core.c 199.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94
{
95 96
	unsigned long delta;
	ktime_t soft, hard, now;
97

98 99 100 101 102 103
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
104

105 106 107 108 109 110 111 112
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

113 114
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115

116
static void update_rq_clock_task(struct rq *rq, s64 delta);
117

118
void update_rq_clock(struct rq *rq)
119
{
120
	s64 delta;
121

122
	if (rq->skip_clock_update > 0)
123
		return;
124

125
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 127
	if (delta < 0)
		return;
128 129
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
130 131
}

I
Ingo Molnar 已提交
132 133 134
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
135 136 137 138

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
139
const_debug unsigned int sysctl_sched_features =
140
#include "features.h"
P
Peter Zijlstra 已提交
141 142 143 144 145 146 147 148
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

149
static const char * const sched_feat_names[] = {
150
#include "features.h"
P
Peter Zijlstra 已提交
151 152 153 154
};

#undef SCHED_FEAT

L
Li Zefan 已提交
155
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
156 157 158
{
	int i;

159
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
160 161 162
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
163
	}
L
Li Zefan 已提交
164
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
165

L
Li Zefan 已提交
166
	return 0;
P
Peter Zijlstra 已提交
167 168
}

169 170
#ifdef HAVE_JUMP_LABEL

171 172
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
173 174 175 176

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

177
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
178 179 180 181 182 183 184
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
185 186
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
187 188 189 190
}

static void sched_feat_enable(int i)
{
191 192
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
193 194 195 196 197 198
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

199
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
200 201
{
	int i;
202
	int neg = 0;
P
Peter Zijlstra 已提交
203

H
Hillf Danton 已提交
204
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
205 206 207 208
		neg = 1;
		cmp += 3;
	}

209
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
210
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
211
			if (neg) {
P
Peter Zijlstra 已提交
212
				sysctl_sched_features &= ~(1UL << i);
213 214
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
215
				sysctl_sched_features |= (1UL << i);
216 217
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
218 219 220 221
			break;
		}
	}

222 223 224 225 226 227 228 229 230 231
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;
232
	struct inode *inode;
233 234 235 236 237 238 239 240 241 242

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

243 244 245
	/* Ensure the static_key remains in a consistent state */
	inode = file_inode(filp);
	mutex_lock(&inode->i_mutex);
246
	i = sched_feat_set(cmp);
247
	mutex_unlock(&inode->i_mutex);
248
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
249 250
		return -EINVAL;

251
	*ppos += cnt;
P
Peter Zijlstra 已提交
252 253 254 255

	return cnt;
}

L
Li Zefan 已提交
256 257 258 259 260
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

261
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
262 263 264 265 266
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
267 268 269 270 271 272 273 274 275 276
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
277
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
278

279 280 281 282 283 284
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

285 286 287 288 289 290 291 292
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
293
/*
P
Peter Zijlstra 已提交
294
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
295 296
 * default: 1s
 */
P
Peter Zijlstra 已提交
297
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
298

299
__read_mostly int scheduler_running;
300

P
Peter Zijlstra 已提交
301 302 303 304 305
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
306

307
/*
308
 * __task_rq_lock - lock the rq @p resides on.
309
 */
310
static inline struct rq *__task_rq_lock(struct task_struct *p)
311 312
	__acquires(rq->lock)
{
313 314
	struct rq *rq;

315 316
	lockdep_assert_held(&p->pi_lock);

317
	for (;;) {
318
		rq = task_rq(p);
319
		raw_spin_lock(&rq->lock);
320
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
321
			return rq;
322
		raw_spin_unlock(&rq->lock);
323 324 325

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
326 327 328
	}
}

L
Linus Torvalds 已提交
329
/*
330
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
331
 */
332
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
333
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
334 335
	__acquires(rq->lock)
{
336
	struct rq *rq;
L
Linus Torvalds 已提交
337

338
	for (;;) {
339
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
340
		rq = task_rq(p);
341
		raw_spin_lock(&rq->lock);
342
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
343
			return rq;
344 345
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
346 347 348

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
L
Linus Torvalds 已提交
349 350 351
	}
}

A
Alexey Dobriyan 已提交
352
static void __task_rq_unlock(struct rq *rq)
353 354
	__releases(rq->lock)
{
355
	raw_spin_unlock(&rq->lock);
356 357
}

358 359
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
360
	__releases(rq->lock)
361
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
362
{
363 364
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
365 366 367
}

/*
368
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
369
 */
A
Alexey Dobriyan 已提交
370
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
371 372
	__acquires(rq->lock)
{
373
	struct rq *rq;
L
Linus Torvalds 已提交
374 375 376

	local_irq_disable();
	rq = this_rq();
377
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
378 379 380 381

	return rq;
}

P
Peter Zijlstra 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

403
	raw_spin_lock(&rq->lock);
404
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
405
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
406
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
407 408 409 410

	return HRTIMER_NORESTART;
}

411
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
412 413 414 415 416 417 418 419 420

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

421 422 423 424
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
425
{
426
	struct rq *rq = arg;
427

428
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
429
	__hrtick_restart(rq);
430
	rq->hrtick_csd_pending = 0;
431
	raw_spin_unlock(&rq->lock);
432 433
}

434 435 436 437 438
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
439
void hrtick_start(struct rq *rq, u64 delay)
440
{
441
	struct hrtimer *timer = &rq->hrtick_timer;
442 443 444 445 446 447 448 449 450
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
451

452
	hrtimer_set_expires(timer, time);
453 454

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
455
		__hrtick_restart(rq);
456
	} else if (!rq->hrtick_csd_pending) {
457
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
458 459
		rq->hrtick_csd_pending = 1;
	}
460 461 462 463 464 465 466 467 468 469 470 471 472 473
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
474
		hrtick_clear(cpu_rq(cpu));
475 476 477 478 479 480
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

481
static __init void init_hrtick(void)
482 483 484
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
485 486 487 488 489 490
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
491
void hrtick_start(struct rq *rq, u64 delay)
492
{
493
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
494
			HRTIMER_MODE_REL_PINNED, 0);
495
}
496

A
Andrew Morton 已提交
497
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
498 499
{
}
500
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
501

502
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
503
{
504 505
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
506

507 508 509 510
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
511

512 513
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
514
}
A
Andrew Morton 已提交
515
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
516 517 518 519 520 521 522 523
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

524 525 526
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
527
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
528

529 530 531 532 533 534 535 536 537 538 539 540 541 542
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

543
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
544 545 546 547 548 549 550 551 552 553
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

579 580 581 582 583 584
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
585 586 587 588 589 590 591

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
592 593
#endif

I
Ingo Molnar 已提交
594
/*
595
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
596 597 598 599 600
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
601
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
602
{
603
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
604 605
	int cpu;

606
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
607

608
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
609 610
		return;

611
	cpu = cpu_of(rq);
612

613
	if (cpu == smp_processor_id()) {
614
		set_tsk_need_resched(curr);
615
		set_preempt_need_resched();
I
Ingo Molnar 已提交
616
		return;
617
	}
I
Ingo Molnar 已提交
618

619
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
620
		smp_send_reschedule(cpu);
621 622
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
623 624
}

625
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
626 627 628 629
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

630
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
631
		return;
632
	resched_curr(rq);
633
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
634
}
635

636
#ifdef CONFIG_SMP
637
#ifdef CONFIG_NO_HZ_COMMON
638 639 640 641 642 643 644 645
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
646
int get_nohz_timer_target(int pinned)
647 648 649 650 651
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

652 653 654
	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
		return cpu;

655
	rcu_read_lock();
656
	for_each_domain(cpu, sd) {
657 658 659 660 661 662
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
663
	}
664 665
unlock:
	rcu_read_unlock();
666 667
	return cpu;
}
668 669 670 671 672 673 674 675 676 677
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
678
static void wake_up_idle_cpu(int cpu)
679 680 681 682 683 684
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

685
	if (set_nr_and_not_polling(rq->idle))
686
		smp_send_reschedule(cpu);
687 688
	else
		trace_sched_wake_idle_without_ipi(cpu);
689 690
}

691
static bool wake_up_full_nohz_cpu(int cpu)
692
{
693 694 695 696 697 698
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
699
	if (tick_nohz_full_cpu(cpu)) {
700 701
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
702
			tick_nohz_full_kick_cpu(cpu);
703 704 705 706 707 708 709 710
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
711
	if (!wake_up_full_nohz_cpu(cpu))
712 713 714
		wake_up_idle_cpu(cpu);
}

715
static inline bool got_nohz_idle_kick(void)
716
{
717
	int cpu = smp_processor_id();
718 719 720 721 722 723 724 725 726 727 728 729 730

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
731 732
}

733
#else /* CONFIG_NO_HZ_COMMON */
734

735
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
736
{
737
	return false;
P
Peter Zijlstra 已提交
738 739
}

740
#endif /* CONFIG_NO_HZ_COMMON */
741

742 743 744
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
745 746 747 748 749
	/*
	 * More than one running task need preemption.
	 * nr_running update is assumed to be visible
	 * after IPI is sent from wakers.
	 */
750 751
	if (this_rq()->nr_running > 1)
		return false;
752

753
	return true;
754 755
}
#endif /* CONFIG_NO_HZ_FULL */
756

757
void sched_avg_update(struct rq *rq)
758
{
759 760
	s64 period = sched_avg_period();

761
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
762 763 764 765 766 767
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
768 769 770
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
771 772
}

773
#endif /* CONFIG_SMP */
774

775 776
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
777
/*
778 779 780 781
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
782
 */
783
int walk_tg_tree_from(struct task_group *from,
784
			     tg_visitor down, tg_visitor up, void *data)
785 786
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
787
	int ret;
788

789 790
	parent = from;

791
down:
P
Peter Zijlstra 已提交
792 793
	ret = (*down)(parent, data);
	if (ret)
794
		goto out;
795 796 797 798 799 800 801
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
802
	ret = (*up)(parent, data);
803 804
	if (ret || parent == from)
		goto out;
805 806 807 808 809

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
810
out:
P
Peter Zijlstra 已提交
811
	return ret;
812 813
}

814
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
815
{
816
	return 0;
P
Peter Zijlstra 已提交
817
}
818 819
#endif

820 821
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
822 823 824
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
825 826 827 828
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
829
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
830
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
831 832
		return;
	}
833

834
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
835
	load->inv_weight = prio_to_wmult[prio];
836 837
}

838
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
839
{
840
	update_rq_clock(rq);
841
	sched_info_queued(rq, p);
842
	p->sched_class->enqueue_task(rq, p, flags);
843 844
}

845
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
846
{
847
	update_rq_clock(rq);
848
	sched_info_dequeued(rq, p);
849
	p->sched_class->dequeue_task(rq, p, flags);
850 851
}

852
void activate_task(struct rq *rq, struct task_struct *p, int flags)
853 854 855 856
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

857
	enqueue_task(rq, p, flags);
858 859
}

860
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
861 862 863 864
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

865
	dequeue_task(rq, p, flags);
866 867
}

868
static void update_rq_clock_task(struct rq *rq, s64 delta)
869
{
870 871 872 873 874 875 876 877
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
878
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
900 901
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
902
	if (static_key_false((&paravirt_steal_rq_enabled))) {
903 904 905 906 907 908 909 910 911 912 913
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

914 915
	rq->clock_task += delta;

916
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
917
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
918 919
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
920 921
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

952
/*
I
Ingo Molnar 已提交
953
 * __normal_prio - return the priority that is based on the static prio
954 955 956
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
957
	return p->static_prio;
958 959
}

960 961 962 963 964 965 966
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
967
static inline int normal_prio(struct task_struct *p)
968 969 970
{
	int prio;

971 972 973
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
974 975 976 977 978 979 980 981 982 983 984 985 986
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
987
static int effective_prio(struct task_struct *p)
988 989 990 991 992 993 994 995 996 997 998 999
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1000 1001 1002
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
1003 1004
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
1005
 */
1006
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1007 1008 1009 1010
{
	return cpu_curr(task_cpu(p)) == p;
}

1011 1012 1013
/*
 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
 */
1014 1015
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1016
				       int oldprio)
1017 1018 1019
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1020
			prev_class->switched_from(rq, p);
1021
		/* Possble rq->lock 'hole'.  */
P
Peter Zijlstra 已提交
1022
		p->sched_class->switched_to(rq, p);
1023
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
1024
		p->sched_class->prio_changed(rq, p, oldprio);
1025 1026
}

1027
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
1038
				resched_curr(rq);
1039 1040 1041 1042 1043 1044 1045 1046 1047
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
1048
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1049 1050 1051
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1052
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1053
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1054
{
1055 1056 1057 1058 1059
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1060
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1061
			!p->on_rq);
1062 1063

#ifdef CONFIG_LOCKDEP
1064 1065 1066 1067 1068
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1069
	 * see task_group().
1070 1071 1072 1073
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1074 1075 1076
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1077 1078
#endif

1079
	trace_sched_migrate_task(p, new_cpu);
1080

1081
	if (task_cpu(p) != new_cpu) {
1082 1083
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1084
		p->se.nr_migrations++;
1085
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1086
	}
I
Ingo Molnar 已提交
1087 1088

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1089 1090
}

1091 1092
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1093
	if (task_on_rq_queued(p)) {
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1127 1128
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1149 1150
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1173 1174 1175 1176
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1177 1178 1179 1180 1181 1182 1183 1184 1185
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1186
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1187 1188 1189 1190 1191 1192
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

1193
struct migration_arg {
1194
	struct task_struct *task;
L
Linus Torvalds 已提交
1195
	int dest_cpu;
1196
};
L
Linus Torvalds 已提交
1197

1198 1199
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1200 1201 1202
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1203 1204 1205 1206 1207 1208 1209
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1210 1211 1212 1213 1214 1215
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1216
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1217 1218
{
	unsigned long flags;
1219
	int running, queued;
R
Roland McGrath 已提交
1220
	unsigned long ncsw;
1221
	struct rq *rq;
L
Linus Torvalds 已提交
1222

1223 1224 1225 1226 1227 1228 1229 1230
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1231

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1243 1244 1245
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1246
			cpu_relax();
R
Roland McGrath 已提交
1247
		}
1248

1249 1250 1251 1252 1253 1254
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1255
		trace_sched_wait_task(p);
1256
		running = task_running(rq, p);
1257
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1258
		ncsw = 0;
1259
		if (!match_state || p->state == match_state)
1260
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1261
		task_rq_unlock(rq, p, &flags);
1262

R
Roland McGrath 已提交
1263 1264 1265 1266 1267 1268
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1279

1280 1281 1282 1283 1284
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1285
		 * So if it was still runnable (but just not actively
1286 1287 1288
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1289
		if (unlikely(queued)) {
1290 1291 1292 1293
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1294 1295
			continue;
		}
1296

1297 1298 1299 1300 1301 1302 1303
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1304 1305

	return ncsw;
L
Linus Torvalds 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1315
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1316 1317 1318 1319 1320
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1321
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1331
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1332
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1333

1334
#ifdef CONFIG_SMP
1335
/*
1336
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1337
 */
1338 1339
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1340 1341
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1342 1343
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1344

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1362
	}
1363

1364 1365
	for (;;) {
		/* Any allowed, online CPU? */
1366
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1367 1368 1369 1370 1371 1372
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1373

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1400
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1401 1402
					task_pid_nr(p), p->comm, cpu);
		}
1403 1404 1405 1406 1407
	}

	return dest_cpu;
}

1408
/*
1409
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1410
 */
1411
static inline
1412
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1413
{
1414 1415
	if (p->nr_cpus_allowed > 1)
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1427
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1428
		     !cpu_online(cpu)))
1429
		cpu = select_fallback_rq(task_cpu(p), p);
1430 1431

	return cpu;
1432
}
1433 1434 1435 1436 1437 1438

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1439 1440
#endif

P
Peter Zijlstra 已提交
1441
static void
1442
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1443
{
P
Peter Zijlstra 已提交
1444
#ifdef CONFIG_SCHEDSTATS
1445 1446
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1457
		rcu_read_lock();
P
Peter Zijlstra 已提交
1458 1459 1460 1461 1462 1463
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1464
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1465
	}
1466 1467 1468 1469

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1470 1471 1472
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1473
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1474 1475

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1476
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1477 1478 1479 1480 1481 1482

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1483
	activate_task(rq, p, en_flags);
1484
	p->on_rq = TASK_ON_RQ_QUEUED;
1485 1486 1487 1488

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1489 1490
}

1491 1492 1493
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1494
static void
1495
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1496 1497
{
	check_preempt_curr(rq, p, wake_flags);
1498
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1499 1500 1501 1502 1503 1504

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1505
	if (rq->idle_stamp) {
1506
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1507
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1508

1509 1510 1511
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1512
			rq->avg_idle = max;
1513

T
Tejun Heo 已提交
1514 1515 1516 1517 1518
		rq->idle_stamp = 0;
	}
#endif
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1543
	if (task_on_rq_queued(p)) {
1544 1545
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1546 1547 1548 1549 1550 1551 1552 1553
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1554
#ifdef CONFIG_SMP
1555
void sched_ttwu_pending(void)
1556 1557
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1558 1559
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1560
	unsigned long flags;
1561

1562 1563 1564 1565
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1566

P
Peter Zijlstra 已提交
1567 1568 1569
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1570 1571 1572
		ttwu_do_activate(rq, p, 0);
	}

1573
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1574 1575 1576 1577
}

void scheduler_ipi(void)
{
1578 1579 1580 1581 1582
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1583
	preempt_fold_need_resched();
1584

1585
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1602
	sched_ttwu_pending();
1603 1604 1605 1606

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1607
	if (unlikely(got_nohz_idle_kick())) {
1608
		this_rq()->idle_balance = 1;
1609
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1610
	}
1611
	irq_exit();
1612 1613 1614 1615
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1616 1617 1618 1619 1620 1621 1622 1623
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1624
}
1625

1626 1627 1628 1629 1630
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1631 1632 1633 1634
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
1645 1646 1647

out:
	rcu_read_unlock();
1648 1649
}

1650
bool cpus_share_cache(int this_cpu, int that_cpu)
1651 1652 1653
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1654
#endif /* CONFIG_SMP */
1655

1656 1657 1658 1659
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1660
#if defined(CONFIG_SMP)
1661
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1662
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1663 1664 1665 1666 1667
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1668 1669 1670
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1671 1672 1673
}

/**
L
Linus Torvalds 已提交
1674
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1675
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1676
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1677
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1678 1679 1680 1681 1682 1683 1684
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1685
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1686
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1687
 */
1688 1689
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1690 1691
{
	unsigned long flags;
1692
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1693

1694 1695 1696 1697 1698 1699 1700
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1701
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1702
	if (!(p->state & state))
L
Linus Torvalds 已提交
1703 1704
		goto out;

1705
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1706 1707
	cpu = task_cpu(p);

1708 1709
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1710 1711

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1712
	/*
1713 1714
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1715
	 */
1716
	while (p->on_cpu)
1717
		cpu_relax();
1718
	/*
1719
	 * Pairs with the smp_wmb() in finish_lock_switch().
1720
	 */
1721
	smp_rmb();
L
Linus Torvalds 已提交
1722

1723
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1724
	p->state = TASK_WAKING;
1725

1726
	if (p->sched_class->task_waking)
1727
		p->sched_class->task_waking(p);
1728

1729
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1730 1731
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1732
		set_task_cpu(p, cpu);
1733
	}
L
Linus Torvalds 已提交
1734 1735
#endif /* CONFIG_SMP */

1736 1737
	ttwu_queue(p, cpu);
stat:
1738
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1739
out:
1740
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1741 1742 1743 1744

	return success;
}

T
Tejun Heo 已提交
1745 1746 1747 1748
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1749
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1750
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1751
 * the current task.
T
Tejun Heo 已提交
1752 1753 1754 1755 1756
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1757 1758 1759 1760
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1761 1762
	lockdep_assert_held(&rq->lock);

1763 1764 1765 1766 1767 1768
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1769
	if (!(p->state & TASK_NORMAL))
1770
		goto out;
T
Tejun Heo 已提交
1771

1772
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
1773 1774
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1775
	ttwu_do_wakeup(rq, p, 0);
1776
	ttwu_stat(p, smp_processor_id(), 0);
1777 1778
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1779 1780
}

1781 1782 1783 1784 1785
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1786 1787 1788
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1789 1790 1791 1792
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1793
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1794
{
1795 1796
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1797 1798 1799
}
EXPORT_SYMBOL(wake_up_process);

1800
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1801 1802 1803 1804
{
	return try_to_wake_up(p, state, 0);
}

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
}

L
Linus Torvalds 已提交
1819 1820 1821
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1822 1823 1824
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1825
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1826
{
P
Peter Zijlstra 已提交
1827 1828 1829
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1830 1831
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1832
	p->se.prev_sum_exec_runtime	= 0;
1833
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1834
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1835
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1836 1837

#ifdef CONFIG_SCHEDSTATS
1838
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1839
#endif
N
Nick Piggin 已提交
1840

1841 1842
	RB_CLEAR_NODE(&p->dl.rb_node);
	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1843
	__dl_clear_params(p);
1844

P
Peter Zijlstra 已提交
1845
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1846

1847 1848 1849
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1850 1851 1852

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1853
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1854 1855 1856
		p->mm->numa_scan_seq = 0;
	}

1857 1858 1859 1860 1861
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

1862 1863
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1864
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1865
	p->numa_work.next = &p->numa_work;
1866
	p->numa_faults = NULL;
1867 1868
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
1869 1870

	p->numa_group = NULL;
1871
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1872 1873
}

1874
#ifdef CONFIG_NUMA_BALANCING
1875
#ifdef CONFIG_SCHED_DEBUG
1876 1877 1878 1879 1880 1881 1882
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1883 1884 1885 1886 1887 1888
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1889
}
1890
#endif /* CONFIG_SCHED_DEBUG */
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
1914 1915 1916 1917

/*
 * fork()/clone()-time setup:
 */
1918
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1919
{
1920
	unsigned long flags;
I
Ingo Molnar 已提交
1921 1922
	int cpu = get_cpu();

1923
	__sched_fork(clone_flags, p);
1924
	/*
1925
	 * We mark the process as running here. This guarantees that
1926 1927 1928
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1929
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1930

1931 1932 1933 1934 1935
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1936 1937 1938 1939
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1940
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1941
			p->policy = SCHED_NORMAL;
1942
			p->static_prio = NICE_TO_PRIO(0);
1943 1944 1945 1946 1947 1948
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1949

1950 1951 1952 1953 1954 1955
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1956

1957 1958 1959 1960 1961 1962
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
1963
		p->sched_class = &fair_sched_class;
1964
	}
1965

P
Peter Zijlstra 已提交
1966 1967 1968
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1969 1970 1971 1972 1973 1974 1975
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1976
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1977
	set_task_cpu(p, cpu);
1978
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1979

1980
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1981
	if (likely(sched_info_on()))
1982
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1983
#endif
P
Peter Zijlstra 已提交
1984 1985
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1986
#endif
1987
	init_task_preempt_count(p);
1988
#ifdef CONFIG_SMP
1989
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1990
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1991
#endif
1992

N
Nick Piggin 已提交
1993
	put_cpu();
1994
	return 0;
L
Linus Torvalds 已提交
1995 1996
}

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2016 2017
	rcu_lockdep_assert(rcu_read_lock_sched_held(),
			   "sched RCU must be held");
2018 2019 2020
	return &cpu_rq(i)->rd->dl_bw;
}

2021
static inline int dl_bw_cpus(int i)
2022
{
2023 2024 2025
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2026 2027
	rcu_lockdep_assert(rcu_read_lock_sched_held(),
			   "sched RCU must be held");
2028 2029 2030 2031
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2032 2033 2034 2035 2036 2037 2038
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2039
static inline int dl_bw_cpus(int i)
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2058
	u64 period = attr->sched_period ?: attr->sched_deadline;
2059 2060
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2061
	int cpus, err = -1;
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2072
	cpus = dl_bw_cpus(task_cpu(p));
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2093 2094 2095 2096 2097 2098 2099
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2100
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2101 2102
{
	unsigned long flags;
I
Ingo Molnar 已提交
2103
	struct rq *rq;
2104

2105
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2106 2107 2108 2109 2110 2111
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2112
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2113 2114
#endif

2115 2116
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2117
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2118
	activate_task(rq, p, 0);
2119
	p->on_rq = TASK_ON_RQ_QUEUED;
2120
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2121
	check_preempt_curr(rq, p, WF_FORK);
2122
#ifdef CONFIG_SMP
2123 2124
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2125
#endif
2126
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2127 2128
}

2129 2130 2131
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2132
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2133
 * @notifier: notifier struct to register
2134 2135 2136 2137 2138 2139 2140 2141 2142
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2143
 * @notifier: notifier struct to unregister
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2157
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2158 2159 2160 2161 2162 2163 2164 2165 2166
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2167
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2168 2169 2170
		notifier->ops->sched_out(notifier, next);
}

2171
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2183
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2184

2185 2186 2187
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2188
 * @prev: the current task that is being switched out
2189 2190 2191 2192 2193 2194 2195 2196 2197
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2198 2199 2200
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2201
{
2202
	trace_sched_switch(prev, next);
2203
	sched_info_switch(rq, prev, next);
2204
	perf_event_task_sched_out(prev, next);
2205
	fire_sched_out_preempt_notifiers(prev, next);
2206 2207 2208 2209
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2210 2211 2212 2213
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2214 2215 2216 2217
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2218 2219
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2220
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2221 2222
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2223 2224 2225 2226 2227
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2228
 */
2229
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2230 2231
	__releases(rq->lock)
{
2232
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2233
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2234
	long prev_state;
L
Linus Torvalds 已提交
2235 2236 2237 2238 2239

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2240
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2241 2242
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2243
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2244 2245 2246 2247 2248
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2249
	prev_state = prev->state;
2250
	vtime_task_switch(prev);
2251
	finish_arch_switch(prev);
2252
	perf_event_task_sched_in(prev, current);
2253
	finish_lock_switch(rq, prev);
2254
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2255

2256
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2257 2258
	if (mm)
		mmdrop(mm);
2259
	if (unlikely(prev_state == TASK_DEAD)) {
2260 2261 2262
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2263 2264 2265
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2266
		 */
2267
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2268
		put_task_struct(prev);
2269
	}
2270 2271

	tick_nohz_task_switch(current);
2272
	return rq;
L
Linus Torvalds 已提交
2273 2274
}

2275 2276 2277 2278 2279 2280 2281 2282
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2283
		raw_spin_lock_irqsave(&rq->lock, flags);
2284 2285
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2286
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2287 2288 2289 2290 2291 2292

		rq->post_schedule = 0;
	}
}

#else
2293

2294 2295
static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2296 2297
}

2298 2299
#endif

L
Linus Torvalds 已提交
2300 2301 2302 2303
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2304
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2305 2306
	__releases(rq->lock)
{
2307
	struct rq *rq;
2308

2309 2310
	/* finish_task_switch() drops rq->lock and enables preemtion */
	preempt_disable();
2311
	rq = finish_task_switch(prev);
2312
	post_schedule(rq);
2313
	preempt_enable();
2314

L
Linus Torvalds 已提交
2315
	if (current->set_child_tid)
2316
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2317 2318 2319
}

/*
2320
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2321
 */
2322
static inline struct rq *
2323
context_switch(struct rq *rq, struct task_struct *prev,
2324
	       struct task_struct *next)
L
Linus Torvalds 已提交
2325
{
I
Ingo Molnar 已提交
2326
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2327

2328
	prepare_task_switch(rq, prev, next);
2329

I
Ingo Molnar 已提交
2330 2331
	mm = next->mm;
	oldmm = prev->active_mm;
2332 2333 2334 2335 2336
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2337
	arch_start_context_switch(prev);
2338

2339
	if (!mm) {
L
Linus Torvalds 已提交
2340 2341 2342 2343 2344 2345
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2346
	if (!prev->mm) {
L
Linus Torvalds 已提交
2347 2348 2349
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2350 2351 2352 2353 2354 2355
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2356
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2357

2358
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2359 2360
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2361
	barrier();
2362 2363

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2364 2365 2366
}

/*
2367
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2368 2369
 *
 * externally visible scheduler statistics: current number of runnable
2370
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2380
}
L
Linus Torvalds 已提交
2381

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
/*
 * Check if only the current task is running on the cpu.
 */
bool single_task_running(void)
{
	if (cpu_rq(smp_processor_id())->nr_running == 1)
		return true;
	else
		return false;
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2394
unsigned long long nr_context_switches(void)
2395
{
2396 2397
	int i;
	unsigned long long sum = 0;
2398

2399
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2400
		sum += cpu_rq(i)->nr_switches;
2401

L
Linus Torvalds 已提交
2402 2403
	return sum;
}
2404

L
Linus Torvalds 已提交
2405 2406 2407
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2408

2409
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2410
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2411

L
Linus Torvalds 已提交
2412 2413
	return sum;
}
2414

2415
unsigned long nr_iowait_cpu(int cpu)
2416
{
2417
	struct rq *this = cpu_rq(cpu);
2418 2419
	return atomic_read(&this->nr_iowait);
}
2420

2421 2422 2423 2424 2425 2426 2427
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
	struct rq *this = this_rq();
	*nr_waiters = atomic_read(&this->nr_iowait);
	*load = this->cpu_load[0];
}

I
Ingo Molnar 已提交
2428
#ifdef CONFIG_SMP
2429

2430
/*
P
Peter Zijlstra 已提交
2431 2432
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2433
 */
P
Peter Zijlstra 已提交
2434
void sched_exec(void)
2435
{
P
Peter Zijlstra 已提交
2436
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2437
	unsigned long flags;
2438
	int dest_cpu;
2439

2440
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2441
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2442 2443
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2444

2445
	if (likely(cpu_active(dest_cpu))) {
2446
		struct migration_arg arg = { p, dest_cpu };
2447

2448 2449
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2450 2451
		return;
	}
2452
unlock:
2453
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2454
}
I
Ingo Molnar 已提交
2455

L
Linus Torvalds 已提交
2456 2457 2458
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2459
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2460 2461

EXPORT_PER_CPU_SYMBOL(kstat);
2462
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2463

2464 2465 2466 2467 2468 2469 2470 2471 2472
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
2473
	u64 ns;
2474

2475 2476 2477 2478 2479 2480 2481 2482 2483
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2484 2485
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2486
	 */
2487
	if (!p->on_cpu || !task_on_rq_queued(p))
2488 2489 2490
		return p->se.sum_exec_runtime;
#endif

2491
	rq = task_rq_lock(p, &flags);
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
2502
	task_rq_unlock(rq, p, &flags);
2503 2504 2505

	return ns;
}
2506

2507 2508 2509 2510 2511 2512 2513 2514
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2515
	struct task_struct *curr = rq->curr;
2516 2517

	sched_clock_tick();
I
Ingo Molnar 已提交
2518

2519
	raw_spin_lock(&rq->lock);
2520
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2521
	curr->sched_class->task_tick(rq, curr, 0);
2522
	update_cpu_load_active(rq);
2523
	raw_spin_unlock(&rq->lock);
2524

2525
	perf_event_task_tick();
2526

2527
#ifdef CONFIG_SMP
2528
	rq->idle_balance = idle_cpu(cpu);
2529
	trigger_load_balance(rq);
2530
#endif
2531
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2532 2533
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2545 2546
 *
 * Return: Maximum deferment in nanoseconds.
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2558
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2559
}
2560
#endif
L
Linus Torvalds 已提交
2561

2562
notrace unsigned long get_parent_ip(unsigned long addr)
2563 2564 2565 2566 2567 2568 2569 2570
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2571

2572 2573 2574
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2575
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2576
{
2577
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2578 2579 2580
	/*
	 * Underflow?
	 */
2581 2582
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2583
#endif
2584
	__preempt_count_add(val);
2585
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2586 2587 2588
	/*
	 * Spinlock count overflowing soon?
	 */
2589 2590
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2591
#endif
2592 2593 2594 2595 2596 2597 2598
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2599
}
2600
EXPORT_SYMBOL(preempt_count_add);
2601
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2602

2603
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
2604
{
2605
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2606 2607 2608
	/*
	 * Underflow?
	 */
2609
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2610
		return;
L
Linus Torvalds 已提交
2611 2612 2613
	/*
	 * Is the spinlock portion underflowing?
	 */
2614 2615 2616
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2617
#endif
2618

2619 2620
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2621
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2622
}
2623
EXPORT_SYMBOL(preempt_count_sub);
2624
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2625 2626 2627 2628

#endif

/*
I
Ingo Molnar 已提交
2629
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2630
 */
I
Ingo Molnar 已提交
2631
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2632
{
2633 2634 2635
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2636 2637
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2638

I
Ingo Molnar 已提交
2639
	debug_show_held_locks(prev);
2640
	print_modules();
I
Ingo Molnar 已提交
2641 2642
	if (irqs_disabled())
		print_irqtrace_events(prev);
2643 2644 2645 2646 2647 2648 2649
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2650
	dump_stack();
2651
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2652
}
L
Linus Torvalds 已提交
2653

I
Ingo Molnar 已提交
2654 2655 2656 2657 2658
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
2659 2660 2661
#ifdef CONFIG_SCHED_STACK_END_CHECK
	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
#endif
L
Linus Torvalds 已提交
2662
	/*
I
Ingo Molnar 已提交
2663
	 * Test if we are atomic. Since do_exit() needs to call into
2664 2665
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2666
	 */
2667
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2668
		__schedule_bug(prev);
2669
	rcu_sleep_check();
I
Ingo Molnar 已提交
2670

L
Linus Torvalds 已提交
2671 2672
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2673
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2674 2675 2676 2677 2678 2679
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2680
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2681
{
2682
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2683
	struct task_struct *p;
L
Linus Torvalds 已提交
2684 2685

	/*
I
Ingo Molnar 已提交
2686 2687
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2688
	 */
2689
	if (likely(prev->sched_class == class &&
2690
		   rq->nr_running == rq->cfs.h_nr_running)) {
2691
		p = fair_sched_class.pick_next_task(rq, prev);
2692 2693 2694 2695 2696 2697 2698 2699
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
2700 2701
	}

2702
again:
2703
	for_each_class(class) {
2704
		p = class->pick_next_task(rq, prev);
2705 2706 2707
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2708
			return p;
2709
		}
I
Ingo Molnar 已提交
2710
	}
2711 2712

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2713
}
L
Linus Torvalds 已提交
2714

I
Ingo Molnar 已提交
2715
/*
2716
 * __schedule() is the main scheduler function.
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2751
 */
2752
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2753 2754
{
	struct task_struct *prev, *next;
2755
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2756
	struct rq *rq;
2757
	int cpu;
I
Ingo Molnar 已提交
2758

2759 2760
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2761 2762
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2763
	rcu_note_context_switch();
I
Ingo Molnar 已提交
2764 2765 2766
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2767

2768
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2769
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2770

2771 2772 2773 2774 2775 2776
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2777
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2778

2779
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2780
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2781
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2782
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2783
		} else {
2784 2785 2786
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2787
			/*
2788 2789 2790
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2800
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2801 2802
	}

2803
	if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2804 2805 2806
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
2807
	clear_tsk_need_resched(prev);
2808
	clear_preempt_need_resched();
2809
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2810 2811 2812 2813 2814 2815

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

2816 2817
		rq = context_switch(rq, prev, next); /* unlocks the rq */
		cpu = cpu_of(rq);
L
Linus Torvalds 已提交
2818
	} else
2819
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2820

2821
	post_schedule(rq);
L
Linus Torvalds 已提交
2822

2823
	sched_preempt_enable_no_resched();
2824
	if (need_resched())
L
Linus Torvalds 已提交
2825 2826
		goto need_resched;
}
2827

2828 2829
static inline void sched_submit_work(struct task_struct *tsk)
{
2830
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2831 2832 2833 2834 2835 2836 2837 2838 2839
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

2840
asmlinkage __visible void __sched schedule(void)
2841
{
2842 2843 2844
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2845 2846
	__schedule();
}
L
Linus Torvalds 已提交
2847 2848
EXPORT_SYMBOL(schedule);

2849
#ifdef CONFIG_CONTEXT_TRACKING
2850
asmlinkage __visible void __sched schedule_user(void)
2851 2852 2853 2854 2855 2856
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
2857 2858 2859 2860
	 *
	 * NB: There are buggy callers of this function.  Ideally we
	 * should warn if prev_state != IN_USER, but that will trigger
	 * too frequently to make sense yet.
2861
	 */
2862
	enum ctx_state prev_state = exception_enter();
2863
	schedule();
2864
	exception_exit(prev_state);
2865 2866 2867
}
#endif

2868 2869 2870 2871 2872 2873 2874
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2875
	sched_preempt_enable_no_resched();
2876 2877 2878 2879
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2880 2881
#ifdef CONFIG_PREEMPT
/*
2882
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2883
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2884 2885
 * occur there and call schedule directly.
 */
2886
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2887 2888 2889
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2890
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2891
	 */
2892
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2893 2894
		return;

2895
	do {
2896
		__preempt_count_add(PREEMPT_ACTIVE);
2897
		__schedule();
2898
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2899

2900 2901 2902 2903 2904
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2905
	} while (need_resched());
L
Linus Torvalds 已提交
2906
}
2907
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
2908
EXPORT_SYMBOL(preempt_schedule);
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949

#ifdef CONFIG_CONTEXT_TRACKING
/**
 * preempt_schedule_context - preempt_schedule called by tracing
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
asmlinkage __visible void __sched notrace preempt_schedule_context(void)
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
		__preempt_count_add(PREEMPT_ACTIVE);
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
		__schedule();
		exception_exit(prev_ctx);

		__preempt_count_sub(PREEMPT_ACTIVE);
		barrier();
	} while (need_resched());
}
EXPORT_SYMBOL_GPL(preempt_schedule_context);
#endif /* CONFIG_CONTEXT_TRACKING */

2950
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
2951 2952

/*
2953
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2954 2955 2956 2957
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
2958
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
2959
{
2960
	enum ctx_state prev_state;
2961

2962
	/* Catch callers which need to be fixed */
2963
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2964

2965 2966
	prev_state = exception_enter();

2967
	do {
2968
		__preempt_count_add(PREEMPT_ACTIVE);
2969
		local_irq_enable();
2970
		__schedule();
2971
		local_irq_disable();
2972
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2973

2974 2975 2976 2977 2978
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2979
	} while (need_resched());
2980 2981

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2982 2983
}

P
Peter Zijlstra 已提交
2984
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2985
			  void *key)
L
Linus Torvalds 已提交
2986
{
P
Peter Zijlstra 已提交
2987
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2988 2989 2990
}
EXPORT_SYMBOL(default_wake_function);

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3001 3002
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3003
 */
3004
void rt_mutex_setprio(struct task_struct *p, int prio)
3005
{
3006
	int oldprio, queued, running, enqueue_flag = 0;
3007
	struct rq *rq;
3008
	const struct sched_class *prev_class;
3009

3010
	BUG_ON(prio > MAX_PRIO);
3011

3012
	rq = __task_rq_lock(p);
3013

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3032
	trace_sched_pi_setprio(p, prio);
3033
	oldprio = p->prio;
3034
	prev_class = p->sched_class;
3035
	queued = task_on_rq_queued(p);
3036
	running = task_current(rq, p);
3037
	if (queued)
3038
		dequeue_task(rq, p, 0);
3039
	if (running)
3040
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3041

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3052 3053 3054
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3055 3056 3057 3058 3059
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
3060
		p->sched_class = &dl_sched_class;
3061 3062 3063 3064 3065
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3066
		p->sched_class = &rt_sched_class;
3067 3068 3069
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
I
Ingo Molnar 已提交
3070
		p->sched_class = &fair_sched_class;
3071
	}
I
Ingo Molnar 已提交
3072

3073 3074
	p->prio = prio;

3075 3076
	if (running)
		p->sched_class->set_curr_task(rq);
3077
	if (queued)
3078
		enqueue_task(rq, p, enqueue_flag);
3079

P
Peter Zijlstra 已提交
3080
	check_class_changed(rq, p, prev_class, oldprio);
3081
out_unlock:
3082
	__task_rq_unlock(rq);
3083 3084
}
#endif
3085

3086
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3087
{
3088
	int old_prio, delta, queued;
L
Linus Torvalds 已提交
3089
	unsigned long flags;
3090
	struct rq *rq;
L
Linus Torvalds 已提交
3091

3092
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3103
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3104
	 */
3105
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3106 3107 3108
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3109 3110
	queued = task_on_rq_queued(p);
	if (queued)
3111
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3112 3113

	p->static_prio = NICE_TO_PRIO(nice);
3114
	set_load_weight(p);
3115 3116 3117
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3118

3119
	if (queued) {
3120
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3121
		/*
3122 3123
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3124
		 */
3125
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3126
			resched_curr(rq);
L
Linus Torvalds 已提交
3127 3128
	}
out_unlock:
3129
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3130 3131 3132
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3133 3134 3135 3136 3137
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3138
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3139
{
3140
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3141
	int nice_rlim = nice_to_rlimit(nice);
3142

3143
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3144 3145 3146
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3147 3148 3149 3150 3151 3152 3153 3154 3155
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3156
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3157
{
3158
	long nice, retval;
L
Linus Torvalds 已提交
3159 3160 3161 3162 3163 3164

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3165
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3166
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3167

3168
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3169 3170 3171
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3186
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3187 3188 3189
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3190
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3191 3192 3193 3194 3195 3196 3197
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3198 3199
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3200 3201 3202
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3217 3218 3219 3220 3221
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3222 3223
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3224
 */
3225
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3226 3227 3228 3229 3230 3231 3232
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3233 3234
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3235
 */
A
Alexey Dobriyan 已提交
3236
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3237
{
3238
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3239 3240
}

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	init_dl_task_timer(dl_se);
	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3257
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3258
	dl_se->flags = attr->sched_flags;
3259
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3260 3261
	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
3262
	dl_se->dl_yielded = 0;
3263 3264
}

3265 3266 3267 3268 3269 3270
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3271 3272
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3273
{
3274 3275
	int policy = attr->sched_policy;

3276
	if (policy == SETPARAM_POLICY)
3277 3278
		policy = p->policy;

L
Linus Torvalds 已提交
3279
	p->policy = policy;
3280

3281 3282
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3283
	else if (fair_policy(policy))
3284 3285
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3286 3287 3288 3289 3290 3291
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3292
	p->normal_prio = normal_prio(p);
3293 3294
	set_load_weight(p);
}
3295

3296 3297 3298 3299 3300
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
			   const struct sched_attr *attr)
{
	__setscheduler_params(p, attr);
3301

3302 3303 3304 3305 3306 3307
	/*
	 * If we get here, there was no pi waiters boosting the
	 * task. It is safe to use the normal prio.
	 */
	p->prio = normal_prio(p);

3308 3309 3310
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3311 3312 3313
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3314
}
3315 3316 3317 3318 3319 3320 3321 3322 3323

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3324
	attr->sched_period = dl_se->dl_period;
3325 3326 3327 3328 3329 3330
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3331
 * than the runtime, as well as the period of being zero or
3332
 * greater than deadline. Furthermore, we have to be sure that
3333 3334 3335 3336
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3337 3338 3339 3340
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3367 3368
}

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3379 3380
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3381 3382 3383 3384
	rcu_read_unlock();
	return match;
}

3385 3386 3387
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
				bool user)
L
Linus Torvalds 已提交
3388
{
3389 3390
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3391
	int retval, oldprio, oldpolicy = -1, queued, running;
3392
	int policy = attr->sched_policy;
L
Linus Torvalds 已提交
3393
	unsigned long flags;
3394
	const struct sched_class *prev_class;
3395
	struct rq *rq;
3396
	int reset_on_fork;
L
Linus Torvalds 已提交
3397

3398 3399
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3400 3401
recheck:
	/* double check policy once rq lock held */
3402 3403
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3404
		policy = oldpolicy = p->policy;
3405
	} else {
3406
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3407

3408 3409
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3410 3411 3412 3413 3414
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3415 3416 3417
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3418 3419
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3420 3421
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3422
	 */
3423
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3424
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3425
		return -EINVAL;
3426 3427
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3428 3429
		return -EINVAL;

3430 3431 3432
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3433
	if (user && !capable(CAP_SYS_NICE)) {
3434
		if (fair_policy(policy)) {
3435
			if (attr->sched_nice < task_nice(p) &&
3436
			    !can_nice(p, attr->sched_nice))
3437 3438 3439
				return -EPERM;
		}

3440
		if (rt_policy(policy)) {
3441 3442
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3443 3444 3445 3446 3447 3448

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3449 3450
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3451 3452
				return -EPERM;
		}
3453

3454 3455 3456 3457 3458 3459 3460 3461 3462
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3463
		/*
3464 3465
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3466
		 */
3467
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3468
			if (!can_nice(p, task_nice(p)))
3469 3470
				return -EPERM;
		}
3471

3472
		/* can't change other user's priorities */
3473
		if (!check_same_owner(p))
3474
			return -EPERM;
3475 3476 3477 3478

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3479
	}
L
Linus Torvalds 已提交
3480

3481
	if (user) {
3482
		retval = security_task_setscheduler(p);
3483 3484 3485 3486
		if (retval)
			return retval;
	}

3487 3488 3489
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3490
	 *
L
Lucas De Marchi 已提交
3491
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3492 3493
	 * runqueue lock must be held.
	 */
3494
	rq = task_rq_lock(p, &flags);
3495

3496 3497 3498 3499
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3500
		task_rq_unlock(rq, p, &flags);
3501 3502 3503
		return -EINVAL;
	}

3504
	/*
3505 3506
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3507
	 */
3508
	if (unlikely(policy == p->policy)) {
3509
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3510 3511 3512
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3513 3514
		if (dl_policy(policy))
			goto change;
3515

3516
		p->sched_reset_on_fork = reset_on_fork;
3517
		task_rq_unlock(rq, p, &flags);
3518 3519
		return 0;
	}
3520
change:
3521

3522
	if (user) {
3523
#ifdef CONFIG_RT_GROUP_SCHED
3524 3525 3526 3527 3528
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3529 3530
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3531
			task_rq_unlock(rq, p, &flags);
3532 3533 3534
			return -EPERM;
		}
#endif
3535 3536 3537 3538 3539 3540 3541 3542 3543
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3544 3545
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3546 3547 3548 3549 3550 3551
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3552

L
Linus Torvalds 已提交
3553 3554 3555
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3556
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3557 3558
		goto recheck;
	}
3559 3560 3561 3562 3563 3564

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3565
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3566 3567 3568 3569
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

	/*
	 * Special case for priority boosted tasks.
	 *
	 * If the new priority is lower or equal (user space view)
	 * than the current (boosted) priority, we just store the new
	 * normal parameters and do not touch the scheduler class and
	 * the runqueue. This will be done when the task deboost
	 * itself.
	 */
	if (rt_mutex_check_prio(p, newprio)) {
		__setscheduler_params(p, attr);
		task_rq_unlock(rq, p, &flags);
		return 0;
	}

3588
	queued = task_on_rq_queued(p);
3589
	running = task_current(rq, p);
3590
	if (queued)
3591
		dequeue_task(rq, p, 0);
3592
	if (running)
3593
		put_prev_task(rq, p);
3594

3595
	prev_class = p->sched_class;
3596
	__setscheduler(rq, p, attr);
3597

3598 3599
	if (running)
		p->sched_class->set_curr_task(rq);
3600
	if (queued) {
3601 3602 3603 3604 3605 3606
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3607

P
Peter Zijlstra 已提交
3608
	check_class_changed(rq, p, prev_class, oldprio);
3609
	task_rq_unlock(rq, p, &flags);
3610

3611 3612
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3613 3614
	return 0;
}
3615

3616 3617 3618 3619 3620 3621 3622 3623 3624
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

3625 3626
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3627 3628 3629 3630 3631 3632 3633
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

	return __sched_setscheduler(p, &attr, check);
}
3634 3635 3636 3637 3638 3639
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3640 3641
 * Return: 0 on success. An error code otherwise.
 *
3642 3643 3644
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3645
		       const struct sched_param *param)
3646
{
3647
	return _sched_setscheduler(p, policy, param, true);
3648
}
L
Linus Torvalds 已提交
3649 3650
EXPORT_SYMBOL_GPL(sched_setscheduler);

3651 3652 3653 3654 3655 3656
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true);
}
EXPORT_SYMBOL_GPL(sched_setattr);

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3667 3668
 *
 * Return: 0 on success. An error code otherwise.
3669 3670
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3671
			       const struct sched_param *param)
3672
{
3673
	return _sched_setscheduler(p, policy, param, false);
3674 3675
}

I
Ingo Molnar 已提交
3676 3677
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3678 3679 3680
{
	struct sched_param lparam;
	struct task_struct *p;
3681
	int retval;
L
Linus Torvalds 已提交
3682 3683 3684 3685 3686

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3687 3688 3689

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3690
	p = find_process_by_pid(pid);
3691 3692 3693
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3694

L
Linus Torvalds 已提交
3695 3696 3697
	return retval;
}

3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
3760
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3761

3762
	return 0;
3763 3764 3765

err_size:
	put_user(sizeof(*attr), &uattr->size);
3766
	return -E2BIG;
3767 3768
}

L
Linus Torvalds 已提交
3769 3770 3771 3772 3773
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3774 3775
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3776
 */
3777 3778
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3779
{
3780 3781 3782 3783
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3784 3785 3786 3787 3788 3789 3790
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3791 3792
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3793
 */
3794
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3795
{
3796
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
3797 3798
}

3799 3800 3801
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
3802
 * @uattr: structure containing the extended parameters.
3803
 * @flags: for future extension.
3804
 */
3805 3806
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
3807 3808 3809 3810 3811
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

3812
	if (!uattr || pid < 0 || flags)
3813 3814
		return -EINVAL;

3815 3816 3817
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
3818

3819
	if ((int)attr.sched_policy < 0)
3820
		return -EINVAL;
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
3832 3833 3834
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3835 3836 3837
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3838
 */
3839
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3840
{
3841
	struct task_struct *p;
3842
	int retval;
L
Linus Torvalds 已提交
3843 3844

	if (pid < 0)
3845
		return -EINVAL;
L
Linus Torvalds 已提交
3846 3847

	retval = -ESRCH;
3848
	rcu_read_lock();
L
Linus Torvalds 已提交
3849 3850 3851 3852
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3853 3854
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3855
	}
3856
	rcu_read_unlock();
L
Linus Torvalds 已提交
3857 3858 3859 3860
	return retval;
}

/**
3861
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3862 3863
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3864 3865 3866
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3867
 */
3868
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3869
{
3870
	struct sched_param lp = { .sched_priority = 0 };
3871
	struct task_struct *p;
3872
	int retval;
L
Linus Torvalds 已提交
3873 3874

	if (!param || pid < 0)
3875
		return -EINVAL;
L
Linus Torvalds 已提交
3876

3877
	rcu_read_lock();
L
Linus Torvalds 已提交
3878 3879 3880 3881 3882 3883 3884 3885 3886
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3887 3888
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
3889
	rcu_read_unlock();
L
Linus Torvalds 已提交
3890 3891 3892 3893 3894 3895 3896 3897 3898

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3899
	rcu_read_unlock();
L
Linus Torvalds 已提交
3900 3901 3902
	return retval;
}

3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
3926
				return -EFBIG;
3927 3928 3929 3930 3931
		}

		attr->size = usize;
	}

3932
	ret = copy_to_user(uattr, attr, attr->size);
3933 3934 3935
	if (ret)
		return -EFAULT;

3936
	return 0;
3937 3938 3939
}

/**
3940
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3941
 * @pid: the pid in question.
J
Juri Lelli 已提交
3942
 * @uattr: structure containing the extended parameters.
3943
 * @size: sizeof(attr) for fwd/bwd comp.
3944
 * @flags: for future extension.
3945
 */
3946 3947
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
3948 3949 3950 3951 3952 3953 3954 3955
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3956
	    size < SCHED_ATTR_SIZE_VER0 || flags)
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
3970 3971
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3972 3973 3974
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
3975 3976
		attr.sched_priority = p->rt_priority;
	else
3977
		attr.sched_nice = task_nice(p);
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

3989
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3990
{
3991
	cpumask_var_t cpus_allowed, new_mask;
3992 3993
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3994

3995
	rcu_read_lock();
L
Linus Torvalds 已提交
3996 3997 3998

	p = find_process_by_pid(pid);
	if (!p) {
3999
		rcu_read_unlock();
L
Linus Torvalds 已提交
4000 4001 4002
		return -ESRCH;
	}

4003
	/* Prevent p going away */
L
Linus Torvalds 已提交
4004
	get_task_struct(p);
4005
	rcu_read_unlock();
L
Linus Torvalds 已提交
4006

4007 4008 4009 4010
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4011 4012 4013 4014 4015 4016 4017 4018
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4019
	retval = -EPERM;
E
Eric W. Biederman 已提交
4020 4021 4022 4023
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4024
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4025 4026 4027
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4028

4029
	retval = security_task_setscheduler(p);
4030
	if (retval)
4031
		goto out_free_new_mask;
4032

4033 4034 4035 4036

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4037 4038 4039 4040 4041 4042 4043
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4044 4045 4046
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4047
			retval = -EBUSY;
4048
			rcu_read_unlock();
4049
			goto out_free_new_mask;
4050
		}
4051
		rcu_read_unlock();
4052 4053
	}
#endif
P
Peter Zijlstra 已提交
4054
again:
4055
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4056

P
Paul Menage 已提交
4057
	if (!retval) {
4058 4059
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4060 4061 4062 4063 4064
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4065
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4066 4067 4068
			goto again;
		}
	}
4069
out_free_new_mask:
4070 4071 4072 4073
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4074 4075 4076 4077 4078
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4079
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4080
{
4081 4082 4083 4084 4085
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4086 4087 4088 4089 4090 4091 4092 4093
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4094 4095
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4096
 */
4097 4098
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4099
{
4100
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4101 4102
	int retval;

4103 4104
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4105

4106 4107 4108 4109 4110
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4111 4112
}

4113
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4114
{
4115
	struct task_struct *p;
4116
	unsigned long flags;
L
Linus Torvalds 已提交
4117 4118
	int retval;

4119
	rcu_read_lock();
L
Linus Torvalds 已提交
4120 4121 4122 4123 4124 4125

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4126 4127 4128 4129
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4130
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4131
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4132
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4133 4134

out_unlock:
4135
	rcu_read_unlock();
L
Linus Torvalds 已提交
4136

4137
	return retval;
L
Linus Torvalds 已提交
4138 4139 4140 4141 4142 4143 4144
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4145 4146
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4147
 */
4148 4149
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4150 4151
{
	int ret;
4152
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4153

A
Anton Blanchard 已提交
4154
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4155 4156
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4157 4158
		return -EINVAL;

4159 4160
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4161

4162 4163
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4164
		size_t retlen = min_t(size_t, len, cpumask_size());
4165 4166

		if (copy_to_user(user_mask_ptr, mask, retlen))
4167 4168
			ret = -EFAULT;
		else
4169
			ret = retlen;
4170 4171
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4172

4173
	return ret;
L
Linus Torvalds 已提交
4174 4175 4176 4177 4178
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4179 4180
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4181 4182
 *
 * Return: 0.
L
Linus Torvalds 已提交
4183
 */
4184
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4185
{
4186
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4187

4188
	schedstat_inc(rq, yld_count);
4189
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4190 4191 4192 4193 4194 4195

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4196
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4197
	do_raw_spin_unlock(&rq->lock);
4198
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4199 4200 4201 4202 4203 4204

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4205
static void __cond_resched(void)
L
Linus Torvalds 已提交
4206
{
4207
	__preempt_count_add(PREEMPT_ACTIVE);
4208
	__schedule();
4209
	__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4210 4211
}

4212
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4213
{
P
Peter Zijlstra 已提交
4214
	if (should_resched()) {
L
Linus Torvalds 已提交
4215 4216 4217 4218 4219
		__cond_resched();
		return 1;
	}
	return 0;
}
4220
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4221 4222

/*
4223
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4224 4225
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4226
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4227 4228 4229
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4230
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4231
{
P
Peter Zijlstra 已提交
4232
	int resched = should_resched();
J
Jan Kara 已提交
4233 4234
	int ret = 0;

4235 4236
	lockdep_assert_held(lock);

4237
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4238
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4239
		if (resched)
N
Nick Piggin 已提交
4240 4241 4242
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4243
		ret = 1;
L
Linus Torvalds 已提交
4244 4245
		spin_lock(lock);
	}
J
Jan Kara 已提交
4246
	return ret;
L
Linus Torvalds 已提交
4247
}
4248
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4249

4250
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4251 4252 4253
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4254
	if (should_resched()) {
4255
		local_bh_enable();
L
Linus Torvalds 已提交
4256 4257 4258 4259 4260 4261
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4262
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4263 4264 4265 4266

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4285 4286 4287 4288 4289 4290 4291 4292
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4293 4294 4295 4296
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4297 4298
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4299 4300 4301 4302
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4303
 * Return:
4304 4305 4306
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4307
 */
4308
int __sched yield_to(struct task_struct *p, bool preempt)
4309 4310 4311 4312
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4313
	int yielded = 0;
4314 4315 4316 4317 4318 4319

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4320 4321 4322 4323 4324 4325 4326 4327 4328
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4329
	double_rq_lock(rq, p_rq);
4330
	if (task_rq(p) != p_rq) {
4331 4332 4333 4334 4335
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4336
		goto out_unlock;
4337 4338

	if (curr->sched_class != p->sched_class)
4339
		goto out_unlock;
4340 4341

	if (task_running(p_rq, p) || p->state)
4342
		goto out_unlock;
4343 4344

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4345
	if (yielded) {
4346
		schedstat_inc(rq, yld_count);
4347 4348 4349 4350 4351
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4352
			resched_curr(p_rq);
4353
	}
4354

4355
out_unlock:
4356
	double_rq_unlock(rq, p_rq);
4357
out_irq:
4358 4359
	local_irq_restore(flags);

4360
	if (yielded > 0)
4361 4362 4363 4364 4365 4366
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4367
/*
I
Ingo Molnar 已提交
4368
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4369 4370 4371 4372
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4373
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4374

4375
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4376
	atomic_inc(&rq->nr_iowait);
4377
	blk_flush_plug(current);
4378
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4379
	schedule();
4380
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4381
	atomic_dec(&rq->nr_iowait);
4382
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4383 4384 4385 4386 4387
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4388
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4389 4390
	long ret;

4391
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4392
	atomic_inc(&rq->nr_iowait);
4393
	blk_flush_plug(current);
4394
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4395
	ret = schedule_timeout(timeout);
4396
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4397
	atomic_dec(&rq->nr_iowait);
4398
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4399 4400 4401 4402 4403 4404 4405
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4406 4407 4408
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4409
 */
4410
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4411 4412 4413 4414 4415 4416 4417 4418
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4419
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4420
	case SCHED_NORMAL:
4421
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4422
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4433 4434 4435
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4436
 */
4437
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4438 4439 4440 4441 4442 4443 4444 4445
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4446
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4447
	case SCHED_NORMAL:
4448
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4449
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4462 4463 4464
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4465
 */
4466
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4467
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4468
{
4469
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4470
	unsigned int time_slice;
4471 4472
	unsigned long flags;
	struct rq *rq;
4473
	int retval;
L
Linus Torvalds 已提交
4474 4475 4476
	struct timespec t;

	if (pid < 0)
4477
		return -EINVAL;
L
Linus Torvalds 已提交
4478 4479

	retval = -ESRCH;
4480
	rcu_read_lock();
L
Linus Torvalds 已提交
4481 4482 4483 4484 4485 4486 4487 4488
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4489
	rq = task_rq_lock(p, &flags);
4490 4491 4492
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4493
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4494

4495
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4496
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4497 4498
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4499

L
Linus Torvalds 已提交
4500
out_unlock:
4501
	rcu_read_unlock();
L
Linus Torvalds 已提交
4502 4503 4504
	return retval;
}

4505
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4506

4507
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4508 4509
{
	unsigned long free = 0;
4510
	int ppid;
4511
	unsigned long state = p->state;
L
Linus Torvalds 已提交
4512

4513 4514
	if (state)
		state = __ffs(state) + 1;
4515
	printk(KERN_INFO "%-15.15s %c", p->comm,
4516
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4517
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4518
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4519
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4520
	else
P
Peter Zijlstra 已提交
4521
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4522 4523
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4524
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4525
	else
P
Peter Zijlstra 已提交
4526
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4527 4528
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4529
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4530
#endif
4531
	ppid = 0;
4532
	rcu_read_lock();
4533 4534
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4535
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4536
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4537
		task_pid_nr(p), ppid,
4538
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4539

4540
	print_worker_info(KERN_INFO, p);
4541
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4542 4543
}

I
Ingo Molnar 已提交
4544
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4545
{
4546
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4547

4548
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4549 4550
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4551
#else
P
Peter Zijlstra 已提交
4552 4553
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4554
#endif
4555
	rcu_read_lock();
4556
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
4557 4558
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4559
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4560 4561
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4562
		if (!state_filter || (p->state & state_filter))
4563
			sched_show_task(p);
4564
	}
L
Linus Torvalds 已提交
4565

4566 4567
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4568 4569 4570
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4571
	rcu_read_unlock();
I
Ingo Molnar 已提交
4572 4573 4574
	/*
	 * Only show locks if all tasks are dumped:
	 */
4575
	if (!state_filter)
I
Ingo Molnar 已提交
4576
		debug_show_all_locks();
L
Linus Torvalds 已提交
4577 4578
}

4579
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4580
{
I
Ingo Molnar 已提交
4581
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4582 4583
}

4584 4585 4586 4587 4588 4589 4590 4591
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4592
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4593
{
4594
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4595 4596
	unsigned long flags;

4597
	raw_spin_lock_irqsave(&rq->lock, flags);
4598

4599
	__sched_fork(0, idle);
4600
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4601 4602
	idle->se.exec_start = sched_clock();

4603
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4615
	__set_task_cpu(idle, cpu);
4616
	rcu_read_unlock();
L
Linus Torvalds 已提交
4617 4618

	rq->curr = rq->idle = idle;
4619
	idle->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
4620 4621
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4622
#endif
4623
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4624 4625

	/* Set the preempt count _outside_ the spinlocks! */
4626
	init_idle_preempt_count(idle, cpu);
4627

I
Ingo Molnar 已提交
4628 4629 4630 4631
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4632
	ftrace_graph_init_idle_task(idle, cpu);
4633
	vtime_init_idle(idle, cpu);
4634 4635 4636
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4637 4638
}

4639 4640 4641 4642 4643 4644 4645
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

4646
	rcu_read_lock_sched();
4647 4648 4649 4650 4651 4652 4653 4654
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4655
	rcu_read_unlock_sched();
4656 4657 4658 4659

	return ret;
}

4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
	 * to a new cpuset; we don't want to change their cpu
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
4684
		struct dl_bw *dl_b;
4685 4686 4687 4688
		bool overflow;
		int cpus;
		unsigned long flags;

4689 4690
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4706
		rcu_read_unlock_sched();
4707 4708 4709 4710 4711 4712 4713

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
4714
#ifdef CONFIG_SMP
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
{
	struct rq *rq = task_rq(p);

	lockdep_assert_held(&rq->lock);

	dequeue_task(rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	p->on_rq = TASK_ON_RQ_QUEUED;
	enqueue_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);

	return rq;
}

4742 4743 4744 4745
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4746 4747

	cpumask_copy(&p->cpus_allowed, new_mask);
4748
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4749 4750
}

L
Linus Torvalds 已提交
4751 4752 4753
/*
 * This is how migration works:
 *
4754 4755 4756 4757 4758 4759
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4760
 *    it and puts it into the right queue.
4761 4762
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4763 4764 4765 4766 4767 4768 4769 4770
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4771
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4772 4773
 * call is not atomic; no spinlocks may be held.
 */
4774
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4775 4776
{
	unsigned long flags;
4777
	struct rq *rq;
4778
	unsigned int dest_cpu;
4779
	int ret = 0;
L
Linus Torvalds 已提交
4780 4781

	rq = task_rq_lock(p, &flags);
4782

4783 4784 4785
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4786
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4787 4788 4789 4790
		ret = -EINVAL;
		goto out;
	}

4791
	do_set_cpus_allowed(p, new_mask);
4792

L
Linus Torvalds 已提交
4793
	/* Can the task run on the task's current CPU? If so, we're done */
4794
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4795 4796
		goto out;

4797
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4798
	if (task_running(rq, p) || p->state == TASK_WAKING) {
4799
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4800
		/* Need help from migration thread: drop lock and wait. */
4801
		task_rq_unlock(rq, p, &flags);
4802
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4803 4804
		tlb_migrate_finish(p->mm);
		return 0;
4805 4806
	} else if (task_on_rq_queued(p))
		rq = move_queued_task(p, dest_cpu);
L
Linus Torvalds 已提交
4807
out:
4808
	task_rq_unlock(rq, p, &flags);
4809

L
Linus Torvalds 已提交
4810 4811
	return ret;
}
4812
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4813 4814

/*
I
Ingo Molnar 已提交
4815
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4816 4817 4818 4819 4820 4821
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4822 4823
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4824
 */
4825
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4826
{
4827
	struct rq *rq;
4828
	int ret = 0;
L
Linus Torvalds 已提交
4829

4830
	if (unlikely(!cpu_active(dest_cpu)))
4831
		return ret;
L
Linus Torvalds 已提交
4832

4833
	rq = cpu_rq(src_cpu);
L
Linus Torvalds 已提交
4834

4835
	raw_spin_lock(&p->pi_lock);
4836
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4837 4838
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4839
		goto done;
4840

L
Linus Torvalds 已提交
4841
	/* Affinity changed (again). */
4842
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4843
		goto fail;
L
Linus Torvalds 已提交
4844

4845 4846 4847 4848
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
4849 4850
	if (task_on_rq_queued(p))
		rq = move_queued_task(p, dest_cpu);
L
Linus Torvalds 已提交
4851
done:
4852
	ret = 1;
L
Linus Torvalds 已提交
4853
fail:
4854
	raw_spin_unlock(&rq->lock);
4855
	raw_spin_unlock(&p->pi_lock);
4856
	return ret;
L
Linus Torvalds 已提交
4857 4858
}

4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

4874
	trace_sched_move_numa(p, curr_cpu, target_cpu);
4875 4876
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4877 4878 4879 4880 4881 4882 4883 4884 4885

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
4886
	bool queued, running;
4887 4888

	rq = task_rq_lock(p, &flags);
4889
	queued = task_on_rq_queued(p);
4890 4891
	running = task_current(rq, p);

4892
	if (queued)
4893 4894
		dequeue_task(rq, p, 0);
	if (running)
4895
		put_prev_task(rq, p);
4896 4897 4898 4899 4900

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
4901
	if (queued)
4902 4903 4904
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
4905 4906
#endif

L
Linus Torvalds 已提交
4907
/*
4908 4909 4910
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4911
 */
4912
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4913
{
4914
	struct migration_arg *arg = data;
4915

4916 4917 4918 4919
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4920
	local_irq_disable();
L
Lai Jiangshan 已提交
4921 4922 4923 4924 4925 4926
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
4927
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4928
	local_irq_enable();
L
Linus Torvalds 已提交
4929
	return 0;
4930 4931
}

L
Linus Torvalds 已提交
4932
#ifdef CONFIG_HOTPLUG_CPU
4933

4934
/*
4935 4936
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4937
 */
4938
void idle_task_exit(void)
L
Linus Torvalds 已提交
4939
{
4940
	struct mm_struct *mm = current->active_mm;
4941

4942
	BUG_ON(cpu_online(smp_processor_id()));
4943

4944
	if (mm != &init_mm) {
4945
		switch_mm(mm, &init_mm, current);
4946 4947
		finish_arch_post_lock_switch();
	}
4948
	mmdrop(mm);
L
Linus Torvalds 已提交
4949 4950 4951
}

/*
4952 4953 4954 4955 4956
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4957
 */
4958
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4959
{
4960 4961 4962
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4963 4964
}

4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

4981
/*
4982 4983 4984 4985 4986 4987
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4988
 */
4989
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4990
{
4991
	struct rq *rq = cpu_rq(dead_cpu);
4992 4993
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4994 4995

	/*
4996 4997 4998 4999 5000 5001 5002
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5003
	 */
5004
	rq->stop = NULL;
5005

5006 5007 5008 5009 5010 5011 5012
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
5013
	for ( ; ; ) {
5014 5015 5016 5017 5018
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5019
			break;
5020

5021
		next = pick_next_task(rq, &fake_task);
5022
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5023
		next->sched_class->put_prev_task(rq, next);
5024

5025 5026 5027 5028 5029 5030 5031
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5032
	}
5033

5034
	rq->stop = stop;
5035
}
5036

L
Linus Torvalds 已提交
5037 5038
#endif /* CONFIG_HOTPLUG_CPU */

5039 5040 5041
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5042 5043
	{
		.procname	= "sched_domain",
5044
		.mode		= 0555,
5045
	},
5046
	{}
5047 5048 5049
};

static struct ctl_table sd_ctl_root[] = {
5050 5051
	{
		.procname	= "kernel",
5052
		.mode		= 0555,
5053 5054
		.child		= sd_ctl_dir,
	},
5055
	{}
5056 5057 5058 5059 5060
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5061
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5062 5063 5064 5065

	return entry;
}

5066 5067
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5068
	struct ctl_table *entry;
5069

5070 5071 5072
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5073
	 * will always be set. In the lowest directory the names are
5074 5075 5076
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5077 5078
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5079 5080 5081
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5082 5083 5084 5085 5086

	kfree(*tablep);
	*tablep = NULL;
}

5087
static int min_load_idx = 0;
5088
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5089

5090
static void
5091
set_table_entry(struct ctl_table *entry,
5092
		const char *procname, void *data, int maxlen,
5093 5094
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5095 5096 5097 5098 5099 5100
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5101 5102 5103 5104 5105

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5106 5107 5108 5109 5110
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5111
	struct ctl_table *table = sd_alloc_ctl_entry(14);
5112

5113 5114 5115
	if (table == NULL)
		return NULL;

5116
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5117
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5118
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5119
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5120
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5121
		sizeof(int), 0644, proc_dointvec_minmax, true);
5122
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5123
		sizeof(int), 0644, proc_dointvec_minmax, true);
5124
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5125
		sizeof(int), 0644, proc_dointvec_minmax, true);
5126
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5127
		sizeof(int), 0644, proc_dointvec_minmax, true);
5128
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5129
		sizeof(int), 0644, proc_dointvec_minmax, true);
5130
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5131
		sizeof(int), 0644, proc_dointvec_minmax, false);
5132
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5133
		sizeof(int), 0644, proc_dointvec_minmax, false);
5134
	set_table_entry(&table[9], "cache_nice_tries",
5135
		&sd->cache_nice_tries,
5136
		sizeof(int), 0644, proc_dointvec_minmax, false);
5137
	set_table_entry(&table[10], "flags", &sd->flags,
5138
		sizeof(int), 0644, proc_dointvec_minmax, false);
5139 5140 5141 5142
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
5143
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5144
	/* &table[13] is terminator */
5145 5146 5147 5148

	return table;
}

5149
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5150 5151 5152 5153 5154 5155 5156 5157 5158
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5159 5160
	if (table == NULL)
		return NULL;
5161 5162 5163 5164 5165

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5166
		entry->mode = 0555;
5167 5168 5169 5170 5171 5172 5173 5174
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5175
static void register_sched_domain_sysctl(void)
5176
{
5177
	int i, cpu_num = num_possible_cpus();
5178 5179 5180
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5181 5182 5183
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5184 5185 5186
	if (entry == NULL)
		return;

5187
	for_each_possible_cpu(i) {
5188 5189
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5190
		entry->mode = 0555;
5191
		entry->child = sd_alloc_ctl_cpu_table(i);
5192
		entry++;
5193
	}
5194 5195

	WARN_ON(sd_sysctl_header);
5196 5197
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5198

5199
/* may be called multiple times per register */
5200 5201
static void unregister_sched_domain_sysctl(void)
{
5202 5203
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5204
	sd_sysctl_header = NULL;
5205 5206
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5207
}
5208
#else
5209 5210 5211 5212
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5213 5214 5215 5216
{
}
#endif

5217 5218 5219 5220 5221
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5222
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5242
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5243 5244 5245 5246
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5247 5248 5249 5250
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5251
static int
5252
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5253
{
5254
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5255
	unsigned long flags;
5256
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5257

5258
	switch (action & ~CPU_TASKS_FROZEN) {
5259

L
Linus Torvalds 已提交
5260
	case CPU_UP_PREPARE:
5261
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5262
		break;
5263

L
Linus Torvalds 已提交
5264
	case CPU_ONLINE:
5265
		/* Update our root-domain */
5266
		raw_spin_lock_irqsave(&rq->lock, flags);
5267
		if (rq->rd) {
5268
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5269 5270

			set_rq_online(rq);
5271
		}
5272
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5273
		break;
5274

L
Linus Torvalds 已提交
5275
#ifdef CONFIG_HOTPLUG_CPU
5276
	case CPU_DYING:
5277
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5278
		/* Update our root-domain */
5279
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5280
		if (rq->rd) {
5281
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5282
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5283
		}
5284 5285
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5286
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5287
		break;
5288

5289
	case CPU_DEAD:
5290
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5291
		break;
L
Linus Torvalds 已提交
5292 5293
#endif
	}
5294 5295 5296

	update_max_interval();

L
Linus Torvalds 已提交
5297 5298 5299
	return NOTIFY_OK;
}

5300 5301 5302
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5303
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5304
 */
5305
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5306
	.notifier_call = migration_call,
5307
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5308 5309
};

5310 5311 5312 5313 5314 5315 5316
static void __cpuinit set_cpu_rq_start_time(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5317
static int sched_cpu_active(struct notifier_block *nfb,
5318 5319 5320
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5321 5322 5323
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5324 5325 5326 5327 5328 5329 5330 5331
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5332
static int sched_cpu_inactive(struct notifier_block *nfb,
5333 5334
					unsigned long action, void *hcpu)
{
5335 5336
	unsigned long flags;
	long cpu = (long)hcpu;
5337
	struct dl_bw *dl_b;
5338

5339 5340
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5341 5342 5343 5344 5345 5346 5347
		set_cpu_active(cpu, false);

		/* explicitly allow suspend */
		if (!(action & CPU_TASKS_FROZEN)) {
			bool overflow;
			int cpus;

5348 5349 5350
			rcu_read_lock_sched();
			dl_b = dl_bw_of(cpu);

5351 5352 5353 5354 5355
			raw_spin_lock_irqsave(&dl_b->lock, flags);
			cpus = dl_bw_cpus(cpu);
			overflow = __dl_overflow(dl_b, cpus, 0, 0);
			raw_spin_unlock_irqrestore(&dl_b->lock, flags);

5356 5357
			rcu_read_unlock_sched();

5358 5359 5360
			if (overflow)
				return notifier_from_errno(-EBUSY);
		}
5361 5362
		return NOTIFY_OK;
	}
5363 5364

	return NOTIFY_DONE;
5365 5366
}

5367
static int __init migration_init(void)
L
Linus Torvalds 已提交
5368 5369
{
	void *cpu = (void *)(long)smp_processor_id();
5370
	int err;
5371

5372
	/* Initialize migration for the boot CPU */
5373 5374
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5375 5376
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5377

5378 5379 5380 5381
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5382
	return 0;
L
Linus Torvalds 已提交
5383
}
5384
early_initcall(migration_init);
L
Linus Torvalds 已提交
5385 5386 5387
#endif

#ifdef CONFIG_SMP
5388

5389 5390
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5391
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5392

5393
static __read_mostly int sched_debug_enabled;
5394

5395
static int __init sched_debug_setup(char *str)
5396
{
5397
	sched_debug_enabled = 1;
5398 5399 5400

	return 0;
}
5401 5402 5403 5404 5405 5406
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5407

5408
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5409
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5410
{
I
Ingo Molnar 已提交
5411
	struct sched_group *group = sd->groups;
5412
	char str[256];
L
Linus Torvalds 已提交
5413

R
Rusty Russell 已提交
5414
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5415
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5416 5417 5418 5419

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5420
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5421
		if (sd->parent)
P
Peter Zijlstra 已提交
5422 5423
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5424
		return -1;
N
Nick Piggin 已提交
5425 5426
	}

P
Peter Zijlstra 已提交
5427
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5428

5429
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5430 5431
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5432
	}
5433
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5434 5435
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5436
	}
L
Linus Torvalds 已提交
5437

I
Ingo Molnar 已提交
5438
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5439
	do {
I
Ingo Molnar 已提交
5440
		if (!group) {
P
Peter Zijlstra 已提交
5441 5442
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5443 5444 5445
			break;
		}

5446
		/*
5447 5448
		 * Even though we initialize ->capacity to something semi-sane,
		 * we leave capacity_orig unset. This allows us to detect if
5449 5450
		 * domain iteration is still funny without causing /0 traps.
		 */
5451
		if (!group->sgc->capacity_orig) {
P
Peter Zijlstra 已提交
5452
			printk(KERN_CONT "\n");
5453
			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
I
Ingo Molnar 已提交
5454 5455
			break;
		}
L
Linus Torvalds 已提交
5456

5457
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5458 5459
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5460 5461
			break;
		}
L
Linus Torvalds 已提交
5462

5463 5464
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5465 5466
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5467 5468
			break;
		}
L
Linus Torvalds 已提交
5469

5470
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5471

R
Rusty Russell 已提交
5472
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5473

P
Peter Zijlstra 已提交
5474
		printk(KERN_CONT " %s", str);
5475
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5476 5477
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5478
		}
L
Linus Torvalds 已提交
5479

I
Ingo Molnar 已提交
5480 5481
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5482
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5483

5484
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5485
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5486

5487 5488
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5489 5490
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5491 5492
	return 0;
}
L
Linus Torvalds 已提交
5493

I
Ingo Molnar 已提交
5494 5495 5496
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5497

5498
	if (!sched_debug_enabled)
5499 5500
		return;

I
Ingo Molnar 已提交
5501 5502 5503 5504
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5505

I
Ingo Molnar 已提交
5506 5507 5508
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5509
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5510
			break;
L
Linus Torvalds 已提交
5511 5512
		level++;
		sd = sd->parent;
5513
		if (!sd)
I
Ingo Molnar 已提交
5514 5515
			break;
	}
L
Linus Torvalds 已提交
5516
}
5517
#else /* !CONFIG_SCHED_DEBUG */
5518
# define sched_domain_debug(sd, cpu) do { } while (0)
5519 5520 5521 5522
static inline bool sched_debug(void)
{
	return false;
}
5523
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5524

5525
static int sd_degenerate(struct sched_domain *sd)
5526
{
5527
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5528 5529 5530 5531 5532 5533
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5534
			 SD_BALANCE_EXEC |
5535
			 SD_SHARE_CPUCAPACITY |
5536 5537
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5538 5539 5540 5541 5542
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5543
	if (sd->flags & (SD_WAKE_AFFINE))
5544 5545 5546 5547 5548
		return 0;

	return 1;
}

5549 5550
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5551 5552 5553 5554 5555 5556
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5557
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5558 5559 5560 5561 5562 5563 5564
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5565
				SD_BALANCE_EXEC |
5566
				SD_SHARE_CPUCAPACITY |
5567
				SD_SHARE_PKG_RESOURCES |
5568 5569
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5570 5571
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5572 5573 5574 5575 5576 5577 5578
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5579
static void free_rootdomain(struct rcu_head *rcu)
5580
{
5581
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5582

5583
	cpupri_cleanup(&rd->cpupri);
5584
	cpudl_cleanup(&rd->cpudl);
5585
	free_cpumask_var(rd->dlo_mask);
5586 5587 5588 5589 5590 5591
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5592 5593
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5594
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5595 5596
	unsigned long flags;

5597
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5598 5599

	if (rq->rd) {
I
Ingo Molnar 已提交
5600
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5601

5602
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5603
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5604

5605
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5606

I
Ingo Molnar 已提交
5607
		/*
5608
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5609 5610 5611 5612 5613
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5614 5615 5616 5617 5618
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5619
	cpumask_set_cpu(rq->cpu, rd->span);
5620
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5621
		set_rq_online(rq);
G
Gregory Haskins 已提交
5622

5623
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5624 5625

	if (old_rd)
5626
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5627 5628
}

5629
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5630 5631 5632
{
	memset(rd, 0, sizeof(*rd));

5633
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5634
		goto out;
5635
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5636
		goto free_span;
5637
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5638
		goto free_online;
5639 5640
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5641

5642
	init_dl_bw(&rd->dl_bw);
5643 5644
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5645

5646
	if (cpupri_init(&rd->cpupri) != 0)
5647
		goto free_rto_mask;
5648
	return 0;
5649

5650 5651
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5652 5653
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5654 5655 5656 5657
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5658
out:
5659
	return -ENOMEM;
G
Gregory Haskins 已提交
5660 5661
}

5662 5663 5664 5665 5666 5667
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5668 5669
static void init_defrootdomain(void)
{
5670
	init_rootdomain(&def_root_domain);
5671

G
Gregory Haskins 已提交
5672 5673 5674
	atomic_set(&def_root_domain.refcount, 1);
}

5675
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5676 5677 5678 5679 5680 5681 5682
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5683
	if (init_rootdomain(rd) != 0) {
5684 5685 5686
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5687 5688 5689 5690

	return rd;
}

5691
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5702 5703
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5704 5705 5706 5707 5708 5709

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5710 5711 5712
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5713 5714 5715 5716 5717 5718 5719 5720

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5721
		kfree(sd->groups->sgc);
5722
		kfree(sd->groups);
5723
	}
5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5738 5739 5740 5741 5742 5743 5744
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5745
 * two cpus are in the same cache domain, see cpus_share_cache().
5746 5747
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5748
DEFINE_PER_CPU(int, sd_llc_size);
5749
DEFINE_PER_CPU(int, sd_llc_id);
5750
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5751 5752
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5753 5754 5755 5756

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5757
	struct sched_domain *busy_sd = NULL;
5758
	int id = cpu;
5759
	int size = 1;
5760 5761

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5762
	if (sd) {
5763
		id = cpumask_first(sched_domain_span(sd));
5764
		size = cpumask_weight(sched_domain_span(sd));
5765
		busy_sd = sd->parent; /* sd_busy */
5766
	}
5767
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5768 5769

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5770
	per_cpu(sd_llc_size, cpu) = size;
5771
	per_cpu(sd_llc_id, cpu) = id;
5772 5773 5774

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5775 5776 5777

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5778 5779
}

L
Linus Torvalds 已提交
5780
/*
I
Ingo Molnar 已提交
5781
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5782 5783
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5784 5785
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5786
{
5787
	struct rq *rq = cpu_rq(cpu);
5788 5789 5790
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5791
	for (tmp = sd; tmp; ) {
5792 5793 5794
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5795

5796
		if (sd_parent_degenerate(tmp, parent)) {
5797
			tmp->parent = parent->parent;
5798 5799
			if (parent->parent)
				parent->parent->child = tmp;
5800 5801 5802 5803 5804 5805 5806
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5807
			destroy_sched_domain(parent, cpu);
5808 5809
		} else
			tmp = tmp->parent;
5810 5811
	}

5812
	if (sd && sd_degenerate(sd)) {
5813
		tmp = sd;
5814
		sd = sd->parent;
5815
		destroy_sched_domain(tmp, cpu);
5816 5817 5818
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5819

5820
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5821

G
Gregory Haskins 已提交
5822
	rq_attach_root(rq, rd);
5823
	tmp = rq->sd;
N
Nick Piggin 已提交
5824
	rcu_assign_pointer(rq->sd, sd);
5825
	destroy_sched_domains(tmp, cpu);
5826 5827

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5828 5829 5830
}

/* cpus with isolated domains */
5831
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5832 5833 5834 5835

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5836
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5837
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5838 5839 5840
	return 1;
}

I
Ingo Molnar 已提交
5841
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5842

5843
struct s_data {
5844
	struct sched_domain ** __percpu sd;
5845 5846 5847
	struct root_domain	*rd;
};

5848 5849
enum s_alloc {
	sa_rootdomain,
5850
	sa_sd,
5851
	sa_sd_storage,
5852 5853 5854
	sa_none,
};

P
Peter Zijlstra 已提交
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5893 5894 5895 5896 5897 5898 5899
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
5900
	struct sched_domain *sibling;
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

5911
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
5912 5913

		/* See the comment near build_group_mask(). */
5914
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
5915 5916
			continue;

5917
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5918
				GFP_KERNEL, cpu_to_node(cpu));
5919 5920 5921 5922 5923

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
5924 5925 5926
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
5927 5928 5929 5930
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

5931 5932
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
5933 5934
			build_group_mask(sd, sg);

5935
		/*
5936
		 * Initialize sgc->capacity such that even if we mess up the
5937 5938 5939
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
5940
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5941
		sg->sgc->capacity_orig = sg->sgc->capacity;
5942

P
Peter Zijlstra 已提交
5943 5944 5945 5946 5947
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5948
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5949
		    group_balance_cpu(sg) == cpu)
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5969
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5970
{
5971 5972
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5973

5974 5975
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5976

5977
	if (sg) {
5978
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5979 5980
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5981
	}
5982 5983

	return cpu;
5984 5985
}

5986
/*
5987 5988
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
5989
 * and ->cpu_capacity to 0.
5990 5991
 *
 * Assumes the sched_domain tree is fully constructed
5992
 */
5993 5994
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5995
{
5996 5997 5998
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5999
	struct cpumask *covered;
6000
	int i;
6001

6002 6003 6004
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

6005
	if (cpu != cpumask_first(span))
6006 6007
		return 0;

6008 6009 6010
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6011
	cpumask_clear(covered);
6012

6013 6014
	for_each_cpu(i, span) {
		struct sched_group *sg;
6015
		int group, j;
6016

6017 6018
		if (cpumask_test_cpu(i, covered))
			continue;
6019

6020
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
6021
		cpumask_setall(sched_group_mask(sg));
6022

6023 6024 6025
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6026

6027 6028 6029
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6030

6031 6032 6033 6034 6035 6036 6037
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6038 6039

	return 0;
6040
}
6041

6042
/*
6043
 * Initialize sched groups cpu_capacity.
6044
 *
6045
 * cpu_capacity indicates the capacity of sched group, which is used while
6046
 * distributing the load between different sched groups in a sched domain.
6047 6048 6049 6050
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
6051
 */
6052
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6053
{
6054
	struct sched_group *sg = sd->groups;
6055

6056
	WARN_ON(!sg);
6057 6058 6059 6060 6061

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6062

P
Peter Zijlstra 已提交
6063
	if (cpu != group_balance_cpu(sg))
6064
		return;
6065

6066 6067
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6068 6069
}

6070 6071 6072 6073 6074
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6075
static int default_relax_domain_level = -1;
6076
int sched_domain_level_max;
6077 6078 6079

static int __init setup_relax_domain_level(char *str)
{
6080 6081
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
6082

6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6101
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6102 6103
	} else {
		/* turn on idle balance on this domain */
6104
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6105 6106 6107
	}
}

6108 6109 6110
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6111 6112 6113 6114 6115
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6116 6117
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6118 6119
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6120
	case sa_sd_storage:
6121
		__sdt_free(cpu_map); /* fall through */
6122 6123 6124 6125
	case sa_none:
		break;
	}
}
6126

6127 6128 6129
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6130 6131
	memset(d, 0, sizeof(*d));

6132 6133
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6134 6135 6136
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6137
	d->rd = alloc_rootdomain();
6138
	if (!d->rd)
6139
		return sa_sd;
6140 6141
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6142

6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6155
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6156
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6157

6158 6159
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6160 6161
}

6162 6163
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
6164
enum numa_topology_type sched_numa_topology_type;
6165
static int *sched_domains_numa_distance;
6166
int sched_max_numa_distance;
6167 6168
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6169
#endif
6170

6171 6172 6173
/*
 * SD_flags allowed in topology descriptions.
 *
6174
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6175 6176
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6177
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6178 6179 6180 6181 6182
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6183
	(SD_SHARE_CPUCAPACITY |		\
6184 6185
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6186 6187
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6188 6189

static struct sched_domain *
6190
sd_init(struct sched_domain_topology_level *tl, int cpu)
6191 6192
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6209 6210 6211 6212 6213

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6214
		.imbalance_pct		= 125,
6215 6216 6217 6218

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6219 6220 6221 6222 6223 6224
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6225 6226
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6227
					| 0*SD_BALANCE_WAKE
6228
					| 1*SD_WAKE_AFFINE
6229
					| 0*SD_SHARE_CPUCAPACITY
6230
					| 0*SD_SHARE_PKG_RESOURCES
6231
					| 0*SD_SERIALIZE
6232
					| 0*SD_PREFER_SIBLING
6233 6234
					| 0*SD_NUMA
					| sd_flags
6235
					,
6236

6237 6238
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6239
		.smt_gain		= 0,
6240 6241
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6242 6243 6244
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6245 6246 6247
	};

	/*
6248
	 * Convert topological properties into behaviour.
6249
	 */
6250

6251
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6282 6283 6284 6285

	return sd;
}

6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6312 6313 6314 6315 6316
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

6338
bool find_numa_distance(int distance)
6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402
/*
 * A system can have three types of NUMA topology:
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 *
 * The difference between a glueless mesh topology and a backplane
 * topology lies in whether communication between not directly
 * connected nodes goes through intermediary nodes (where programs
 * could run), or through backplane controllers. This affects
 * placement of programs.
 *
 * The type of topology can be discerned with the following tests:
 * - If the maximum distance between any nodes is 1 hop, the system
 *   is directly connected.
 * - If for two nodes A and B, located N > 1 hops away from each other,
 *   there is an intermediary node C, which is < N hops away from both
 *   nodes A and B, the system is a glueless mesh.
 */
static void init_numa_topology_type(void)
{
	int a, b, c, n;

	n = sched_max_numa_distance;

	if (n <= 1)
		sched_numa_topology_type = NUMA_DIRECT;

	for_each_online_node(a) {
		for_each_online_node(b) {
			/* Find two nodes furthest removed from each other. */
			if (node_distance(a, b) < n)
				continue;

			/* Is there an intermediary node between a and b? */
			for_each_online_node(c) {
				if (node_distance(a, c) < n &&
				    node_distance(b, c) < n) {
					sched_numa_topology_type =
							NUMA_GLUELESS_MESH;
					return;
				}
			}

			sched_numa_topology_type = NUMA_BACKPLANE;
			return;
		}
	}
}

6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6448
		}
6449 6450 6451 6452 6453 6454

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6455
	}
6456 6457 6458 6459

	if (!level)
		return;

6460 6461 6462 6463
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6464
	 * The sched_domains_numa_distance[] array includes the actual distance
6465 6466 6467
	 * numbers.
	 */

6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6494
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6495 6496 6497 6498 6499 6500
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6501
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6502 6503 6504 6505 6506 6507 6508
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6509 6510 6511
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6512
	tl = kzalloc((i + level + 1) *
6513 6514 6515 6516 6517 6518 6519
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6520 6521
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6522 6523 6524 6525 6526 6527 6528

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6529
			.sd_flags = cpu_numa_flags,
6530 6531
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6532
			SD_INIT_NAME(NUMA)
6533 6534 6535 6536
		};
	}

	sched_domain_topology = tl;
6537 6538

	sched_domains_numa_levels = level;
6539
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6540 6541

	init_numa_topology_type();
6542
}
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6590 6591 6592 6593 6594
}
#else
static inline void sched_init_numa(void)
{
}
6595 6596 6597 6598 6599 6600 6601

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6602 6603
#endif /* CONFIG_NUMA */

6604 6605 6606 6607 6608
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6609
	for_each_sd_topology(tl) {
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6620 6621
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6622 6623
			return -ENOMEM;

6624 6625 6626
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6627
			struct sched_group_capacity *sgc;
6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6641 6642
			sg->next = sg;

6643
			*per_cpu_ptr(sdd->sg, j) = sg;
6644

6645
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6646
					GFP_KERNEL, cpu_to_node(j));
6647
			if (!sgc)
6648 6649
				return -ENOMEM;

6650
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6662
	for_each_sd_topology(tl) {
6663 6664 6665
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6677 6678
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6679 6680
		}
		free_percpu(sdd->sd);
6681
		sdd->sd = NULL;
6682
		free_percpu(sdd->sg);
6683
		sdd->sg = NULL;
6684 6685
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6686 6687 6688
	}
}

6689
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6690 6691
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6692
{
6693
	struct sched_domain *sd = sd_init(tl, cpu);
6694
	if (!sd)
6695
		return child;
6696 6697

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6698 6699 6700
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6701
		child->parent = sd;
6702
		sd->child = child;
P
Peter Zijlstra 已提交
6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6717
	}
6718
	set_domain_attribute(sd, attr);
6719 6720 6721 6722

	return sd;
}

6723 6724 6725 6726
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6727 6728
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6729
{
6730
	enum s_alloc alloc_state;
6731
	struct sched_domain *sd;
6732
	struct s_data d;
6733
	int i, ret = -ENOMEM;
6734

6735 6736 6737
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6738

6739
	/* Set up domains for cpus specified by the cpu_map. */
6740
	for_each_cpu(i, cpu_map) {
6741 6742
		struct sched_domain_topology_level *tl;

6743
		sd = NULL;
6744
		for_each_sd_topology(tl) {
6745
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6746 6747
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6748 6749
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6750 6751
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6752
		}
6753 6754 6755 6756 6757 6758
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6759 6760 6761 6762 6763 6764 6765
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6766
		}
6767
	}
6768

6769
	/* Calculate CPU capacity for physical packages and nodes */
6770 6771 6772
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6773

6774 6775
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6776
			init_sched_groups_capacity(i, sd);
6777
		}
6778
	}
6779

L
Linus Torvalds 已提交
6780
	/* Attach the domains */
6781
	rcu_read_lock();
6782
	for_each_cpu(i, cpu_map) {
6783
		sd = *per_cpu_ptr(d.sd, i);
6784
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6785
	}
6786
	rcu_read_unlock();
6787

6788
	ret = 0;
6789
error:
6790
	__free_domain_allocs(&d, alloc_state, cpu_map);
6791
	return ret;
L
Linus Torvalds 已提交
6792
}
P
Paul Jackson 已提交
6793

6794
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6795
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6796 6797
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6798 6799 6800

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6801 6802
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6803
 */
6804
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6805

6806 6807 6808 6809 6810
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6811
int __weak arch_update_cpu_topology(void)
6812
{
6813
	return 0;
6814 6815
}

6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6841
/*
I
Ingo Molnar 已提交
6842
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6843 6844
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6845
 */
6846
static int init_sched_domains(const struct cpumask *cpu_map)
6847
{
6848 6849
	int err;

6850
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6851
	ndoms_cur = 1;
6852
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6853
	if (!doms_cur)
6854 6855
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6856
	err = build_sched_domains(doms_cur[0], NULL);
6857
	register_sched_domain_sysctl();
6858 6859

	return err;
6860 6861 6862 6863 6864 6865
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6866
static void detach_destroy_domains(const struct cpumask *cpu_map)
6867 6868 6869
{
	int i;

6870
	rcu_read_lock();
6871
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6872
		cpu_attach_domain(NULL, &def_root_domain, i);
6873
	rcu_read_unlock();
6874 6875
}

6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6892 6893
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6894
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6895 6896 6897
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6898
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6899 6900 6901
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6902 6903 6904
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6905 6906 6907 6908 6909 6910
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6911
 *
6912
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6913 6914
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6915
 *
P
Paul Jackson 已提交
6916 6917
 * Call with hotplug lock held
 */
6918
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6919
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6920
{
6921
	int i, j, n;
6922
	int new_topology;
P
Paul Jackson 已提交
6923

6924
	mutex_lock(&sched_domains_mutex);
6925

6926 6927 6928
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6929 6930 6931
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6932
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6933 6934 6935

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6936
		for (j = 0; j < n && !new_topology; j++) {
6937
			if (cpumask_equal(doms_cur[i], doms_new[j])
6938
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6939 6940 6941
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6942
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6943 6944 6945 6946
match1:
		;
	}

6947
	n = ndoms_cur;
6948
	if (doms_new == NULL) {
6949
		n = 0;
6950
		doms_new = &fallback_doms;
6951
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6952
		WARN_ON_ONCE(dattr_new);
6953 6954
	}

P
Paul Jackson 已提交
6955 6956
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6957
		for (j = 0; j < n && !new_topology; j++) {
6958
			if (cpumask_equal(doms_new[i], doms_cur[j])
6959
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6960 6961 6962
				goto match2;
		}
		/* no match - add a new doms_new */
6963
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6964 6965 6966 6967 6968
match2:
		;
	}

	/* Remember the new sched domains */
6969 6970
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6971
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6972
	doms_cur = doms_new;
6973
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6974
	ndoms_cur = ndoms_new;
6975 6976

	register_sched_domain_sysctl();
6977

6978
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6979 6980
}

6981 6982
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6983
/*
6984 6985 6986
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6987 6988 6989
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6990
 */
6991 6992
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6993
{
6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

7016
	case CPU_ONLINE:
7017
	case CPU_DOWN_FAILED:
7018
		cpuset_update_active_cpus(true);
7019
		break;
7020 7021 7022
	default:
		return NOTIFY_DONE;
	}
7023
	return NOTIFY_OK;
7024
}
7025

7026 7027
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
7028
{
7029
	switch (action) {
7030
	case CPU_DOWN_PREPARE:
7031
		cpuset_update_active_cpus(false);
7032 7033 7034 7035 7036
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
7037 7038 7039
	default:
		return NOTIFY_DONE;
	}
7040
	return NOTIFY_OK;
7041 7042
}

L
Linus Torvalds 已提交
7043 7044
void __init sched_init_smp(void)
{
7045 7046 7047
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7048
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7049

7050 7051
	sched_init_numa();

7052 7053 7054 7055 7056
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
7057
	mutex_lock(&sched_domains_mutex);
7058
	init_sched_domains(cpu_active_mask);
7059 7060 7061
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7062
	mutex_unlock(&sched_domains_mutex);
7063

7064
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7065 7066
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7067

7068
	init_hrtick();
7069 7070

	/* Move init over to a non-isolated CPU */
7071
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7072
		BUG();
I
Ingo Molnar 已提交
7073
	sched_init_granularity();
7074
	free_cpumask_var(non_isolated_cpus);
7075

7076
	init_sched_rt_class();
7077
	init_sched_dl_class();
L
Linus Torvalds 已提交
7078 7079 7080 7081
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7082
	sched_init_granularity();
L
Linus Torvalds 已提交
7083 7084 7085
}
#endif /* CONFIG_SMP */

7086 7087
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7088 7089 7090 7091 7092 7093 7094
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

7095
#ifdef CONFIG_CGROUP_SCHED
7096 7097 7098 7099
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
7100
struct task_group root_task_group;
7101
LIST_HEAD(task_groups);
7102
#endif
P
Peter Zijlstra 已提交
7103

7104
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
7105

L
Linus Torvalds 已提交
7106 7107
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7108
	int i, j;
7109 7110 7111 7112 7113 7114 7115 7116 7117
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
7118
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7119 7120

#ifdef CONFIG_FAIR_GROUP_SCHED
7121
		root_task_group.se = (struct sched_entity **)ptr;
7122 7123
		ptr += nr_cpu_ids * sizeof(void **);

7124
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7125
		ptr += nr_cpu_ids * sizeof(void **);
7126

7127
#endif /* CONFIG_FAIR_GROUP_SCHED */
7128
#ifdef CONFIG_RT_GROUP_SCHED
7129
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7130 7131
		ptr += nr_cpu_ids * sizeof(void **);

7132
		root_task_group.rt_rq = (struct rt_rq **)ptr;
7133 7134
		ptr += nr_cpu_ids * sizeof(void **);

7135
#endif /* CONFIG_RT_GROUP_SCHED */
7136
	}
7137
#ifdef CONFIG_CPUMASK_OFFSTACK
7138 7139 7140
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7141
	}
7142
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
7143

7144 7145 7146
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7147
			global_rt_period(), global_rt_runtime());
7148

G
Gregory Haskins 已提交
7149 7150 7151 7152
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7153
#ifdef CONFIG_RT_GROUP_SCHED
7154
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7155
			global_rt_period(), global_rt_runtime());
7156
#endif /* CONFIG_RT_GROUP_SCHED */
7157

D
Dhaval Giani 已提交
7158
#ifdef CONFIG_CGROUP_SCHED
7159 7160
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7161
	INIT_LIST_HEAD(&root_task_group.siblings);
7162
	autogroup_init(&init_task);
7163

D
Dhaval Giani 已提交
7164
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7165

7166
	for_each_possible_cpu(i) {
7167
		struct rq *rq;
L
Linus Torvalds 已提交
7168 7169

		rq = cpu_rq(i);
7170
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7171
		rq->nr_running = 0;
7172 7173
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7174
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
7175
		init_rt_rq(&rq->rt, rq);
7176
		init_dl_rq(&rq->dl, rq);
I
Ingo Molnar 已提交
7177
#ifdef CONFIG_FAIR_GROUP_SCHED
7178
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7179
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7180
		/*
7181
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7182 7183 7184 7185
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7186
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7187 7188 7189
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7190
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7191 7192 7193
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7194
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7195
		 *
7196 7197
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7198
		 */
7199
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7200
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7201 7202 7203
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7204
#ifdef CONFIG_RT_GROUP_SCHED
7205
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7206
#endif
L
Linus Torvalds 已提交
7207

I
Ingo Molnar 已提交
7208 7209
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7210 7211 7212

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7213
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7214
		rq->sd = NULL;
G
Gregory Haskins 已提交
7215
		rq->rd = NULL;
7216
		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7217
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7218
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7219
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7220
		rq->push_cpu = 0;
7221
		rq->cpu = i;
7222
		rq->online = 0;
7223 7224
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7225
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7226 7227 7228

		INIT_LIST_HEAD(&rq->cfs_tasks);

7229
		rq_attach_root(rq, &def_root_domain);
7230
#ifdef CONFIG_NO_HZ_COMMON
7231
		rq->nohz_flags = 0;
7232
#endif
7233 7234 7235
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7236
#endif
P
Peter Zijlstra 已提交
7237
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7238 7239 7240
		atomic_set(&rq->nr_iowait, 0);
	}

7241
	set_load_weight(&init_task);
7242

7243 7244 7245 7246
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7260 7261 7262

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7263 7264 7265 7266
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7267

7268
#ifdef CONFIG_SMP
7269
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7270 7271 7272
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7273
	idle_thread_set_boot_cpu();
7274
	set_cpu_rq_start_time();
7275 7276
#endif
	init_sched_fair_class();
7277

7278
	scheduler_running = 1;
L
Linus Torvalds 已提交
7279 7280
}

7281
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7282 7283
static inline int preempt_count_equals(int preempt_offset)
{
7284
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7285

A
Arnd Bergmann 已提交
7286
	return (nested == preempt_offset);
7287 7288
}

7289
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7290
{
P
Peter Zijlstra 已提交
7291 7292 7293 7294 7295
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
7296
	if (WARN_ONCE(current->state != TASK_RUNNING,
P
Peter Zijlstra 已提交
7297 7298 7299 7300 7301 7302 7303
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
			(void *)current->task_state_change))
		__set_current_state(TASK_RUNNING);

7304 7305 7306 7307 7308
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7309 7310 7311
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7312
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7313 7314
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7315
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7316 7317 7318 7319 7320
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7321 7322 7323 7324 7325 7326 7327
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7328

7329 7330 7331
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
7332 7333 7334
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7335 7336 7337 7338 7339 7340 7341
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7342
	dump_stack();
L
Linus Torvalds 已提交
7343
}
7344
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
7345 7346 7347
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7348 7349
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7350
	const struct sched_class *prev_class = p->sched_class;
7351 7352 7353
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
P
Peter Zijlstra 已提交
7354
	int old_prio = p->prio;
7355
	int queued;
7356

7357 7358
	queued = task_on_rq_queued(p);
	if (queued)
7359
		dequeue_task(rq, p, 0);
7360
	__setscheduler(rq, p, &attr);
7361
	if (queued) {
7362
		enqueue_task(rq, p, 0);
7363
		resched_curr(rq);
7364
	}
P
Peter Zijlstra 已提交
7365 7366

	check_class_changed(rq, p, prev_class, old_prio);
7367 7368
}

L
Linus Torvalds 已提交
7369 7370
void normalize_rt_tasks(void)
{
7371
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7372
	unsigned long flags;
7373
	struct rq *rq;
L
Linus Torvalds 已提交
7374

7375
	read_lock(&tasklist_lock);
7376
	for_each_process_thread(g, p) {
7377 7378 7379
		/*
		 * Only normalize user tasks:
		 */
7380
		if (p->flags & PF_KTHREAD)
7381 7382
			continue;

I
Ingo Molnar 已提交
7383 7384
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7385 7386 7387
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7388
#endif
I
Ingo Molnar 已提交
7389

7390
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7391 7392 7393 7394
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7395
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
7396
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7397
			continue;
I
Ingo Molnar 已提交
7398
		}
L
Linus Torvalds 已提交
7399

7400
		rq = task_rq_lock(p, &flags);
7401
		normalize_task(rq, p);
7402
		task_rq_unlock(rq, p, &flags);
7403
	}
7404
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7405 7406 7407
}

#endif /* CONFIG_MAGIC_SYSRQ */
7408

7409
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7410
/*
7411
 * These functions are only useful for the IA64 MCA handling, or kdb.
7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7425 7426
 *
 * Return: The current task for @cpu.
7427
 */
7428
struct task_struct *curr_task(int cpu)
7429 7430 7431 7432
{
	return cpu_curr(cpu);
}

7433 7434 7435
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7436 7437 7438 7439 7440 7441
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7442 7443
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7444 7445 7446 7447 7448 7449 7450
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7451
void set_curr_task(int cpu, struct task_struct *p)
7452 7453 7454 7455 7456
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7457

D
Dhaval Giani 已提交
7458
#ifdef CONFIG_CGROUP_SCHED
7459 7460 7461
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7462 7463 7464 7465
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7466
	autogroup_free(tg);
7467 7468 7469 7470
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7471
struct task_group *sched_create_group(struct task_group *parent)
7472 7473 7474 7475 7476 7477 7478
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7479
	if (!alloc_fair_sched_group(tg, parent))
7480 7481
		goto err;

7482
	if (!alloc_rt_sched_group(tg, parent))
7483 7484
		goto err;

7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7496
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7497
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7498 7499 7500 7501 7502

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7503
	list_add_rcu(&tg->siblings, &parent->children);
7504
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7505 7506
}

7507
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7508
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7509 7510
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7511
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7512 7513
}

7514
/* Destroy runqueue etc associated with a task group */
7515
void sched_destroy_group(struct task_group *tg)
7516 7517 7518 7519 7520 7521
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7522
{
7523
	unsigned long flags;
7524
	int i;
S
Srivatsa Vaddagiri 已提交
7525

7526 7527
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7528
		unregister_fair_sched_group(tg, i);
7529 7530

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7531
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7532
	list_del_rcu(&tg->siblings);
7533
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7534 7535
}

7536
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7537 7538 7539
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7540 7541
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7542
{
P
Peter Zijlstra 已提交
7543
	struct task_group *tg;
7544
	int queued, running;
S
Srivatsa Vaddagiri 已提交
7545 7546 7547 7548 7549
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7550
	running = task_current(rq, tsk);
7551
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7552

7553
	if (queued)
S
Srivatsa Vaddagiri 已提交
7554
		dequeue_task(rq, tsk, 0);
7555
	if (unlikely(running))
7556
		put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7557

7558 7559 7560 7561 7562 7563
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
7564 7565 7566 7567
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7568
#ifdef CONFIG_FAIR_GROUP_SCHED
7569
	if (tsk->sched_class->task_move_group)
7570
		tsk->sched_class->task_move_group(tsk, queued);
7571
	else
P
Peter Zijlstra 已提交
7572
#endif
7573
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7574

7575 7576
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7577
	if (queued)
7578
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7579

7580
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7581
}
D
Dhaval Giani 已提交
7582
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7583

7584 7585 7586 7587 7588
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7589

P
Peter Zijlstra 已提交
7590 7591
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7592
{
P
Peter Zijlstra 已提交
7593
	struct task_struct *g, *p;
7594

7595
	for_each_process_thread(g, p) {
7596
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
7597
			return 1;
7598
	}
7599

P
Peter Zijlstra 已提交
7600 7601
	return 0;
}
7602

P
Peter Zijlstra 已提交
7603 7604 7605 7606 7607
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7608

7609
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7610 7611 7612 7613 7614
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7615

P
Peter Zijlstra 已提交
7616 7617
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7618

P
Peter Zijlstra 已提交
7619 7620 7621
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7622 7623
	}

7624 7625 7626 7627 7628
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7629

7630 7631 7632
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7633 7634
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7635

P
Peter Zijlstra 已提交
7636
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7637

7638 7639 7640 7641 7642
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7643

7644 7645 7646
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7647 7648 7649
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7650

P
Peter Zijlstra 已提交
7651 7652 7653 7654
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7655

P
Peter Zijlstra 已提交
7656
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7657
	}
P
Peter Zijlstra 已提交
7658

P
Peter Zijlstra 已提交
7659 7660 7661 7662
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7663 7664
}

P
Peter Zijlstra 已提交
7665
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7666
{
7667 7668
	int ret;

P
Peter Zijlstra 已提交
7669 7670 7671 7672 7673 7674
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7675 7676 7677 7678 7679
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7680 7681
}

7682
static int tg_set_rt_bandwidth(struct task_group *tg,
7683
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7684
{
P
Peter Zijlstra 已提交
7685
	int i, err = 0;
P
Peter Zijlstra 已提交
7686 7687

	mutex_lock(&rt_constraints_mutex);
7688
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7689 7690
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7691
		goto unlock;
P
Peter Zijlstra 已提交
7692

7693
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7694 7695
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7696 7697 7698 7699

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7700
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7701
		rt_rq->rt_runtime = rt_runtime;
7702
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7703
	}
7704
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7705
unlock:
7706
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7707 7708 7709
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7710 7711
}

7712
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7713 7714 7715 7716 7717 7718 7719 7720
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7721
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7722 7723
}

7724
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7725 7726 7727
{
	u64 rt_runtime_us;

7728
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7729 7730
		return -1;

7731
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7732 7733 7734
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7735

7736
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7737 7738 7739 7740 7741 7742
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7743 7744 7745
	if (rt_period == 0)
		return -EINVAL;

7746
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7747 7748
}

7749
static long sched_group_rt_period(struct task_group *tg)
7750 7751 7752 7753 7754 7755 7756
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7757
#endif /* CONFIG_RT_GROUP_SCHED */
7758

7759
#ifdef CONFIG_RT_GROUP_SCHED
7760 7761 7762 7763 7764
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7765
	read_lock(&tasklist_lock);
7766
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7767
	read_unlock(&tasklist_lock);
7768 7769 7770 7771
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7772

7773
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7774 7775 7776 7777 7778 7779 7780 7781
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7782
#else /* !CONFIG_RT_GROUP_SCHED */
7783 7784
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7785
	unsigned long flags;
7786
	int i, ret = 0;
7787

7788
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7789 7790 7791
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7792
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7793
		rt_rq->rt_runtime = global_rt_runtime();
7794
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7795
	}
7796
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7797

7798
	return ret;
7799
}
7800
#endif /* CONFIG_RT_GROUP_SCHED */
7801

7802 7803
static int sched_dl_global_constraints(void)
{
7804 7805
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7806
	u64 new_bw = to_ratio(period, runtime);
7807
	struct dl_bw *dl_b;
7808
	int cpu, ret = 0;
7809
	unsigned long flags;
7810 7811 7812 7813 7814 7815 7816 7817 7818 7819

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7820
	for_each_possible_cpu(cpu) {
7821 7822
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7823

7824
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7825 7826
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7827
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7828

7829 7830
		rcu_read_unlock_sched();

7831 7832
		if (ret)
			break;
7833 7834
	}

7835
	return ret;
7836 7837
}

7838
static void sched_dl_do_global(void)
7839
{
7840
	u64 new_bw = -1;
7841
	struct dl_bw *dl_b;
7842
	int cpu;
7843
	unsigned long flags;
7844

7845 7846 7847 7848 7849 7850 7851 7852 7853 7854
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
7855 7856
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
7857

7858
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7859
		dl_b->bw = new_bw;
7860
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7861 7862

		rcu_read_unlock_sched();
7863
	}
7864 7865 7866 7867 7868 7869 7870
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7871 7872
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7873 7874 7875 7876 7877 7878 7879 7880 7881
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7882 7883
}

7884
int sched_rt_handler(struct ctl_table *table, int write,
7885
		void __user *buffer, size_t *lenp,
7886 7887 7888 7889
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7890
	int ret;
7891 7892 7893 7894 7895

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7896
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7897 7898

	if (!ret && write) {
7899 7900 7901 7902
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7903
		ret = sched_rt_global_constraints();
7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917
		if (ret)
			goto undo;

		ret = sched_dl_global_constraints();
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7918 7919 7920 7921 7922
	}
	mutex_unlock(&mutex);

	return ret;
}
7923

7924
int sched_rr_handler(struct ctl_table *table, int write,
7925 7926 7927 7928 7929 7930 7931 7932
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7933 7934
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
7935
	if (!ret && write) {
7936 7937
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7938 7939 7940 7941 7942
	}
	mutex_unlock(&mutex);
	return ret;
}

7943
#ifdef CONFIG_CGROUP_SCHED
7944

7945
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7946
{
7947
	return css ? container_of(css, struct task_group, css) : NULL;
7948 7949
}

7950 7951
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7952
{
7953 7954
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7955

7956
	if (!parent) {
7957
		/* This is early initialization for the top cgroup */
7958
		return &root_task_group.css;
7959 7960
	}

7961
	tg = sched_create_group(parent);
7962 7963 7964 7965 7966 7967
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7968
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7969
{
7970
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
7971
	struct task_group *parent = css_tg(css->parent);
7972

T
Tejun Heo 已提交
7973 7974
	if (parent)
		sched_online_group(tg, parent);
7975 7976 7977
	return 0;
}

7978
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7979
{
7980
	struct task_group *tg = css_tg(css);
7981 7982 7983 7984

	sched_destroy_group(tg);
}

7985
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7986
{
7987
	struct task_group *tg = css_tg(css);
7988 7989 7990 7991

	sched_offline_group(tg);
}

7992 7993 7994 7995 7996
static void cpu_cgroup_fork(struct task_struct *task)
{
	sched_move_task(task);
}

7997
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7998
				 struct cgroup_taskset *tset)
7999
{
8000 8001
	struct task_struct *task;

8002
	cgroup_taskset_for_each(task, tset) {
8003
#ifdef CONFIG_RT_GROUP_SCHED
8004
		if (!sched_rt_can_attach(css_tg(css), task))
8005
			return -EINVAL;
8006
#else
8007 8008 8009
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
8010
#endif
8011
	}
8012 8013
	return 0;
}
8014

8015
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8016
			      struct cgroup_taskset *tset)
8017
{
8018 8019
	struct task_struct *task;

8020
	cgroup_taskset_for_each(task, tset)
8021
		sched_move_task(task);
8022 8023
}

8024 8025 8026
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

8039
#ifdef CONFIG_FAIR_GROUP_SCHED
8040 8041
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
8042
{
8043
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8044 8045
}

8046 8047
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
8048
{
8049
	struct task_group *tg = css_tg(css);
8050

8051
	return (u64) scale_load_down(tg->shares);
8052
}
8053 8054

#ifdef CONFIG_CFS_BANDWIDTH
8055 8056
static DEFINE_MUTEX(cfs_constraints_mutex);

8057 8058 8059
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

8060 8061
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

8062 8063
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
8064
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8065
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

8086 8087 8088 8089 8090
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
8091 8092 8093 8094 8095
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

8096
	runtime_enabled = quota != RUNTIME_INF;
8097
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8098 8099 8100 8101 8102 8103
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
8104 8105 8106
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
8107

P
Paul Turner 已提交
8108
	__refill_cfs_bandwidth_runtime(cfs_b);
8109 8110 8111
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
8112
		__start_cfs_bandwidth(cfs_b, true);
8113
	}
8114 8115
	raw_spin_unlock_irq(&cfs_b->lock);

8116
	for_each_online_cpu(i) {
8117
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8118
		struct rq *rq = cfs_rq->rq;
8119 8120

		raw_spin_lock_irq(&rq->lock);
8121
		cfs_rq->runtime_enabled = runtime_enabled;
8122
		cfs_rq->runtime_remaining = 0;
8123

8124
		if (cfs_rq->throttled)
8125
			unthrottle_cfs_rq(cfs_rq);
8126 8127
		raw_spin_unlock_irq(&rq->lock);
	}
8128 8129
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
8130 8131
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
8132
	put_online_cpus();
8133

8134
	return ret;
8135 8136 8137 8138 8139 8140
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

8141
	period = ktime_to_ns(tg->cfs_bandwidth.period);
8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

8154
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8155 8156
		return -1;

8157
	quota_us = tg->cfs_bandwidth.quota;
8158 8159 8160 8161 8162 8163 8164 8165 8166 8167
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
8168
	quota = tg->cfs_bandwidth.quota;
8169 8170 8171 8172 8173 8174 8175 8176

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8177
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8178 8179 8180 8181 8182
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8183 8184
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8185
{
8186
	return tg_get_cfs_quota(css_tg(css));
8187 8188
}

8189 8190
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8191
{
8192
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8193 8194
}

8195 8196
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8197
{
8198
	return tg_get_cfs_period(css_tg(css));
8199 8200
}

8201 8202
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8203
{
8204
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8205 8206
}

8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8239
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8240 8241 8242 8243 8244
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8245
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8246 8247

		quota = normalize_cfs_quota(tg, d);
8248
		parent_quota = parent_b->hierarchical_quota;
8249 8250 8251 8252 8253 8254 8255 8256 8257 8258

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8259
	cfs_b->hierarchical_quota = quota;
8260 8261 8262 8263 8264 8265

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8266
	int ret;
8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8278 8279 8280 8281 8282
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8283
}
8284

8285
static int cpu_stats_show(struct seq_file *sf, void *v)
8286
{
8287
	struct task_group *tg = css_tg(seq_css(sf));
8288
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8289

8290 8291 8292
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8293 8294 8295

	return 0;
}
8296
#endif /* CONFIG_CFS_BANDWIDTH */
8297
#endif /* CONFIG_FAIR_GROUP_SCHED */
8298

8299
#ifdef CONFIG_RT_GROUP_SCHED
8300 8301
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8302
{
8303
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8304 8305
}

8306 8307
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8308
{
8309
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8310
}
8311

8312 8313
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8314
{
8315
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8316 8317
}

8318 8319
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8320
{
8321
	return sched_group_rt_period(css_tg(css));
8322
}
8323
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8324

8325
static struct cftype cpu_files[] = {
8326
#ifdef CONFIG_FAIR_GROUP_SCHED
8327 8328
	{
		.name = "shares",
8329 8330
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8331
	},
8332
#endif
8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8344 8345
	{
		.name = "stat",
8346
		.seq_show = cpu_stats_show,
8347
	},
8348
#endif
8349
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8350
	{
P
Peter Zijlstra 已提交
8351
		.name = "rt_runtime_us",
8352 8353
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8354
	},
8355 8356
	{
		.name = "rt_period_us",
8357 8358
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8359
	},
8360
#endif
8361
	{ }	/* terminate */
8362 8363
};

8364
struct cgroup_subsys cpu_cgrp_subsys = {
8365 8366
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8367 8368
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8369
	.fork		= cpu_cgroup_fork,
8370 8371
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8372
	.exit		= cpu_cgroup_exit,
8373
	.legacy_cftypes	= cpu_files,
8374 8375 8376
	.early_init	= 1,
};

8377
#endif	/* CONFIG_CGROUP_SCHED */
8378

8379 8380 8381 8382 8383
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}