linus Torvalds 已提交
2918 2919

	/*
I
Ingo Molnar 已提交
2920 2921
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2922
	 */
2923
	if (likely(prev->sched_class == class &&
2924
		   rq->nr_running == rq->cfs.h_nr_running)) {
2925
		p = fair_sched_class.pick_next_task(rq, prev);
2926 2927 2928 2929 2930 2931 2932 2933
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
2934 2935
	}

2936
again:
2937
	for_each_class(class) {
2938
		p = class->pick_next_task(rq, prev);
2939 2940 2941
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2942
			return p;
2943
		}
I
Ingo Molnar 已提交
2944
	}
2945 2946

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2947
}
L
Linus Torvalds 已提交
2948

I
Ingo Molnar 已提交
2949
/*
2950
 * __schedule() is the main scheduler function.
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
2985
 *
2986
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
2987
 */
2988
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2989 2990
{
	struct task_struct *prev, *next;
2991
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2992
	struct rq *rq;
2993
	int cpu;
I
Ingo Molnar 已提交
2994 2995 2996

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2997
	rcu_note_context_switch();
I
Ingo Molnar 已提交
2998 2999 3000
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3001

3002
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3003
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3004

3005 3006 3007 3008 3009 3010
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3011
	raw_spin_lock_irq(&rq->lock);
3012
	lockdep_pin_lock(&rq->lock);
L
Linus Torvalds 已提交
3013

3014 3015
	rq->clock_skip_update <<= 1; /* promote REQ to ACT */

3016
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3017
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3018
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3019
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3020
		} else {
3021 3022 3023
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3024
			/*
3025 3026 3027
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3028 3029 3030 3031 3032 3033 3034 3035 3036
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3037
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3038 3039
	}

3040
	if (task_on_rq_queued(prev))
3041 3042 3043
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
3044
	clear_tsk_need_resched(prev);
3045
	clear_preempt_need_resched();
3046
	rq->clock_skip_update = 0;
L
Linus Torvalds 已提交
3047 3048 3049 3050 3051 3052

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3053 3054
		rq = context_switch(rq, prev, next); /* unlocks the rq */
		cpu = cpu_of(rq);
3055 3056
	} else {
		lockdep_unpin_lock(&rq->lock);
3057
		raw_spin_unlock_irq(&rq->lock);
3058
	}
L
Linus Torvalds 已提交
3059

3060
	balance_callback(rq);
L
Linus Torvalds 已提交
3061
}
3062

3063 3064
static inline void sched_submit_work(struct task_struct *tsk)
{
3065
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3066 3067 3068 3069 3070 3071 3072 3073 3074
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3075
asmlinkage __visible void __sched schedule(void)
3076
{
3077 3078 3079
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3080
	do {
3081
		preempt_disable();
3082
		__schedule();
3083
		sched_preempt_enable_no_resched();
3084
	} while (need_resched());
3085
}
L
Linus Torvalds 已提交
3086 3087
EXPORT_SYMBOL(schedule);

3088
#ifdef CONFIG_CONTEXT_TRACKING
3089
asmlinkage __visible void __sched schedule_user(void)
3090 3091 3092 3093 3094 3095
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3096 3097
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3098
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3099
	 * too frequently to make sense yet.
3100
	 */
3101
	enum ctx_state prev_state = exception_enter();
3102
	schedule();
3103
	exception_exit(prev_state);
3104 3105 3106
}
#endif

3107 3108 3109 3110 3111 3112 3113
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3114
	sched_preempt_enable_no_resched();
3115 3116 3117 3118
	schedule();
	preempt_disable();
}

3119
static void __sched notrace preempt_schedule_common(void)
3120 3121
{
	do {
3122
		preempt_active_enter();
3123
		__schedule();
3124
		preempt_active_exit();
3125 3126 3127 3128 3129 3130 3131 3132

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3133 3134
#ifdef CONFIG_PREEMPT
/*
3135
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3136
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3137 3138
 * occur there and call schedule directly.
 */
3139
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3140 3141 3142
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3143
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3144
	 */
3145
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3146 3147
		return;

3148
	preempt_schedule_common();
L
Linus Torvalds 已提交
3149
}
3150
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3151
EXPORT_SYMBOL(preempt_schedule);
3152 3153

/**
3154
 * preempt_schedule_notrace - preempt_schedule called by tracing
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3167
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3168 3169 3170 3171 3172 3173 3174
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3175 3176 3177 3178 3179 3180 3181
		/*
		 * Use raw __prempt_count() ops that don't call function.
		 * We can't call functions before disabling preemption which
		 * disarm preemption tracing recursions.
		 */
		__preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
		barrier();
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
		__schedule();
		exception_exit(prev_ctx);

		barrier();
3192
		__preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3193 3194
	} while (need_resched());
}
3195
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3196

3197
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3198 3199

/*
3200
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3201 3202 3203 3204
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3205
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3206
{
3207
	enum ctx_state prev_state;
3208

3209
	/* Catch callers which need to be fixed */
3210
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3211

3212 3213
	prev_state = exception_enter();

3214
	do {
3215
		preempt_active_enter();
3216
		local_irq_enable();
3217
		__schedule();
3218
		local_irq_disable();
3219
		preempt_active_exit();
3220
	} while (need_resched());
3221 3222

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3223 3224
}

P
Peter Zijlstra 已提交
3225
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3226
			  void *key)
L
Linus Torvalds 已提交
3227
{
P
Peter Zijlstra 已提交
3228
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3229 3230 3231
}
EXPORT_SYMBOL(default_wake_function);

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3242 3243
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3244
 */
3245
void rt_mutex_setprio(struct task_struct *p, int prio)
3246
{
3247
	int oldprio, queued, running, enqueue_flag = 0;
3248
	struct rq *rq;
3249
	const struct sched_class *prev_class;
3250

3251
	BUG_ON(prio > MAX_PRIO);
3252

3253
	rq = __task_rq_lock(p);
3254

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3273
	trace_sched_pi_setprio(p, prio);
3274
	oldprio = p->prio;
3275
	prev_class = p->sched_class;
3276
	queued = task_on_rq_queued(p);
3277
	running = task_current(rq, p);
3278
	if (queued)
3279
		dequeue_task(rq, p, 0);
3280
	if (running)
3281
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3282

3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3293 3294 3295
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3296 3297 3298 3299
			p->dl.dl_boosted = 1;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
3300
		p->sched_class = &dl_sched_class;
3301 3302 3303 3304 3305
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3306
		p->sched_class = &rt_sched_class;
3307 3308 3309
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3310 3311
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3312
		p->sched_class = &fair_sched_class;
3313
	}
I
Ingo Molnar 已提交
3314

3315 3316
	p->prio = prio;

3317 3318
	if (running)
		p->sched_class->set_curr_task(rq);
3319
	if (queued)
3320
		enqueue_task(rq, p, enqueue_flag);
3321

P
Peter Zijlstra 已提交
3322
	check_class_changed(rq, p, prev_class, oldprio);
3323
out_unlock:
3324
	preempt_disable(); /* avoid rq from going away on us */
3325
	__task_rq_unlock(rq);
3326 3327 3328

	balance_callback(rq);
	preempt_enable();
3329 3330
}
#endif
3331

3332
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3333
{
3334
	int old_prio, delta, queued;
L
Linus Torvalds 已提交
3335
	unsigned long flags;
3336
	struct rq *rq;
L
Linus Torvalds 已提交
3337

3338
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3349
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3350
	 */
3351
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3352 3353 3354
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3355 3356
	queued = task_on_rq_queued(p);
	if (queued)
3357
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3358 3359

	p->static_prio = NICE_TO_PRIO(nice);
3360
	set_load_weight(p);
3361 3362 3363
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3364

3365
	if (queued) {
3366
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3367
		/*
3368 3369
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3370
		 */
3371
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3372
			resched_curr(rq);
L
Linus Torvalds 已提交
3373 3374
	}
out_unlock:
3375
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3376 3377 3378
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3379 3380 3381 3382 3383
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3384
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3385
{
3386
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3387
	int nice_rlim = nice_to_rlimit(nice);
3388

3389
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3390 3391 3392
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3393 3394 3395 3396 3397 3398 3399 3400 3401
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3402
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3403
{
3404
	long nice, retval;
L
Linus Torvalds 已提交
3405 3406 3407 3408 3409 3410

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3411
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3412
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3413

3414
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3415 3416 3417
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3432
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3433 3434 3435
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3436
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3437 3438 3439 3440 3441 3442 3443
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3444 3445
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3446 3447 3448
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3463 3464 3465 3466 3467
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3468 3469
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3470
 */
3471
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3472 3473 3474 3475 3476 3477 3478
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3479 3480
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3481
 */
A
Alexey Dobriyan 已提交
3482
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3483
{
3484
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3485 3486
}

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3502
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3503
	dl_se->flags = attr->sched_flags;
3504
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
3525 3526
}

3527 3528 3529 3530 3531 3532
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3533 3534
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3535
{
3536 3537
	int policy = attr->sched_policy;

3538
	if (policy == SETPARAM_POLICY)
3539 3540
		policy = p->policy;

L
Linus Torvalds 已提交
3541
	p->policy = policy;
3542

3543 3544
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3545
	else if (fair_policy(policy))
3546 3547
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3548 3549 3550 3551 3552 3553
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3554
	p->normal_prio = normal_prio(p);
3555 3556
	set_load_weight(p);
}
3557

3558 3559
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
3560
			   const struct sched_attr *attr, bool keep_boost)
3561 3562
{
	__setscheduler_params(p, attr);
3563

3564
	/*
3565 3566
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
3567
	 */
3568 3569 3570 3571
	if (keep_boost)
		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
	else
		p->prio = normal_prio(p);
3572

3573 3574 3575
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3576 3577 3578
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3579
}
3580 3581 3582 3583 3584 3585 3586 3587 3588

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3589
	attr->sched_period = dl_se->dl_period;
3590 3591 3592 3593 3594 3595
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3596
 * than the runtime, as well as the period of being zero or
3597
 * greater than deadline. Furthermore, we have to be sure that
3598 3599 3600 3601
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3602 3603 3604 3605
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3632 3633
}

3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3644 3645
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3646 3647 3648 3649
	rcu_read_unlock();
	return match;
}

3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
static bool dl_param_changed(struct task_struct *p,
		const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

3664 3665
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
3666
				bool user, bool pi)
L
Linus Torvalds 已提交
3667
{
3668 3669
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3670
	int retval, oldprio, oldpolicy = -1, queued, running;
3671
	int new_effective_prio, policy = attr->sched_policy;
L
Linus Torvalds 已提交
3672
	unsigned long flags;
3673
	const struct sched_class *prev_class;
3674
	struct rq *rq;
3675
	int reset_on_fork;
L
Linus Torvalds 已提交
3676

3677 3678
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3679 3680
recheck:
	/* double check policy once rq lock held */
3681 3682
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3683
		policy = oldpolicy = p->policy;
3684
	} else {
3685
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3686

3687 3688
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3689 3690 3691 3692 3693
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3694 3695 3696
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3697 3698
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3699 3700
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3701
	 */
3702
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3703
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3704
		return -EINVAL;
3705 3706
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3707 3708
		return -EINVAL;

3709 3710 3711
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3712
	if (user && !capable(CAP_SYS_NICE)) {
3713
		if (fair_policy(policy)) {
3714
			if (attr->sched_nice < task_nice(p) &&
3715
			    !can_nice(p, attr->sched_nice))
3716 3717 3718
				return -EPERM;
		}

3719
		if (rt_policy(policy)) {
3720 3721
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3722 3723 3724 3725 3726 3727

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3728 3729
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3730 3731
				return -EPERM;
		}
3732

3733 3734 3735 3736 3737 3738 3739 3740 3741
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3742
		/*
3743 3744
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3745
		 */
3746
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3747
			if (!can_nice(p, task_nice(p)))
3748 3749
				return -EPERM;
		}
3750

3751
		/* can't change other user's priorities */
3752
		if (!check_same_owner(p))
3753
			return -EPERM;
3754 3755 3756 3757

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3758
	}
L
Linus Torvalds 已提交
3759

3760
	if (user) {
3761
		retval = security_task_setscheduler(p);
3762 3763 3764 3765
		if (retval)
			return retval;
	}

3766 3767 3768
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3769
	 *
L
Lucas De Marchi 已提交
3770
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3771 3772
	 * runqueue lock must be held.
	 */
3773
	rq = task_rq_lock(p, &flags);
3774

3775 3776 3777 3778
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3779
		task_rq_unlock(rq, p, &flags);
3780 3781 3782
		return -EINVAL;
	}

3783
	/*
3784 3785
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3786
	 */
3787
	if (unlikely(policy == p->policy)) {
3788
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3789 3790 3791
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3792
		if (dl_policy(policy) && dl_param_changed(p, attr))
3793
			goto change;
3794

3795
		p->sched_reset_on_fork = reset_on_fork;
3796
		task_rq_unlock(rq, p, &flags);
3797 3798
		return 0;
	}
3799
change:
3800

3801
	if (user) {
3802
#ifdef CONFIG_RT_GROUP_SCHED
3803 3804 3805 3806 3807
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3808 3809
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3810
			task_rq_unlock(rq, p, &flags);
3811 3812 3813
			return -EPERM;
		}
#endif
3814 3815 3816 3817 3818 3819 3820 3821 3822
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3823 3824
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3825 3826 3827 3828 3829 3830
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3831

L
Linus Torvalds 已提交
3832 3833 3834
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3835
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3836 3837
		goto recheck;
	}
3838 3839 3840 3841 3842 3843

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3844
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3845 3846 3847 3848
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3849 3850 3851
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
		if (new_effective_prio == oldprio) {
			__setscheduler_params(p, attr);
			task_rq_unlock(rq, p, &flags);
			return 0;
		}
3866 3867
	}

3868
	queued = task_on_rq_queued(p);
3869
	running = task_current(rq, p);
3870
	if (queued)
3871
		dequeue_task(rq, p, 0);
3872
	if (running)
3873
		put_prev_task(rq, p);
3874

3875
	prev_class = p->sched_class;
3876
	__setscheduler(rq, p, attr, pi);
3877

3878 3879
	if (running)
		p->sched_class->set_curr_task(rq);
3880
	if (queued) {
3881 3882 3883 3884 3885 3886
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3887

P
Peter Zijlstra 已提交
3888
	check_class_changed(rq, p, prev_class, oldprio);
3889
	preempt_disable(); /* avoid rq from going away on us */
3890
	task_rq_unlock(rq, p, &flags);
3891

3892 3893
	if (pi)
		rt_mutex_adjust_pi(p);
3894

3895 3896 3897 3898 3899
	/*
	 * Run balance callbacks after we've adjusted the PI chain.
	 */
	balance_callback(rq);
	preempt_enable();
3900

L
Linus Torvalds 已提交
3901 3902
	return 0;
}
3903

3904 3905 3906 3907 3908 3909 3910 3911 3912
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

3913 3914
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3915 3916 3917 3918 3919
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

3920
	return __sched_setscheduler(p, &attr, check, true);
3921
}
3922 3923 3924 3925 3926 3927
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3928 3929
 * Return: 0 on success. An error code otherwise.
 *
3930 3931 3932
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3933
		       const struct sched_param *param)
3934
{
3935
	return _sched_setscheduler(p, policy, param, true);
3936
}
L
Linus Torvalds 已提交
3937 3938
EXPORT_SYMBOL_GPL(sched_setscheduler);

3939 3940
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
3941
	return __sched_setscheduler(p, attr, true, true);
3942 3943 3944
}
EXPORT_SYMBOL_GPL(sched_setattr);

3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3955 3956
 *
 * Return: 0 on success. An error code otherwise.
3957 3958
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3959
			       const struct sched_param *param)
3960
{
3961
	return _sched_setscheduler(p, policy, param, false);
3962 3963
}

I
Ingo Molnar 已提交
3964 3965
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3966 3967 3968
{
	struct sched_param lparam;
	struct task_struct *p;
3969
	int retval;
L
Linus Torvalds 已提交
3970 3971 3972 3973 3974

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3975 3976 3977

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3978
	p = find_process_by_pid(pid);
3979 3980 3981
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3982

L
Linus Torvalds 已提交
3983 3984 3985
	return retval;
}

3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
4048
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4049

4050
	return 0;
4051 4052 4053

err_size:
	put_user(sizeof(*attr), &uattr->size);
4054
	return -E2BIG;
4055 4056
}

L
Linus Torvalds 已提交
4057 4058 4059 4060 4061
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4062 4063
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4064
 */
4065 4066
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4067
{
4068 4069 4070 4071
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4072 4073 4074 4075 4076 4077 4078
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4079 4080
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4081
 */
4082
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4083
{
4084
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4085 4086
}

4087 4088 4089
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4090
 * @uattr: structure containing the extended parameters.
4091
 * @flags: for future extension.
4092
 */
4093 4094
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4095 4096 4097 4098 4099
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4100
	if (!uattr || pid < 0 || flags)
4101 4102
		return -EINVAL;

4103 4104 4105
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4106

4107
	if ((int)attr.sched_policy < 0)
4108
		return -EINVAL;
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4120 4121 4122
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4123 4124 4125
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4126
 */
4127
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4128
{
4129
	struct task_struct *p;
4130
	int retval;
L
Linus Torvalds 已提交
4131 4132

	if (pid < 0)
4133
		return -EINVAL;
L
Linus Torvalds 已提交
4134 4135

	retval = -ESRCH;
4136
	rcu_read_lock();
L
Linus Torvalds 已提交
4137 4138 4139 4140
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4141 4142
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4143
	}
4144
	rcu_read_unlock();
L
Linus Torvalds 已提交
4145 4146 4147 4148
	return retval;
}

/**
4149
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4150 4151
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4152 4153 4154
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4155
 */
4156
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4157
{
4158
	struct sched_param lp = { .sched_priority = 0 };
4159
	struct task_struct *p;
4160
	int retval;
L
Linus Torvalds 已提交
4161 4162

	if (!param || pid < 0)
4163
		return -EINVAL;
L
Linus Torvalds 已提交
4164

4165
	rcu_read_lock();
L
Linus Torvalds 已提交
4166 4167 4168 4169 4170 4171 4172 4173 4174
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4175 4176
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4177
	rcu_read_unlock();
L
Linus Torvalds 已提交
4178 4179 4180 4181 4182 4183 4184 4185 4186

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4187
	rcu_read_unlock();
L
Linus Torvalds 已提交
4188 4189 4190
	return retval;
}

4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4214
				return -EFBIG;
4215 4216 4217 4218 4219
		}

		attr->size = usize;
	}

4220
	ret = copy_to_user(uattr, attr, attr->size);
4221 4222 4223
	if (ret)
		return -EFAULT;

4224
	return 0;
4225 4226 4227
}

/**
4228
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4229
 * @pid: the pid in question.
J
Juri Lelli 已提交
4230
 * @uattr: structure containing the extended parameters.
4231
 * @size: sizeof(attr) for fwd/bwd comp.
4232
 * @flags: for future extension.
4233
 */
4234 4235
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4236 4237 4238 4239 4240 4241 4242 4243
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4244
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4258 4259
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4260 4261 4262
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4263 4264
		attr.sched_priority = p->rt_priority;
	else
4265
		attr.sched_nice = task_nice(p);
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4277
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4278
{
4279
	cpumask_var_t cpus_allowed, new_mask;
4280 4281
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4282

4283
	rcu_read_lock();
L
Linus Torvalds 已提交
4284 4285 4286

	p = find_process_by_pid(pid);
	if (!p) {
4287
		rcu_read_unlock();
L
Linus Torvalds 已提交
4288 4289 4290
		return -ESRCH;
	}

4291
	/* Prevent p going away */
L
Linus Torvalds 已提交
4292
	get_task_struct(p);
4293
	rcu_read_unlock();
L
Linus Torvalds 已提交
4294

4295 4296 4297 4298
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4299 4300 4301 4302 4303 4304 4305 4306
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4307
	retval = -EPERM;
E
Eric W. Biederman 已提交
4308 4309 4310 4311
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4312
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4313 4314 4315
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4316

4317
	retval = security_task_setscheduler(p);
4318
	if (retval)
4319
		goto out_free_new_mask;
4320

4321 4322 4323 4324

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4325 4326 4327 4328 4329 4330 4331
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4332 4333 4334
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4335
			retval = -EBUSY;
4336
			rcu_read_unlock();
4337
			goto out_free_new_mask;
4338
		}
4339
		rcu_read_unlock();
4340 4341
	}
#endif
P
Peter Zijlstra 已提交
4342
again:
4343
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4344

P
Paul Menage 已提交
4345
	if (!retval) {
4346 4347
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4348 4349 4350 4351 4352
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4353
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4354 4355 4356
			goto again;
		}
	}
4357
out_free_new_mask:
4358 4359 4360 4361
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4362 4363 4364 4365 4366
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4367
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4368
{
4369 4370 4371 4372 4373
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4374 4375 4376 4377 4378 4379 4380 4381
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4382 4383
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4384
 */
4385 4386
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4387
{
4388
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4389 4390
	int retval;

4391 4392
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4393

4394 4395 4396 4397 4398
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4399 4400
}

4401
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4402
{
4403
	struct task_struct *p;
4404
	unsigned long flags;
L
Linus Torvalds 已提交
4405 4406
	int retval;

4407
	rcu_read_lock();
L
Linus Torvalds 已提交
4408 4409 4410 4411 4412 4413

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4414 4415 4416 4417
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4418
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4419
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4420
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4421 4422

out_unlock:
4423
	rcu_read_unlock();
L
Linus Torvalds 已提交
4424

4425
	return retval;
L
Linus Torvalds 已提交
4426 4427 4428 4429 4430 4431 4432
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4433 4434
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4435
 */
4436 4437
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4438 4439
{
	int ret;
4440
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4441

A
Anton Blanchard 已提交
4442
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4443 4444
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4445 4446
		return -EINVAL;

4447 4448
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4449

4450 4451
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4452
		size_t retlen = min_t(size_t, len, cpumask_size());
4453 4454

		if (copy_to_user(user_mask_ptr, mask, retlen))
4455 4456
			ret = -EFAULT;
		else
4457
			ret = retlen;
4458 4459
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4460

4461
	return ret;
L
Linus Torvalds 已提交
4462 4463 4464 4465 4466
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4467 4468
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4469 4470
 *
 * Return: 0.
L
Linus Torvalds 已提交
4471
 */
4472
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4473
{
4474
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4475

4476
	schedstat_inc(rq, yld_count);
4477
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4478 4479 4480 4481 4482 4483

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4484
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4485
	do_raw_spin_unlock(&rq->lock);
4486
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4487 4488 4489 4490 4491 4492

	schedule();

	return 0;
}

4493
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4494
{
P
Peter Zijlstra 已提交
4495
	if (should_resched()) {
4496
		preempt_schedule_common();
L
Linus Torvalds 已提交
4497 4498 4499 4500
		return 1;
	}
	return 0;
}
4501
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4502 4503

/*
4504
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4505 4506
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4507
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4508 4509 4510
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4511
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4512
{
P
Peter Zijlstra 已提交
4513
	int resched = should_resched();
J
Jan Kara 已提交
4514 4515
	int ret = 0;

4516 4517
	lockdep_assert_held(lock);

4518
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4519
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4520
		if (resched)
4521
			preempt_schedule_common();
N
Nick Piggin 已提交
4522 4523
		else
			cpu_relax();
J
Jan Kara 已提交
4524
		ret = 1;
L
Linus Torvalds 已提交
4525 4526
		spin_lock(lock);
	}
J
Jan Kara 已提交
4527
	return ret;
L
Linus Torvalds 已提交
4528
}
4529
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4530

4531
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4532 4533 4534
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4535
	if (should_resched()) {
4536
		local_bh_enable();
4537
		preempt_schedule_common();
L
Linus Torvalds 已提交
4538 4539 4540 4541 4542
		local_bh_disable();
		return 1;
	}
	return 0;
}
4543
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4544 4545 4546 4547

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4566 4567 4568 4569 4570 4571 4572 4573
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4574 4575 4576 4577
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4578 4579
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4580 4581 4582 4583
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4584
 * Return:
4585 4586 4587
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4588
 */
4589
int __sched yield_to(struct task_struct *p, bool preempt)
4590 4591 4592 4593
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4594
	int yielded = 0;
4595 4596 4597 4598 4599 4600

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4601 4602 4603 4604 4605 4606 4607 4608 4609
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4610
	double_rq_lock(rq, p_rq);
4611
	if (task_rq(p) != p_rq) {
4612 4613 4614 4615 4616
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4617
		goto out_unlock;
4618 4619

	if (curr->sched_class != p->sched_class)
4620
		goto out_unlock;
4621 4622

	if (task_running(p_rq, p) || p->state)
4623
		goto out_unlock;
4624 4625

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4626
	if (yielded) {
4627
		schedstat_inc(rq, yld_count);
4628 4629 4630 4631 4632
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4633
			resched_curr(p_rq);
4634
	}
4635

4636
out_unlock:
4637
	double_rq_unlock(rq, p_rq);
4638
out_irq:
4639 4640
	local_irq_restore(flags);

4641
	if (yielded > 0)
4642 4643 4644 4645 4646 4647
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4648
/*
I
Ingo Molnar 已提交
4649
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4650 4651 4652 4653
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
4654 4655
	int old_iowait = current->in_iowait;
	struct rq *rq;
L
Linus Torvalds 已提交
4656 4657
	long ret;

4658
	current->in_iowait = 1;
4659
	blk_schedule_flush_plug(current);
4660

4661
	delayacct_blkio_start();
4662
	rq = raw_rq();
L
Linus Torvalds 已提交
4663 4664
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
4665
	current->in_iowait = old_iowait;
L
Linus Torvalds 已提交
4666
	atomic_dec(&rq->nr_iowait);
4667
	delayacct_blkio_end();
4668

L
Linus Torvalds 已提交
4669 4670
	return ret;
}
4671
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
4672 4673 4674 4675 4676

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4677 4678 4679
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4680
 */
4681
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4682 4683 4684 4685 4686 4687 4688 4689
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4690
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4691
	case SCHED_NORMAL:
4692
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4693
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4704 4705 4706
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4707
 */
4708
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4709 4710 4711 4712 4713 4714 4715 4716
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4717
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4718
	case SCHED_NORMAL:
4719
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4720
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4733 4734 4735
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4736
 */
4737
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4738
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4739
{
4740
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4741
	unsigned int time_slice;
4742 4743
	unsigned long flags;
	struct rq *rq;
4744
	int retval;
L
Linus Torvalds 已提交
4745 4746 4747
	struct timespec t;

	if (pid < 0)
4748
		return -EINVAL;
L
Linus Torvalds 已提交
4749 4750

	retval = -ESRCH;
4751
	rcu_read_lock();
L
Linus Torvalds 已提交
4752 4753 4754 4755 4756 4757 4758 4759
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4760
	rq = task_rq_lock(p, &flags);
4761 4762 4763
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4764
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4765

4766
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4767
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4768 4769
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4770

L
Linus Torvalds 已提交
4771
out_unlock:
4772
	rcu_read_unlock();
L
Linus Torvalds 已提交
4773 4774 4775
	return retval;
}

4776
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4777

4778
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4779 4780
{
	unsigned long free = 0;
4781
	int ppid;
4782
	unsigned long state = p->state;
L
Linus Torvalds 已提交
4783

4784 4785
	if (state)
		state = __ffs(state) + 1;
4786
	printk(KERN_INFO "%-15.15s %c", p->comm,
4787
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4788
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4789
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4790
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4791
	else
P
Peter Zijlstra 已提交
4792
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4793 4794
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4795
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4796
	else
P
Peter Zijlstra 已提交
4797
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4798 4799
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4800
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4801
#endif
4802
	ppid = 0;
4803
	rcu_read_lock();
4804 4805
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4806
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4807
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4808
		task_pid_nr(p), ppid,
4809
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4810

4811
	print_worker_info(KERN_INFO, p);
4812
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4813 4814
}

I
Ingo Molnar 已提交
4815
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4816
{
4817
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4818

4819
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4820 4821
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4822
#else
P
Peter Zijlstra 已提交
4823 4824
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4825
#endif
4826
	rcu_read_lock();
4827
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
4828 4829
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4830
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4831 4832
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4833
		if (!state_filter || (p->state & state_filter))
4834
			sched_show_task(p);
4835
	}
L
Linus Torvalds 已提交
4836

4837 4838
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4839 4840 4841
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4842
	rcu_read_unlock();
I
Ingo Molnar 已提交
4843 4844 4845
	/*
	 * Only show locks if all tasks are dumped:
	 */
4846
	if (!state_filter)
I
Ingo Molnar 已提交
4847
		debug_show_all_locks();
L
Linus Torvalds 已提交
4848 4849
}

4850
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4851
{
I
Ingo Molnar 已提交
4852
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4853 4854
}

4855 4856 4857 4858 4859 4860 4861 4862
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4863
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4864
{
4865
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4866 4867
	unsigned long flags;

4868
	raw_spin_lock_irqsave(&rq->lock, flags);
4869

4870
	__sched_fork(0, idle);
4871
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4872 4873
	idle->se.exec_start = sched_clock();

4874
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4886
	__set_task_cpu(idle, cpu);
4887
	rcu_read_unlock();
L
Linus Torvalds 已提交
4888 4889

	rq->curr = rq->idle = idle;
4890
	idle->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
4891 4892
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4893
#endif
4894
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4895 4896

	/* Set the preempt count _outside_ the spinlocks! */
4897
	init_idle_preempt_count(idle, cpu);
4898

I
Ingo Molnar 已提交
4899 4900 4901 4902
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4903
	ftrace_graph_init_idle_task(idle, cpu);
4904
	vtime_init_idle(idle, cpu);
4905 4906 4907
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4908 4909
}

4910 4911 4912 4913 4914 4915 4916
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

4917 4918 4919
	if (!cpumask_weight(cur))
		return ret;

4920
	rcu_read_lock_sched();
4921 4922 4923 4924 4925 4926 4927 4928
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4929
	rcu_read_unlock_sched();
4930 4931 4932 4933

	return ret;
}

4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
4958
		struct dl_bw *dl_b;
4959 4960 4961 4962
		bool overflow;
		int cpus;
		unsigned long flags;

4963 4964
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4980
		rcu_read_unlock_sched();
4981 4982 4983 4984 4985 4986 4987

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
4988 4989
#ifdef CONFIG_SMP

4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5005
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5006 5007
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5008 5009 5010 5011 5012 5013 5014 5015 5016

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
5017
	bool queued, running;
5018 5019

	rq = task_rq_lock(p, &flags);
5020
	queued = task_on_rq_queued(p);
5021 5022
	running = task_current(rq, p);

5023
	if (queued)
5024 5025
		dequeue_task(rq, p, 0);
	if (running)
5026
		put_prev_task(rq, p);
5027 5028 5029 5030 5031

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
5032
	if (queued)
5033 5034 5035
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
P
Peter Zijlstra 已提交
5036
#endif /* CONFIG_NUMA_BALANCING */
5037

L
Linus Torvalds 已提交
5038
#ifdef CONFIG_HOTPLUG_CPU
5039
/*
5040 5041
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5042
 */
5043
void idle_task_exit(void)
L
Linus Torvalds 已提交
5044
{
5045
	struct mm_struct *mm = current->active_mm;
5046

5047
	BUG_ON(cpu_online(smp_processor_id()));
5048

5049
	if (mm != &init_mm) {
5050
		switch_mm(mm, &init_mm, current);
5051 5052
		finish_arch_post_lock_switch();
	}
5053
	mmdrop(mm);
L
Linus Torvalds 已提交
5054 5055 5056
}

/*
5057 5058 5059 5060 5061
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5062
 */
5063
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5064
{
5065 5066 5067
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5068 5069
}

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5086
/*
5087 5088 5089 5090 5091 5092
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5093
 */
5094
static void migrate_tasks(struct rq *dead_rq)
L
Linus Torvalds 已提交
5095
{
5096
	struct rq *rq = dead_rq;
5097 5098
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5099 5100

	/*
5101 5102 5103 5104 5105 5106 5107
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5108
	 */
5109
	rq->stop = NULL;
5110

5111 5112 5113 5114 5115 5116 5117
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5118
	for (;;) {
5119 5120 5121 5122 5123
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5124
			break;
5125

5126 5127 5128 5129 5130
		/*
		 * Ensure rq->lock covers the entire task selection
		 * until the migration.
		 */
		lockdep_pin_lock(&rq->lock);
5131
		next = pick_next_task(rq, &fake_task);
5132
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5133
		next->sched_class->put_prev_task(rq, next);
5134

5135
		/* Find suitable destination for @next, with force if needed. */
5136
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5137

5138
		lockdep_unpin_lock(&rq->lock);
5139 5140 5141 5142 5143 5144
		rq = __migrate_task(rq, next, dest_cpu);
		if (rq != dead_rq) {
			raw_spin_unlock(&rq->lock);
			rq = dead_rq;
			raw_spin_lock(&rq->lock);
		}
L
Linus Torvalds 已提交
5145
	}
5146

5147
	rq->stop = stop;
5148
}
L
Linus Torvalds 已提交
5149 5150
#endif /* CONFIG_HOTPLUG_CPU */

5151 5152 5153
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5154 5155
	{
		.procname	= "sched_domain",
5156
		.mode		= 0555,
5157
	},
5158
	{}
5159 5160 5161
};

static struct ctl_table sd_ctl_root[] = {
5162 5163
	{
		.procname	= "kernel",
5164
		.mode		= 0555,
5165 5166
		.child		= sd_ctl_dir,
	},
5167
	{}
5168 5169 5170 5171 5172
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5173
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5174 5175 5176 5177

	return entry;
}

5178 5179
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5180
	struct ctl_table *entry;
5181

5182 5183 5184
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5185
	 * will always be set. In the lowest directory the names are
5186 5187 5188
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5189 5190
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5191 5192 5193
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5194 5195 5196 5197 5198

	kfree(*tablep);
	*tablep = NULL;
}

5199
static int min_load_idx = 0;
5200
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5201

5202
static void
5203
set_table_entry(struct ctl_table *entry,
5204
		const char *procname, void *data, int maxlen,
5205 5206
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5207 5208 5209 5210 5211 5212
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5213 5214 5215 5216 5217

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5218 5219 5220 5221 5222
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5223
	struct ctl_table *table = sd_alloc_ctl_entry(14);
5224

5225 5226 5227
	if (table == NULL)
		return NULL;

5228
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5229
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5230
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5231
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5232
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5233
		sizeof(int), 0644, proc_dointvec_minmax, true);
5234
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5235
		sizeof(int), 0644, proc_dointvec_minmax, true);
5236
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5237
		sizeof(int), 0644, proc_dointvec_minmax, true);
5238
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5239
		sizeof(int), 0644, proc_dointvec_minmax, true);
5240
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5241
		sizeof(int), 0644, proc_dointvec_minmax, true);
5242
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5243
		sizeof(int), 0644, proc_dointvec_minmax, false);
5244
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5245
		sizeof(int), 0644, proc_dointvec_minmax, false);
5246
	set_table_entry(&table[9], "cache_nice_tries",
5247
		&sd->cache_nice_tries,
5248
		sizeof(int), 0644, proc_dointvec_minmax, false);
5249
	set_table_entry(&table[10], "flags", &sd->flags,
5250
		sizeof(int), 0644, proc_dointvec_minmax, false);
5251 5252 5253 5254
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
5255
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5256
	/* &table[13] is terminator */
5257 5258 5259 5260

	return table;
}

5261
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5262 5263 5264 5265 5266 5267 5268 5269 5270
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5271 5272
	if (table == NULL)
		return NULL;
5273 5274 5275 5276 5277

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5278
		entry->mode = 0555;
5279 5280 5281 5282 5283 5284 5285 5286
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5287
static void register_sched_domain_sysctl(void)
5288
{
5289
	int i, cpu_num = num_possible_cpus();
5290 5291 5292
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5293 5294 5295
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5296 5297 5298
	if (entry == NULL)
		return;

5299
	for_each_possible_cpu(i) {
5300 5301
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5302
		entry->mode = 0555;
5303
		entry->child = sd_alloc_ctl_cpu_table(i);
5304
		entry++;
5305
	}
5306 5307

	WARN_ON(sd_sysctl_header);
5308 5309
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5310

5311
/* may be called multiple times per register */
5312 5313
static void unregister_sched_domain_sysctl(void)
{
5314 5315
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5316
	sd_sysctl_header = NULL;
5317 5318
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5319
}
5320
#else
5321 5322 5323 5324
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5325 5326
{
}
P
Peter Zijlstra 已提交
5327
#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5328

5329 5330 5331 5332 5333
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5334
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5354
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5355 5356 5357 5358
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5359 5360 5361 5362
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5363
static int
5364
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5365
{
5366
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5367
	unsigned long flags;
5368
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5369

5370
	switch (action & ~CPU_TASKS_FROZEN) {
5371

L
Linus Torvalds 已提交
5372
	case CPU_UP_PREPARE:
5373
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5374
		break;
5375

L
Linus Torvalds 已提交
5376
	case CPU_ONLINE:
5377
		/* Update our root-domain */
5378
		raw_spin_lock_irqsave(&rq->lock, flags);
5379
		if (rq->rd) {
5380
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5381 5382

			set_rq_online(rq);
5383
		}
5384
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5385
		break;
5386

L
Linus Torvalds 已提交
5387
#ifdef CONFIG_HOTPLUG_CPU
5388
	case CPU_DYING:
5389
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5390
		/* Update our root-domain */
5391
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5392
		if (rq->rd) {
5393
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5394
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5395
		}
5396
		migrate_tasks(rq);
5397
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5398
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5399
		break;
5400

5401
	case CPU_DEAD:
5402
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5403
		break;
L
Linus Torvalds 已提交
5404 5405
#endif
	}
5406 5407 5408

	update_max_interval();

L
Linus Torvalds 已提交
5409 5410 5411
	return NOTIFY_OK;
}

5412 5413 5414
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5415
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5416
 */
5417
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5418
	.notifier_call = migration_call,
5419
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5420 5421
};

5422
static void set_cpu_rq_start_time(void)
5423 5424 5425 5426 5427 5428
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5429
static int sched_cpu_active(struct notifier_block *nfb,
5430 5431 5432
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5433 5434 5435
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5436 5437 5438 5439 5440 5441 5442 5443
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5444
static int sched_cpu_inactive(struct notifier_block *nfb,
5445 5446 5447 5448
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5449
		set_cpu_active((long)hcpu, false);
5450
		return NOTIFY_OK;
5451 5452
	default:
		return NOTIFY_DONE;
5453 5454 5455
	}
}

5456
static int __init migration_init(void)
L
Linus Torvalds 已提交
5457 5458
{
	void *cpu = (void *)(long)smp_processor_id();
5459
	int err;
5460

5461
	/* Initialize migration for the boot CPU */
5462 5463
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5464 5465
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5466

5467 5468 5469 5470
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5471
	return 0;
L
Linus Torvalds 已提交
5472
}
5473
early_initcall(migration_init);
5474

5475 5476
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5477
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5478

5479
static __read_mostly int sched_debug_enabled;
5480

5481
static int __init sched_debug_setup(char *str)
5482
{
5483
	sched_debug_enabled = 1;
5484 5485 5486

	return 0;
}
5487 5488 5489 5490 5491 5492
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5493

5494
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5495
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5496
{
I
Ingo Molnar 已提交
5497
	struct sched_group *group = sd->groups;
L
Linus Torvalds 已提交
5498

5499
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5500 5501 5502 5503

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5504
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5505
		if (sd->parent)
P
Peter Zijlstra 已提交
5506 5507
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5508
		return -1;
N
Nick Piggin 已提交
5509 5510
	}

5511 5512
	printk(KERN_CONT "span %*pbl level %s\n",
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
I
Ingo Molnar 已提交
5513

5514
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5515 5516
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5517
	}
5518
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5519 5520
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5521
	}
L
Linus Torvalds 已提交
5522

I
Ingo Molnar 已提交
5523
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5524
	do {
I
Ingo Molnar 已提交
5525
		if (!group) {
P
Peter Zijlstra 已提交
5526 5527
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5528 5529 5530
			break;
		}

5531
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5532 5533
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5534 5535
			break;
		}
L
Linus Torvalds 已提交
5536

5537 5538
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5539 5540
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5541 5542
			break;
		}
L
Linus Torvalds 已提交
5543

5544
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5545

5546 5547
		printk(KERN_CONT " %*pbl",
		       cpumask_pr_args(sched_group_cpus(group)));
5548
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5549 5550
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5551
		}
L
Linus Torvalds 已提交
5552

I
Ingo Molnar 已提交
5553 5554
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5555
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5556

5557
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5558
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5559

5560 5561
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5562 5563
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5564 5565
	return 0;
}
L
Linus Torvalds 已提交
5566

I
Ingo Molnar 已提交
5567 5568 5569
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5570

5571
	if (!sched_debug_enabled)
5572 5573
		return;

I
Ingo Molnar 已提交
5574 5575 5576 5577
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5578

I
Ingo Molnar 已提交
5579 5580 5581
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5582
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5583
			break;
L
Linus Torvalds 已提交
5584 5585
		level++;
		sd = sd->parent;
5586
		if (!sd)
I
Ingo Molnar 已提交
5587 5588
			break;
	}
L
Linus Torvalds 已提交
5589
}
5590
#else /* !CONFIG_SCHED_DEBUG */
5591
# define sched_domain_debug(sd, cpu) do { } while (0)
5592 5593 5594 5595
static inline bool sched_debug(void)
{
	return false;
}
5596
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5597

5598
static int sd_degenerate(struct sched_domain *sd)
5599
{
5600
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5601 5602 5603 5604 5605 5606
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5607
			 SD_BALANCE_EXEC |
5608
			 SD_SHARE_CPUCAPACITY |
5609 5610
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5611 5612 5613 5614 5615
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5616
	if (sd->flags & (SD_WAKE_AFFINE))
5617 5618 5619 5620 5621
		return 0;

	return 1;
}

5622 5623
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5624 5625 5626 5627 5628 5629
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5630
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5631 5632 5633 5634 5635 5636 5637
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5638
				SD_BALANCE_EXEC |
5639
				SD_SHARE_CPUCAPACITY |
5640
				SD_SHARE_PKG_RESOURCES |
5641 5642
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5643 5644
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5645 5646 5647 5648 5649 5650 5651
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5652
static void free_rootdomain(struct rcu_head *rcu)
5653
{
5654
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5655

5656
	cpupri_cleanup(&rd->cpupri);
5657
	cpudl_cleanup(&rd->cpudl);
5658
	free_cpumask_var(rd->dlo_mask);
5659 5660 5661 5662 5663 5664
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5665 5666
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5667
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5668 5669
	unsigned long flags;

5670
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5671 5672

	if (rq->rd) {
I
Ingo Molnar 已提交
5673
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5674

5675
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5676
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5677

5678
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5679

I
Ingo Molnar 已提交
5680
		/*
5681
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5682 5683 5684 5685 5686
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5687 5688 5689 5690 5691
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5692
	cpumask_set_cpu(rq->cpu, rd->span);
5693
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5694
		set_rq_online(rq);
G
Gregory Haskins 已提交
5695

5696
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5697 5698

	if (old_rd)
5699
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5700 5701
}

5702
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5703 5704 5705
{
	memset(rd, 0, sizeof(*rd));

5706
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5707
		goto out;
5708
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5709
		goto free_span;
5710
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5711
		goto free_online;
5712 5713
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5714

5715
	init_dl_bw(&rd->dl_bw);
5716 5717
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5718

5719
	if (cpupri_init(&rd->cpupri) != 0)
5720
		goto free_rto_mask;
5721
	return 0;
5722

5723 5724
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5725 5726
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5727 5728 5729 5730
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5731
out:
5732
	return -ENOMEM;
G
Gregory Haskins 已提交
5733 5734
}

5735 5736 5737 5738 5739 5740
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5741 5742
static void init_defrootdomain(void)
{
5743
	init_rootdomain(&def_root_domain);
5744

G
Gregory Haskins 已提交
5745 5746 5747
	atomic_set(&def_root_domain.refcount, 1);
}

5748
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5749 5750 5751 5752 5753 5754 5755
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5756
	if (init_rootdomain(rd) != 0) {
5757 5758 5759
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5760 5761 5762 5763

	return rd;
}

5764
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5775 5776
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5777 5778 5779 5780 5781 5782

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5783 5784 5785
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5786 5787 5788 5789 5790 5791 5792 5793

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5794
		kfree(sd->groups->sgc);
5795
		kfree(sd->groups);
5796
	}
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5811 5812 5813 5814 5815 5816 5817
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5818
 * two cpus are in the same cache domain, see cpus_share_cache().
5819 5820
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5821
DEFINE_PER_CPU(int, sd_llc_size);
5822
DEFINE_PER_CPU(int, sd_llc_id);
5823
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5824 5825
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5826 5827 5828 5829

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5830
	struct sched_domain *busy_sd = NULL;
5831
	int id = cpu;
5832
	int size = 1;
5833 5834

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5835
	if (sd) {
5836
		id = cpumask_first(sched_domain_span(sd));
5837
		size = cpumask_weight(sched_domain_span(sd));
5838
		busy_sd = sd->parent; /* sd_busy */
5839
	}
5840
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5841 5842

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5843
	per_cpu(sd_llc_size, cpu) = size;
5844
	per_cpu(sd_llc_id, cpu) = id;
5845 5846 5847

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5848 5849 5850

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5851 5852
}

L
Linus Torvalds 已提交
5853
/*
I
Ingo Molnar 已提交
5854
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5855 5856
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5857 5858
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5859
{
5860
	struct rq *rq = cpu_rq(cpu);
5861 5862 5863
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5864
	for (tmp = sd; tmp; ) {
5865 5866 5867
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5868

5869
		if (sd_parent_degenerate(tmp, parent)) {
5870
			tmp->parent = parent->parent;
5871 5872
			if (parent->parent)
				parent->parent->child = tmp;
5873 5874 5875 5876 5877 5878 5879
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5880
			destroy_sched_domain(parent, cpu);
5881 5882
		} else
			tmp = tmp->parent;
5883 5884
	}

5885
	if (sd && sd_degenerate(sd)) {
5886
		tmp = sd;
5887
		sd = sd->parent;
5888
		destroy_sched_domain(tmp, cpu);
5889 5890 5891
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5892

5893
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5894

G
Gregory Haskins 已提交
5895
	rq_attach_root(rq, rd);
5896
	tmp = rq->sd;
N
Nick Piggin 已提交
5897
	rcu_assign_pointer(rq->sd, sd);
5898
	destroy_sched_domains(tmp, cpu);
5899 5900

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5901 5902 5903 5904 5905
}

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5906
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5907
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5908 5909 5910
	return 1;
}

I
Ingo Molnar 已提交
5911
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5912

5913
struct s_data {
5914
	struct sched_domain ** __percpu sd;
5915 5916 5917
	struct root_domain	*rd;
};

5918 5919
enum s_alloc {
	sa_rootdomain,
5920
	sa_sd,
5921
	sa_sd_storage,
5922 5923 5924
	sa_none,
};

P
Peter Zijlstra 已提交
5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5963 5964 5965 5966 5967 5968 5969
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
5970
	struct sched_domain *sibling;
5971 5972 5973 5974 5975 5976 5977 5978 5979 5980
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

5981
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
5982 5983

		/* See the comment near build_group_mask(). */
5984
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
5985 5986
			continue;

5987
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5988
				GFP_KERNEL, cpu_to_node(cpu));
5989 5990 5991 5992 5993

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
5994 5995 5996
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
5997 5998 5999 6000
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

6001 6002
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
6003 6004
			build_group_mask(sd, sg);

6005
		/*
6006
		 * Initialize sgc->capacity such that even if we mess up the
6007 6008 6009
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
6010
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6011

P
Peter Zijlstra 已提交
6012 6013 6014 6015 6016
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
6017
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
6018
		    group_balance_cpu(sg) == cpu)
6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6038
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6039
{
6040 6041
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6042

6043 6044
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6045

6046
	if (sg) {
6047
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6048 6049
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6050
	}
6051 6052

	return cpu;
6053 6054
}

6055
/*
6056 6057
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
6058
 * and ->cpu_capacity to 0.
6059 6060
 *
 * Assumes the sched_domain tree is fully constructed
6061
 */
6062 6063
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6064
{
6065 6066 6067
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6068
	struct cpumask *covered;
6069
	int i;
6070

6071 6072 6073
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6074
	if (cpu != cpumask_first(span))
6075 6076
		return 0;

6077 6078 6079
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6080
	cpumask_clear(covered);
6081

6082 6083
	for_each_cpu(i, span) {
		struct sched_group *sg;
6084
		int group, j;
6085

6086 6087
		if (cpumask_test_cpu(i, covered))
			continue;
6088

6089
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6090
		cpumask_setall(sched_group_mask(sg));
6091

6092 6093 6094
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6095

6096 6097 6098
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6099

6100 6101 6102 6103 6104 6105 6106
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6107 6108

	return 0;
6109
}
6110

6111
/*
6112
 * Initialize sched groups cpu_capacity.
6113
 *
6114
 * cpu_capacity indicates the capacity of sched group, which is used while
6115
 * distributing the load between different sched groups in a sched domain.
6116 6117 6118 6119
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6120
 */
6121
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6122
{
6123
	struct sched_group *sg = sd->groups;
6124

6125
	WARN_ON(!sg);
6126 6127 6128 6129 6130

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6131

P
Peter Zijlstra 已提交
6132
	if (cpu != group_balance_cpu(sg))
6133
		return;
6134

6135 6136
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6137 6138
}

6139 6140 6141 6142 6143
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6144
static int default_relax_domain_level = -1;
6145
int sched_domain_level_max;
6146 6147 6148

static int __init setup_relax_domain_level(char *str)
{
6149 6150
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6151

6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6170
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6171 6172
	} else {
		/* turn on idle balance on this domain */
6173
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6174 6175 6176
	}
}

6177 6178 6179
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6180 6181 6182 6183 6184
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6185 6186
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6187 6188
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6189
	case sa_sd_storage:
6190
		__sdt_free(cpu_map); /* fall through */
6191 6192 6193 6194
	case sa_none:
		break;
	}
}
6195

6196 6197 6198
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6199 6200
	memset(d, 0, sizeof(*d));

6201 6202
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6203 6204 6205
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6206
	d->rd = alloc_rootdomain();
6207
	if (!d->rd)
6208
		return sa_sd;
6209 6210
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6211

6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6224
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6225
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6226

6227 6228
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6229 6230
}

6231 6232
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6233
enum numa_topology_type sched_numa_topology_type;
6234
static int *sched_domains_numa_distance;
6235
int sched_max_numa_distance;
6236 6237
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6238
#endif
6239

6240 6241 6242
/*
 * SD_flags allowed in topology descriptions.
 *
6243
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6244 6245
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6246
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6247 6248 6249 6250 6251
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6252
	(SD_SHARE_CPUCAPACITY |		\
6253 6254
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6255 6256
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6257 6258

static struct sched_domain *
6259
sd_init(struct sched_domain_topology_level *tl, int cpu)
6260 6261
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6278 6279 6280 6281 6282

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6283
		.imbalance_pct		= 125,
6284 6285 6286 6287

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6288 6289 6290 6291 6292 6293
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6294 6295
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6296
					| 0*SD_BALANCE_WAKE
6297
					| 1*SD_WAKE_AFFINE
6298
					| 0*SD_SHARE_CPUCAPACITY
6299
					| 0*SD_SHARE_PKG_RESOURCES
6300
					| 0*SD_SERIALIZE
6301
					| 0*SD_PREFER_SIBLING
6302 6303
					| 0*SD_NUMA
					| sd_flags
6304
					,
6305

6306 6307
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6308
		.smt_gain		= 0,
6309 6310
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6311 6312 6313
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6314 6315 6316
	};

	/*
6317
	 * Convert topological properties into behaviour.
6318
	 */
6319

6320
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6321
		sd->flags |= SD_PREFER_SIBLING;
6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6352 6353 6354 6355

	return sd;
}

6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6382 6383 6384 6385 6386
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6408
bool find_numa_distance(int distance)
6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

	if (n <= 1)
		sched_numa_topology_type = NUMA_DIRECT;

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6518
		}
6519 6520 6521 6522 6523 6524

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6525
	}
6526 6527 6528 6529

	if (!level)
		return;

6530 6531 6532 6533
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6534
	 * The sched_domains_numa_distance[] array includes the actual distance
6535 6536 6537
	 * numbers.
	 */

6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6564
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6565 6566 6567 6568 6569 6570
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6571
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6572 6573 6574 6575 6576 6577 6578
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6579 6580 6581
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6582
	tl = kzalloc((i + level + 1) *
6583 6584 6585 6586 6587 6588 6589
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6590 6591
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6592 6593 6594 6595 6596 6597 6598

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6599
			.sd_flags = cpu_numa_flags,
6600 6601
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6602
			SD_INIT_NAME(NUMA)
6603 6604 6605 6606
		};
	}

	sched_domain_topology = tl;
6607 6608

	sched_domains_numa_levels = level;
6609
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6610 6611

	init_numa_topology_type();
6612
}
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6660 6661 6662 6663 6664
}
#else
static inline void sched_init_numa(void)
{
}
6665 6666 6667 6668 6669 6670 6671

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6672 6673
#endif /* CONFIG_NUMA */

6674 6675 6676 6677 6678
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6679
	for_each_sd_topology(tl) {
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6690 6691
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6692 6693
			return -ENOMEM;

6694 6695 6696
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6697
			struct sched_group_capacity *sgc;
6698

P
Peter Zijlstra 已提交
6699
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6711 6712
			sg->next = sg;

6713
			*per_cpu_ptr(sdd->sg, j) = sg;
6714

6715
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6716
					GFP_KERNEL, cpu_to_node(j));
6717
			if (!sgc)
6718 6719
				return -ENOMEM;

6720
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6732
	for_each_sd_topology(tl) {
6733 6734 6735
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6747 6748
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6749 6750
		}
		free_percpu(sdd->sd);
6751
		sdd->sd = NULL;
6752
		free_percpu(sdd->sg);
6753
		sdd->sg = NULL;
6754 6755
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6756 6757 6758
	}
}

6759
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6760 6761
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6762
{
6763
	struct sched_domain *sd = sd_init(tl, cpu);
6764
	if (!sd)
6765
		return child;
6766 6767

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6768 6769 6770
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6771
		child->parent = sd;
6772
		sd->child = child;
P
Peter Zijlstra 已提交
6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6787
	}
6788
	set_domain_attribute(sd, attr);
6789 6790 6791 6792

	return sd;
}

6793 6794 6795 6796
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6797 6798
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6799
{
6800
	enum s_alloc alloc_state;
6801
	struct sched_domain *sd;
6802
	struct s_data d;
6803
	int i, ret = -ENOMEM;
6804

6805 6806 6807
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6808

6809
	/* Set up domains for cpus specified by the cpu_map. */
6810
	for_each_cpu(i, cpu_map) {
6811 6812
		struct sched_domain_topology_level *tl;

6813
		sd = NULL;
6814
		for_each_sd_topology(tl) {
6815
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6816 6817
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6818 6819
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6820 6821
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6822
		}
6823 6824 6825 6826 6827 6828
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6829 6830 6831 6832 6833 6834 6835
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6836
		}
6837
	}
6838

6839
	/* Calculate CPU capacity for physical packages and nodes */
6840 6841 6842
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6843

6844 6845
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6846
			init_sched_groups_capacity(i, sd);
6847
		}
6848
	}
6849

L
Linus Torvalds 已提交
6850
	/* Attach the domains */
6851
	rcu_read_lock();
6852
	for_each_cpu(i, cpu_map) {
6853
		sd = *per_cpu_ptr(d.sd, i);
6854
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6855
	}
6856
	rcu_read_unlock();
6857

6858
	ret = 0;
6859
error:
6860
	__free_domain_allocs(&d, alloc_state, cpu_map);
6861
	return ret;
L
Linus Torvalds 已提交
6862
}
P
Paul Jackson 已提交
6863

6864
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6865
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6866 6867
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6868 6869 6870

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6871 6872
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6873
 */
6874
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6875

6876 6877 6878 6879 6880
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6881
int __weak arch_update_cpu_topology(void)
6882
{
6883
	return 0;
6884 6885
}

6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6911
/*
I
Ingo Molnar 已提交
6912
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6913 6914
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6915
 */
6916
static int init_sched_domains(const struct cpumask *cpu_map)
6917
{
6918 6919
	int err;

6920
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6921
	ndoms_cur = 1;
6922
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6923
	if (!doms_cur)
6924 6925
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6926
	err = build_sched_domains(doms_cur[0], NULL);
6927
	register_sched_domain_sysctl();
6928 6929

	return err;
6930 6931 6932 6933 6934 6935
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6936
static void detach_destroy_domains(const struct cpumask *cpu_map)
6937 6938 6939
{
	int i;

6940
	rcu_read_lock();
6941
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6942
		cpu_attach_domain(NULL, &def_root_domain, i);
6943
	rcu_read_unlock();
6944 6945
}

6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6962 6963
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6964
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6965 6966 6967
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6968
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6969 6970 6971
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6972 6973 6974
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6975 6976 6977 6978 6979 6980
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6981
 *
6982
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6983 6984
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6985
 *
P
Paul Jackson 已提交
6986 6987
 * Call with hotplug lock held
 */
6988
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6989
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6990
{
6991
	int i, j, n;
6992
	int new_topology;
P
Paul Jackson 已提交
6993

6994
	mutex_lock(&sched_domains_mutex);
6995

6996 6997 6998
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6999 7000 7001
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7002
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7003 7004 7005

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7006
		for (j = 0; j < n && !new_topology; j++) {
7007
			if (cpumask_equal(doms_cur[i], doms_new[j])
7008
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7009 7010 7011
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7012
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7013 7014 7015 7016
match1:
		;
	}

7017
	n = ndoms_cur;
7018
	if (doms_new == NULL) {
7019
		n = 0;
7020
		doms_new = &fallback_doms;
7021
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7022
		WARN_ON_ONCE(dattr_new);
7023 7024
	}

P
Paul Jackson 已提交
7025 7026
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7027
		for (j = 0; j < n && !new_topology; j++) {
7028
			if (cpumask_equal(doms_new[i], doms_cur[j])
7029
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7030 7031 7032
				goto match2;
		}
		/* no match - add a new doms_new */
7033
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7034 7035 7036 7037 7038
match2:
		;
	}

	/* Remember the new sched domains */
7039 7040
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7041
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7042
	doms_cur = doms_new;
7043
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7044
	ndoms_cur = ndoms_new;
7045 7046

	register_sched_domain_sysctl();
7047

7048
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7049 7050
}

7051 7052
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
7053
/*
7054 7055 7056
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
7057 7058 7059
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
7060
 */
7061 7062
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
7063
{
7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

7086
	case CPU_ONLINE:
7087
		cpuset_update_active_cpus(true);
7088
		break;
7089 7090 7091
	default:
		return NOTIFY_DONE;
	}
7092
	return NOTIFY_OK;
7093
}
7094

7095 7096
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7097
{
7098 7099 7100
	unsigned long flags;
	long cpu = (long)hcpu;
	struct dl_bw *dl_b;
7101 7102
	bool overflow;
	int cpus;
7103

7104
	switch (action) {
7105
	case CPU_DOWN_PREPARE:
7106 7107
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7108

7109 7110 7111 7112
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7113

7114
		rcu_read_unlock_sched();
7115

7116 7117
		if (overflow)
			return notifier_from_errno(-EBUSY);
7118
		cpuset_update_active_cpus(false);
7119 7120 7121 7122 7123
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
7124 7125 7126
	default:
		return NOTIFY_DONE;
	}
7127
	return NOTIFY_OK;
7128 7129
}

L
Linus Torvalds 已提交
7130 7131
void __init sched_init_smp(void)
{
7132 7133 7134
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7135
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7136

7137 7138 7139
	/* nohz_full won't take effect without isolating the cpus. */
	tick_nohz_full_add_cpus_to(cpu_isolated_map);

7140 7141
	sched_init_numa();

7142 7143 7144 7145 7146
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7147
	mutex_lock(&sched_domains_mutex);
7148
	init_sched_domains(cpu_active_mask);
7149 7150 7151
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7152
	mutex_unlock(&sched_domains_mutex);
7153

7154
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7155 7156
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7157

7158
	init_hrtick();
7159 7160

	/* Move init over to a non-isolated CPU */
7161
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7162
		BUG();
I
Ingo Molnar 已提交
7163
	sched_init_granularity();
7164
	free_cpumask_var(non_isolated_cpus);
7165

7166
	init_sched_rt_class();
7167
	init_sched_dl_class();
L
Linus Torvalds 已提交
7168 7169 7170 7171
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7172
	sched_init_granularity();
L
Linus Torvalds 已提交
7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7183
#ifdef CONFIG_CGROUP_SCHED
7184 7185 7186 7187
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7188
struct task_group root_task_group;
7189
LIST_HEAD(task_groups);
7190
#endif
P
Peter Zijlstra 已提交
7191

7192
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7193

L
Linus Torvalds 已提交
7194 7195
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7196
	int i, j;
7197 7198 7199 7200 7201 7202 7203 7204 7205
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7206
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7207 7208

#ifdef CONFIG_FAIR_GROUP_SCHED
7209
		root_task_group.se = (struct sched_entity **)ptr;
7210 7211
		ptr += nr_cpu_ids * sizeof(void **);

7212
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7213
		ptr += nr_cpu_ids * sizeof(void **);
7214

7215
#endif /* CONFIG_FAIR_GROUP_SCHED */
7216
#ifdef CONFIG_RT_GROUP_SCHED
7217
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7218 7219
		ptr += nr_cpu_ids * sizeof(void **);

7220
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7221 7222
		ptr += nr_cpu_ids * sizeof(void **);

7223
#endif /* CONFIG_RT_GROUP_SCHED */
7224
	}
7225
#ifdef CONFIG_CPUMASK_OFFSTACK
7226 7227 7228
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7229
	}
7230
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7231

7232 7233 7234
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7235
			global_rt_period(), global_rt_runtime());
7236

G
Gregory Haskins 已提交
7237 7238 7239 7240
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7241
#ifdef CONFIG_RT_GROUP_SCHED
7242
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7243
			global_rt_period(), global_rt_runtime());
7244
#endif /* CONFIG_RT_GROUP_SCHED */
7245

D
Dhaval Giani 已提交
7246
#ifdef CONFIG_CGROUP_SCHED
7247 7248
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7249
	INIT_LIST_HEAD(&root_task_group.siblings);
7250
	autogroup_init(&init_task);
7251

D
Dhaval Giani 已提交
7252
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7253

7254
	for_each_possible_cpu(i) {
7255
		struct rq *rq;
L
Linus Torvalds 已提交
7256 7257

		rq = cpu_rq(i);
7258
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7259
		rq->nr_running = 0;
7260 7261
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7262
		init_cfs_rq(&rq->cfs);
7263 7264
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
7265
#ifdef CONFIG_FAIR_GROUP_SCHED
7266
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7267
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7268
		/*
7269
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7270 7271 7272 7273
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7274
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7275 7276 7277
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7278
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7279 7280 7281
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7282
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7283
		 *
7284 7285
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7286
		 */
7287
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7288
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7289 7290 7291
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7292
#ifdef CONFIG_RT_GROUP_SCHED
7293
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7294
#endif
L
Linus Torvalds 已提交
7295

I
Ingo Molnar 已提交
7296 7297
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7298 7299 7300

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7301
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7302
		rq->sd = NULL;
G
Gregory Haskins 已提交
7303
		rq->rd = NULL;
7304
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7305
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
7306
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7307
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7308
		rq->push_cpu = 0;
7309
		rq->cpu = i;
7310
		rq->online = 0;
7311 7312
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7313
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7314 7315 7316

		INIT_LIST_HEAD(&rq->cfs_tasks);

7317
		rq_attach_root(rq, &def_root_domain);
7318
#ifdef CONFIG_NO_HZ_COMMON
7319
		rq->nohz_flags = 0;
7320
#endif
7321 7322 7323
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7324
#endif
P
Peter Zijlstra 已提交
7325
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7326 7327 7328
		atomic_set(&rq->nr_iowait, 0);
	}

7329
	set_load_weight(&init_task);
7330

7331 7332 7333 7334
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7335 7336 7337 7338 7339 7340
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

7341 7342 7343 7344 7345
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;

L
Linus Torvalds 已提交
7346 7347 7348 7349 7350 7351 7352
	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7353 7354 7355

	calc_load_update = jiffies + LOAD_FREQ;

7356
#ifdef CONFIG_SMP
7357
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7358 7359 7360
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7361
	idle_thread_set_boot_cpu();
7362
	set_cpu_rq_start_time();
7363 7364
#endif
	init_sched_fair_class();
7365

7366
	scheduler_running = 1;
L
Linus Torvalds 已提交
7367 7368
}

7369
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7370 7371
static inline int preempt_count_equals(int preempt_offset)
{
7372
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7373

A
Arnd Bergmann 已提交
7374
	return (nested == preempt_offset);
7375 7376
}

7377
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7378
{
P
Peter Zijlstra 已提交
7379 7380 7381 7382 7383
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7384
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
7385 7386 7387 7388
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
7389
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
7390

7391 7392 7393 7394 7395
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7396 7397 7398
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7399
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7400 7401
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7402
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7403 7404 7405 7406 7407
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7408 7409 7410 7411 7412 7413 7414
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7415

7416 7417 7418
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7419 7420 7421
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7422 7423 7424 7425 7426 7427 7428
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7429
	dump_stack();
L
Linus Torvalds 已提交
7430
}
7431
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7432 7433 7434
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7435
void normalize_rt_tasks(void)
7436
{
7437
	struct task_struct *g, *p;
7438 7439 7440
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
7441

7442
	read_lock(&tasklist_lock);
7443
	for_each_process_thread(g, p) {
7444 7445 7446
		/*
		 * Only normalize user tasks:
		 */
7447
		if (p->flags & PF_KTHREAD)
7448 7449
			continue;

I
Ingo Molnar 已提交
7450 7451
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7452 7453 7454
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7455
#endif
I
Ingo Molnar 已提交
7456

7457
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7458 7459 7460 7461
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7462
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7463
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7464
			continue;
I
Ingo Molnar 已提交
7465
		}
L
Linus Torvalds 已提交
7466

7467
		__sched_setscheduler(p, &attr, false, false);
7468
	}
7469
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7470 7471 7472
}

#endif /* CONFIG_MAGIC_SYSRQ */
7473

7474
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7475
/*
7476
 * These functions are only useful for the IA64 MCA handling, or kdb.
7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7490 7491
 *
 * Return: The current task for @cpu.
7492
 */
7493
struct task_struct *curr_task(int cpu)
7494 7495 7496 7497
{
	return cpu_curr(cpu);
}

7498 7499 7500
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7501 7502 7503 7504 7505 7506
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7507 7508
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7509 7510 7511 7512 7513 7514 7515
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7516
void set_curr_task(int cpu, struct task_struct *p)
7517 7518 7519 7520 7521
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7522

D
Dhaval Giani 已提交
7523
#ifdef CONFIG_CGROUP_SCHED
7524 7525 7526
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7527 7528 7529 7530
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7531
	autogroup_free(tg);
7532 7533 7534 7535
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7536
struct task_group *sched_create_group(struct task_group *parent)
7537 7538 7539 7540 7541 7542 7543
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7544
	if (!alloc_fair_sched_group(tg, parent))
7545 7546
		goto err;

7547
	if (!alloc_rt_sched_group(tg, parent))
7548 7549
		goto err;

7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7561
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7562
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7563 7564 7565 7566 7567

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7568
	list_add_rcu(&tg->siblings, &parent->children);
7569
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7570 7571
}

7572
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7573
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7574 7575
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7576
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7577 7578
}

7579
/* Destroy runqueue etc associated with a task group */
7580
void sched_destroy_group(struct task_group *tg)
7581 7582 7583 7584 7585 7586
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7587
{
7588
	unsigned long flags;
7589
	int i;
S
Srivatsa Vaddagiri 已提交
7590

7591 7592
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7593
		unregister_fair_sched_group(tg, i);
7594 7595

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7596
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7597
	list_del_rcu(&tg->siblings);
7598
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7599 7600
}

7601
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7602 7603 7604
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7605 7606
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7607
{
P
Peter Zijlstra 已提交
7608
	struct task_group *tg;
7609
	int queued, running;
S
Srivatsa Vaddagiri 已提交
7610 7611 7612 7613 7614
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7615
	running = task_current(rq, tsk);
7616
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7617

7618
	if (queued)
S
Srivatsa Vaddagiri 已提交
7619
		dequeue_task(rq, tsk, 0);
7620
	if (unlikely(running))
7621
		put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7622

7623 7624 7625 7626 7627 7628
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7629 7630 7631 7632
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7633
#ifdef CONFIG_FAIR_GROUP_SCHED
7634
	if (tsk->sched_class->task_move_group)
7635
		tsk->sched_class->task_move_group(tsk, queued);
7636
	else
P
Peter Zijlstra 已提交
7637
#endif
7638
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7639

7640 7641
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7642
	if (queued)
7643
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7644

7645
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7646
}
D
Dhaval Giani 已提交
7647
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7648

7649 7650 7651 7652 7653
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7654

P
Peter Zijlstra 已提交
7655 7656
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7657
{
P
Peter Zijlstra 已提交
7658
	struct task_struct *g, *p;
7659

7660 7661 7662 7663 7664 7665
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

7666
	for_each_process_thread(g, p) {
7667
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7668
			return 1;
7669
	}
7670

P
Peter Zijlstra 已提交
7671 7672
	return 0;
}
7673

P
Peter Zijlstra 已提交
7674 7675 7676 7677 7678
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7679

7680
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7681 7682 7683 7684 7685
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7686

P
Peter Zijlstra 已提交
7687 7688
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7689

P
Peter Zijlstra 已提交
7690 7691 7692
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7693 7694
	}

7695 7696 7697 7698 7699
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7700

7701 7702 7703
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7704 7705
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7706

P
Peter Zijlstra 已提交
7707
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7708

7709 7710 7711 7712 7713
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7714

7715 7716 7717
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7718 7719 7720
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7721

P
Peter Zijlstra 已提交
7722 7723 7724 7725
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7726

P
Peter Zijlstra 已提交
7727
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7728
	}
P
Peter Zijlstra 已提交
7729

P
Peter Zijlstra 已提交
7730 7731 7732 7733
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7734 7735
}

P
Peter Zijlstra 已提交
7736
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7737
{
7738 7739
	int ret;

P
Peter Zijlstra 已提交
7740 7741 7742 7743 7744 7745
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7746 7747 7748 7749 7750
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7751 7752
}

7753
static int tg_set_rt_bandwidth(struct task_group *tg,
7754
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7755
{
P
Peter Zijlstra 已提交
7756
	int i, err = 0;
P
Peter Zijlstra 已提交
7757

7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
7769
	mutex_lock(&rt_constraints_mutex);
7770
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7771 7772
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7773
		goto unlock;
P
Peter Zijlstra 已提交
7774

7775
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7776 7777
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7778 7779 7780 7781

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7782
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7783
		rt_rq->rt_runtime = rt_runtime;
7784
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7785
	}
7786
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7787
unlock:
7788
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7789 7790 7791
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7792 7793
}

7794
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7795 7796 7797 7798 7799 7800 7801 7802
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7803
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7804 7805
}

7806
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7807 7808 7809
{
	u64 rt_runtime_us;

7810
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7811 7812
		return -1;

7813
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7814 7815 7816
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7817

7818
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7819 7820 7821
{
	u64 rt_runtime, rt_period;

7822
	rt_period = rt_period_us * NSEC_PER_USEC;
7823 7824
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7825
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7826 7827
}

7828
static long sched_group_rt_period(struct task_group *tg)
7829 7830 7831 7832 7833 7834 7835
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7836
#endif /* CONFIG_RT_GROUP_SCHED */
7837

7838
#ifdef CONFIG_RT_GROUP_SCHED
7839 7840 7841 7842 7843
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7844
	read_lock(&tasklist_lock);
7845
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7846
	read_unlock(&tasklist_lock);
7847 7848 7849 7850
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7851

7852
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7853 7854 7855 7856 7857 7858 7859 7860
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7861
#else /* !CONFIG_RT_GROUP_SCHED */
7862 7863
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7864
	unsigned long flags;
7865
	int i, ret = 0;
7866

7867
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7868 7869 7870
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7871
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7872
		rt_rq->rt_runtime = global_rt_runtime();
7873
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7874
	}
7875
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7876

7877
	return ret;
7878
}
7879
#endif /* CONFIG_RT_GROUP_SCHED */
7880

7881
static int sched_dl_global_validate(void)
7882
{
7883 7884
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7885
	u64 new_bw = to_ratio(period, runtime);
7886
	struct dl_bw *dl_b;
7887
	int cpu, ret = 0;
7888
	unsigned long flags;
7889 7890 7891 7892 7893 7894 7895 7896 7897 7898

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7899
	for_each_possible_cpu(cpu) {
7900 7901
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7902

7903
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7904 7905
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7906
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7907

7908 7909
		rcu_read_unlock_sched();

7910 7911
		if (ret)
			break;
7912 7913
	}

7914
	return ret;
7915 7916
}

7917
static void sched_dl_do_global(void)
7918
{
7919
	u64 new_bw = -1;
7920
	struct dl_bw *dl_b;
7921
	int cpu;
7922
	unsigned long flags;
7923

7924 7925 7926 7927 7928 7929 7930 7931 7932 7933
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
7934 7935
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7936

7937
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7938
		dl_b->bw = new_bw;
7939
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7940 7941

		rcu_read_unlock_sched();
7942
	}
7943 7944 7945 7946 7947 7948 7949
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7950 7951
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7952 7953 7954 7955 7956 7957 7958 7959 7960
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7961 7962
}

7963
int sched_rt_handler(struct ctl_table *table, int write,
7964
		void __user *buffer, size_t *lenp,
7965 7966 7967 7968
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7969
	int ret;
7970 7971 7972 7973 7974

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7975
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7976 7977

	if (!ret && write) {
7978 7979 7980 7981
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7982
		ret = sched_dl_global_validate();
7983 7984 7985
		if (ret)
			goto undo;

7986
		ret = sched_rt_global_constraints();
7987 7988 7989 7990 7991 7992 7993 7994 7995 7996
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7997 7998 7999 8000 8001
	}
	mutex_unlock(&mutex);

	return ret;
}
8002

8003
int sched_rr_handler(struct ctl_table *table, int write,
8004 8005 8006 8007 8008 8009 8010 8011
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8012 8013
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
8014
	if (!ret && write) {
8015 8016
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8017 8018 8019 8020 8021
	}
	mutex_unlock(&mutex);
	return ret;
}

8022
#ifdef CONFIG_CGROUP_SCHED
8023

8024
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8025
{
8026
	return css ? container_of(css, struct task_group, css) : NULL;
8027 8028
}

8029 8030
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8031
{
8032 8033
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
8034

8035
	if (!parent) {
8036
		/* This is early initialization for the top cgroup */
8037
		return &root_task_group.css;
8038 8039
	}

8040
	tg = sched_create_group(parent);
8041 8042 8043 8044 8045 8046
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

8047
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8048
{
8049
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
8050
	struct task_group *parent = css_tg(css->parent);
8051

T
Tejun Heo 已提交
8052 8053
	if (parent)
		sched_online_group(tg, parent);
8054 8055 8056
	return 0;
}

8057
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8058
{
8059
	struct task_group *tg = css_tg(css);
8060 8061 8062 8063

	sched_destroy_group(tg);
}

8064
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8065
{
8066
	struct task_group *tg = css_tg(css);
8067 8068 8069 8070

	sched_offline_group(tg);
}

8071 8072 8073 8074 8075
static void cpu_cgroup_fork(struct task_struct *task)
{
	sched_move_task(task);
}

8076
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8077
				 struct cgroup_taskset *tset)
8078
{
8079 8080
	struct task_struct *task;

8081
	cgroup_taskset_for_each(task, tset) {
8082
#ifdef CONFIG_RT_GROUP_SCHED
8083
		if (!sched_rt_can_attach(css_tg(css), task))
8084
			return -EINVAL;
8085
#else
8086 8087 8088
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8089
#endif
8090
	}
8091 8092
	return 0;
}
8093

8094
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8095
			      struct cgroup_taskset *tset)
8096
{
8097 8098
	struct task_struct *task;

8099
	cgroup_taskset_for_each(task, tset)
8100
		sched_move_task(task);
8101 8102
}

8103 8104 8105
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

8118
#ifdef CONFIG_FAIR_GROUP_SCHED
8119 8120
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8121
{
8122
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8123 8124
}

8125 8126
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8127
{
8128
	struct task_group *tg = css_tg(css);
8129

8130
	return (u64) scale_load_down(tg->shares);
8131
}
8132 8133

#ifdef CONFIG_CFS_BANDWIDTH
8134 8135
static DEFINE_MUTEX(cfs_constraints_mutex);

8136 8137 8138
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8139 8140
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8141 8142
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8143
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8144
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8165 8166 8167 8168 8169
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8170 8171 8172 8173 8174
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8175
	runtime_enabled = quota != RUNTIME_INF;
8176
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8177 8178 8179 8180 8181 8182
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8183 8184 8185
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8186

P
Paul Turner 已提交
8187
	__refill_cfs_bandwidth_runtime(cfs_b);
8188
	/* restart the period timer (if active) to handle new period expiry */
P
Peter Zijlstra 已提交
8189 8190
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
8191 8192
	raw_spin_unlock_irq(&cfs_b->lock);

8193
	for_each_online_cpu(i) {
8194
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8195
		struct rq *rq = cfs_rq->rq;
8196 8197

		raw_spin_lock_irq(&rq->lock);
8198
		cfs_rq->runtime_enabled = runtime_enabled;
8199
		cfs_rq->runtime_remaining = 0;
8200

8201
		if (cfs_rq->throttled)
8202
			unthrottle_cfs_rq(cfs_rq);
8203 8204
		raw_spin_unlock_irq(&rq->lock);
	}
8205 8206
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8207 8208
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8209
	put_online_cpus();
8210

8211
	return ret;
8212 8213 8214 8215 8216 8217
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8218
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8231
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8232 8233
		return -1;

8234
	quota_us = tg->cfs_bandwidth.quota;
8235 8236 8237 8238 8239 8240 8241 8242 8243 8244
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8245
	quota = tg->cfs_bandwidth.quota;
8246 8247 8248 8249 8250 8251 8252 8253

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8254
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8255 8256 8257 8258 8259
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8260 8261
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8262
{
8263
	return tg_get_cfs_quota(css_tg(css));
8264 8265
}

8266 8267
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8268
{
8269
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8270 8271
}

8272 8273
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8274
{
8275
	return tg_get_cfs_period(css_tg(css));
8276 8277
}

8278 8279
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8280
{
8281
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8282 8283
}

8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8316
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8317 8318 8319 8320 8321
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8322
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8323 8324

		quota = normalize_cfs_quota(tg, d);
8325
		parent_quota = parent_b->hierarchical_quota;
8326 8327 8328 8329 8330 8331 8332 8333 8334 8335

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8336
	cfs_b->hierarchical_quota = quota;
8337 8338 8339 8340 8341 8342

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8343
	int ret;
8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8355 8356 8357 8358 8359
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8360
}
8361

8362
static int cpu_stats_show(struct seq_file *sf, void *v)
8363
{
8364
	struct task_group *tg = css_tg(seq_css(sf));
8365
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8366

8367 8368 8369
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8370 8371 8372

	return 0;
}
8373
#endif /* CONFIG_CFS_BANDWIDTH */
8374
#endif /* CONFIG_FAIR_GROUP_SCHED */
8375

8376
#ifdef CONFIG_RT_GROUP_SCHED
8377 8378
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8379
{
8380
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8381 8382
}

8383 8384
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8385
{
8386
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8387
}
8388

8389 8390
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8391
{
8392
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8393 8394
}

8395 8396
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8397
{
8398
	return sched_group_rt_period(css_tg(css));
8399
}
8400
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8401

8402
static struct cftype cpu_files[] = {
8403
#ifdef CONFIG_FAIR_GROUP_SCHED
8404 8405
	{
		.name = "shares",
8406 8407
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8408
	},
8409
#endif
8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8421 8422
	{
		.name = "stat",
8423
		.seq_show = cpu_stats_show,
8424
	},
8425
#endif
8426
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8427
	{
P
Peter Zijlstra 已提交
8428
		.name = "rt_runtime_us",
8429 8430
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8431
	},
8432 8433
	{
		.name = "rt_period_us",
8434 8435
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8436
	},
8437
#endif
8438
	{ }	/* terminate */
8439 8440
};

8441
struct cgroup_subsys cpu_cgrp_subsys = {
8442 8443
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8444 8445
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8446
	.fork		= cpu_cgroup_fork,
8447 8448
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8449
	.exit		= cpu_cgroup_exit,
8450
	.legacy_cftypes	= cpu_files,
8451 8452 8453
	.early_init	= 1,
};

8454
#endif	/* CONFIG_CGROUP_SCHED */
8455

8456 8457 8458 8459 8460
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}