core.c 194.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
L
Linus Torvalds 已提交
75

76
#include <asm/switch_to.h>
77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
79
#include <asm/mutex.h>
G
Glauber Costa 已提交
80 81 82
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
83

84
#include "sched.h"
85
#include "../workqueue_sched.h"
86
#include "../smpboot.h"
87

88
#define CREATE_TRACE_POINTS
89
#include <trace/events/sched.h>
90

91
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92
{
93 94
	unsigned long delta;
	ktime_t soft, hard, now;
95

96 97 98 99 100 101
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
102

103 104 105 106 107 108 109 110
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

111 112
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113

114
static void update_rq_clock_task(struct rq *rq, s64 delta);
115

116
void update_rq_clock(struct rq *rq)
117
{
118
	s64 delta;
119

120
	if (rq->skip_clock_update > 0)
121
		return;
122

123 124 125
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
126 127
}

I
Ingo Molnar 已提交
128 129 130
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
131 132 133 134

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
135
const_debug unsigned int sysctl_sched_features =
136
#include "features.h"
P
Peter Zijlstra 已提交
137 138 139 140 141 142 143 144
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

145
static const char * const sched_feat_names[] = {
146
#include "features.h"
P
Peter Zijlstra 已提交
147 148 149 150
};

#undef SCHED_FEAT

L
Li Zefan 已提交
151
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
152 153 154
{
	int i;

155
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
156 157 158
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
159
	}
L
Li Zefan 已提交
160
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
161

L
Li Zefan 已提交
162
	return 0;
P
Peter Zijlstra 已提交
163 164
}

165 166
#ifdef HAVE_JUMP_LABEL

167 168
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
169 170 171 172

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

173
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 175 176 177 178 179 180
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
181 182
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
183 184 185 186
}

static void sched_feat_enable(int i)
{
187 188
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
189 190 191 192 193 194
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

195
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
196 197
{
	int i;
198
	int neg = 0;
P
Peter Zijlstra 已提交
199

H
Hillf Danton 已提交
200
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
201 202 203 204
		neg = 1;
		cmp += 3;
	}

205
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
206
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
207
			if (neg) {
P
Peter Zijlstra 已提交
208
				sysctl_sched_features &= ~(1UL << i);
209 210
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
211
				sysctl_sched_features |= (1UL << i);
212 213
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
214 215 216 217
			break;
		}
	}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
239
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
240 241
		return -EINVAL;

242
	*ppos += cnt;
P
Peter Zijlstra 已提交
243 244 245 246

	return cnt;
}

L
Li Zefan 已提交
247 248 249 250 251
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

252
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
253 254 255 256 257
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
258 259 260 261 262 263 264 265 266 267
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
268
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
269

270 271 272 273 274 275
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

276 277 278 279 280 281 282 283
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
284
/*
P
Peter Zijlstra 已提交
285
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
286 287
 * default: 1s
 */
P
Peter Zijlstra 已提交
288
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
289

290
__read_mostly int scheduler_running;
291

P
Peter Zijlstra 已提交
292 293 294 295 296
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
297 298


L
Linus Torvalds 已提交
299

300
/*
301
 * __task_rq_lock - lock the rq @p resides on.
302
 */
303
static inline struct rq *__task_rq_lock(struct task_struct *p)
304 305
	__acquires(rq->lock)
{
306 307
	struct rq *rq;

308 309
	lockdep_assert_held(&p->pi_lock);

310
	for (;;) {
311
		rq = task_rq(p);
312
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
313
		if (likely(rq == task_rq(p)))
314
			return rq;
315
		raw_spin_unlock(&rq->lock);
316 317 318
	}
}

L
Linus Torvalds 已提交
319
/*
320
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
321
 */
322
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
324 325
	__acquires(rq->lock)
{
326
	struct rq *rq;
L
Linus Torvalds 已提交
327

328
	for (;;) {
329
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
330
		rq = task_rq(p);
331
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
332
		if (likely(rq == task_rq(p)))
333
			return rq;
334 335
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
336 337 338
	}
}

A
Alexey Dobriyan 已提交
339
static void __task_rq_unlock(struct rq *rq)
340 341
	__releases(rq->lock)
{
342
	raw_spin_unlock(&rq->lock);
343 344
}

345 346
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
347
	__releases(rq->lock)
348
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
349
{
350 351
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
352 353 354
}

/*
355
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
356
 */
A
Alexey Dobriyan 已提交
357
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
358 359
	__acquires(rq->lock)
{
360
	struct rq *rq;
L
Linus Torvalds 已提交
361 362 363

	local_irq_disable();
	rq = this_rq();
364
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
365 366 367 368

	return rq;
}

P
Peter Zijlstra 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

397
	raw_spin_lock(&rq->lock);
398
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
399
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
400
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
401 402 403 404

	return HRTIMER_NORESTART;
}

405
#ifdef CONFIG_SMP
406 407 408 409
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
410
{
411
	struct rq *rq = arg;
412

413
	raw_spin_lock(&rq->lock);
414 415
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
416
	raw_spin_unlock(&rq->lock);
417 418
}

419 420 421 422 423
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
424
void hrtick_start(struct rq *rq, u64 delay)
425
{
426 427
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
428

429
	hrtimer_set_expires(timer, time);
430 431 432 433

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
434
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
435 436
		rq->hrtick_csd_pending = 1;
	}
437 438 439 440 441 442 443 444 445 446 447 448 449 450
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
451
		hrtick_clear(cpu_rq(cpu));
452 453 454 455 456 457
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

458
static __init void init_hrtick(void)
459 460 461
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
462 463 464 465 466 467
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
468
void hrtick_start(struct rq *rq, u64 delay)
469
{
470
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
471
			HRTIMER_MODE_REL_PINNED, 0);
472
}
473

A
Andrew Morton 已提交
474
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
475 476
{
}
477
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
478

479
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
480
{
481 482
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
483

484 485 486 487
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
488

489 490
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
491
}
A
Andrew Morton 已提交
492
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
493 494 495 496 497 498 499 500
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

501 502 503
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
504
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
505

I
Ingo Molnar 已提交
506 507 508 509 510 511 512 513 514 515
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
A
Al Viro 已提交
516
#define tsk_is_polling(t) 0
I
Ingo Molnar 已提交
517 518
#endif

519
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
520 521 522
{
	int cpu;

523
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
524

525
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
526 527
		return;

528
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
529 530 531 532 533 534 535 536 537 538 539

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

540
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
541 542 543 544
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

545
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
546 547
		return;
	resched_task(cpu_curr(cpu));
548
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
549
}
550 551

#ifdef CONFIG_NO_HZ
552 553 554 555 556 557 558 559 560 561 562 563 564 565
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

566
	rcu_read_lock();
567
	for_each_domain(cpu, sd) {
568 569 570 571 572 573
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
574
	}
575 576
unlock:
	rcu_read_unlock();
577 578
	return cpu;
}
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
605 606

	/*
607 608 609
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
610
	 */
611
	set_tsk_need_resched(rq->idle);
612

613 614 615 616
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
617 618
}

619
static inline bool got_nohz_idle_kick(void)
620
{
621 622
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
623 624
}

625
#else /* CONFIG_NO_HZ */
626

627
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
628
{
629
	return false;
P
Peter Zijlstra 已提交
630 631
}

632
#endif /* CONFIG_NO_HZ */
633

634
void sched_avg_update(struct rq *rq)
635
{
636 637 638
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
639 640 641 642 643 644
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
645 646 647
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
648 649
}

650
#else /* !CONFIG_SMP */
651
void resched_task(struct task_struct *p)
652
{
653
	assert_raw_spin_locked(&task_rq(p)->lock);
654
	set_tsk_need_resched(p);
655
}
656
#endif /* CONFIG_SMP */
657

658 659
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
660
/*
661 662 663 664
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
665
 */
666
int walk_tg_tree_from(struct task_group *from,
667
			     tg_visitor down, tg_visitor up, void *data)
668 669
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
670
	int ret;
671

672 673
	parent = from;

674
down:
P
Peter Zijlstra 已提交
675 676
	ret = (*down)(parent, data);
	if (ret)
677
		goto out;
678 679 680 681 682 683 684
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
685
	ret = (*up)(parent, data);
686 687
	if (ret || parent == from)
		goto out;
688 689 690 691 692

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
693
out:
P
Peter Zijlstra 已提交
694
	return ret;
695 696
}

697
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
698
{
699
	return 0;
P
Peter Zijlstra 已提交
700
}
701 702
#endif

703 704
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
705 706 707
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
708 709 710 711
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
712
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
713
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
714 715
		return;
	}
716

717
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
718
	load->inv_weight = prio_to_wmult[prio];
719 720
}

721
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
722
{
723
	update_rq_clock(rq);
I
Ingo Molnar 已提交
724
	sched_info_queued(p);
725
	p->sched_class->enqueue_task(rq, p, flags);
726 727
}

728
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
729
{
730
	update_rq_clock(rq);
731
	sched_info_dequeued(p);
732
	p->sched_class->dequeue_task(rq, p, flags);
733 734
}

735
void activate_task(struct rq *rq, struct task_struct *p, int flags)
736 737 738 739
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

740
	enqueue_task(rq, p, flags);
741 742
}

743
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
744 745 746 747
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

748
	dequeue_task(rq, p, flags);
749 750
}

751
static void update_rq_clock_task(struct rq *rq, s64 delta)
752
{
753 754 755 756 757 758 759 760
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
761
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
783 784
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
785
	if (static_key_false((&paravirt_steal_rq_enabled))) {
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

803 804
	rq->clock_task += delta;

805 806 807 808
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
809 810
}

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

841
/*
I
Ingo Molnar 已提交
842
 * __normal_prio - return the priority that is based on the static prio
843 844 845
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
846
	return p->static_prio;
847 848
}

849 850 851 852 853 854 855
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
856
static inline int normal_prio(struct task_struct *p)
857 858 859
{
	int prio;

860
	if (task_has_rt_policy(p))
861 862 863 864 865 866 867 868 869 870 871 872 873
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
874
static int effective_prio(struct task_struct *p)
875 876 877 878 879 880 881 882 883 884 885 886
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
887 888 889 890
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
891
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
892 893 894 895
{
	return cpu_curr(task_cpu(p)) == p;
}

896 897
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
898
				       int oldprio)
899 900 901
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
902 903 904 905
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
906 907
}

908
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
929
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
930 931 932
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
933
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
934
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
935
{
936 937 938 939 940
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
941 942
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
943 944

#ifdef CONFIG_LOCKDEP
945 946 947 948 949
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
950
	 * see task_group().
951 952 953 954
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
955 956 957
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
958 959
#endif

960
	trace_sched_migrate_task(p, new_cpu);
961

962 963
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
964
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
965
	}
I
Ingo Molnar 已提交
966 967

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
968 969
}

970
struct migration_arg {
971
	struct task_struct *task;
L
Linus Torvalds 已提交
972
	int dest_cpu;
973
};
L
Linus Torvalds 已提交
974

975 976
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
977 978 979
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
980 981 982 983 984 985 986
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
987 988 989 990 991 992
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
993
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
994 995
{
	unsigned long flags;
I
Ingo Molnar 已提交
996
	int running, on_rq;
R
Roland McGrath 已提交
997
	unsigned long ncsw;
998
	struct rq *rq;
L
Linus Torvalds 已提交
999

1000 1001 1002 1003 1004 1005 1006 1007
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1020 1021 1022
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1023
			cpu_relax();
R
Roland McGrath 已提交
1024
		}
1025

1026 1027 1028 1029 1030 1031
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1032
		trace_sched_wait_task(p);
1033
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1034
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1035
		ncsw = 0;
1036
		if (!match_state || p->state == match_state)
1037
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1038
		task_rq_unlock(rq, p, &flags);
1039

R
Roland McGrath 已提交
1040 1041 1042 1043 1044 1045
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1056

1057 1058 1059 1060 1061
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1062
		 * So if it was still runnable (but just not actively
1063 1064 1065 1066
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1067 1068 1069 1070
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1071 1072
			continue;
		}
1073

1074 1075 1076 1077 1078 1079 1080
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1081 1082

	return ncsw;
L
Linus Torvalds 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1092
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1093 1094 1095 1096 1097
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1098
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1108
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1109
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1110

1111
#ifdef CONFIG_SMP
1112
/*
1113
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1114
 */
1115 1116 1117
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1118 1119
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1120 1121

	/* Look for allowed, online CPU in same node. */
1122
	for_each_cpu(dest_cpu, nodemask) {
1123 1124 1125 1126
		if (!cpu_online(dest_cpu))
			continue;
		if (!cpu_active(dest_cpu))
			continue;
1127
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1128
			return dest_cpu;
1129
	}
1130

1131 1132
	for (;;) {
		/* Any allowed, online CPU? */
1133
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1134 1135 1136 1137 1138 1139
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1140

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk_sched("process %d (%s) no longer affine to cpu%d\n",
					task_pid_nr(p), p->comm, cpu);
		}
1170 1171 1172 1173 1174
	}

	return dest_cpu;
}

1175
/*
1176
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1177
 */
1178
static inline
1179
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1180
{
1181
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1193
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1194
		     !cpu_online(cpu)))
1195
		cpu = select_fallback_rq(task_cpu(p), p);
1196 1197

	return cpu;
1198
}
1199 1200 1201 1202 1203 1204

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1205 1206
#endif

P
Peter Zijlstra 已提交
1207
static void
1208
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1209
{
P
Peter Zijlstra 已提交
1210
#ifdef CONFIG_SCHEDSTATS
1211 1212
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1223
		rcu_read_lock();
P
Peter Zijlstra 已提交
1224 1225 1226 1227 1228 1229
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1230
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1231
	}
1232 1233 1234 1235

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1236 1237 1238
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1239
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1240 1241

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1242
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1243 1244 1245 1246 1247 1248

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1249
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1250
	p->on_rq = 1;
1251 1252 1253 1254

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1255 1256
}

1257 1258 1259
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1260
static void
1261
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1262
{
1263
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1264 1265 1266 1267 1268 1269 1270
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1271
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1317
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1318
static void sched_ttwu_pending(void)
1319 1320
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1321 1322
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1323 1324 1325

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1326 1327 1328
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1329 1330 1331 1332 1333 1334 1335 1336
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1337
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1354
	sched_ttwu_pending();
1355 1356 1357 1358

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1359 1360
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1361
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1362
	}
1363
	irq_exit();
1364 1365 1366 1367
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1368
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1369 1370
		smp_send_reschedule(cpu);
}
1371

1372
bool cpus_share_cache(int this_cpu, int that_cpu)
1373 1374 1375
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1376
#endif /* CONFIG_SMP */
1377

1378 1379 1380 1381
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1382
#if defined(CONFIG_SMP)
1383
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1384
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1385 1386 1387 1388 1389
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1390 1391 1392
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1393 1394 1395
}

/**
L
Linus Torvalds 已提交
1396
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1397
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1398
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1399
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1400 1401 1402 1403 1404 1405 1406
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1407 1408
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1409
 */
1410 1411
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1412 1413
{
	unsigned long flags;
1414
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1415

1416
	smp_wmb();
1417
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1418
	if (!(p->state & state))
L
Linus Torvalds 已提交
1419 1420
		goto out;

1421
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1422 1423
	cpu = task_cpu(p);

1424 1425
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1426 1427

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1428
	/*
1429 1430
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1431
	 */
1432
	while (p->on_cpu)
1433
		cpu_relax();
1434
	/*
1435
	 * Pairs with the smp_wmb() in finish_lock_switch().
1436
	 */
1437
	smp_rmb();
L
Linus Torvalds 已提交
1438

1439
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1440
	p->state = TASK_WAKING;
1441

1442
	if (p->sched_class->task_waking)
1443
		p->sched_class->task_waking(p);
1444

1445
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1446 1447
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1448
		set_task_cpu(p, cpu);
1449
	}
L
Linus Torvalds 已提交
1450 1451
#endif /* CONFIG_SMP */

1452 1453
	ttwu_queue(p, cpu);
stat:
1454
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1455
out:
1456
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1457 1458 1459 1460

	return success;
}

T
Tejun Heo 已提交
1461 1462 1463 1464
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1465
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1466
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1467
 * the current task.
T
Tejun Heo 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1477 1478 1479 1480 1481 1482
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1483
	if (!(p->state & TASK_NORMAL))
1484
		goto out;
T
Tejun Heo 已提交
1485

P
Peter Zijlstra 已提交
1486
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1487 1488
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1489
	ttwu_do_wakeup(rq, p, 0);
1490
	ttwu_stat(p, smp_processor_id(), 0);
1491 1492
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1493 1494
}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1506
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1507
{
1508
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1509 1510 1511
}
EXPORT_SYMBOL(wake_up_process);

1512
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1513 1514 1515 1516 1517 1518 1519
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1520 1521 1522 1523 1524
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1525 1526 1527
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1528 1529
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1530
	p->se.prev_sum_exec_runtime	= 0;
1531
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1532
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1533
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1534 1535

#ifdef CONFIG_SCHEDSTATS
1536
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1537
#endif
N
Nick Piggin 已提交
1538

P
Peter Zijlstra 已提交
1539
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1540

1541 1542 1543
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1544 1545 1546 1547

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
		p->mm->numa_next_scan = jiffies;
1548
		p->mm->numa_next_reset = jiffies;
1549 1550 1551 1552 1553 1554
		p->mm->numa_scan_seq = 0;
	}

	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
	p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1555
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1556 1557
	p->numa_work.next = &p->numa_work;
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1558 1559
}

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
#ifdef CONFIG_NUMA_BALANCING
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
#endif /* CONFIG_NUMA_BALANCING */

I
Ingo Molnar 已提交
1570 1571 1572
/*
 * fork()/clone()-time setup:
 */
1573
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1574
{
1575
	unsigned long flags;
I
Ingo Molnar 已提交
1576 1577 1578
	int cpu = get_cpu();

	__sched_fork(p);
1579
	/*
1580
	 * We mark the process as running here. This guarantees that
1581 1582 1583
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1584
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1585

1586 1587 1588 1589 1590
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1591 1592 1593 1594
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1595
		if (task_has_rt_policy(p)) {
1596
			p->policy = SCHED_NORMAL;
1597
			p->static_prio = NICE_TO_PRIO(0);
1598 1599 1600 1601 1602 1603
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1604

1605 1606 1607 1608 1609 1610
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1611

H
Hiroshi Shimamoto 已提交
1612 1613
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1614

P
Peter Zijlstra 已提交
1615 1616 1617
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1618 1619 1620 1621 1622 1623 1624
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1625
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1626
	set_task_cpu(p, cpu);
1627
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1628

1629
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1630
	if (likely(sched_info_on()))
1631
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1632
#endif
P
Peter Zijlstra 已提交
1633 1634
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1635
#endif
1636
#ifdef CONFIG_PREEMPT_COUNT
1637
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1638
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1639
#endif
1640
#ifdef CONFIG_SMP
1641
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1642
#endif
1643

N
Nick Piggin 已提交
1644
	put_cpu();
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1654
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1655 1656
{
	unsigned long flags;
I
Ingo Molnar 已提交
1657
	struct rq *rq;
1658

1659
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1660 1661 1662 1663 1664 1665
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1666
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1667 1668
#endif

1669
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1670
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1671
	p->on_rq = 1;
1672
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1673
	check_preempt_curr(rq, p, WF_FORK);
1674
#ifdef CONFIG_SMP
1675 1676
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1677
#endif
1678
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1679 1680
}

1681 1682 1683
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1684
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1685
 * @notifier: notifier struct to register
1686 1687 1688 1689 1690 1691 1692 1693 1694
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1695
 * @notifier: notifier struct to unregister
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1725
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1737
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1738

1739 1740 1741
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1742
 * @prev: the current task that is being switched out
1743 1744 1745 1746 1747 1748 1749 1750 1751
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1752 1753 1754
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1755
{
1756
	trace_sched_switch(prev, next);
1757 1758
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1759
	fire_sched_out_preempt_notifiers(prev, next);
1760 1761 1762 1763
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1764 1765
/**
 * finish_task_switch - clean up after a task-switch
1766
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1767 1768
 * @prev: the thread we just switched away from.
 *
1769 1770 1771 1772
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1773 1774
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1775
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1776 1777 1778
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1779
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1780 1781 1782
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1783
	long prev_state;
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1789
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1790 1791
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1792
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1793 1794 1795 1796 1797
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1798
	prev_state = prev->state;
1799
	vtime_task_switch(prev);
1800
	finish_arch_switch(prev);
1801
	perf_event_task_sched_in(prev, current);
1802
	finish_lock_switch(rq, prev);
1803
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
1804

1805
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1806 1807
	if (mm)
		mmdrop(mm);
1808
	if (unlikely(prev_state == TASK_DEAD)) {
1809 1810 1811
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1812
		 */
1813
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1814
		put_task_struct(prev);
1815
	}
L
Linus Torvalds 已提交
1816 1817
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1833
		raw_spin_lock_irqsave(&rq->lock, flags);
1834 1835
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1836
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1837 1838 1839 1840 1841 1842

		rq->post_schedule = 0;
	}
}

#else
1843

1844 1845 1846 1847 1848 1849
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1850 1851
}

1852 1853
#endif

L
Linus Torvalds 已提交
1854 1855 1856 1857
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1858
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1859 1860
	__releases(rq->lock)
{
1861 1862
	struct rq *rq = this_rq();

1863
	finish_task_switch(rq, prev);
1864

1865 1866 1867 1868 1869
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
1870

1871 1872 1873 1874
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1875
	if (current->set_child_tid)
1876
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1877 1878 1879 1880 1881 1882
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1883
static inline void
1884
context_switch(struct rq *rq, struct task_struct *prev,
1885
	       struct task_struct *next)
L
Linus Torvalds 已提交
1886
{
I
Ingo Molnar 已提交
1887
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1888

1889
	prepare_task_switch(rq, prev, next);
1890

I
Ingo Molnar 已提交
1891 1892
	mm = next->mm;
	oldmm = prev->active_mm;
1893 1894 1895 1896 1897
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
1898
	arch_start_context_switch(prev);
1899

1900
	if (!mm) {
L
Linus Torvalds 已提交
1901 1902 1903 1904 1905 1906
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

1907
	if (!prev->mm) {
L
Linus Torvalds 已提交
1908 1909 1910
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1911 1912 1913 1914 1915 1916 1917
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1918
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1919
#endif
L
Linus Torvalds 已提交
1920 1921

	/* Here we just switch the register state and the stack. */
1922
	rcu_switch(prev, next);
L
Linus Torvalds 已提交
1923 1924
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1925 1926 1927 1928 1929 1930 1931
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
1949
}
L
Linus Torvalds 已提交
1950 1951

unsigned long nr_uninterruptible(void)
1952
{
L
Linus Torvalds 已提交
1953
	unsigned long i, sum = 0;
1954

1955
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1956
		sum += cpu_rq(i)->nr_uninterruptible;
1957 1958

	/*
L
Linus Torvalds 已提交
1959 1960
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
1961
	 */
L
Linus Torvalds 已提交
1962 1963
	if (unlikely((long)sum < 0))
		sum = 0;
1964

L
Linus Torvalds 已提交
1965
	return sum;
1966 1967
}

L
Linus Torvalds 已提交
1968
unsigned long long nr_context_switches(void)
1969
{
1970 1971
	int i;
	unsigned long long sum = 0;
1972

1973
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1974
		sum += cpu_rq(i)->nr_switches;
1975

L
Linus Torvalds 已提交
1976 1977
	return sum;
}
1978

L
Linus Torvalds 已提交
1979 1980 1981
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
1982

1983
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1984
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
1985

L
Linus Torvalds 已提交
1986 1987
	return sum;
}
1988

1989
unsigned long nr_iowait_cpu(int cpu)
1990
{
1991
	struct rq *this = cpu_rq(cpu);
1992 1993
	return atomic_read(&this->nr_iowait);
}
1994

1995 1996 1997 1998 1999
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2000

2001

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *   	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

2049 2050 2051 2052
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}
2069

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2085 2086 2087
/*
 * a1 = a0 * e + a * (1 - e)
 */
2088 2089 2090 2091 2092 2093 2094 2095 2096
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2097 2098
#ifdef CONFIG_NO_HZ
/*
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-cpu sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two idle-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old idle contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ idle during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a cpu having been in NOHZ idle for multiple
 *    LOAD_FREQ intervals.
2137 2138 2139
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
2140 2141
static atomic_long_t calc_load_idle[2];
static int calc_load_idx;
2142

2143
static inline int calc_load_write_idx(void)
2144
{
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next idle-delta.
	 */
	if (!time_before(jiffies, calc_load_update))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

void calc_load_enter_idle(void)
{
	struct rq *this_rq = this_rq();
2171 2172
	long delta;

2173 2174 2175 2176
	/*
	 * We're going into NOHZ mode, if there's any pending delta, fold it
	 * into the pending idle delta.
	 */
2177
	delta = calc_load_fold_active(this_rq);
2178 2179 2180 2181
	if (delta) {
		int idx = calc_load_write_idx();
		atomic_long_add(delta, &calc_load_idle[idx]);
	}
2182 2183
}

2184
void calc_load_exit_idle(void)
2185
{
2186 2187 2188 2189 2190 2191 2192
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the sample window, we're done.
	 */
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2193 2194

	/*
2195 2196 2197
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
2198
	 */
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	this_rq->calc_load_update = calc_load_update;
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_fold_idle(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_idle[idx]))
		delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2211 2212 2213

	return delta;
}
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
2292
static void calc_global_nohz(void)
2293 2294 2295
{
	long delta, active, n;

2296 2297 2298 2299 2300 2301
	if (!time_before(jiffies, calc_load_update + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - calc_load_update - 10;
		n = 1 + (delta / LOAD_FREQ);
2302

2303 2304
		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;
2305

2306 2307 2308
		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2309

2310 2311
		calc_load_update += n * LOAD_FREQ;
	}
2312

2313 2314 2315 2316 2317 2318 2319 2320 2321
	/*
	 * Flip the idle index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
2322
}
2323
#else /* !CONFIG_NO_HZ */
2324

2325 2326
static inline long calc_load_fold_idle(void) { return 0; }
static inline void calc_global_nohz(void) { }
2327

2328
#endif /* CONFIG_NO_HZ */
2329 2330

/*
2331 2332
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2333
 */
2334
void calc_global_load(unsigned long ticks)
2335
{
2336
	long active, delta;
L
Linus Torvalds 已提交
2337

2338
	if (time_before(jiffies, calc_load_update + 10))
2339
		return;
L
Linus Torvalds 已提交
2340

2341 2342 2343 2344 2345 2346 2347
	/*
	 * Fold the 'old' idle-delta to include all NO_HZ cpus.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

2348 2349
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2350

2351 2352 2353
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2354

2355
	calc_load_update += LOAD_FREQ;
2356 2357

	/*
2358
	 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2359 2360
	 */
	calc_global_nohz();
2361
}
L
Linus Torvalds 已提交
2362

2363
/*
2364 2365
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2366 2367 2368
 */
static void calc_load_account_active(struct rq *this_rq)
{
2369
	long delta;
2370

2371 2372
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2373

2374 2375
	delta  = calc_load_fold_active(this_rq);
	if (delta)
2376
		atomic_long_add(delta, &calc_load_tasks);
2377 2378

	this_rq->calc_load_update += LOAD_FREQ;
2379 2380
}

2381 2382 2383 2384
/*
 * End of global load-average stuff
 */

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2452
/*
I
Ingo Molnar 已提交
2453
 * Update rq->cpu_load[] statistics. This function is usually called every
2454 2455
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2456
 */
2457 2458
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
2459
{
I
Ingo Molnar 已提交
2460
	int i, scale;
2461

I
Ingo Molnar 已提交
2462
	this_rq->nr_load_updates++;
2463

I
Ingo Molnar 已提交
2464
	/* Update our load: */
2465 2466
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2467
		unsigned long old_load, new_load;
2468

I
Ingo Molnar 已提交
2469
		/* scale is effectively 1 << i now, and >> i divides by scale */
2470

I
Ingo Molnar 已提交
2471
		old_load = this_rq->cpu_load[i];
2472
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2473
		new_load = this_load;
I
Ingo Molnar 已提交
2474 2475 2476 2477 2478 2479
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2480 2481 2482
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2483
	}
2484 2485

	sched_avg_update(this_rq);
2486 2487
}

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
#ifdef CONFIG_NO_HZ
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

2502 2503 2504 2505 2506 2507
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
void update_idle_cpu_load(struct rq *this_rq)
{
2508
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2509 2510 2511 2512
	unsigned long load = this_rq->load.weight;
	unsigned long pending_updates;

	/*
2513
	 * bail if there's load or we're actually up-to-date.
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
	unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

2550 2551 2552
/*
 * Called from scheduler_tick()
 */
2553 2554
static void update_cpu_load_active(struct rq *this_rq)
{
2555
	/*
2556
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2557 2558 2559
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, this_rq->load.weight, 1);
2560

2561
	calc_load_account_active(this_rq);
2562 2563
}

I
Ingo Molnar 已提交
2564
#ifdef CONFIG_SMP
2565

2566
/*
P
Peter Zijlstra 已提交
2567 2568
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2569
 */
P
Peter Zijlstra 已提交
2570
void sched_exec(void)
2571
{
P
Peter Zijlstra 已提交
2572
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2573
	unsigned long flags;
2574
	int dest_cpu;
2575

2576
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2577
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2578 2579
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2580

2581
	if (likely(cpu_active(dest_cpu))) {
2582
		struct migration_arg arg = { p, dest_cpu };
2583

2584 2585
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2586 2587
		return;
	}
2588
unlock:
2589
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2590
}
I
Ingo Molnar 已提交
2591

L
Linus Torvalds 已提交
2592 2593 2594
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2595
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2596 2597

EXPORT_PER_CPU_SYMBOL(kstat);
2598
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2599 2600

/*
2601
 * Return any ns on the sched_clock that have not yet been accounted in
2602
 * @p in case that task is currently running.
2603 2604
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2605
 */
2606 2607 2608 2609 2610 2611
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2612
		ns = rq->clock_task - p->se.exec_start;
2613 2614 2615 2616 2617 2618 2619
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2620
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2621 2622
{
	unsigned long flags;
2623
	struct rq *rq;
2624
	u64 ns = 0;
2625

2626
	rq = task_rq_lock(p, &flags);
2627
	ns = do_task_delta_exec(p, rq);
2628
	task_rq_unlock(rq, p, &flags);
2629

2630 2631
	return ns;
}
2632

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2646
	task_rq_unlock(rq, p, &flags);
2647 2648 2649

	return ns;
}
2650

2651 2652 2653 2654 2655 2656 2657 2658
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2659
	struct task_struct *curr = rq->curr;
2660 2661

	sched_clock_tick();
I
Ingo Molnar 已提交
2662

2663
	raw_spin_lock(&rq->lock);
2664
	update_rq_clock(rq);
2665
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
2666
	curr->sched_class->task_tick(rq, curr, 0);
2667
	raw_spin_unlock(&rq->lock);
2668

2669
	perf_event_task_tick();
2670

2671
#ifdef CONFIG_SMP
2672
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
2673
	trigger_load_balance(rq, cpu);
2674
#endif
L
Linus Torvalds 已提交
2675 2676
}

2677
notrace unsigned long get_parent_ip(unsigned long addr)
2678 2679 2680 2681 2682 2683 2684 2685
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2686

2687 2688 2689
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2690
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
2691
{
2692
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2693 2694 2695
	/*
	 * Underflow?
	 */
2696 2697
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2698
#endif
L
Linus Torvalds 已提交
2699
	preempt_count() += val;
2700
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2701 2702 2703
	/*
	 * Spinlock count overflowing soon?
	 */
2704 2705
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2706 2707 2708
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2709 2710 2711
}
EXPORT_SYMBOL(add_preempt_count);

2712
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
2713
{
2714
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2715 2716 2717
	/*
	 * Underflow?
	 */
2718
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2719
		return;
L
Linus Torvalds 已提交
2720 2721 2722
	/*
	 * Is the spinlock portion underflowing?
	 */
2723 2724 2725
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2726
#endif
2727

2728 2729
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
2730 2731 2732 2733 2734 2735 2736
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
2737
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2738
 */
I
Ingo Molnar 已提交
2739
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2740
{
2741 2742 2743
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2744 2745
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2746

I
Ingo Molnar 已提交
2747
	debug_show_held_locks(prev);
2748
	print_modules();
I
Ingo Molnar 已提交
2749 2750
	if (irqs_disabled())
		print_irqtrace_events(prev);
2751
	dump_stack();
2752
	add_taint(TAINT_WARN);
I
Ingo Molnar 已提交
2753
}
L
Linus Torvalds 已提交
2754

I
Ingo Molnar 已提交
2755 2756 2757 2758 2759
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2760
	/*
I
Ingo Molnar 已提交
2761
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
2762 2763 2764
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
2765
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
2766
		__schedule_bug(prev);
2767
	rcu_sleep_check();
I
Ingo Molnar 已提交
2768

L
Linus Torvalds 已提交
2769 2770
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2771
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2772 2773
}

P
Peter Zijlstra 已提交
2774
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
2775
{
2776
	if (prev->on_rq || rq->skip_clock_update < 0)
2777
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
2778
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
2779 2780
}

I
Ingo Molnar 已提交
2781 2782 2783 2784
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2785
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
2786
{
2787
	const struct sched_class *class;
I
Ingo Molnar 已提交
2788
	struct task_struct *p;
L
Linus Torvalds 已提交
2789 2790

	/*
I
Ingo Molnar 已提交
2791 2792
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2793
	 */
2794
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2795
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
2796 2797
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
2798 2799
	}

2800
	for_each_class(class) {
2801
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
2802 2803 2804
		if (p)
			return p;
	}
2805 2806

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2807
}
L
Linus Torvalds 已提交
2808

I
Ingo Molnar 已提交
2809
/*
2810
 * __schedule() is the main scheduler function.
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2845
 */
2846
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2847 2848
{
	struct task_struct *prev, *next;
2849
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2850
	struct rq *rq;
2851
	int cpu;
I
Ingo Molnar 已提交
2852

2853 2854
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2855 2856
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2857
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2858 2859 2860
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2861

2862
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2863
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2864

2865
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2866

2867
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2868
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2869
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2870
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2871
		} else {
2872 2873 2874
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2875
			/*
2876 2877 2878
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2879 2880 2881 2882 2883 2884 2885 2886 2887
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2888
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2889 2890
	}

2891
	pre_schedule(rq, prev);
2892

I
Ingo Molnar 已提交
2893
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
2894 2895
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
2896
	put_prev_task(rq, prev);
2897
	next = pick_next_task(rq);
2898 2899
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2900 2901 2902 2903 2904 2905

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2906
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2907
		/*
2908 2909 2910 2911
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2912 2913 2914
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2915
	} else
2916
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2917

2918
	post_schedule(rq);
L
Linus Torvalds 已提交
2919

2920
	sched_preempt_enable_no_resched();
2921
	if (need_resched())
L
Linus Torvalds 已提交
2922 2923
		goto need_resched;
}
2924

2925 2926
static inline void sched_submit_work(struct task_struct *tsk)
{
2927
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2928 2929 2930 2931 2932 2933 2934 2935 2936
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
2937
asmlinkage void __sched schedule(void)
2938
{
2939 2940 2941
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2942 2943
	__schedule();
}
L
Linus Torvalds 已提交
2944 2945
EXPORT_SYMBOL(schedule);

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
#ifdef CONFIG_RCU_USER_QS
asmlinkage void __sched schedule_user(void)
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
	rcu_user_exit();
	schedule();
	rcu_user_enter();
}
#endif

2961 2962 2963 2964 2965 2966 2967
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2968
	sched_preempt_enable_no_resched();
2969 2970 2971 2972
	schedule();
	preempt_disable();
}

2973
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2974

2975 2976 2977
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
2978
		return false;
2979 2980

	/*
2981 2982 2983 2984
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
2985
	 */
2986
	barrier();
2987

2988
	return owner->on_cpu;
2989
}
2990

2991 2992 2993 2994 2995 2996 2997 2998
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
2999

3000
	rcu_read_lock();
3001 3002
	while (owner_running(lock, owner)) {
		if (need_resched())
3003
			break;
3004

3005
		arch_mutex_cpu_relax();
3006
	}
3007
	rcu_read_unlock();
3008

3009
	/*
3010 3011 3012
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3013
	 */
3014
	return lock->owner == NULL;
3015 3016 3017
}
#endif

L
Linus Torvalds 已提交
3018 3019
#ifdef CONFIG_PREEMPT
/*
3020
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3021
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3022 3023
 * occur there and call schedule directly.
 */
3024
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3025 3026
{
	struct thread_info *ti = current_thread_info();
3027

L
Linus Torvalds 已提交
3028 3029
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3030
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3031
	 */
N
Nick Piggin 已提交
3032
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3033 3034
		return;

3035
	do {
3036
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3037
		__schedule();
3038
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3039

3040 3041 3042 3043 3044
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3045
	} while (need_resched());
L
Linus Torvalds 已提交
3046 3047 3048 3049
}
EXPORT_SYMBOL(preempt_schedule);

/*
3050
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3051 3052 3053 3054 3055 3056 3057
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3058

3059
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3060 3061
	BUG_ON(ti->preempt_count || !irqs_disabled());

3062
	rcu_user_exit();
3063 3064 3065
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3066
		__schedule();
3067 3068
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3069

3070 3071 3072 3073 3074
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3075
	} while (need_resched());
L
Linus Torvalds 已提交
3076 3077 3078 3079
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3080
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3081
			  void *key)
L
Linus Torvalds 已提交
3082
{
P
Peter Zijlstra 已提交
3083
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3084 3085 3086 3087
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3088 3089
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3090 3091 3092
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3093
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3094 3095
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3096
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3097
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3098
{
3099
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3100

3101
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3102 3103
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3104
		if (curr->func(curr, mode, wake_flags, key) &&
3105
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3106 3107 3108 3109 3110 3111 3112 3113 3114
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3115
 * @key: is directly passed to the wakeup function
3116 3117 3118
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3119
 */
3120
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3121
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3134
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
L
Linus Torvalds 已提交
3135
{
3136
	__wake_up_common(q, mode, nr, 0, NULL);
L
Linus Torvalds 已提交
3137
}
3138
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3139

3140 3141 3142 3143
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3144
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3145

L
Linus Torvalds 已提交
3146
/**
3147
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3148 3149 3150
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3151
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3152 3153 3154 3155 3156 3157 3158
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3159 3160 3161
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3162
 */
3163 3164
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3165 3166
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3167
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3168 3169 3170 3171 3172

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3173
		wake_flags = 0;
L
Linus Torvalds 已提交
3174 3175

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3176
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3177 3178
	spin_unlock_irqrestore(&q->lock, flags);
}
3179 3180 3181 3182 3183 3184 3185 3186 3187
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3188 3189
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3190 3191 3192 3193 3194 3195 3196 3197
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3198 3199 3200
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3201
 */
3202
void complete(struct completion *x)
L
Linus Torvalds 已提交
3203 3204 3205 3206 3207
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3208
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3209 3210 3211 3212
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3213 3214 3215 3216 3217
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3218 3219 3220
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3221
 */
3222
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3223 3224 3225 3226 3227
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3228
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3229 3230 3231 3232
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3233 3234
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3235 3236 3237 3238
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3239
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3240
		do {
3241
			if (signal_pending_state(state, current)) {
3242 3243
				timeout = -ERESTARTSYS;
				break;
3244 3245
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3246 3247 3248
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3249
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3250
		__remove_wait_queue(&x->wait, &wait);
3251 3252
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3253 3254
	}
	x->done--;
3255
	return timeout ?: 1;
L
Linus Torvalds 已提交
3256 3257
}

3258 3259
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3260 3261 3262 3263
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3264
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3265
	spin_unlock_irq(&x->wait.lock);
3266 3267
	return timeout;
}
L
Linus Torvalds 已提交
3268

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3279
void __sched wait_for_completion(struct completion *x)
3280 3281
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3282
}
3283
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3284

3285 3286 3287 3288 3289 3290 3291 3292
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3293 3294 3295
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3296
 */
3297
unsigned long __sched
3298
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3299
{
3300
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3301
}
3302
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3303

3304 3305 3306 3307 3308 3309
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3310 3311
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3312
 */
3313
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3314
{
3315 3316 3317 3318
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3319
}
3320
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3321

3322 3323 3324 3325 3326 3327 3328
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3329 3330 3331
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3332
 */
3333
long __sched
3334 3335
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3336
{
3337
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3338
}
3339
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3340

3341 3342 3343 3344 3345 3346
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3347 3348
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3349
 */
M
Matthew Wilcox 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3359 3360 3361 3362 3363 3364 3365 3366
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3367 3368 3369
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3370
 */
3371
long __sched
3372 3373 3374 3375 3376 3377 3378
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3393
	unsigned long flags;
3394 3395
	int ret = 1;

3396
	spin_lock_irqsave(&x->wait.lock, flags);
3397 3398 3399 3400
	if (!x->done)
		ret = 0;
	else
		x->done--;
3401
	spin_unlock_irqrestore(&x->wait.lock, flags);
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3416
	unsigned long flags;
3417 3418
	int ret = 1;

3419
	spin_lock_irqsave(&x->wait.lock, flags);
3420 3421
	if (!x->done)
		ret = 0;
3422
	spin_unlock_irqrestore(&x->wait.lock, flags);
3423 3424 3425 3426
	return ret;
}
EXPORT_SYMBOL(completion_done);

3427 3428
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3429
{
I
Ingo Molnar 已提交
3430 3431 3432 3433
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3434

3435
	__set_current_state(state);
L
Linus Torvalds 已提交
3436

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3451 3452 3453
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3454
long __sched
I
Ingo Molnar 已提交
3455
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3456
{
3457
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3458 3459 3460
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3461
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3462
{
3463
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3464 3465 3466
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3467
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3468
{
3469
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3470 3471 3472
}
EXPORT_SYMBOL(sleep_on_timeout);

3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3485
void rt_mutex_setprio(struct task_struct *p, int prio)
3486
{
3487
	int oldprio, on_rq, running;
3488
	struct rq *rq;
3489
	const struct sched_class *prev_class;
3490 3491 3492

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3493
	rq = __task_rq_lock(p);
3494

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3513
	trace_sched_pi_setprio(p, prio);
3514
	oldprio = p->prio;
3515
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3516
	on_rq = p->on_rq;
3517
	running = task_current(rq, p);
3518
	if (on_rq)
3519
		dequeue_task(rq, p, 0);
3520 3521
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3522 3523 3524 3525 3526 3527

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3528 3529
	p->prio = prio;

3530 3531
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3532
	if (on_rq)
3533
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3534

P
Peter Zijlstra 已提交
3535
	check_class_changed(rq, p, prev_class, oldprio);
3536
out_unlock:
3537
	__task_rq_unlock(rq);
3538 3539
}
#endif
3540
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3541
{
I
Ingo Molnar 已提交
3542
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3543
	unsigned long flags;
3544
	struct rq *rq;
L
Linus Torvalds 已提交
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3557
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3558
	 */
3559
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3560 3561 3562
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3563
	on_rq = p->on_rq;
3564
	if (on_rq)
3565
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3566 3567

	p->static_prio = NICE_TO_PRIO(nice);
3568
	set_load_weight(p);
3569 3570 3571
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3572

I
Ingo Molnar 已提交
3573
	if (on_rq) {
3574
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3575
		/*
3576 3577
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3578
		 */
3579
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3580 3581 3582
			resched_task(rq->curr);
	}
out_unlock:
3583
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3584 3585 3586
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3587 3588 3589 3590 3591
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3592
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3593
{
3594 3595
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3596

3597
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3598 3599 3600
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3610
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3611
{
3612
	long nice, retval;
L
Linus Torvalds 已提交
3613 3614 3615 3616 3617 3618

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3619 3620
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3621 3622 3623
	if (increment > 40)
		increment = 40;

3624
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3625 3626 3627 3628 3629
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3630 3631 3632
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3651
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3652 3653 3654 3655 3656 3657 3658 3659
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3660
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3661 3662 3663
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3664
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3665 3666 3667 3668 3669 3670 3671

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3686 3687 3688 3689 3690 3691
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3692
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3693 3694 3695 3696 3697 3698 3699 3700
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3701
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3702
{
3703
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3704 3705 3706
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3707 3708
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3709 3710 3711
{
	p->policy = policy;
	p->rt_priority = prio;
3712 3713 3714
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3715 3716 3717 3718
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3719
	set_load_weight(p);
L
Linus Torvalds 已提交
3720 3721
}

3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3732 3733
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3734 3735 3736 3737
	rcu_read_unlock();
	return match;
}

3738
static int __sched_setscheduler(struct task_struct *p, int policy,
3739
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
3740
{
3741
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
3742
	unsigned long flags;
3743
	const struct sched_class *prev_class;
3744
	struct rq *rq;
3745
	int reset_on_fork;
L
Linus Torvalds 已提交
3746

3747 3748
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3749 3750
recheck:
	/* double check policy once rq lock held */
3751 3752
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3753
		policy = oldpolicy = p->policy;
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
3764 3765
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3766 3767
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3768 3769
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
3770
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3771
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3772
		return -EINVAL;
3773
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
3774 3775
		return -EINVAL;

3776 3777 3778
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3779
	if (user && !capable(CAP_SYS_NICE)) {
3780
		if (rt_policy(policy)) {
3781 3782
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
3793

I
Ingo Molnar 已提交
3794
		/*
3795 3796
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3797
		 */
3798 3799 3800 3801
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
3802

3803
		/* can't change other user's priorities */
3804
		if (!check_same_owner(p))
3805
			return -EPERM;
3806 3807 3808 3809

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3810
	}
L
Linus Torvalds 已提交
3811

3812
	if (user) {
3813
		retval = security_task_setscheduler(p);
3814 3815 3816 3817
		if (retval)
			return retval;
	}

3818 3819 3820
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3821
	 *
L
Lucas De Marchi 已提交
3822
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3823 3824
	 * runqueue lock must be held.
	 */
3825
	rq = task_rq_lock(p, &flags);
3826

3827 3828 3829 3830
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3831
		task_rq_unlock(rq, p, &flags);
3832 3833 3834
		return -EINVAL;
	}

3835 3836 3837 3838 3839
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {
3840
		task_rq_unlock(rq, p, &flags);
3841 3842 3843
		return 0;
	}

3844 3845 3846 3847 3848 3849 3850
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3851 3852
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3853
			task_rq_unlock(rq, p, &flags);
3854 3855 3856 3857 3858
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
3859 3860 3861
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3862
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3863 3864
		goto recheck;
	}
P
Peter Zijlstra 已提交
3865
	on_rq = p->on_rq;
3866
	running = task_current(rq, p);
3867
	if (on_rq)
3868
		dequeue_task(rq, p, 0);
3869 3870
	if (running)
		p->sched_class->put_prev_task(rq, p);
3871

3872 3873
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
3874
	oldprio = p->prio;
3875
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
3876
	__setscheduler(rq, p, policy, param->sched_priority);
3877

3878 3879
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3880
	if (on_rq)
3881
		enqueue_task(rq, p, 0);
3882

P
Peter Zijlstra 已提交
3883
	check_class_changed(rq, p, prev_class, oldprio);
3884
	task_rq_unlock(rq, p, &flags);
3885

3886 3887
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3888 3889
	return 0;
}
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3900
		       const struct sched_param *param)
3901 3902 3903
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
3904 3905
EXPORT_SYMBOL_GPL(sched_setscheduler);

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3918
			       const struct sched_param *param)
3919 3920 3921 3922
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
3923 3924
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3925 3926 3927
{
	struct sched_param lparam;
	struct task_struct *p;
3928
	int retval;
L
Linus Torvalds 已提交
3929 3930 3931 3932 3933

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3934 3935 3936

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3937
	p = find_process_by_pid(pid);
3938 3939 3940
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3941

L
Linus Torvalds 已提交
3942 3943 3944 3945 3946 3947 3948 3949 3950
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
3951 3952
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3953
{
3954 3955 3956 3957
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3958 3959 3960 3961 3962 3963 3964 3965
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
3966
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3967 3968 3969 3970 3971 3972 3973 3974
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
3975
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3976
{
3977
	struct task_struct *p;
3978
	int retval;
L
Linus Torvalds 已提交
3979 3980

	if (pid < 0)
3981
		return -EINVAL;
L
Linus Torvalds 已提交
3982 3983

	retval = -ESRCH;
3984
	rcu_read_lock();
L
Linus Torvalds 已提交
3985 3986 3987 3988
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3989 3990
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3991
	}
3992
	rcu_read_unlock();
L
Linus Torvalds 已提交
3993 3994 3995 3996
	return retval;
}

/**
3997
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3998 3999 4000
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4001
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4002 4003
{
	struct sched_param lp;
4004
	struct task_struct *p;
4005
	int retval;
L
Linus Torvalds 已提交
4006 4007

	if (!param || pid < 0)
4008
		return -EINVAL;
L
Linus Torvalds 已提交
4009

4010
	rcu_read_lock();
L
Linus Torvalds 已提交
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4021
	rcu_read_unlock();
L
Linus Torvalds 已提交
4022 4023 4024 4025 4026 4027 4028 4029 4030

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4031
	rcu_read_unlock();
L
Linus Torvalds 已提交
4032 4033 4034
	return retval;
}

4035
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4036
{
4037
	cpumask_var_t cpus_allowed, new_mask;
4038 4039
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4040

4041
	get_online_cpus();
4042
	rcu_read_lock();
L
Linus Torvalds 已提交
4043 4044 4045

	p = find_process_by_pid(pid);
	if (!p) {
4046
		rcu_read_unlock();
4047
		put_online_cpus();
L
Linus Torvalds 已提交
4048 4049 4050
		return -ESRCH;
	}

4051
	/* Prevent p going away */
L
Linus Torvalds 已提交
4052
	get_task_struct(p);
4053
	rcu_read_unlock();
L
Linus Torvalds 已提交
4054

4055 4056 4057 4058 4059 4060 4061 4062
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4063
	retval = -EPERM;
4064
	if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
L
Linus Torvalds 已提交
4065 4066
		goto out_unlock;

4067
	retval = security_task_setscheduler(p);
4068 4069 4070
	if (retval)
		goto out_unlock;

4071 4072
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4073
again:
4074
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4075

P
Paul Menage 已提交
4076
	if (!retval) {
4077 4078
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4079 4080 4081 4082 4083
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4084
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4085 4086 4087
			goto again;
		}
	}
L
Linus Torvalds 已提交
4088
out_unlock:
4089 4090 4091 4092
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4093
	put_task_struct(p);
4094
	put_online_cpus();
L
Linus Torvalds 已提交
4095 4096 4097 4098
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4099
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4100
{
4101 4102 4103 4104 4105
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4106 4107 4108 4109 4110 4111 4112 4113 4114
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4115 4116
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4117
{
4118
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4119 4120
	int retval;

4121 4122
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4123

4124 4125 4126 4127 4128
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4129 4130
}

4131
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4132
{
4133
	struct task_struct *p;
4134
	unsigned long flags;
L
Linus Torvalds 已提交
4135 4136
	int retval;

4137
	get_online_cpus();
4138
	rcu_read_lock();
L
Linus Torvalds 已提交
4139 4140 4141 4142 4143 4144

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4145 4146 4147 4148
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4149
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4150
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4151
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4152 4153

out_unlock:
4154
	rcu_read_unlock();
4155
	put_online_cpus();
L
Linus Torvalds 已提交
4156

4157
	return retval;
L
Linus Torvalds 已提交
4158 4159 4160 4161 4162 4163 4164 4165
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4166 4167
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4168 4169
{
	int ret;
4170
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4171

A
Anton Blanchard 已提交
4172
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4173 4174
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4175 4176
		return -EINVAL;

4177 4178
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4179

4180 4181
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4182
		size_t retlen = min_t(size_t, len, cpumask_size());
4183 4184

		if (copy_to_user(user_mask_ptr, mask, retlen))
4185 4186
			ret = -EFAULT;
		else
4187
			ret = retlen;
4188 4189
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4190

4191
	return ret;
L
Linus Torvalds 已提交
4192 4193 4194 4195 4196
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4197 4198
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4199
 */
4200
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4201
{
4202
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4203

4204
	schedstat_inc(rq, yld_count);
4205
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4206 4207 4208 4209 4210 4211

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4212
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4213
	do_raw_spin_unlock(&rq->lock);
4214
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4215 4216 4217 4218 4219 4220

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4221 4222 4223 4224 4225
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4226
static void __cond_resched(void)
L
Linus Torvalds 已提交
4227
{
4228
	add_preempt_count(PREEMPT_ACTIVE);
4229
	__schedule();
4230
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4231 4232
}

4233
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4234
{
P
Peter Zijlstra 已提交
4235
	if (should_resched()) {
L
Linus Torvalds 已提交
4236 4237 4238 4239 4240
		__cond_resched();
		return 1;
	}
	return 0;
}
4241
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4242 4243

/*
4244
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4245 4246
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4247
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4248 4249 4250
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4251
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4252
{
P
Peter Zijlstra 已提交
4253
	int resched = should_resched();
J
Jan Kara 已提交
4254 4255
	int ret = 0;

4256 4257
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4258
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4259
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4260
		if (resched)
N
Nick Piggin 已提交
4261 4262 4263
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4264
		ret = 1;
L
Linus Torvalds 已提交
4265 4266
		spin_lock(lock);
	}
J
Jan Kara 已提交
4267
	return ret;
L
Linus Torvalds 已提交
4268
}
4269
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4270

4271
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4272 4273 4274
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4275
	if (should_resched()) {
4276
		local_bh_enable();
L
Linus Torvalds 已提交
4277 4278 4279 4280 4281 4282
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4283
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4284 4285 4286 4287

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4306 4307 4308 4309 4310 4311 4312 4313
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4314 4315 4316 4317
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4318 4319
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4354
	if (yielded) {
4355
		schedstat_inc(rq, yld_count);
4356 4357 4358 4359 4360 4361 4362
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4375
/*
I
Ingo Molnar 已提交
4376
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4377 4378 4379 4380
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4381
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4382

4383
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4384
	atomic_inc(&rq->nr_iowait);
4385
	blk_flush_plug(current);
4386
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4387
	schedule();
4388
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4389
	atomic_dec(&rq->nr_iowait);
4390
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4391 4392 4393 4394 4395
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4396
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4397 4398
	long ret;

4399
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4400
	atomic_inc(&rq->nr_iowait);
4401
	blk_flush_plug(current);
4402
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4403
	ret = schedule_timeout(timeout);
4404
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4405
	atomic_dec(&rq->nr_iowait);
4406
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4417
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4418 4419 4420 4421 4422 4423 4424 4425 4426
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4427
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4428
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4442
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4452
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4453
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4467
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4468
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4469
{
4470
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4471
	unsigned int time_slice;
4472 4473
	unsigned long flags;
	struct rq *rq;
4474
	int retval;
L
Linus Torvalds 已提交
4475 4476 4477
	struct timespec t;

	if (pid < 0)
4478
		return -EINVAL;
L
Linus Torvalds 已提交
4479 4480

	retval = -ESRCH;
4481
	rcu_read_lock();
L
Linus Torvalds 已提交
4482 4483 4484 4485 4486 4487 4488 4489
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4490 4491
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4492
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4493

4494
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4495
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4496 4497
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4498

L
Linus Torvalds 已提交
4499
out_unlock:
4500
	rcu_read_unlock();
L
Linus Torvalds 已提交
4501 4502 4503
	return retval;
}

4504
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4505

4506
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4507 4508
{
	unsigned long free = 0;
4509
	unsigned state;
L
Linus Torvalds 已提交
4510 4511

	state = p->state ? __ffs(p->state) + 1 : 0;
4512
	printk(KERN_INFO "%-15.15s %c", p->comm,
4513
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4514
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4515
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4516
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4517
	else
P
Peter Zijlstra 已提交
4518
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4519 4520
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4521
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4522
	else
P
Peter Zijlstra 已提交
4523
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4524 4525
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4526
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4527
#endif
P
Peter Zijlstra 已提交
4528
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4529
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4530
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4531

4532
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4533 4534
}

I
Ingo Molnar 已提交
4535
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4536
{
4537
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4538

4539
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4540 4541
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4542
#else
P
Peter Zijlstra 已提交
4543 4544
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4545
#endif
4546
	rcu_read_lock();
L
Linus Torvalds 已提交
4547 4548 4549
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4550
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4551 4552
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4553
		if (!state_filter || (p->state & state_filter))
4554
			sched_show_task(p);
L
Linus Torvalds 已提交
4555 4556
	} while_each_thread(g, p);

4557 4558
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4559 4560 4561
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4562
	rcu_read_unlock();
I
Ingo Molnar 已提交
4563 4564 4565
	/*
	 * Only show locks if all tasks are dumped:
	 */
4566
	if (!state_filter)
I
Ingo Molnar 已提交
4567
		debug_show_all_locks();
L
Linus Torvalds 已提交
4568 4569
}

I
Ingo Molnar 已提交
4570 4571
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4572
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4573 4574
}

4575 4576 4577 4578 4579 4580 4581 4582
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4583
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4584
{
4585
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4586 4587
	unsigned long flags;

4588
	raw_spin_lock_irqsave(&rq->lock, flags);
4589

I
Ingo Molnar 已提交
4590
	__sched_fork(idle);
4591
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4592 4593
	idle->se.exec_start = sched_clock();

4594
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4606
	__set_task_cpu(idle, cpu);
4607
	rcu_read_unlock();
L
Linus Torvalds 已提交
4608 4609

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4610 4611
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4612
#endif
4613
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4614 4615

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4616
	task_thread_info(idle)->preempt_count = 0;
4617

I
Ingo Molnar 已提交
4618 4619 4620 4621
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4622
	ftrace_graph_init_idle_task(idle, cpu);
4623 4624 4625
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4626 4627
}

L
Linus Torvalds 已提交
4628
#ifdef CONFIG_SMP
4629 4630 4631 4632
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4633 4634

	cpumask_copy(&p->cpus_allowed, new_mask);
4635
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4636 4637
}

L
Linus Torvalds 已提交
4638 4639 4640
/*
 * This is how migration works:
 *
4641 4642 4643 4644 4645 4646
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4647
 *    it and puts it into the right queue.
4648 4649
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4650 4651 4652 4653 4654 4655 4656 4657
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4658
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4659 4660
 * call is not atomic; no spinlocks may be held.
 */
4661
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4662 4663
{
	unsigned long flags;
4664
	struct rq *rq;
4665
	unsigned int dest_cpu;
4666
	int ret = 0;
L
Linus Torvalds 已提交
4667 4668

	rq = task_rq_lock(p, &flags);
4669

4670 4671 4672
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4673
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4674 4675 4676 4677
		ret = -EINVAL;
		goto out;
	}

4678
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4679 4680 4681 4682
		ret = -EINVAL;
		goto out;
	}

4683
	do_set_cpus_allowed(p, new_mask);
4684

L
Linus Torvalds 已提交
4685
	/* Can the task run on the task's current CPU? If so, we're done */
4686
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4687 4688
		goto out;

4689
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4690
	if (p->on_rq) {
4691
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4692
		/* Need help from migration thread: drop lock and wait. */
4693
		task_rq_unlock(rq, p, &flags);
4694
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4695 4696 4697 4698
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4699
	task_rq_unlock(rq, p, &flags);
4700

L
Linus Torvalds 已提交
4701 4702
	return ret;
}
4703
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4704 4705

/*
I
Ingo Molnar 已提交
4706
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4707 4708 4709 4710 4711 4712
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4713 4714
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4715
 */
4716
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4717
{
4718
	struct rq *rq_dest, *rq_src;
4719
	int ret = 0;
L
Linus Torvalds 已提交
4720

4721
	if (unlikely(!cpu_active(dest_cpu)))
4722
		return ret;
L
Linus Torvalds 已提交
4723 4724 4725 4726

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4727
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4728 4729 4730
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4731
		goto done;
L
Linus Torvalds 已提交
4732
	/* Affinity changed (again). */
4733
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4734
		goto fail;
L
Linus Torvalds 已提交
4735

4736 4737 4738 4739
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4740
	if (p->on_rq) {
4741
		dequeue_task(rq_src, p, 0);
4742
		set_task_cpu(p, dest_cpu);
4743
		enqueue_task(rq_dest, p, 0);
4744
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4745
	}
L
Linus Torvalds 已提交
4746
done:
4747
	ret = 1;
L
Linus Torvalds 已提交
4748
fail:
L
Linus Torvalds 已提交
4749
	double_rq_unlock(rq_src, rq_dest);
4750
	raw_spin_unlock(&p->pi_lock);
4751
	return ret;
L
Linus Torvalds 已提交
4752 4753 4754
}

/*
4755 4756 4757
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4758
 */
4759
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4760
{
4761
	struct migration_arg *arg = data;
4762

4763 4764 4765 4766
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4767
	local_irq_disable();
4768
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4769
	local_irq_enable();
L
Linus Torvalds 已提交
4770
	return 0;
4771 4772
}

L
Linus Torvalds 已提交
4773
#ifdef CONFIG_HOTPLUG_CPU
4774

4775
/*
4776 4777
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4778
 */
4779
void idle_task_exit(void)
L
Linus Torvalds 已提交
4780
{
4781
	struct mm_struct *mm = current->active_mm;
4782

4783
	BUG_ON(cpu_online(smp_processor_id()));
4784

4785 4786 4787
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
4788 4789 4790
}

/*
4791 4792 4793 4794 4795
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4796
 */
4797
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4798
{
4799 4800 4801
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4802 4803
}

4804
/*
4805 4806 4807 4808 4809 4810
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4811
 */
4812
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4813
{
4814
	struct rq *rq = cpu_rq(dead_cpu);
4815 4816
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4817 4818

	/*
4819 4820 4821 4822 4823 4824 4825
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4826
	 */
4827
	rq->stop = NULL;
4828

I
Ingo Molnar 已提交
4829
	for ( ; ; ) {
4830 4831 4832 4833 4834
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4835
			break;
4836

4837
		next = pick_next_task(rq);
4838
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4839
		next->sched_class->put_prev_task(rq, next);
4840

4841 4842 4843 4844 4845 4846 4847
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4848
	}
4849

4850
	rq->stop = stop;
4851
}
4852

L
Linus Torvalds 已提交
4853 4854
#endif /* CONFIG_HOTPLUG_CPU */

4855 4856 4857
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4858 4859
	{
		.procname	= "sched_domain",
4860
		.mode		= 0555,
4861
	},
4862
	{}
4863 4864 4865
};

static struct ctl_table sd_ctl_root[] = {
4866 4867
	{
		.procname	= "kernel",
4868
		.mode		= 0555,
4869 4870
		.child		= sd_ctl_dir,
	},
4871
	{}
4872 4873 4874 4875 4876
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4877
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4878 4879 4880 4881

	return entry;
}

4882 4883
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4884
	struct ctl_table *entry;
4885

4886 4887 4888
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4889
	 * will always be set. In the lowest directory the names are
4890 4891 4892
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4893 4894
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4895 4896 4897
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4898 4899 4900 4901 4902

	kfree(*tablep);
	*tablep = NULL;
}

4903 4904 4905
static int min_load_idx = 0;
static int max_load_idx = CPU_LOAD_IDX_MAX;

4906
static void
4907
set_table_entry(struct ctl_table *entry,
4908
		const char *procname, void *data, int maxlen,
4909 4910
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4911 4912 4913 4914 4915 4916
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4917 4918 4919 4920 4921

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4922 4923 4924 4925 4926
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4927
	struct ctl_table *table = sd_alloc_ctl_entry(13);
4928

4929 4930 4931
	if (table == NULL)
		return NULL;

4932
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4933
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4934
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4935
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4936
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4937
		sizeof(int), 0644, proc_dointvec_minmax, true);
4938
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4939
		sizeof(int), 0644, proc_dointvec_minmax, true);
4940
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4941
		sizeof(int), 0644, proc_dointvec_minmax, true);
4942
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4943
		sizeof(int), 0644, proc_dointvec_minmax, true);
4944
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4945
		sizeof(int), 0644, proc_dointvec_minmax, true);
4946
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4947
		sizeof(int), 0644, proc_dointvec_minmax, false);
4948
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4949
		sizeof(int), 0644, proc_dointvec_minmax, false);
4950
	set_table_entry(&table[9], "cache_nice_tries",
4951
		&sd->cache_nice_tries,
4952
		sizeof(int), 0644, proc_dointvec_minmax, false);
4953
	set_table_entry(&table[10], "flags", &sd->flags,
4954
		sizeof(int), 0644, proc_dointvec_minmax, false);
4955
	set_table_entry(&table[11], "name", sd->name,
4956
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4957
	/* &table[12] is terminator */
4958 4959 4960 4961

	return table;
}

4962
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4963 4964 4965 4966 4967 4968 4969 4970 4971
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4972 4973
	if (table == NULL)
		return NULL;
4974 4975 4976 4977 4978

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
4979
		entry->mode = 0555;
4980 4981 4982 4983 4984 4985 4986 4987
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
4988
static void register_sched_domain_sysctl(void)
4989
{
4990
	int i, cpu_num = num_possible_cpus();
4991 4992 4993
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

4994 4995 4996
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

4997 4998 4999
	if (entry == NULL)
		return;

5000
	for_each_possible_cpu(i) {
5001 5002
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5003
		entry->mode = 0555;
5004
		entry->child = sd_alloc_ctl_cpu_table(i);
5005
		entry++;
5006
	}
5007 5008

	WARN_ON(sd_sysctl_header);
5009 5010
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5011

5012
/* may be called multiple times per register */
5013 5014
static void unregister_sched_domain_sysctl(void)
{
5015 5016
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5017
	sd_sysctl_header = NULL;
5018 5019
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5020
}
5021
#else
5022 5023 5024 5025
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5026 5027 5028 5029
{
}
#endif

5030 5031 5032 5033 5034
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5035
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5055
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5056 5057 5058 5059
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5060 5061 5062 5063
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5064 5065
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5066
{
5067
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5068
	unsigned long flags;
5069
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5070

5071
	switch (action & ~CPU_TASKS_FROZEN) {
5072

L
Linus Torvalds 已提交
5073
	case CPU_UP_PREPARE:
5074
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5075
		break;
5076

L
Linus Torvalds 已提交
5077
	case CPU_ONLINE:
5078
		/* Update our root-domain */
5079
		raw_spin_lock_irqsave(&rq->lock, flags);
5080
		if (rq->rd) {
5081
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5082 5083

			set_rq_online(rq);
5084
		}
5085
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5086
		break;
5087

L
Linus Torvalds 已提交
5088
#ifdef CONFIG_HOTPLUG_CPU
5089
	case CPU_DYING:
5090
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5091
		/* Update our root-domain */
5092
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5093
		if (rq->rd) {
5094
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5095
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5096
		}
5097 5098
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5099
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5100
		break;
5101

5102
	case CPU_DEAD:
5103
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5104
		break;
L
Linus Torvalds 已提交
5105 5106
#endif
	}
5107 5108 5109

	update_max_interval();

L
Linus Torvalds 已提交
5110 5111 5112
	return NOTIFY_OK;
}

5113 5114 5115
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5116
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5117
 */
5118
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5119
	.notifier_call = migration_call,
5120
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5121 5122
};

5123 5124 5125 5126
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5127
	case CPU_STARTING:
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5148
static int __init migration_init(void)
L
Linus Torvalds 已提交
5149 5150
{
	void *cpu = (void *)(long)smp_processor_id();
5151
	int err;
5152

5153
	/* Initialize migration for the boot CPU */
5154 5155
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5156 5157
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5158

5159 5160 5161 5162
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5163
	return 0;
L
Linus Torvalds 已提交
5164
}
5165
early_initcall(migration_init);
L
Linus Torvalds 已提交
5166 5167 5168
#endif

#ifdef CONFIG_SMP
5169

5170 5171
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5172
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5173

5174
static __read_mostly int sched_debug_enabled;
5175

5176
static int __init sched_debug_setup(char *str)
5177
{
5178
	sched_debug_enabled = 1;
5179 5180 5181

	return 0;
}
5182 5183 5184 5185 5186 5187
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5188

5189
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5190
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5191
{
I
Ingo Molnar 已提交
5192
	struct sched_group *group = sd->groups;
5193
	char str[256];
L
Linus Torvalds 已提交
5194

R
Rusty Russell 已提交
5195
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5196
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5197 5198 5199 5200

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5201
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5202
		if (sd->parent)
P
Peter Zijlstra 已提交
5203 5204
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5205
		return -1;
N
Nick Piggin 已提交
5206 5207
	}

P
Peter Zijlstra 已提交
5208
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5209

5210
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5211 5212
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5213
	}
5214
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5215 5216
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5217
	}
L
Linus Torvalds 已提交
5218

I
Ingo Molnar 已提交
5219
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5220
	do {
I
Ingo Molnar 已提交
5221
		if (!group) {
P
Peter Zijlstra 已提交
5222 5223
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5224 5225 5226
			break;
		}

5227 5228 5229 5230 5231 5232
		/*
		 * Even though we initialize ->power to something semi-sane,
		 * we leave power_orig unset. This allows us to detect if
		 * domain iteration is still funny without causing /0 traps.
		 */
		if (!group->sgp->power_orig) {
P
Peter Zijlstra 已提交
5233 5234 5235
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5236 5237
			break;
		}
L
Linus Torvalds 已提交
5238

5239
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5240 5241
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5242 5243
			break;
		}
L
Linus Torvalds 已提交
5244

5245 5246
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5247 5248
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5249 5250
			break;
		}
L
Linus Torvalds 已提交
5251

5252
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5253

R
Rusty Russell 已提交
5254
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5255

P
Peter Zijlstra 已提交
5256
		printk(KERN_CONT " %s", str);
5257
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5258
			printk(KERN_CONT " (cpu_power = %d)",
5259
				group->sgp->power);
5260
		}
L
Linus Torvalds 已提交
5261

I
Ingo Molnar 已提交
5262 5263
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5264
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5265

5266
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5267
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5268

5269 5270
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5271 5272
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5273 5274
	return 0;
}
L
Linus Torvalds 已提交
5275

I
Ingo Molnar 已提交
5276 5277 5278
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5279

5280
	if (!sched_debug_enabled)
5281 5282
		return;

I
Ingo Molnar 已提交
5283 5284 5285 5286
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5287

I
Ingo Molnar 已提交
5288 5289 5290
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5291
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5292
			break;
L
Linus Torvalds 已提交
5293 5294
		level++;
		sd = sd->parent;
5295
		if (!sd)
I
Ingo Molnar 已提交
5296 5297
			break;
	}
L
Linus Torvalds 已提交
5298
}
5299
#else /* !CONFIG_SCHED_DEBUG */
5300
# define sched_domain_debug(sd, cpu) do { } while (0)
5301 5302 5303 5304
static inline bool sched_debug(void)
{
	return false;
}
5305
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5306

5307
static int sd_degenerate(struct sched_domain *sd)
5308
{
5309
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5310 5311 5312 5313 5314 5315
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5316 5317 5318
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5319 5320 5321 5322 5323
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5324
	if (sd->flags & (SD_WAKE_AFFINE))
5325 5326 5327 5328 5329
		return 0;

	return 1;
}

5330 5331
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5332 5333 5334 5335 5336 5337
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5338
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5339 5340 5341 5342 5343 5344 5345
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5346 5347 5348
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5349 5350
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5351 5352 5353 5354 5355 5356 5357
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5358
static void free_rootdomain(struct rcu_head *rcu)
5359
{
5360
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5361

5362
	cpupri_cleanup(&rd->cpupri);
5363 5364 5365 5366 5367 5368
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5369 5370
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5371
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5372 5373
	unsigned long flags;

5374
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5375 5376

	if (rq->rd) {
I
Ingo Molnar 已提交
5377
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5378

5379
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5380
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5381

5382
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5383

I
Ingo Molnar 已提交
5384 5385 5386 5387 5388 5389 5390
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5391 5392 5393 5394 5395
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5396
	cpumask_set_cpu(rq->cpu, rd->span);
5397
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5398
		set_rq_online(rq);
G
Gregory Haskins 已提交
5399

5400
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5401 5402

	if (old_rd)
5403
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5404 5405
}

5406
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5407 5408 5409
{
	memset(rd, 0, sizeof(*rd));

5410
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5411
		goto out;
5412
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5413
		goto free_span;
5414
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5415
		goto free_online;
5416

5417
	if (cpupri_init(&rd->cpupri) != 0)
5418
		goto free_rto_mask;
5419
	return 0;
5420

5421 5422
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5423 5424 5425 5426
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5427
out:
5428
	return -ENOMEM;
G
Gregory Haskins 已提交
5429 5430
}

5431 5432 5433 5434 5435 5436
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5437 5438
static void init_defrootdomain(void)
{
5439
	init_rootdomain(&def_root_domain);
5440

G
Gregory Haskins 已提交
5441 5442 5443
	atomic_set(&def_root_domain.refcount, 1);
}

5444
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5445 5446 5447 5448 5449 5450 5451
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5452
	if (init_rootdomain(rd) != 0) {
5453 5454 5455
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5456 5457 5458 5459

	return rd;
}

5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5479 5480 5481
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5482 5483 5484 5485 5486 5487 5488 5489

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5490
		kfree(sd->groups->sgp);
5491
		kfree(sd->groups);
5492
	}
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5507 5508 5509 5510 5511 5512 5513
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5514
 * two cpus are in the same cache domain, see cpus_share_cache().
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5525
	if (sd)
5526 5527 5528 5529 5530 5531
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5532
/*
I
Ingo Molnar 已提交
5533
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5534 5535
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5536 5537
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5538
{
5539
	struct rq *rq = cpu_rq(cpu);
5540 5541 5542
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5543
	for (tmp = sd; tmp; ) {
5544 5545 5546
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5547

5548
		if (sd_parent_degenerate(tmp, parent)) {
5549
			tmp->parent = parent->parent;
5550 5551
			if (parent->parent)
				parent->parent->child = tmp;
5552
			destroy_sched_domain(parent, cpu);
5553 5554
		} else
			tmp = tmp->parent;
5555 5556
	}

5557
	if (sd && sd_degenerate(sd)) {
5558
		tmp = sd;
5559
		sd = sd->parent;
5560
		destroy_sched_domain(tmp, cpu);
5561 5562 5563
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5564

5565
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5566

G
Gregory Haskins 已提交
5567
	rq_attach_root(rq, rd);
5568
	tmp = rq->sd;
N
Nick Piggin 已提交
5569
	rcu_assign_pointer(rq->sd, sd);
5570
	destroy_sched_domains(tmp, cpu);
5571 5572

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5573 5574 5575
}

/* cpus with isolated domains */
5576
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5577 5578 5579 5580

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5581
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5582
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5583 5584 5585
	return 1;
}

I
Ingo Molnar 已提交
5586
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5587

5588 5589 5590 5591 5592
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5593 5594 5595
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5596
	struct sched_group_power **__percpu sgp;
5597 5598
};

5599
struct s_data {
5600
	struct sched_domain ** __percpu sd;
5601 5602 5603
	struct root_domain	*rd;
};

5604 5605
enum s_alloc {
	sa_rootdomain,
5606
	sa_sd,
5607
	sa_sd_storage,
5608 5609 5610
	sa_none,
};

5611 5612 5613
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5614 5615
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5616 5617
#define SDTL_OVERLAP	0x01

5618
struct sched_domain_topology_level {
5619 5620
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5621
	int		    flags;
5622
	int		    numa_level;
5623
	struct sd_data      data;
5624 5625
};

P
Peter Zijlstra 已提交
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5682 5683 5684 5685 5686 5687
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5688
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5689
				GFP_KERNEL, cpu_to_node(cpu));
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

P
Peter Zijlstra 已提交
5703
		sg->sgp = *per_cpu_ptr(sdd->sgp, i);
P
Peter Zijlstra 已提交
5704 5705 5706
		if (atomic_inc_return(&sg->sgp->ref) == 1)
			build_group_mask(sd, sg);

5707 5708 5709 5710 5711 5712
		/*
		 * Initialize sgp->power such that even if we mess up the
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
		sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5713

P
Peter Zijlstra 已提交
5714 5715 5716 5717 5718
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5719
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5720
		    group_balance_cpu(sg) == cpu)
5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5740
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5741
{
5742 5743
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5744

5745 5746
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5747

5748
	if (sg) {
5749
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5750
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5751
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5752
	}
5753 5754

	return cpu;
5755 5756
}

5757
/*
5758 5759 5760
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
5761 5762
 *
 * Assumes the sched_domain tree is fully constructed
5763
 */
5764 5765
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5766
{
5767 5768 5769
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5770
	struct cpumask *covered;
5771
	int i;
5772

5773 5774 5775 5776 5777 5778
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

5779 5780 5781
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5782
	cpumask_clear(covered);
5783

5784 5785 5786 5787
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
5788

5789 5790
		if (cpumask_test_cpu(i, covered))
			continue;
5791

5792
		cpumask_clear(sched_group_cpus(sg));
5793
		sg->sgp->power = 0;
P
Peter Zijlstra 已提交
5794
		cpumask_setall(sched_group_mask(sg));
5795

5796 5797 5798
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5799

5800 5801 5802
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5803

5804 5805 5806 5807 5808 5809 5810
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5811 5812

	return 0;
5813
}
5814

5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
5827
	struct sched_group *sg = sd->groups;
5828

5829 5830 5831 5832 5833 5834
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5835

P
Peter Zijlstra 已提交
5836
	if (cpu != group_balance_cpu(sg))
5837
		return;
5838

5839
	update_group_power(sd, cpu);
5840
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5841 5842
}

5843 5844 5845
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
5846 5847
}

5848 5849 5850 5851 5852
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5853 5854 5855 5856 5857 5858
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

5859 5860 5861 5862 5863 5864 5865 5866 5867
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
5868 5869 5870 5871 5872 5873 5874 5875 5876
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
5877 5878 5879
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
5880

5881
static int default_relax_domain_level = -1;
5882
int sched_domain_level_max;
5883 5884 5885

static int __init setup_relax_domain_level(char *str)
{
5886 5887
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5888

5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5907
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5908 5909
	} else {
		/* turn on idle balance on this domain */
5910
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5911 5912 5913
	}
}

5914 5915 5916
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5917 5918 5919 5920 5921
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5922 5923
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5924 5925
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5926
	case sa_sd_storage:
5927
		__sdt_free(cpu_map); /* fall through */
5928 5929 5930 5931
	case sa_none:
		break;
	}
}
5932

5933 5934 5935
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5936 5937
	memset(d, 0, sizeof(*d));

5938 5939
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5940 5941 5942
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5943
	d->rd = alloc_rootdomain();
5944
	if (!d->rd)
5945
		return sa_sd;
5946 5947
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5948

5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5961
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5962
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5963 5964

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5965
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
5966 5967
}

5968 5969
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
5970
{
5971
	return topology_thread_cpumask(cpu);
5972
}
5973
#endif
5974

5975 5976 5977
/*
 * Topology list, bottom-up.
 */
5978
static struct sched_domain_topology_level default_topology[] = {
5979 5980
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
5981
#endif
5982
#ifdef CONFIG_SCHED_MC
5983
	{ sd_init_MC, cpu_coregroup_mask, },
5984
#endif
5985 5986 5987 5988
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
5989 5990 5991 5992 5993
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

5994 5995 5996 5997 5998 5999 6000 6001 6002
#ifdef CONFIG_NUMA

static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;

static inline int sd_local_flags(int level)
{
6003
	if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
		return 0;

	return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
}

static struct sched_domain *
sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
	int level = tl->numa_level;
	int sd_weight = cpumask_weight(
			sched_domains_numa_masks[level][cpu_to_node(cpu)]);

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6021
		.imbalance_pct		= 125,
6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059
		.cache_nice_tries	= 2,
		.busy_idx		= 3,
		.idle_idx		= 2,
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
					| 0*SD_BALANCE_EXEC
					| 0*SD_BALANCE_FORK
					| 0*SD_BALANCE_WAKE
					| 0*SD_WAKE_AFFINE
					| 0*SD_SHARE_CPUPOWER
					| 0*SD_SHARE_PKG_RESOURCES
					| 1*SD_SERIALIZE
					| 0*SD_PREFER_SIBLING
					| sd_local_flags(level)
					,
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
	};
	SD_INIT_NAME(sd, NUMA);
	sd->private = &tl->data;

	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;

	return sd;
}

static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6141
		}
6142 6143 6144 6145 6146 6147

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6148 6149 6150 6151 6152 6153 6154 6155 6156
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
	 * The sched_domains_nume_distance[] array includes the actual distance
	 * numbers.
	 */

6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6183
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6184 6185 6186 6187 6188 6189
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6190
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

	tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
	for (i = 0; default_topology[i].init; i++)
		tl[i] = default_topology[i];

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.init = sd_numa_init,
			.mask = sd_numa_mask,
			.flags = SDTL_OVERLAP,
			.numa_level = j,
		};
	}

	sched_domain_topology = tl;
6222 6223

	sched_domains_numa_levels = level;
6224
}
6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6272 6273 6274 6275 6276
}
#else
static inline void sched_init_numa(void)
{
}
6277 6278 6279 6280 6281 6282 6283

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6284 6285
#endif /* CONFIG_NUMA */

6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6302 6303 6304 6305
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6306 6307 6308
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6309
			struct sched_group_power *sgp;
6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6323 6324
			sg->next = sg;

6325
			*per_cpu_ptr(sdd->sg, j) = sg;
6326

P
Peter Zijlstra 已提交
6327
			sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6328 6329 6330 6331 6332
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
			if (sdd->sgp)
				kfree(*per_cpu_ptr(sdd->sgp, j));
6361 6362
		}
		free_percpu(sdd->sd);
6363
		sdd->sd = NULL;
6364
		free_percpu(sdd->sg);
6365
		sdd->sg = NULL;
6366
		free_percpu(sdd->sgp);
6367
		sdd->sgp = NULL;
6368 6369 6370
	}
}

6371 6372
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6373
		struct sched_domain_attr *attr, struct sched_domain *child,
6374 6375
		int cpu)
{
6376
	struct sched_domain *sd = tl->init(tl, cpu);
6377
	if (!sd)
6378
		return child;
6379 6380

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6381 6382 6383
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6384
		child->parent = sd;
6385
	}
6386
	sd->child = child;
6387
	set_domain_attribute(sd, attr);
6388 6389 6390 6391

	return sd;
}

6392 6393 6394 6395
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6396 6397
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6398 6399
{
	enum s_alloc alloc_state = sa_none;
6400
	struct sched_domain *sd;
6401
	struct s_data d;
6402
	int i, ret = -ENOMEM;
6403

6404 6405 6406
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6407

6408
	/* Set up domains for cpus specified by the cpu_map. */
6409
	for_each_cpu(i, cpu_map) {
6410 6411
		struct sched_domain_topology_level *tl;

6412
		sd = NULL;
6413
		for (tl = sched_domain_topology; tl->init; tl++) {
6414
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6415 6416
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6417 6418
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6419
		}
6420

6421 6422 6423
		while (sd->child)
			sd = sd->child;

6424
		*per_cpu_ptr(d.sd, i) = sd;
6425 6426 6427 6428 6429 6430
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6431 6432 6433 6434 6435 6436 6437
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6438
		}
6439
	}
6440

L
Linus Torvalds 已提交
6441
	/* Calculate CPU power for physical packages and nodes */
6442 6443 6444
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6445

6446 6447
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6448
			init_sched_groups_power(i, sd);
6449
		}
6450
	}
6451

L
Linus Torvalds 已提交
6452
	/* Attach the domains */
6453
	rcu_read_lock();
6454
	for_each_cpu(i, cpu_map) {
6455
		sd = *per_cpu_ptr(d.sd, i);
6456
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6457
	}
6458
	rcu_read_unlock();
6459

6460
	ret = 0;
6461
error:
6462
	__free_domain_allocs(&d, alloc_state, cpu_map);
6463
	return ret;
L
Linus Torvalds 已提交
6464
}
P
Paul Jackson 已提交
6465

6466
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6467
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6468 6469
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6470 6471 6472

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6473 6474
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6475
 */
6476
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6477

6478 6479 6480 6481 6482 6483
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6484
{
6485
	return 0;
6486 6487
}

6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6513
/*
I
Ingo Molnar 已提交
6514
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6515 6516
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6517
 */
6518
static int init_sched_domains(const struct cpumask *cpu_map)
6519
{
6520 6521
	int err;

6522
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6523
	ndoms_cur = 1;
6524
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6525
	if (!doms_cur)
6526 6527
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6528
	err = build_sched_domains(doms_cur[0], NULL);
6529
	register_sched_domain_sysctl();
6530 6531

	return err;
6532 6533 6534 6535 6536 6537
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6538
static void detach_destroy_domains(const struct cpumask *cpu_map)
6539 6540 6541
{
	int i;

6542
	rcu_read_lock();
6543
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6544
		cpu_attach_domain(NULL, &def_root_domain, i);
6545
	rcu_read_unlock();
6546 6547
}

6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6564 6565
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6566
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6567 6568 6569
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6570
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6571 6572 6573
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6574 6575 6576
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6577 6578 6579 6580 6581 6582
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6583
 *
6584
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6585 6586
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6587
 *
P
Paul Jackson 已提交
6588 6589
 * Call with hotplug lock held
 */
6590
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6591
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6592
{
6593
	int i, j, n;
6594
	int new_topology;
P
Paul Jackson 已提交
6595

6596
	mutex_lock(&sched_domains_mutex);
6597

6598 6599 6600
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6601 6602 6603
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6604
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6605 6606 6607

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6608
		for (j = 0; j < n && !new_topology; j++) {
6609
			if (cpumask_equal(doms_cur[i], doms_new[j])
6610
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6611 6612 6613
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6614
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6615 6616 6617 6618
match1:
		;
	}

6619 6620
	if (doms_new == NULL) {
		ndoms_cur = 0;
6621
		doms_new = &fallback_doms;
6622
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6623
		WARN_ON_ONCE(dattr_new);
6624 6625
	}

P
Paul Jackson 已提交
6626 6627
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6628
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6629
			if (cpumask_equal(doms_new[i], doms_cur[j])
6630
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6631 6632 6633
				goto match2;
		}
		/* no match - add a new doms_new */
6634
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6635 6636 6637 6638 6639
match2:
		;
	}

	/* Remember the new sched domains */
6640 6641
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6642
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6643
	doms_cur = doms_new;
6644
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6645
	ndoms_cur = ndoms_new;
6646 6647

	register_sched_domain_sysctl();
6648

6649
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6650 6651
}

6652 6653
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6654
/*
6655 6656 6657
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6658 6659 6660
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6661
 */
6662 6663
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6664
{
6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6687
	case CPU_ONLINE:
6688
	case CPU_DOWN_FAILED:
6689
		cpuset_update_active_cpus(true);
6690
		break;
6691 6692 6693
	default:
		return NOTIFY_DONE;
	}
6694
	return NOTIFY_OK;
6695
}
6696

6697 6698
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6699
{
6700
	switch (action) {
6701
	case CPU_DOWN_PREPARE:
6702
		cpuset_update_active_cpus(false);
6703 6704 6705 6706 6707
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6708 6709 6710
	default:
		return NOTIFY_DONE;
	}
6711
	return NOTIFY_OK;
6712 6713
}

L
Linus Torvalds 已提交
6714 6715
void __init sched_init_smp(void)
{
6716 6717 6718
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6719
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6720

6721 6722
	sched_init_numa();

6723
	get_online_cpus();
6724
	mutex_lock(&sched_domains_mutex);
6725
	init_sched_domains(cpu_active_mask);
6726 6727 6728
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6729
	mutex_unlock(&sched_domains_mutex);
6730
	put_online_cpus();
6731

6732
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6733 6734
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6735 6736 6737 6738

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6739
	init_hrtick();
6740 6741

	/* Move init over to a non-isolated CPU */
6742
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6743
		BUG();
I
Ingo Molnar 已提交
6744
	sched_init_granularity();
6745
	free_cpumask_var(non_isolated_cpus);
6746

6747
	init_sched_rt_class();
L
Linus Torvalds 已提交
6748 6749 6750 6751
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6752
	sched_init_granularity();
L
Linus Torvalds 已提交
6753 6754 6755
}
#endif /* CONFIG_SMP */

6756 6757
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6758 6759 6760 6761 6762 6763 6764
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6765 6766
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6767
LIST_HEAD(task_groups);
6768
#endif
P
Peter Zijlstra 已提交
6769

6770
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6771

L
Linus Torvalds 已提交
6772 6773
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6774
	int i, j;
6775 6776 6777 6778 6779 6780 6781
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6782
#endif
6783
#ifdef CONFIG_CPUMASK_OFFSTACK
6784
	alloc_size += num_possible_cpus() * cpumask_size();
6785 6786
#endif
	if (alloc_size) {
6787
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6788 6789

#ifdef CONFIG_FAIR_GROUP_SCHED
6790
		root_task_group.se = (struct sched_entity **)ptr;
6791 6792
		ptr += nr_cpu_ids * sizeof(void **);

6793
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6794
		ptr += nr_cpu_ids * sizeof(void **);
6795

6796
#endif /* CONFIG_FAIR_GROUP_SCHED */
6797
#ifdef CONFIG_RT_GROUP_SCHED
6798
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6799 6800
		ptr += nr_cpu_ids * sizeof(void **);

6801
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6802 6803
		ptr += nr_cpu_ids * sizeof(void **);

6804
#endif /* CONFIG_RT_GROUP_SCHED */
6805 6806 6807 6808 6809 6810
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6811
	}
I
Ingo Molnar 已提交
6812

G
Gregory Haskins 已提交
6813 6814 6815 6816
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6817 6818 6819 6820
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6821
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6822
			global_rt_period(), global_rt_runtime());
6823
#endif /* CONFIG_RT_GROUP_SCHED */
6824

D
Dhaval Giani 已提交
6825
#ifdef CONFIG_CGROUP_SCHED
6826 6827
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6828
	INIT_LIST_HEAD(&root_task_group.siblings);
6829
	autogroup_init(&init_task);
6830

D
Dhaval Giani 已提交
6831
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6832

6833 6834 6835 6836 6837 6838
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6839
	for_each_possible_cpu(i) {
6840
		struct rq *rq;
L
Linus Torvalds 已提交
6841 6842

		rq = cpu_rq(i);
6843
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6844
		rq->nr_running = 0;
6845 6846
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6847
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6848
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6849
#ifdef CONFIG_FAIR_GROUP_SCHED
6850
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6851
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6852
		/*
6853
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6854 6855 6856 6857
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6858
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6859 6860 6861
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6862
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6863 6864 6865
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6866
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6867
		 *
6868 6869
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6870
		 */
6871
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6872
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6873 6874 6875
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6876
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6877
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6878
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6879
#endif
L
Linus Torvalds 已提交
6880

I
Ingo Molnar 已提交
6881 6882
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6883 6884 6885

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6886
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6887
		rq->sd = NULL;
G
Gregory Haskins 已提交
6888
		rq->rd = NULL;
6889
		rq->cpu_power = SCHED_POWER_SCALE;
6890
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6891
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6892
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6893
		rq->push_cpu = 0;
6894
		rq->cpu = i;
6895
		rq->online = 0;
6896 6897
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6898 6899 6900

		INIT_LIST_HEAD(&rq->cfs_tasks);

6901
		rq_attach_root(rq, &def_root_domain);
6902
#ifdef CONFIG_NO_HZ
6903
		rq->nohz_flags = 0;
6904
#endif
L
Linus Torvalds 已提交
6905
#endif
P
Peter Zijlstra 已提交
6906
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6907 6908 6909
		atomic_set(&rq->nr_iowait, 0);
	}

6910
	set_load_weight(&init_task);
6911

6912 6913 6914 6915
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6916
#ifdef CONFIG_RT_MUTEXES
6917
	plist_head_init(&init_task.pi_waiters);
6918 6919
#endif

L
Linus Torvalds 已提交
6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6933 6934 6935

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6936 6937 6938 6939
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6940

6941
#ifdef CONFIG_SMP
6942
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6943 6944 6945
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6946
	idle_thread_set_boot_cpu();
6947 6948
#endif
	init_sched_fair_class();
6949

6950
	scheduler_running = 1;
L
Linus Torvalds 已提交
6951 6952
}

6953
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6954 6955
static inline int preempt_count_equals(int preempt_offset)
{
6956
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6957

A
Arnd Bergmann 已提交
6958
	return (nested == preempt_offset);
6959 6960
}

6961
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6962 6963 6964
{
	static unsigned long prev_jiffy;	/* ratelimiting */

6965
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6966 6967
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6968 6969 6970 6971 6972
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
6973 6974 6975 6976 6977 6978 6979
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6980 6981 6982 6983 6984

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
6985 6986 6987 6988 6989
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6990 6991
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
6992 6993
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
6994
	int on_rq;
6995

P
Peter Zijlstra 已提交
6996
	on_rq = p->on_rq;
6997
	if (on_rq)
6998
		dequeue_task(rq, p, 0);
6999 7000
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
7001
		enqueue_task(rq, p, 0);
7002 7003
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7004 7005

	check_class_changed(rq, p, prev_class, old_prio);
7006 7007
}

L
Linus Torvalds 已提交
7008 7009
void normalize_rt_tasks(void)
{
7010
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7011
	unsigned long flags;
7012
	struct rq *rq;
L
Linus Torvalds 已提交
7013

7014
	read_lock_irqsave(&tasklist_lock, flags);
7015
	do_each_thread(g, p) {
7016 7017 7018 7019 7020 7021
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7022 7023
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7024 7025 7026
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7027
#endif
I
Ingo Molnar 已提交
7028 7029 7030 7031 7032 7033 7034 7035

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7036
			continue;
I
Ingo Molnar 已提交
7037
		}
L
Linus Torvalds 已提交
7038

7039
		raw_spin_lock(&p->pi_lock);
7040
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7041

7042
		normalize_task(rq, p);
7043

7044
		__task_rq_unlock(rq);
7045
		raw_spin_unlock(&p->pi_lock);
7046 7047
	} while_each_thread(g, p);

7048
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7049 7050 7051
}

#endif /* CONFIG_MAGIC_SYSRQ */
7052

7053
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7054
/*
7055
 * These functions are only useful for the IA64 MCA handling, or kdb.
7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7070
struct task_struct *curr_task(int cpu)
7071 7072 7073 7074
{
	return cpu_curr(cpu);
}

7075 7076 7077
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7078 7079 7080 7081 7082 7083
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7084 7085
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7086 7087 7088 7089 7090 7091 7092
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7093
void set_curr_task(int cpu, struct task_struct *p)
7094 7095 7096 7097 7098
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7099

D
Dhaval Giani 已提交
7100
#ifdef CONFIG_CGROUP_SCHED
7101 7102 7103
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7104 7105 7106 7107
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7108
	autogroup_free(tg);
7109 7110 7111 7112
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7113
struct task_group *sched_create_group(struct task_group *parent)
7114 7115 7116 7117 7118 7119 7120 7121
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7122
	if (!alloc_fair_sched_group(tg, parent))
7123 7124
		goto err;

7125
	if (!alloc_rt_sched_group(tg, parent))
7126 7127
		goto err;

7128
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7129
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7130 7131 7132 7133 7134

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7135
	list_add_rcu(&tg->siblings, &parent->children);
7136
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7137

7138
	return tg;
S
Srivatsa Vaddagiri 已提交
7139 7140

err:
P
Peter Zijlstra 已提交
7141
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7142 7143 7144
	return ERR_PTR(-ENOMEM);
}

7145
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7146
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7147 7148
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7149
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7150 7151
}

7152
/* Destroy runqueue etc associated with a task group */
7153
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7154
{
7155
	unsigned long flags;
7156
	int i;
S
Srivatsa Vaddagiri 已提交
7157

7158 7159
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7160
		unregister_fair_sched_group(tg, i);
7161 7162

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7163
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7164
	list_del_rcu(&tg->siblings);
7165
	spin_unlock_irqrestore(&task_group_lock, flags);
7166 7167

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7168
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7169 7170
}

7171
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7172 7173 7174
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7175 7176
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7177
{
P
Peter Zijlstra 已提交
7178
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7179 7180 7181 7182 7183 7184
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7185
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7186
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7187

7188
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7189
		dequeue_task(rq, tsk, 0);
7190 7191
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7192

P
Peter Zijlstra 已提交
7193 7194 7195 7196 7197 7198
	tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7199
#ifdef CONFIG_FAIR_GROUP_SCHED
7200 7201 7202
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7203
#endif
7204
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7205

7206 7207 7208
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7209
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7210

7211
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7212
}
D
Dhaval Giani 已提交
7213
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7214

7215
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7216 7217 7218
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7219
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7220

P
Peter Zijlstra 已提交
7221
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7222
}
7223 7224 7225 7226 7227 7228 7229
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7230

P
Peter Zijlstra 已提交
7231 7232
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7233
{
P
Peter Zijlstra 已提交
7234
	struct task_struct *g, *p;
7235

P
Peter Zijlstra 已提交
7236
	do_each_thread(g, p) {
7237
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7238 7239
			return 1;
	} while_each_thread(g, p);
7240

P
Peter Zijlstra 已提交
7241 7242
	return 0;
}
7243

P
Peter Zijlstra 已提交
7244 7245 7246 7247 7248
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7249

7250
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7251 7252 7253 7254 7255
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7256

P
Peter Zijlstra 已提交
7257 7258
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7259

P
Peter Zijlstra 已提交
7260 7261 7262
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7263 7264
	}

7265 7266 7267 7268 7269
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7270

7271 7272 7273
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7274 7275
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7276

P
Peter Zijlstra 已提交
7277
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7278

7279 7280 7281 7282 7283
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7284

7285 7286 7287
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7288 7289 7290
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7291

P
Peter Zijlstra 已提交
7292 7293 7294 7295
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7296

P
Peter Zijlstra 已提交
7297
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7298
	}
P
Peter Zijlstra 已提交
7299

P
Peter Zijlstra 已提交
7300 7301 7302 7303
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7304 7305
}

P
Peter Zijlstra 已提交
7306
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7307
{
7308 7309
	int ret;

P
Peter Zijlstra 已提交
7310 7311 7312 7313 7314 7315
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7316 7317 7318 7319 7320
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7321 7322
}

7323
static int tg_set_rt_bandwidth(struct task_group *tg,
7324
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7325
{
P
Peter Zijlstra 已提交
7326
	int i, err = 0;
P
Peter Zijlstra 已提交
7327 7328

	mutex_lock(&rt_constraints_mutex);
7329
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7330 7331
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7332
		goto unlock;
P
Peter Zijlstra 已提交
7333

7334
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7335 7336
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7337 7338 7339 7340

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7341
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7342
		rt_rq->rt_runtime = rt_runtime;
7343
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7344
	}
7345
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7346
unlock:
7347
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7348 7349 7350
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7351 7352
}

7353 7354 7355 7356 7357 7358 7359 7360 7361
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7362
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7363 7364
}

P
Peter Zijlstra 已提交
7365 7366 7367 7368
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7369
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7370 7371
		return -1;

7372
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7373 7374 7375
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7376 7377 7378 7379 7380 7381 7382 7383

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7384 7385 7386
	if (rt_period == 0)
		return -EINVAL;

7387
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7401
	u64 runtime, period;
7402 7403
	int ret = 0;

7404 7405 7406
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7407 7408 7409 7410 7411 7412 7413 7414
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7415

7416
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7417
	read_lock(&tasklist_lock);
7418
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7419
	read_unlock(&tasklist_lock);
7420 7421 7422 7423
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7424 7425 7426 7427 7428 7429 7430 7431 7432 7433

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7434
#else /* !CONFIG_RT_GROUP_SCHED */
7435 7436
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7437 7438 7439
	unsigned long flags;
	int i;

7440 7441 7442
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7443 7444 7445 7446 7447 7448 7449
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7450
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7451 7452 7453
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7454
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7455
		rt_rq->rt_runtime = global_rt_runtime();
7456
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7457
	}
7458
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7459

7460 7461
	return 0;
}
7462
#endif /* CONFIG_RT_GROUP_SCHED */
7463 7464

int sched_rt_handler(struct ctl_table *table, int write,
7465
		void __user *buffer, size_t *lenp,
7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7476
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7493

7494
#ifdef CONFIG_CGROUP_SCHED
7495 7496

/* return corresponding task_group object of a cgroup */
7497
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7498
{
7499 7500
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7501 7502
}

7503
static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7504
{
7505
	struct task_group *tg, *parent;
7506

7507
	if (!cgrp->parent) {
7508
		/* This is early initialization for the top cgroup */
7509
		return &root_task_group.css;
7510 7511
	}

7512 7513
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7514 7515 7516 7517 7518 7519
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7520
static void cpu_cgroup_destroy(struct cgroup *cgrp)
7521
{
7522
	struct task_group *tg = cgroup_tg(cgrp);
7523 7524 7525 7526

	sched_destroy_group(tg);
}

7527
static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7528
				 struct cgroup_taskset *tset)
7529
{
7530 7531 7532
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset) {
7533
#ifdef CONFIG_RT_GROUP_SCHED
7534 7535
		if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
			return -EINVAL;
7536
#else
7537 7538 7539
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7540
#endif
7541
	}
7542 7543
	return 0;
}
7544

7545
static void cpu_cgroup_attach(struct cgroup *cgrp,
7546
			      struct cgroup_taskset *tset)
7547
{
7548 7549 7550 7551
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		sched_move_task(task);
7552 7553
}

7554
static void
7555 7556
cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
		struct task_struct *task)
7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7569
#ifdef CONFIG_FAIR_GROUP_SCHED
7570
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7571
				u64 shareval)
7572
{
7573
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7574 7575
}

7576
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7577
{
7578
	struct task_group *tg = cgroup_tg(cgrp);
7579

7580
	return (u64) scale_load_down(tg->shares);
7581
}
7582 7583

#ifdef CONFIG_CFS_BANDWIDTH
7584 7585
static DEFINE_MUTEX(cfs_constraints_mutex);

7586 7587 7588
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7589 7590
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7591 7592
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7593
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7594
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7615 7616 7617 7618 7619
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7620
	runtime_enabled = quota != RUNTIME_INF;
7621 7622
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7623 7624 7625
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7626

P
Paul Turner 已提交
7627
	__refill_cfs_bandwidth_runtime(cfs_b);
7628 7629 7630 7631 7632 7633
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7634 7635 7636 7637
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7638
		struct rq *rq = cfs_rq->rq;
7639 7640

		raw_spin_lock_irq(&rq->lock);
7641
		cfs_rq->runtime_enabled = runtime_enabled;
7642
		cfs_rq->runtime_remaining = 0;
7643

7644
		if (cfs_rq->throttled)
7645
			unthrottle_cfs_rq(cfs_rq);
7646 7647
		raw_spin_unlock_irq(&rq->lock);
	}
7648 7649
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7650

7651
	return ret;
7652 7653 7654 7655 7656 7657
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7658
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7671
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7672 7673
		return -1;

7674
	quota_us = tg->cfs_bandwidth.quota;
7675 7676 7677 7678 7679 7680 7681 7682 7683 7684
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7685
	quota = tg->cfs_bandwidth.quota;
7686 7687 7688 7689 7690 7691 7692 7693

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7694
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7754
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7755 7756 7757 7758 7759
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7760
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7781
	int ret;
7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7793 7794 7795 7796 7797
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7798
}
7799 7800 7801 7802 7803

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7804
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7805 7806 7807 7808 7809 7810 7811

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7812
#endif /* CONFIG_CFS_BANDWIDTH */
7813
#endif /* CONFIG_FAIR_GROUP_SCHED */
7814

7815
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7816
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7817
				s64 val)
P
Peter Zijlstra 已提交
7818
{
7819
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7820 7821
}

7822
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7823
{
7824
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7825
}
7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7837
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7838

7839
static struct cftype cpu_files[] = {
7840
#ifdef CONFIG_FAIR_GROUP_SCHED
7841 7842
	{
		.name = "shares",
7843 7844
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7845
	},
7846
#endif
7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7858 7859 7860 7861
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7862
#endif
7863
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7864
	{
P
Peter Zijlstra 已提交
7865
		.name = "rt_runtime_us",
7866 7867
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7868
	},
7869 7870
	{
		.name = "rt_period_us",
7871 7872
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7873
	},
7874
#endif
7875
	{ }	/* terminate */
7876 7877 7878
};

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7879 7880 7881
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
7882 7883
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7884
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7885
	.subsys_id	= cpu_cgroup_subsys_id,
7886
	.base_cftypes	= cpu_files,
7887 7888 7889
	.early_init	= 1,
};

7890
#endif	/* CONFIG_CGROUP_SCHED */
7891 7892 7893 7894 7895 7896 7897 7898 7899 7900

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

7901 7902
struct cpuacct root_cpuacct;

7903
/* create a new cpu accounting group */
7904
static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7905
{
7906
	struct cpuacct *ca;
7907

7908 7909 7910 7911
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7912
	if (!ca)
7913
		goto out;
7914 7915

	ca->cpuusage = alloc_percpu(u64);
7916 7917 7918
	if (!ca->cpuusage)
		goto out_free_ca;

7919 7920 7921
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7922

7923
	return &ca->css;
7924

7925
out_free_cpuusage:
7926 7927 7928 7929 7930
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7931 7932 7933
}

/* destroy an existing cpu accounting group */
7934
static void cpuacct_destroy(struct cgroup *cgrp)
7935
{
7936
	struct cpuacct *ca = cgroup_ca(cgrp);
7937

7938
	free_percpu(ca->cpustat);
7939 7940 7941 7942
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7943 7944
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7945
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7946 7947 7948 7949 7950 7951
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
7952
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7953
	data = *cpuusage;
7954
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7955 7956 7957 7958 7959 7960 7961 7962 7963
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
7964
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7965 7966 7967 7968 7969

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
7970
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7971
	*cpuusage = val;
7972
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7973 7974 7975 7976 7977
#else
	*cpuusage = val;
#endif
}

7978
/* return total cpu usage (in nanoseconds) of a group */
7979
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7980
{
7981
	struct cpuacct *ca = cgroup_ca(cgrp);
7982 7983 7984
	u64 totalcpuusage = 0;
	int i;

7985 7986
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
7987 7988 7989 7990

	return totalcpuusage;
}

7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8003 8004
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8005 8006 8007 8008 8009

out:
	return err;
}

8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8025 8026 8027 8028 8029 8030
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8031
			      struct cgroup_map_cb *cb)
8032 8033
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8034 8035
	int cpu;
	s64 val = 0;
8036

8037 8038 8039 8040
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8041
	}
8042 8043
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8044

8045 8046 8047 8048 8049 8050
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8051
	}
8052 8053 8054 8055

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8056 8057 8058
	return 0;
}

8059 8060 8061
static struct cftype files[] = {
	{
		.name = "usage",
8062 8063
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8064
	},
8065 8066 8067 8068
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8069 8070 8071 8072
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8073
	{ }	/* terminate */
8074 8075 8076 8077 8078 8079 8080
};

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8081
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8082 8083
{
	struct cpuacct *ca;
8084
	int cpu;
8085

L
Li Zefan 已提交
8086
	if (unlikely(!cpuacct_subsys.active))
8087 8088
		return;

8089
	cpu = task_cpu(tsk);
8090 8091 8092

	rcu_read_lock();

8093 8094
	ca = task_ca(tsk);

8095
	for (; ca; ca = parent_ca(ca)) {
8096
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8097 8098
		*cpuusage += cputime;
	}
8099 8100

	rcu_read_unlock();
8101 8102 8103 8104 8105 8106 8107
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.subsys_id = cpuacct_subsys_id,
8108
	.base_cftypes = files,
8109 8110
};
#endif	/* CONFIG_CGROUP_CPUACCT */