core.c 180.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3
 *
I
Ingo Molnar 已提交
4
 *  Core kernel scheduler code and related syscalls
L
Linus Torvalds 已提交
5 6 7
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 */
8
#include <linux/sched.h>
9
#include <linux/sched/clock.h>
10
#include <uapi/linux/sched/types.h>
11
#include <linux/sched/loadavg.h>
12
#include <linux/sched/hotplug.h>
L
Linus Torvalds 已提交
13
#include <linux/cpuset.h>
14
#include <linux/delayacct.h>
15
#include <linux/init_task.h>
16
#include <linux/context_tracking.h>
17
#include <linux/rcupdate_wait.h>
18 19 20 21 22 23

#include <linux/blkdev.h>
#include <linux/kprobes.h>
#include <linux/mmu_context.h>
#include <linux/module.h>
#include <linux/nmi.h>
24
#include <linux/prefetch.h>
25 26 27
#include <linux/profile.h>
#include <linux/security.h>
#include <linux/syscalls.h>
L
Linus Torvalds 已提交
28

29
#include <asm/switch_to.h>
30
#include <asm/tlb.h>
31 32 33
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
34

35
#include "sched.h"
36
#include "../workqueue_internal.h"
37
#include "../smpboot.h"
38

39
#define CREATE_TRACE_POINTS
40
#include <trace/events/sched.h>
41

42
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
43

I
Ingo Molnar 已提交
44 45 46
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
47 48 49 50

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
51
const_debug unsigned int sysctl_sched_features =
52
#include "features.h"
P
Peter Zijlstra 已提交
53 54 55 56
	0;

#undef SCHED_FEAT

57 58 59 60 61 62
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

63 64 65 66 67 68 69 70
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
71
/*
I
Ingo Molnar 已提交
72
 * period over which we measure -rt task CPU usage in us.
P
Peter Zijlstra 已提交
73 74
 * default: 1s
 */
P
Peter Zijlstra 已提交
75
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
76

77
__read_mostly int scheduler_running;
78

P
Peter Zijlstra 已提交
79 80 81 82 83
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
84

I
Ingo Molnar 已提交
85
/* CPUs with isolated domains */
86 87
cpumask_var_t cpu_isolated_map;

88 89 90
/*
 * __task_rq_lock - lock the rq @p resides on.
 */
91
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
92 93 94 95 96 97 98 99 100 101
	__acquires(rq->lock)
{
	struct rq *rq;

	lockdep_assert_held(&p->pi_lock);

	for (;;) {
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
102
			rq_pin_lock(rq, rf);
103 104 105 106 107 108 109 110 111 112 113 114
			return rq;
		}
		raw_spin_unlock(&rq->lock);

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

/*
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 */
115
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
116 117 118 119 120 121
	__acquires(p->pi_lock)
	__acquires(rq->lock)
{
	struct rq *rq;

	for (;;) {
122
		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
		rq = task_rq(p);
		raw_spin_lock(&rq->lock);
		/*
		 *	move_queued_task()		task_rq_lock()
		 *
		 *	ACQUIRE (rq->lock)
		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
		 *	[S] ->cpu = new_cpu		[L] task_rq()
		 *					[L] ->on_rq
		 *	RELEASE (rq->lock)
		 *
		 * If we observe the old cpu in task_rq_lock, the acquire of
		 * the old rq->lock will fully serialize against the stores.
		 *
I
Ingo Molnar 已提交
138
		 * If we observe the new CPU in task_rq_lock, the acquire will
139 140 141
		 * pair with the WMB to ensure we must then also see migrating.
		 */
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
142
			rq_pin_lock(rq, rf);
143 144 145
			return rq;
		}
		raw_spin_unlock(&rq->lock);
146
		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
147 148 149 150 151 152

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
	}
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/*
 * RQ-clock updating methods:
 */

static void update_rq_clock_task(struct rq *rq, s64 delta)
{
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_key_false((&paravirt_steal_rq_enabled))) {
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

	rq->clock_task += delta;

#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
}

void update_rq_clock(struct rq *rq)
{
	s64 delta;

	lockdep_assert_held(&rq->lock);

	if (rq->clock_update_flags & RQCF_ACT_SKIP)
		return;

#ifdef CONFIG_SCHED_DEBUG
221 222
	if (sched_feat(WARN_DOUBLE_CLOCK))
		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
223 224
	rq->clock_update_flags |= RQCF_UPDATED;
#endif
225

226 227 228 229 230 231 232 233
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	if (delta < 0)
		return;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
}


P
Peter Zijlstra 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
252
	struct rq_flags rf;
P
Peter Zijlstra 已提交
253 254 255

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

256
	rq_lock(rq, &rf);
257
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
258
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
259
	rq_unlock(rq, &rf);
P
Peter Zijlstra 已提交
260 261 262 263

	return HRTIMER_NORESTART;
}

264
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
265

266
static void __hrtick_restart(struct rq *rq)
P
Peter Zijlstra 已提交
267 268 269
{
	struct hrtimer *timer = &rq->hrtick_timer;

270
	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
P
Peter Zijlstra 已提交
271 272
}

273 274 275 276
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
277
{
278
	struct rq *rq = arg;
279
	struct rq_flags rf;
280

281
	rq_lock(rq, &rf);
P
Peter Zijlstra 已提交
282
	__hrtick_restart(rq);
283
	rq->hrtick_csd_pending = 0;
284
	rq_unlock(rq, &rf);
285 286
}

287 288 289 290 291
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
292
void hrtick_start(struct rq *rq, u64 delay)
293
{
294
	struct hrtimer *timer = &rq->hrtick_timer;
295 296 297 298 299 300 301 302 303
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
304

305
	hrtimer_set_expires(timer, time);
306 307

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
308
		__hrtick_restart(rq);
309
	} else if (!rq->hrtick_csd_pending) {
310
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
311 312
		rq->hrtick_csd_pending = 1;
	}
313 314
}

315 316 317 318 319 320
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
321
void hrtick_start(struct rq *rq, u64 delay)
322
{
W
Wanpeng Li 已提交
323 324 325 326 327
	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense. Rely on vruntime for fairness.
	 */
	delay = max_t(u64, delay, 10000LL);
328 329
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
		      HRTIMER_MODE_REL_PINNED);
330 331
}
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
332

333
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
334
{
335 336
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
337

338 339 340 341
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
342

343 344
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
345
}
A
Andrew Morton 已提交
346
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
347 348 349 350 351 352 353
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}
A
Andrew Morton 已提交
354
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, mask)						\
	({								\
		typeof(ptr) _ptr = (ptr);				\
		typeof(mask) _mask = (mask);				\
		typeof(*_ptr) _old, _val = *_ptr;			\
									\
		for (;;) {						\
			_old = cmpxchg(_ptr, _val, _val | _mask);	\
			if (_old == _val)				\
				break;					\
			_val = _old;					\
		}							\
	_old;								\
})

374
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
375 376 377 378 379 380 381 382 383 384
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
385 386 387 388 389 390 391 392 393 394

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
395
	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
396 397 398 399 400 401 402 403 404 405 406 407 408 409

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

410 411 412 413 414 415
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
416 417 418 419 420 421 422

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
423 424
#endif

425 426 427 428 429 430 431 432 433 434
void wake_q_add(struct wake_q_head *head, struct task_struct *task)
{
	struct wake_q_node *node = &task->wake_q;

	/*
	 * Atomically grab the task, if ->wake_q is !nil already it means
	 * its already queued (either by us or someone else) and will get the
	 * wakeup due to that.
	 *
	 * This cmpxchg() implies a full barrier, which pairs with the write
435
	 * barrier implied by the wakeup in wake_up_q().
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
	 */
	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
		return;

	get_task_struct(task);

	/*
	 * The head is context local, there can be no concurrency.
	 */
	*head->lastp = node;
	head->lastp = &node->next;
}

void wake_up_q(struct wake_q_head *head)
{
	struct wake_q_node *node = head->first;

	while (node != WAKE_Q_TAIL) {
		struct task_struct *task;

		task = container_of(node, struct task_struct, wake_q);
		BUG_ON(!task);
I
Ingo Molnar 已提交
458
		/* Task can safely be re-inserted now: */
459 460 461 462 463 464 465 466 467 468 469 470
		node = node->next;
		task->wake_q.next = NULL;

		/*
		 * wake_up_process() implies a wmb() to pair with the queueing
		 * in wake_q_add() so as not to miss wakeups.
		 */
		wake_up_process(task);
		put_task_struct(task);
	}
}

I
Ingo Molnar 已提交
471
/*
472
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
473 474 475 476 477
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
478
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
479
{
480
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
481 482
	int cpu;

483
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
484

485
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
486 487
		return;

488
	cpu = cpu_of(rq);
489

490
	if (cpu == smp_processor_id()) {
491
		set_tsk_need_resched(curr);
492
		set_preempt_need_resched();
I
Ingo Molnar 已提交
493
		return;
494
	}
I
Ingo Molnar 已提交
495

496
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
497
		smp_send_reschedule(cpu);
498 499
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
500 501
}

502
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
503 504 505 506
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

507
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
508
		return;
509
	resched_curr(rq);
510
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
511
}
512

513
#ifdef CONFIG_SMP
514
#ifdef CONFIG_NO_HZ_COMMON
515
/*
I
Ingo Molnar 已提交
516 517
 * In the semi idle case, use the nearest busy CPU for migrating timers
 * from an idle CPU.  This is good for power-savings.
518 519
 *
 * We don't do similar optimization for completely idle system, as
I
Ingo Molnar 已提交
520 521
 * selecting an idle CPU will add more delays to the timers than intended
 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
522
 */
523
int get_nohz_timer_target(void)
524
{
525
	int i, cpu = smp_processor_id();
526 527
	struct sched_domain *sd;

528
	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
529 530
		return cpu;

531
	rcu_read_lock();
532
	for_each_domain(cpu, sd) {
533
		for_each_cpu(i, sched_domain_span(sd)) {
534 535 536 537
			if (cpu == i)
				continue;

			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
538 539 540 541
				cpu = i;
				goto unlock;
			}
		}
542
	}
543 544 545

	if (!is_housekeeping_cpu(cpu))
		cpu = housekeeping_any_cpu();
546 547
unlock:
	rcu_read_unlock();
548 549
	return cpu;
}
I
Ingo Molnar 已提交
550

551 552 553 554 555 556 557 558 559 560
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
561
static void wake_up_idle_cpu(int cpu)
562 563 564 565 566 567
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

568
	if (set_nr_and_not_polling(rq->idle))
569
		smp_send_reschedule(cpu);
570 571
	else
		trace_sched_wake_idle_without_ipi(cpu);
572 573
}

574
static bool wake_up_full_nohz_cpu(int cpu)
575
{
576 577 578 579 580 581
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
582 583
	if (cpu_is_offline(cpu))
		return true;  /* Don't try to wake offline CPUs. */
584
	if (tick_nohz_full_cpu(cpu)) {
585 586
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
587
			tick_nohz_full_kick_cpu(cpu);
588 589 590 591 592 593
		return true;
	}

	return false;
}

594 595 596 597 598
/*
 * Wake up the specified CPU.  If the CPU is going offline, it is the
 * caller's responsibility to deal with the lost wakeup, for example,
 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 */
599 600
void wake_up_nohz_cpu(int cpu)
{
601
	if (!wake_up_full_nohz_cpu(cpu))
602 603 604
		wake_up_idle_cpu(cpu);
}

605
static inline bool got_nohz_idle_kick(void)
606
{
607
	int cpu = smp_processor_id();
608 609 610 611 612 613 614 615 616 617 618 619 620

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
621 622
}

623
#else /* CONFIG_NO_HZ_COMMON */
624

625
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
626
{
627
	return false;
P
Peter Zijlstra 已提交
628 629
}

630
#endif /* CONFIG_NO_HZ_COMMON */
631

632
#ifdef CONFIG_NO_HZ_FULL
633
bool sched_can_stop_tick(struct rq *rq)
634
{
635 636 637 638 639 640
	int fifo_nr_running;

	/* Deadline tasks, even if single, need the tick */
	if (rq->dl.dl_nr_running)
		return false;

641
	/*
642 643
	 * If there are more than one RR tasks, we need the tick to effect the
	 * actual RR behaviour.
644
	 */
645 646 647 648 649
	if (rq->rt.rr_nr_running) {
		if (rq->rt.rr_nr_running == 1)
			return true;
		else
			return false;
650 651
	}

652 653 654 655 656 657 658 659 660 661 662 663 664 665
	/*
	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
	 * forced preemption between FIFO tasks.
	 */
	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
	if (fifo_nr_running)
		return true;

	/*
	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
	 * if there's more than one we need the tick for involuntary
	 * preemption.
	 */
	if (rq->nr_running > 1)
666
		return false;
667

668
	return true;
669 670
}
#endif /* CONFIG_NO_HZ_FULL */
671

672
void sched_avg_update(struct rq *rq)
673
{
674 675
	s64 period = sched_avg_period();

676
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
677 678 679 680 681 682
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
683 684 685
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
686 687
}

688
#endif /* CONFIG_SMP */
689

690 691
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
692
/*
693 694 695 696
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
697
 */
698
int walk_tg_tree_from(struct task_group *from,
699
			     tg_visitor down, tg_visitor up, void *data)
700 701
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
702
	int ret;
703

704 705
	parent = from;

706
down:
P
Peter Zijlstra 已提交
707 708
	ret = (*down)(parent, data);
	if (ret)
709
		goto out;
710 711 712 713 714 715 716
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
717
	ret = (*up)(parent, data);
718 719
	if (ret || parent == from)
		goto out;
720 721 722 723 724

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
725
out:
P
Peter Zijlstra 已提交
726
	return ret;
727 728
}

729
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
730
{
731
	return 0;
P
Peter Zijlstra 已提交
732
}
733 734
#endif

735 736
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
737 738 739
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
740 741 742
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
743
	if (idle_policy(p->policy)) {
744
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
745
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
746 747
		return;
	}
748

749 750
	load->weight = scale_load(sched_prio_to_weight[prio]);
	load->inv_weight = sched_prio_to_wmult[prio];
751 752
}

753
static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
754
{
755 756 757
	if (!(flags & ENQUEUE_NOCLOCK))
		update_rq_clock(rq);

758 759
	if (!(flags & ENQUEUE_RESTORE))
		sched_info_queued(rq, p);
760

761
	p->sched_class->enqueue_task(rq, p, flags);
762 763
}

764
static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
765
{
766 767 768
	if (!(flags & DEQUEUE_NOCLOCK))
		update_rq_clock(rq);

769 770
	if (!(flags & DEQUEUE_SAVE))
		sched_info_dequeued(rq, p);
771

772
	p->sched_class->dequeue_task(rq, p, flags);
773 774
}

775
void activate_task(struct rq *rq, struct task_struct *p, int flags)
776 777 778 779
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

780
	enqueue_task(rq, p, flags);
781 782
}

783
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784 785 786 787
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

788
	dequeue_task(rq, p, flags);
789 790
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

821
/*
I
Ingo Molnar 已提交
822
 * __normal_prio - return the priority that is based on the static prio
823 824 825
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
826
	return p->static_prio;
827 828
}

829 830 831 832 833 834 835
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
836
static inline int normal_prio(struct task_struct *p)
837 838 839
{
	int prio;

840 841 842
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
843 844 845 846 847 848 849 850 851 852 853 854 855
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
856
static int effective_prio(struct task_struct *p)
857 858 859 860 861 862 863 864 865 866 867 868
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
869 870 871
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
872 873
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
874
 */
875
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
876 877 878 879
{
	return cpu_curr(task_cpu(p)) == p;
}

880
/*
881 882 883 884 885
 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 * use the balance_callback list if you want balancing.
 *
 * this means any call to check_class_changed() must be followed by a call to
 * balance_callback().
886
 */
887 888
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
889
				       int oldprio)
890 891 892
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
893
			prev_class->switched_from(rq, p);
894

P
Peter Zijlstra 已提交
895
		p->sched_class->switched_to(rq, p);
896
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
897
		p->sched_class->prio_changed(rq, p, oldprio);
898 899
}

900
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901 902 903 904 905 906 907 908 909 910
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
911
				resched_curr(rq);
912 913 914 915 916 917 918 919 920
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
921
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
922
		rq_clock_skip_update(rq, true);
923 924
}

L
Linus Torvalds 已提交
925
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
/*
 * This is how migration works:
 *
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
 */

/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
945 946
static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
				   struct task_struct *p, int new_cpu)
P
Peter Zijlstra 已提交
947 948 949 950
{
	lockdep_assert_held(&rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
951
	dequeue_task(rq, p, DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
952
	set_task_cpu(p, new_cpu);
953
	rq_unlock(rq, rf);
P
Peter Zijlstra 已提交
954 955 956

	rq = cpu_rq(new_cpu);

957
	rq_lock(rq, rf);
P
Peter Zijlstra 已提交
958 959
	BUG_ON(task_cpu(p) != new_cpu);
	enqueue_task(rq, p, 0);
960
	p->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
961 962 963 964 965 966 967 968 969 970 971
	check_preempt_curr(rq, p, 0);

	return rq;
}

struct migration_arg {
	struct task_struct *task;
	int dest_cpu;
};

/*
I
Ingo Molnar 已提交
972
 * Move (not current) task off this CPU, onto the destination CPU. We're doing
P
Peter Zijlstra 已提交
973 974 975 976 977 978 979
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
 */
980 981
static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
				 struct task_struct *p, int dest_cpu)
P
Peter Zijlstra 已提交
982 983
{
	if (unlikely(!cpu_active(dest_cpu)))
984
		return rq;
P
Peter Zijlstra 已提交
985 986

	/* Affinity changed (again). */
987
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
988
		return rq;
P
Peter Zijlstra 已提交
989

990
	update_rq_clock(rq);
991
	rq = move_queued_task(rq, rf, p, dest_cpu);
992 993

	return rq;
P
Peter Zijlstra 已提交
994 995 996 997 998 999 1000 1001 1002 1003
}

/*
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
 */
static int migration_cpu_stop(void *data)
{
	struct migration_arg *arg = data;
1004 1005
	struct task_struct *p = arg->task;
	struct rq *rq = this_rq();
1006
	struct rq_flags rf;
P
Peter Zijlstra 已提交
1007 1008

	/*
I
Ingo Molnar 已提交
1009 1010
	 * The original target CPU might have gone down and we might
	 * be on another CPU but it doesn't matter.
P
Peter Zijlstra 已提交
1011 1012 1013 1014 1015 1016 1017 1018
	 */
	local_irq_disable();
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
1019 1020

	raw_spin_lock(&p->pi_lock);
1021
	rq_lock(rq, &rf);
1022 1023 1024 1025 1026
	/*
	 * If task_rq(p) != rq, it cannot be migrated here, because we're
	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
	 * we're holding p->pi_lock.
	 */
1027 1028
	if (task_rq(p) == rq) {
		if (task_on_rq_queued(p))
1029
			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1030 1031 1032
		else
			p->wake_cpu = arg->dest_cpu;
	}
1033
	rq_unlock(rq, &rf);
1034 1035
	raw_spin_unlock(&p->pi_lock);

P
Peter Zijlstra 已提交
1036 1037 1038 1039
	local_irq_enable();
	return 0;
}

1040 1041 1042 1043 1044
/*
 * sched_class::set_cpus_allowed must do the below, but is not required to
 * actually call this function.
 */
void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
P
Peter Zijlstra 已提交
1045 1046 1047 1048 1049
{
	cpumask_copy(&p->cpus_allowed, new_mask);
	p->nr_cpus_allowed = cpumask_weight(new_mask);
}

1050 1051
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
1052 1053 1054
	struct rq *rq = task_rq(p);
	bool queued, running;

1055
	lockdep_assert_held(&p->pi_lock);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

	queued = task_on_rq_queued(p);
	running = task_current(rq, p);

	if (queued) {
		/*
		 * Because __kthread_bind() calls this on blocked tasks without
		 * holding rq->lock.
		 */
		lockdep_assert_held(&rq->lock);
1066
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1067 1068 1069 1070
	}
	if (running)
		put_prev_task(rq, p);

1071
	p->sched_class->set_cpus_allowed(p, new_mask);
1072 1073

	if (queued)
1074
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1075
	if (running)
1076
		set_curr_task(rq, p);
1077 1078
}

P
Peter Zijlstra 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087
/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely. The
 * call is not atomic; no spinlocks may be held.
 */
1088 1089
static int __set_cpus_allowed_ptr(struct task_struct *p,
				  const struct cpumask *new_mask, bool check)
P
Peter Zijlstra 已提交
1090
{
1091
	const struct cpumask *cpu_valid_mask = cpu_active_mask;
P
Peter Zijlstra 已提交
1092
	unsigned int dest_cpu;
1093 1094
	struct rq_flags rf;
	struct rq *rq;
P
Peter Zijlstra 已提交
1095 1096
	int ret = 0;

1097
	rq = task_rq_lock(p, &rf);
1098
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1099

1100 1101 1102 1103 1104 1105 1106
	if (p->flags & PF_KTHREAD) {
		/*
		 * Kernel threads are allowed on online && !active CPUs
		 */
		cpu_valid_mask = cpu_online_mask;
	}

1107 1108 1109 1110 1111 1112 1113 1114 1115
	/*
	 * Must re-check here, to close a race against __kthread_bind(),
	 * sched_setaffinity() is not guaranteed to observe the flag.
	 */
	if (check && (p->flags & PF_NO_SETAFFINITY)) {
		ret = -EINVAL;
		goto out;
	}

P
Peter Zijlstra 已提交
1116 1117 1118
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

1119
	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
P
Peter Zijlstra 已提交
1120 1121 1122 1123 1124 1125
		ret = -EINVAL;
		goto out;
	}

	do_set_cpus_allowed(p, new_mask);

1126 1127 1128
	if (p->flags & PF_KTHREAD) {
		/*
		 * For kernel threads that do indeed end up on online &&
I
Ingo Molnar 已提交
1129
		 * !active we want to ensure they are strict per-CPU threads.
1130 1131 1132 1133 1134 1135
		 */
		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
			!cpumask_intersects(new_mask, cpu_active_mask) &&
			p->nr_cpus_allowed != 1);
	}

P
Peter Zijlstra 已提交
1136 1137 1138 1139
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpumask_test_cpu(task_cpu(p), new_mask))
		goto out;

1140
	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
P
Peter Zijlstra 已提交
1141 1142 1143
	if (task_running(rq, p) || p->state == TASK_WAKING) {
		struct migration_arg arg = { p, dest_cpu };
		/* Need help from migration thread: drop lock and wait. */
1144
		task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1145 1146 1147
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
		tlb_migrate_finish(p->mm);
		return 0;
1148 1149 1150 1151 1152
	} else if (task_on_rq_queued(p)) {
		/*
		 * OK, since we're going to drop the lock immediately
		 * afterwards anyway.
		 */
1153
		rq = move_queued_task(rq, &rf, p, dest_cpu);
1154
	}
P
Peter Zijlstra 已提交
1155
out:
1156
	task_rq_unlock(rq, p, &rf);
P
Peter Zijlstra 已提交
1157 1158 1159

	return ret;
}
1160 1161 1162 1163 1164

int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
	return __set_cpus_allowed_ptr(p, new_mask, false);
}
P
Peter Zijlstra 已提交
1165 1166
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);

I
Ingo Molnar 已提交
1167
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1168
{
1169 1170 1171 1172 1173
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1174
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
O
Oleg Nesterov 已提交
1175
			!p->on_rq);
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185
	/*
	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
	 * time relying on p->on_rq.
	 */
	WARN_ON_ONCE(p->state == TASK_RUNNING &&
		     p->sched_class == &fair_sched_class &&
		     (p->on_rq && !task_on_rq_migrating(p)));

1186
#ifdef CONFIG_LOCKDEP
1187 1188 1189 1190 1191
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1192
	 * see task_group().
1193 1194 1195 1196
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1197 1198 1199
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1200 1201
#endif

1202
	trace_sched_migrate_task(p, new_cpu);
1203

1204
	if (task_cpu(p) != new_cpu) {
1205
		if (p->sched_class->migrate_task_rq)
1206
			p->sched_class->migrate_task_rq(p);
1207
		p->se.nr_migrations++;
1208
		perf_event_task_migrate(p);
1209
	}
I
Ingo Molnar 已提交
1210 1211

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1212 1213
}

1214 1215
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1216
	if (task_on_rq_queued(p)) {
1217
		struct rq *src_rq, *dst_rq;
1218
		struct rq_flags srf, drf;
1219 1220 1221 1222

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

1223 1224 1225
		rq_pin_lock(src_rq, &srf);
		rq_pin_lock(dst_rq, &drf);

1226
		p->on_rq = TASK_ON_RQ_MIGRATING;
1227 1228 1229
		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
1230
		p->on_rq = TASK_ON_RQ_QUEUED;
1231
		check_preempt_curr(dst_rq, p, 0);
1232 1233 1234 1235

		rq_unpin_lock(dst_rq, &drf);
		rq_unpin_lock(src_rq, &srf);

1236 1237 1238 1239
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
I
Ingo Molnar 已提交
1240
		 * previous CPU our target instead of where it really is.
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

1257 1258 1259
	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
		return -EAGAIN;

1260 1261 1262
	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1263 1264
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1265
	double_rq_lock(src_rq, dst_rq);
1266

1267 1268 1269 1270 1271 1272
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

1273
	if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1274 1275
		goto unlock;

1276
	if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1277 1278 1279 1280 1281 1282 1283 1284 1285
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1286 1287
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1310 1311 1312 1313
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1314 1315 1316
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

1317
	if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1318 1319
		goto out;

1320
	if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1321 1322
		goto out;

1323
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1324 1325 1326 1327 1328 1329
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

L
Linus Torvalds 已提交
1330 1331 1332
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1333 1334 1335 1336 1337 1338 1339
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1340 1341 1342 1343 1344 1345
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1346
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1347
{
1348
	int running, queued;
1349
	struct rq_flags rf;
R
Roland McGrath 已提交
1350
	unsigned long ncsw;
1351
	struct rq *rq;
L
Linus Torvalds 已提交
1352

1353 1354 1355 1356 1357 1358 1359 1360
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1373 1374 1375
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1376
			cpu_relax();
R
Roland McGrath 已提交
1377
		}
1378

1379 1380 1381 1382 1383
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
1384
		rq = task_rq_lock(p, &rf);
1385
		trace_sched_wait_task(p);
1386
		running = task_running(rq, p);
1387
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1388
		ncsw = 0;
1389
		if (!match_state || p->state == match_state)
1390
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1391
		task_rq_unlock(rq, p, &rf);
1392

R
Roland McGrath 已提交
1393 1394 1395 1396 1397 1398
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1409

1410 1411 1412 1413 1414
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1415
		 * So if it was still runnable (but just not actively
1416 1417 1418
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1419
		if (unlikely(queued)) {
T
Thomas Gleixner 已提交
1420
			ktime_t to = NSEC_PER_SEC / HZ;
1421 1422 1423

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1424 1425
			continue;
		}
1426

1427 1428 1429 1430 1431 1432 1433
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1434 1435

	return ncsw;
L
Linus Torvalds 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1445
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1446 1447 1448 1449 1450
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1451
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1461
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
1462

1463
/*
1464
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1465 1466 1467 1468 1469 1470 1471
 *
 * A few notes on cpu_active vs cpu_online:
 *
 *  - cpu_active must be a subset of cpu_online
 *
 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
 *    see __set_cpus_allowed_ptr(). At this point the newly online
I
Ingo Molnar 已提交
1472
 *    CPU isn't yet part of the sched domains, and balancing will not
1473 1474
 *    see it.
 *
I
Ingo Molnar 已提交
1475
 *  - on CPU-down we clear cpu_active() to mask the sched domains and
1476
 *    avoid the load balancer to place new tasks on the to be removed
I
Ingo Molnar 已提交
1477
 *    CPU. Existing tasks will remain running there and will be taken
1478 1479 1480 1481 1482 1483
 *    off.
 *
 * This means that fallback selection must not select !active CPUs.
 * And can assume that any active CPU must be online. Conversely
 * select_task_rq() below may allow selection of !active CPUs in order
 * to satisfy the above rules.
1484
 */
1485 1486
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1487 1488
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1489 1490
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1491

1492
	/*
I
Ingo Molnar 已提交
1493 1494 1495
	 * If the node that the CPU is on has been offlined, cpu_to_node()
	 * will return -1. There is no CPU on the node, and we should
	 * select the CPU on the other node.
1496 1497 1498 1499 1500 1501 1502 1503
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_active(dest_cpu))
				continue;
1504
			if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1505 1506
				return dest_cpu;
		}
1507
	}
1508

1509 1510
	for (;;) {
		/* Any allowed, online CPU? */
1511
		for_each_cpu(dest_cpu, &p->cpus_allowed) {
1512 1513 1514
			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
				continue;
			if (!cpu_online(dest_cpu))
1515 1516 1517
				continue;
			goto out;
		}
1518

1519
		/* No more Mr. Nice Guy. */
1520 1521
		switch (state) {
		case cpuset:
1522 1523 1524 1525 1526
			if (IS_ENABLED(CONFIG_CPUSETS)) {
				cpuset_cpus_allowed_fallback(p);
				state = possible;
				break;
			}
I
Ingo Molnar 已提交
1527
			/* Fall-through */
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1547
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1548 1549
					task_pid_nr(p), p->comm, cpu);
		}
1550 1551 1552 1553 1554
	}

	return dest_cpu;
}

1555
/*
1556
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1557
 */
1558
static inline
1559
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1560
{
1561 1562
	lockdep_assert_held(&p->pi_lock);

1563
	if (p->nr_cpus_allowed > 1)
1564
		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1565
	else
1566
		cpu = cpumask_any(&p->cpus_allowed);
1567 1568 1569 1570

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
I
Ingo Molnar 已提交
1571
	 * CPU.
1572 1573 1574 1575 1576 1577
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1578
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
1579
		     !cpu_online(cpu)))
1580
		cpu = select_fallback_rq(task_cpu(p), p);
1581 1582

	return cpu;
1583
}
1584 1585 1586 1587 1588 1589

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1590 1591 1592 1593 1594 1595 1596 1597 1598

#else

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 const struct cpumask *new_mask, bool check)
{
	return set_cpus_allowed_ptr(p, new_mask);
}

P
Peter Zijlstra 已提交
1599
#endif /* CONFIG_SMP */
1600

P
Peter Zijlstra 已提交
1601
static void
1602
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1603
{
1604
	struct rq *rq;
1605

1606 1607 1608 1609
	if (!schedstat_enabled())
		return;

	rq = this_rq();
P
Peter Zijlstra 已提交
1610

1611 1612
#ifdef CONFIG_SMP
	if (cpu == rq->cpu) {
1613 1614
		schedstat_inc(rq->ttwu_local);
		schedstat_inc(p->se.statistics.nr_wakeups_local);
P
Peter Zijlstra 已提交
1615 1616 1617
	} else {
		struct sched_domain *sd;

1618
		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1619
		rcu_read_lock();
1620
		for_each_domain(rq->cpu, sd) {
P
Peter Zijlstra 已提交
1621
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1622
				schedstat_inc(sd->ttwu_wake_remote);
P
Peter Zijlstra 已提交
1623 1624 1625
				break;
			}
		}
1626
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1627
	}
1628 1629

	if (wake_flags & WF_MIGRATED)
1630
		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
P
Peter Zijlstra 已提交
1631 1632
#endif /* CONFIG_SMP */

1633 1634
	schedstat_inc(rq->ttwu_count);
	schedstat_inc(p->se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1635 1636

	if (wake_flags & WF_SYNC)
1637
		schedstat_inc(p->se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1638 1639
}

1640
static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
P
Peter Zijlstra 已提交
1641
{
T
Tejun Heo 已提交
1642
	activate_task(rq, p, en_flags);
1643
	p->on_rq = TASK_ON_RQ_QUEUED;
1644

I
Ingo Molnar 已提交
1645
	/* If a worker is waking up, notify the workqueue: */
1646 1647
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1648 1649
}

1650 1651 1652
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1653
static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1654
			   struct rq_flags *rf)
T
Tejun Heo 已提交
1655 1656 1657
{
	check_preempt_curr(rq, p, wake_flags);
	p->state = TASK_RUNNING;
1658 1659
	trace_sched_wakeup(p);

T
Tejun Heo 已提交
1660
#ifdef CONFIG_SMP
1661 1662
	if (p->sched_class->task_woken) {
		/*
1663 1664
		 * Our task @p is fully woken up and running; so its safe to
		 * drop the rq->lock, hereafter rq is only used for statistics.
1665
		 */
1666
		rq_unpin_lock(rq, rf);
T
Tejun Heo 已提交
1667
		p->sched_class->task_woken(rq, p);
1668
		rq_repin_lock(rq, rf);
1669
	}
T
Tejun Heo 已提交
1670

1671
	if (rq->idle_stamp) {
1672
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1673
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1674

1675 1676 1677
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1678
			rq->avg_idle = max;
1679

T
Tejun Heo 已提交
1680 1681 1682 1683 1684
		rq->idle_stamp = 0;
	}
#endif
}

1685
static void
1686
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1687
		 struct rq_flags *rf)
1688
{
1689
	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1690

1691 1692
	lockdep_assert_held(&rq->lock);

1693 1694 1695
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
1696 1697

	if (wake_flags & WF_MIGRATED)
1698
		en_flags |= ENQUEUE_MIGRATED;
1699 1700
#endif

1701
	ttwu_activate(rq, p, en_flags);
1702
	ttwu_do_wakeup(rq, p, wake_flags, rf);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
1713
	struct rq_flags rf;
1714 1715 1716
	struct rq *rq;
	int ret = 0;

1717
	rq = __task_rq_lock(p, &rf);
1718
	if (task_on_rq_queued(p)) {
1719 1720
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1721
		ttwu_do_wakeup(rq, p, wake_flags, &rf);
1722 1723
		ret = 1;
	}
1724
	__task_rq_unlock(rq, &rf);
1725 1726 1727 1728

	return ret;
}

1729
#ifdef CONFIG_SMP
1730
void sched_ttwu_pending(void)
1731 1732
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1733 1734
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1735
	struct rq_flags rf;
1736

1737 1738 1739
	if (!llist)
		return;

1740
	rq_lock_irqsave(rq, &rf);
1741
	update_rq_clock(rq);
1742

P
Peter Zijlstra 已提交
1743
	while (llist) {
P
Peter Zijlstra 已提交
1744 1745
		int wake_flags = 0;

P
Peter Zijlstra 已提交
1746 1747
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
P
Peter Zijlstra 已提交
1748 1749 1750 1751

		if (p->sched_remote_wakeup)
			wake_flags = WF_MIGRATED;

1752
		ttwu_do_activate(rq, p, wake_flags, &rf);
1753 1754
	}

1755
	rq_unlock_irqrestore(rq, &rf);
1756 1757 1758 1759
}

void scheduler_ipi(void)
{
1760 1761 1762 1763 1764
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1765
	preempt_fold_need_resched();
1766

1767
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1784
	sched_ttwu_pending();
1785 1786 1787 1788

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1789
	if (unlikely(got_nohz_idle_kick())) {
1790
		this_rq()->idle_balance = 1;
1791
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1792
	}
1793
	irq_exit();
1794 1795
}

P
Peter Zijlstra 已提交
1796
static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1797
{
1798 1799
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
1800 1801
	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);

1802 1803 1804 1805 1806 1807
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1808
}
1809

1810 1811 1812
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1813
	struct rq_flags rf;
1814

1815 1816 1817 1818
	rcu_read_lock();

	if (!is_idle_task(rcu_dereference(rq->curr)))
		goto out;
1819 1820 1821 1822

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
1823
		rq_lock_irqsave(rq, &rf);
1824 1825
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
I
Ingo Molnar 已提交
1826
		/* Else CPU is not idle, do nothing here: */
1827
		rq_unlock_irqrestore(rq, &rf);
1828
	}
1829 1830 1831

out:
	rcu_read_unlock();
1832 1833
}

1834
bool cpus_share_cache(int this_cpu, int that_cpu)
1835 1836 1837
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1838
#endif /* CONFIG_SMP */
1839

1840
static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1841 1842
{
	struct rq *rq = cpu_rq(cpu);
1843
	struct rq_flags rf;
1844

1845
#if defined(CONFIG_SMP)
1846
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
I
Ingo Molnar 已提交
1847
		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
P
Peter Zijlstra 已提交
1848
		ttwu_queue_remote(p, cpu, wake_flags);
1849 1850 1851 1852
		return;
	}
#endif

1853
	rq_lock(rq, &rf);
1854
	update_rq_clock(rq);
1855
	ttwu_do_activate(rq, p, wake_flags, &rf);
1856
	rq_unlock(rq, &rf);
T
Tejun Heo 已提交
1857 1858
}

1859 1860 1861 1862 1863 1864
/*
 * Notes on Program-Order guarantees on SMP systems.
 *
 *  MIGRATION
 *
 * The basic program-order guarantee on SMP systems is that when a task [t]
I
Ingo Molnar 已提交
1865 1866
 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 * execution on its new CPU [c1].
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
 *
 * For migration (of runnable tasks) this is provided by the following means:
 *
 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 *     rq(c1)->lock (if not at the same time, then in that order).
 *  C) LOCK of the rq(c1)->lock scheduling in task
 *
 * Transitivity guarantees that B happens after A and C after B.
 * Note: we only require RCpc transitivity.
I
Ingo Molnar 已提交
1877
 * Note: the CPU doing B need not be c0 or c1
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
 *
 * Example:
 *
 *   CPU0            CPU1            CPU2
 *
 *   LOCK rq(0)->lock
 *   sched-out X
 *   sched-in Y
 *   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(0)->lock // orders against CPU0
 *                                   dequeue X
 *                                   UNLOCK rq(0)->lock
 *
 *                                   LOCK rq(1)->lock
 *                                   enqueue X
 *                                   UNLOCK rq(1)->lock
 *
 *                   LOCK rq(1)->lock // orders against CPU2
 *                   sched-out Z
 *                   sched-in X
 *                   UNLOCK rq(1)->lock
 *
 *
 *  BLOCKING -- aka. SLEEP + WAKEUP
 *
 * For blocking we (obviously) need to provide the same guarantee as for
 * migration. However the means are completely different as there is no lock
 * chain to provide order. Instead we do:
 *
 *   1) smp_store_release(X->on_cpu, 0)
1909
 *   2) smp_cond_load_acquire(!X->on_cpu)
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
 *
 * Example:
 *
 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 *
 *   LOCK rq(0)->lock LOCK X->pi_lock
 *   dequeue X
 *   sched-out X
 *   smp_store_release(X->on_cpu, 0);
 *
1920
 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
 *                    X->state = WAKING
 *                    set_task_cpu(X,2)
 *
 *                    LOCK rq(2)->lock
 *                    enqueue X
 *                    X->state = RUNNING
 *                    UNLOCK rq(2)->lock
 *
 *                                          LOCK rq(2)->lock // orders against CPU1
 *                                          sched-out Z
 *                                          sched-in X
 *                                          UNLOCK rq(2)->lock
 *
 *                    UNLOCK X->pi_lock
 *   UNLOCK rq(0)->lock
 *
 *
 * However; for wakeups there is a second guarantee we must provide, namely we
 * must observe the state that lead to our wakeup. That is, not only must our
 * task observe its own prior state, it must also observe the stores prior to
 * its wakeup.
 *
 * This means that any means of doing remote wakeups must order the CPU doing
 * the wakeup against the CPU the task is going to end up running on. This,
 * however, is already required for the regular Program-Order guarantee above,
1946
 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1947 1948 1949
 *
 */

T
Tejun Heo 已提交
1950
/**
L
Linus Torvalds 已提交
1951
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1952
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1953
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1954
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1955
 *
1956
 * If (@state & @p->state) @p->state = TASK_RUNNING.
L
Linus Torvalds 已提交
1957
 *
1958 1959 1960 1961 1962 1963 1964
 * If the task was not queued/runnable, also place it back on a runqueue.
 *
 * Atomic against schedule() which would dequeue a task, also see
 * set_current_state().
 *
 * Return: %true if @p->state changes (an actual wakeup was done),
 *	   %false otherwise.
L
Linus Torvalds 已提交
1965
 */
1966 1967
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1968 1969
{
	unsigned long flags;
1970
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1971

1972 1973 1974 1975 1976 1977 1978
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1979
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1980
	if (!(p->state & state))
L
Linus Torvalds 已提交
1981 1982
		goto out;

1983 1984
	trace_sched_waking(p);

I
Ingo Molnar 已提交
1985 1986
	/* We're going to change ->state: */
	success = 1;
L
Linus Torvalds 已提交
1987 1988
	cpu = task_cpu(p);

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	/*
	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
	 * in smp_cond_load_acquire() below.
	 *
	 * sched_ttwu_pending()                 try_to_wake_up()
	 *   [S] p->on_rq = 1;                  [L] P->state
	 *       UNLOCK rq->lock  -----.
	 *                              \
	 *				 +---   RMB
	 * schedule()                   /
	 *       LOCK rq->lock    -----'
	 *       UNLOCK rq->lock
	 *
	 * [task p]
	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
	 *
	 * Pairs with the UNLOCK+LOCK on rq->lock from the
	 * last wakeup of our task and the schedule that got our task
	 * current.
	 */
	smp_rmb();
2011 2012
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
2013 2014

#ifdef CONFIG_SMP
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	/*
	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
	 * possible to, falsely, observe p->on_cpu == 0.
	 *
	 * One must be running (->on_cpu == 1) in order to remove oneself
	 * from the runqueue.
	 *
	 *  [S] ->on_cpu = 1;	[L] ->on_rq
	 *      UNLOCK rq->lock
	 *			RMB
	 *      LOCK   rq->lock
	 *  [S] ->on_rq = 0;    [L] ->on_cpu
	 *
	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
	 * from the consecutive calls to schedule(); the first switching to our
	 * task, the second putting it to sleep.
	 */
	smp_rmb();

P
Peter Zijlstra 已提交
2034
	/*
I
Ingo Molnar 已提交
2035
	 * If the owning (remote) CPU is still in the middle of schedule() with
2036
	 * this task as prev, wait until its done referencing the task.
2037 2038 2039 2040 2041
	 *
	 * Pairs with the smp_store_release() in finish_lock_switch().
	 *
	 * This ensures that tasks getting woken will be fully ordered against
	 * their previous state and preserve Program Order.
2042
	 */
2043
	smp_cond_load_acquire(&p->on_cpu, !VAL);
L
Linus Torvalds 已提交
2044

2045
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
2046
	p->state = TASK_WAKING;
2047

2048 2049 2050 2051 2052
	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

2053
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2054 2055
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
2056
		set_task_cpu(p, cpu);
2057
	}
2058 2059 2060 2061 2062 2063 2064 2065

#else /* CONFIG_SMP */

	if (p->in_iowait) {
		delayacct_blkio_end();
		atomic_dec(&task_rq(p)->nr_iowait);
	}

L
Linus Torvalds 已提交
2066 2067
#endif /* CONFIG_SMP */

2068
	ttwu_queue(p, cpu, wake_flags);
2069
stat:
2070
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
2071
out:
2072
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2073 2074 2075 2076

	return success;
}

T
Tejun Heo 已提交
2077 2078 2079
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
2080
 * @cookie: context's cookie for pinning
T
Tejun Heo 已提交
2081
 *
2082
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
2083
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2084
 * the current task.
T
Tejun Heo 已提交
2085
 */
2086
static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
T
Tejun Heo 已提交
2087 2088 2089
{
	struct rq *rq = task_rq(p);

2090 2091 2092 2093
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
2094 2095
	lockdep_assert_held(&rq->lock);

2096
	if (!raw_spin_trylock(&p->pi_lock)) {
2097 2098 2099 2100 2101 2102
		/*
		 * This is OK, because current is on_cpu, which avoids it being
		 * picked for load-balance and preemption/IRQs are still
		 * disabled avoiding further scheduler activity on it and we've
		 * not yet picked a replacement task.
		 */
2103
		rq_unlock(rq, rf);
2104
		raw_spin_lock(&p->pi_lock);
2105
		rq_relock(rq, rf);
2106 2107
	}

T
Tejun Heo 已提交
2108
	if (!(p->state & TASK_NORMAL))
2109
		goto out;
T
Tejun Heo 已提交
2110

2111 2112
	trace_sched_waking(p);

2113 2114 2115 2116 2117
	if (!task_on_rq_queued(p)) {
		if (p->in_iowait) {
			delayacct_blkio_end();
			atomic_dec(&rq->nr_iowait);
		}
2118
		ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2119
	}
P
Peter Zijlstra 已提交
2120

2121
	ttwu_do_wakeup(rq, p, 0, rf);
2122
	ttwu_stat(p, smp_processor_id(), 0);
2123 2124
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
2125 2126
}

2127 2128 2129 2130 2131
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
2132 2133 2134
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
2135 2136 2137 2138
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2139
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2140
{
2141
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
2142 2143 2144
}
EXPORT_SYMBOL(wake_up_process);

2145
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2146 2147 2148 2149
{
	return try_to_wake_up(p, state, 0);
}

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
/*
 * This function clears the sched_dl_entity static params.
 */
void __dl_clear_params(struct task_struct *p)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = 0;
	dl_se->dl_deadline = 0;
	dl_se->dl_period = 0;
	dl_se->flags = 0;
	dl_se->dl_bw = 0;
2162 2163 2164

	dl_se->dl_throttled = 0;
	dl_se->dl_yielded = 0;
2165 2166
}

L
Linus Torvalds 已提交
2167 2168 2169
/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2170 2171 2172
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
2173
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2174
{
P
Peter Zijlstra 已提交
2175 2176 2177
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
2178 2179
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2180
	p->se.prev_sum_exec_runtime	= 0;
2181
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
2182
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
2183
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
2184

2185 2186 2187 2188
#ifdef CONFIG_FAIR_GROUP_SCHED
	p->se.cfs_rq			= NULL;
#endif

I
Ingo Molnar 已提交
2189
#ifdef CONFIG_SCHEDSTATS
2190
	/* Even if schedstat is disabled, there should not be garbage */
2191
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2192
#endif
N
Nick Piggin 已提交
2193

2194
	RB_CLEAR_NODE(&p->dl.rb_node);
2195
	init_dl_task_timer(&p->dl);
2196
	__dl_clear_params(p);
2197

P
Peter Zijlstra 已提交
2198
	INIT_LIST_HEAD(&p->rt.run_list);
2199 2200 2201 2202
	p->rt.timeout		= 0;
	p->rt.time_slice	= sched_rr_timeslice;
	p->rt.on_rq		= 0;
	p->rt.on_list		= 0;
N
Nick Piggin 已提交
2203

2204 2205 2206
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
2207 2208 2209

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2210
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2211 2212 2213
		p->mm->numa_scan_seq = 0;
	}

2214 2215 2216 2217 2218
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

2219 2220
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2221
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2222
	p->numa_work.next = &p->numa_work;
2223
	p->numa_faults = NULL;
2224 2225
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
2226 2227

	p->numa_group = NULL;
2228
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
2229 2230
}

2231 2232
DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);

2233
#ifdef CONFIG_NUMA_BALANCING
2234

2235 2236 2237
void set_numabalancing_state(bool enabled)
{
	if (enabled)
2238
		static_branch_enable(&sched_numa_balancing);
2239
	else
2240
		static_branch_disable(&sched_numa_balancing);
2241
}
2242 2243 2244 2245 2246 2247 2248

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
2249
	int state = static_branch_likely(&sched_numa_balancing);
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
2265

2266 2267
#ifdef CONFIG_SCHEDSTATS

2268
DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2269
static bool __initdata __sched_schedstats = false;
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292

static void set_schedstats(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_schedstats);
	else
		static_branch_disable(&sched_schedstats);
}

void force_schedstat_enabled(void)
{
	if (!schedstat_enabled()) {
		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
		static_branch_enable(&sched_schedstats);
	}
}

static int __init setup_schedstats(char *str)
{
	int ret = 0;
	if (!str)
		goto out;

2293 2294 2295 2296 2297
	/*
	 * This code is called before jump labels have been set up, so we can't
	 * change the static branch directly just yet.  Instead set a temporary
	 * variable so init_schedstats() can do it later.
	 */
2298
	if (!strcmp(str, "enable")) {
2299
		__sched_schedstats = true;
2300 2301
		ret = 1;
	} else if (!strcmp(str, "disable")) {
2302
		__sched_schedstats = false;
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
		ret = 1;
	}
out:
	if (!ret)
		pr_warn("Unable to parse schedstats=\n");

	return ret;
}
__setup("schedstats=", setup_schedstats);

2313 2314 2315 2316 2317
static void __init init_schedstats(void)
{
	set_schedstats(__sched_schedstats);
}

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
#ifdef CONFIG_PROC_SYSCTL
int sysctl_schedstats(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_schedstats);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_schedstats(state);
	return err;
}
2338 2339 2340 2341
#endif /* CONFIG_PROC_SYSCTL */
#else  /* !CONFIG_SCHEDSTATS */
static inline void init_schedstats(void) {}
#endif /* CONFIG_SCHEDSTATS */
I
Ingo Molnar 已提交
2342 2343 2344 2345

/*
 * fork()/clone()-time setup:
 */
2346
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
2347
{
2348
	unsigned long flags;
I
Ingo Molnar 已提交
2349 2350
	int cpu = get_cpu();

2351
	__sched_fork(clone_flags, p);
2352
	/*
2353
	 * We mark the process as NEW here. This guarantees that
2354 2355 2356
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2357
	p->state = TASK_NEW;
I
Ingo Molnar 已提交
2358

2359 2360 2361 2362 2363
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

2364 2365 2366 2367
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2368
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2369
			p->policy = SCHED_NORMAL;
2370
			p->static_prio = NICE_TO_PRIO(0);
2371 2372 2373 2374 2375 2376
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
2377

2378 2379 2380 2381 2382 2383
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2384

2385 2386 2387 2388 2389 2390
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
2391
		p->sched_class = &fair_sched_class;
2392
	}
2393

2394
	init_entity_runnable_average(&p->se);
P
Peter Zijlstra 已提交
2395

2396 2397 2398 2399 2400 2401 2402
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
2403
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2404
	/*
I
Ingo Molnar 已提交
2405
	 * We're setting the CPU for the first time, we don't migrate,
2406 2407 2408 2409 2410
	 * so use __set_task_cpu().
	 */
	__set_task_cpu(p, cpu);
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);
2411
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2412

2413
#ifdef CONFIG_SCHED_INFO
I
Ingo Molnar 已提交
2414
	if (likely(sched_info_on()))
2415
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2416
#endif
P
Peter Zijlstra 已提交
2417 2418
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
2419
#endif
2420
	init_task_preempt_count(p);
2421
#ifdef CONFIG_SMP
2422
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2423
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2424
#endif
2425

N
Nick Piggin 已提交
2426
	put_cpu();
2427
	return 0;
L
Linus Torvalds 已提交
2428 2429
}

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
2449 2450
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2451 2452 2453
	return &cpu_rq(i)->rd->dl_bw;
}

2454
static inline int dl_bw_cpus(int i)
2455
{
2456 2457 2458
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

2459 2460
	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
			 "sched RCU must be held");
2461 2462 2463 2464
	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2465 2466 2467 2468 2469 2470 2471
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2472
static inline int dl_bw_cpus(int i)
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
{
	return 1;
}
#endif

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
2485 2486 2487
 *
 * XXX we should delay bw change until the task's 0-lag point, see
 * __setparam_dl().
2488 2489 2490 2491 2492 2493
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2494
	u64 period = attr->sched_period ?: attr->sched_deadline;
2495 2496
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2497
	int cpus, err = -1;
2498

2499 2500
	/* !deadline task may carry old deadline bandwidth */
	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2501 2502 2503 2504 2505 2506 2507 2508
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2509
	cpus = dl_bw_cpus(task_cpu(p));
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2530 2531 2532 2533 2534 2535 2536
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2537
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2538
{
2539
	struct rq_flags rf;
I
Ingo Molnar 已提交
2540
	struct rq *rq;
2541

2542
	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2543
	p->state = TASK_RUNNING;
2544 2545 2546 2547
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
I
Ingo Molnar 已提交
2548
	 *  - any previously selected CPU might disappear through hotplug
2549 2550 2551
	 *
	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
	 * as we're not fully set-up yet.
2552
	 */
2553
	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2554
#endif
2555
	rq = __task_rq_lock(p, &rf);
2556
	update_rq_clock(rq);
2557
	post_init_entity_util_avg(&p->se);
2558

2559
	activate_task(rq, p, ENQUEUE_NOCLOCK);
2560
	p->on_rq = TASK_ON_RQ_QUEUED;
2561
	trace_sched_wakeup_new(p);
P
Peter Zijlstra 已提交
2562
	check_preempt_curr(rq, p, WF_FORK);
2563
#ifdef CONFIG_SMP
2564 2565 2566 2567 2568
	if (p->sched_class->task_woken) {
		/*
		 * Nothing relies on rq->lock after this, so its fine to
		 * drop it.
		 */
2569
		rq_unpin_lock(rq, &rf);
2570
		p->sched_class->task_woken(rq, p);
2571
		rq_repin_lock(rq, &rf);
2572
	}
2573
#endif
2574
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
2575 2576
}

2577 2578
#ifdef CONFIG_PREEMPT_NOTIFIERS

2579 2580
static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
void preempt_notifier_inc(void)
{
	static_key_slow_inc(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_inc);

void preempt_notifier_dec(void)
{
	static_key_slow_dec(&preempt_notifier_key);
}
EXPORT_SYMBOL_GPL(preempt_notifier_dec);

2593
/**
2594
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2595
 * @notifier: notifier struct to register
2596 2597 2598
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
2599 2600 2601
	if (!static_key_false(&preempt_notifier_key))
		WARN(1, "registering preempt_notifier while notifiers disabled\n");

2602 2603 2604 2605 2606 2607
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2608
 * @notifier: notifier struct to unregister
2609
 *
2610
 * This is *not* safe to call from within a preemption notifier.
2611 2612 2613 2614 2615 2616 2617
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

2618
static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2619 2620 2621
{
	struct preempt_notifier *notifier;

2622
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2623 2624 2625
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

2626 2627 2628 2629 2630 2631
static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_in_preempt_notifiers(curr);
}

2632
static void
2633 2634
__fire_sched_out_preempt_notifiers(struct task_struct *curr,
				   struct task_struct *next)
2635 2636 2637
{
	struct preempt_notifier *notifier;

2638
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2639 2640 2641
		notifier->ops->sched_out(notifier, next);
}

2642 2643 2644 2645 2646 2647 2648 2649
static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	if (static_key_false(&preempt_notifier_key))
		__fire_sched_out_preempt_notifiers(curr, next);
}

2650
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2651

2652
static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2653 2654 2655
{
}

2656
static inline void
2657 2658 2659 2660 2661
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2662
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2663

2664 2665 2666
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2667
 * @prev: the current task that is being switched out
2668 2669 2670 2671 2672 2673 2674 2675 2676
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2677 2678 2679
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2680
{
2681
	sched_info_switch(rq, prev, next);
2682
	perf_event_task_sched_out(prev, next);
2683
	fire_sched_out_preempt_notifiers(prev, next);
2684 2685 2686 2687
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2688 2689 2690 2691
/**
 * finish_task_switch - clean up after a task-switch
 * @prev: the thread we just switched away from.
 *
2692 2693 2694 2695
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2696 2697
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2698
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2699 2700
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
2701 2702 2703 2704 2705
 *
 * The context switch have flipped the stack from under us and restored the
 * local variables which were saved when this task called schedule() in the
 * past. prev == current is still correct but we need to recalculate this_rq
 * because prev may have moved to another CPU.
L
Linus Torvalds 已提交
2706
 */
2707
static struct rq *finish_task_switch(struct task_struct *prev)
L
Linus Torvalds 已提交
2708 2709
	__releases(rq->lock)
{
2710
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2711
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2712
	long prev_state;
L
Linus Torvalds 已提交
2713

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	/*
	 * The previous task will have left us with a preempt_count of 2
	 * because it left us after:
	 *
	 *	schedule()
	 *	  preempt_disable();			// 1
	 *	  __schedule()
	 *	    raw_spin_lock_irq(&rq->lock)	// 2
	 *
	 * Also, see FORK_PREEMPT_COUNT.
	 */
2725 2726 2727 2728
	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
		      "corrupted preempt_count: %s/%d/0x%x\n",
		      current->comm, current->pid, preempt_count()))
		preempt_count_set(FORK_PREEMPT_COUNT);
2729

L
Linus Torvalds 已提交
2730 2731 2732 2733
	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2734
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2735 2736
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2737 2738 2739 2740 2741
	 *
	 * We must observe prev->state before clearing prev->on_cpu (in
	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
	 * running on another CPU and we could rave with its RUNNING -> DEAD
	 * transition, resulting in a double drop.
L
Linus Torvalds 已提交
2742
	 */
O
Oleg Nesterov 已提交
2743
	prev_state = prev->state;
2744
	vtime_task_switch(prev);
2745
	perf_event_task_sched_in(prev, current);
2746
	finish_lock_switch(rq, prev);
2747
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2748

2749
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2750 2751
	if (mm)
		mmdrop(mm);
2752
	if (unlikely(prev_state == TASK_DEAD)) {
2753 2754 2755
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2756 2757 2758
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2759
		 */
2760
		kprobe_flush_task(prev);
2761 2762 2763 2764

		/* Task is done with its stack. */
		put_task_stack(prev);

L
Linus Torvalds 已提交
2765
		put_task_struct(prev);
2766
	}
2767

2768
	tick_nohz_task_switch();
2769
	return rq;
L
Linus Torvalds 已提交
2770 2771
}

2772 2773 2774
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
2775
static void __balance_callback(struct rq *rq)
2776
{
2777 2778 2779
	struct callback_head *head, *next;
	void (*func)(struct rq *rq);
	unsigned long flags;
2780

2781 2782 2783 2784 2785 2786 2787 2788
	raw_spin_lock_irqsave(&rq->lock, flags);
	head = rq->balance_callback;
	rq->balance_callback = NULL;
	while (head) {
		func = (void (*)(struct rq *))head->func;
		next = head->next;
		head->next = NULL;
		head = next;
2789

2790
		func(rq);
2791
	}
2792 2793 2794 2795 2796 2797 2798
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

static inline void balance_callback(struct rq *rq)
{
	if (unlikely(rq->balance_callback))
		__balance_callback(rq);
2799 2800 2801
}

#else
2802

2803
static inline void balance_callback(struct rq *rq)
2804
{
L
Linus Torvalds 已提交
2805 2806
}

2807 2808
#endif

L
Linus Torvalds 已提交
2809 2810 2811 2812
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2813
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2814 2815
	__releases(rq->lock)
{
2816
	struct rq *rq;
2817

2818 2819 2820 2821 2822 2823 2824 2825 2826
	/*
	 * New tasks start with FORK_PREEMPT_COUNT, see there and
	 * finish_task_switch() for details.
	 *
	 * finish_task_switch() will drop rq->lock() and lower preempt_count
	 * and the preempt_enable() will end up enabling preemption (on
	 * PREEMPT_COUNT kernels).
	 */

2827
	rq = finish_task_switch(prev);
2828
	balance_callback(rq);
2829
	preempt_enable();
2830

L
Linus Torvalds 已提交
2831
	if (current->set_child_tid)
2832
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2833 2834 2835
}

/*
2836
 * context_switch - switch to the new MM and the new thread's register state.
L
Linus Torvalds 已提交
2837
 */
2838
static __always_inline struct rq *
2839
context_switch(struct rq *rq, struct task_struct *prev,
2840
	       struct task_struct *next, struct rq_flags *rf)
L
Linus Torvalds 已提交
2841
{
I
Ingo Molnar 已提交
2842
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2843

2844
	prepare_task_switch(rq, prev, next);
2845

I
Ingo Molnar 已提交
2846 2847
	mm = next->mm;
	oldmm = prev->active_mm;
2848 2849 2850 2851 2852
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2853
	arch_start_context_switch(prev);
2854

2855
	if (!mm) {
L
Linus Torvalds 已提交
2856
		next->active_mm = oldmm;
V
Vegard Nossum 已提交
2857
		mmgrab(oldmm);
L
Linus Torvalds 已提交
2858 2859
		enter_lazy_tlb(oldmm, next);
	} else
2860
		switch_mm_irqs_off(oldmm, mm, next);
L
Linus Torvalds 已提交
2861

2862
	if (!prev->mm) {
L
Linus Torvalds 已提交
2863 2864 2865
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2866

2867
	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2868

2869 2870 2871 2872 2873 2874
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
2875
	rq_unpin_lock(rq, rf);
2876
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
2877 2878 2879

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);
I
Ingo Molnar 已提交
2880
	barrier();
2881 2882

	return finish_task_switch(prev);
L
Linus Torvalds 已提交
2883 2884 2885
}

/*
2886
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2887 2888
 *
 * externally visible scheduler statistics: current number of runnable
2889
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2899
}
L
Linus Torvalds 已提交
2900

2901
/*
I
Ingo Molnar 已提交
2902
 * Check if only the current task is running on the CPU.
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
 *
 * Caution: this function does not check that the caller has disabled
 * preemption, thus the result might have a time-of-check-to-time-of-use
 * race.  The caller is responsible to use it correctly, for example:
 *
 * - from a non-preemptable section (of course)
 *
 * - from a thread that is bound to a single CPU
 *
 * - in a loop with very short iterations (e.g. a polling loop)
2913 2914 2915
 */
bool single_task_running(void)
{
2916
	return raw_rq()->nr_running == 1;
2917 2918 2919
}
EXPORT_SYMBOL(single_task_running);

L
Linus Torvalds 已提交
2920
unsigned long long nr_context_switches(void)
2921
{
2922 2923
	int i;
	unsigned long long sum = 0;
2924

2925
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2926
		sum += cpu_rq(i)->nr_switches;
2927

L
Linus Torvalds 已提交
2928 2929
	return sum;
}
2930

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
/*
 * IO-wait accounting, and how its mostly bollocks (on SMP).
 *
 * The idea behind IO-wait account is to account the idle time that we could
 * have spend running if it were not for IO. That is, if we were to improve the
 * storage performance, we'd have a proportional reduction in IO-wait time.
 *
 * This all works nicely on UP, where, when a task blocks on IO, we account
 * idle time as IO-wait, because if the storage were faster, it could've been
 * running and we'd not be idle.
 *
 * This has been extended to SMP, by doing the same for each CPU. This however
 * is broken.
 *
 * Imagine for instance the case where two tasks block on one CPU, only the one
 * CPU will have IO-wait accounted, while the other has regular idle. Even
 * though, if the storage were faster, both could've ran at the same time,
 * utilising both CPUs.
 *
 * This means, that when looking globally, the current IO-wait accounting on
 * SMP is a lower bound, by reason of under accounting.
 *
 * Worse, since the numbers are provided per CPU, they are sometimes
 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 * associated with any one particular CPU, it can wake to another CPU than it
 * blocked on. This means the per CPU IO-wait number is meaningless.
 *
 * Task CPU affinities can make all that even more 'interesting'.
 */

L
Linus Torvalds 已提交
2961 2962 2963
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2964

2965
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2966
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2967

L
Linus Torvalds 已提交
2968 2969
	return sum;
}
2970

2971 2972 2973 2974 2975 2976 2977
/*
 * Consumers of these two interfaces, like for example the cpufreq menu
 * governor are using nonsensical data. Boosting frequency for a CPU that has
 * IO-wait which might not even end up running the task when it does become
 * runnable.
 */

2978
unsigned long nr_iowait_cpu(int cpu)
2979
{
2980
	struct rq *this = cpu_rq(cpu);
2981 2982
	return atomic_read(&this->nr_iowait);
}
2983

2984 2985
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
2986 2987 2988
	struct rq *rq = this_rq();
	*nr_waiters = atomic_read(&rq->nr_iowait);
	*load = rq->load.weight;
2989 2990
}

I
Ingo Molnar 已提交
2991
#ifdef CONFIG_SMP
2992

2993
/*
P
Peter Zijlstra 已提交
2994 2995
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2996
 */
P
Peter Zijlstra 已提交
2997
void sched_exec(void)
2998
{
P
Peter Zijlstra 已提交
2999
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3000
	unsigned long flags;
3001
	int dest_cpu;
3002

3003
	raw_spin_lock_irqsave(&p->pi_lock, flags);
3004
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3005 3006
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3007

3008
	if (likely(cpu_active(dest_cpu))) {
3009
		struct migration_arg arg = { p, dest_cpu };
3010

3011 3012
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3013 3014
		return;
	}
3015
unlock:
3016
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
3017
}
I
Ingo Molnar 已提交
3018

L
Linus Torvalds 已提交
3019 3020 3021
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
3022
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
3023 3024

EXPORT_PER_CPU_SYMBOL(kstat);
3025
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
3026

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
/*
 * The function fair_sched_class.update_curr accesses the struct curr
 * and its field curr->exec_start; when called from task_sched_runtime(),
 * we observe a high rate of cache misses in practice.
 * Prefetching this data results in improved performance.
 */
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
#else
	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
#endif
	prefetch(curr);
	prefetch(&curr->exec_start);
}

3044 3045 3046 3047 3048 3049 3050
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
3051
	struct rq_flags rf;
3052
	struct rq *rq;
3053
	u64 ns;
3054

3055 3056 3057 3058 3059 3060
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
I
Ingo Molnar 已提交
3061 3062
	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
	 * If we race with it entering CPU, unaccounted time is 0. This is
3063
	 * indistinguishable from the read occurring a few cycles earlier.
3064 3065
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
3066
	 */
3067
	if (!p->on_cpu || !task_on_rq_queued(p))
3068 3069 3070
		return p->se.sum_exec_runtime;
#endif

3071
	rq = task_rq_lock(p, &rf);
3072 3073 3074 3075 3076 3077
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
	if (task_current(rq, p) && task_on_rq_queued(p)) {
3078
		prefetch_curr_exec_start(p);
3079 3080 3081 3082
		update_rq_clock(rq);
		p->sched_class->update_curr(rq);
	}
	ns = p->se.sum_exec_runtime;
3083
	task_rq_unlock(rq, p, &rf);
3084 3085 3086

	return ns;
}
3087

3088 3089 3090 3091 3092 3093 3094 3095
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3096
	struct task_struct *curr = rq->curr;
3097
	struct rq_flags rf;
3098 3099

	sched_clock_tick();
I
Ingo Molnar 已提交
3100

3101 3102
	rq_lock(rq, &rf);

3103
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
3104
	curr->sched_class->task_tick(rq, curr, 0);
3105
	cpu_load_update_active(rq);
3106
	calc_global_load_tick(rq);
3107 3108

	rq_unlock(rq, &rf);
3109

3110
	perf_event_task_tick();
3111

3112
#ifdef CONFIG_SMP
3113
	rq->idle_balance = idle_cpu(cpu);
3114
	trigger_load_balance(rq);
3115
#endif
3116
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
3117 3118
}

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
3130 3131
 *
 * Return: Maximum deferment in nanoseconds.
3132 3133 3134 3135
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
3136
	unsigned long next, now = READ_ONCE(jiffies);
3137 3138 3139 3140 3141 3142

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

3143
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
3144
}
3145
#endif
L
Linus Torvalds 已提交
3146

3147 3148
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
/*
 * If the value passed in is equal to the current preempt count
 * then we just disabled preemption. Start timing the latency.
 */
static inline void preempt_latency_start(int val)
{
	if (preempt_count() == val) {
		unsigned long ip = get_lock_parent_ip();
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
}
3163

3164
void preempt_count_add(int val)
L
Linus Torvalds 已提交
3165
{
3166
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3167 3168 3169
	/*
	 * Underflow?
	 */
3170 3171
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3172
#endif
3173
	__preempt_count_add(val);
3174
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3175 3176 3177
	/*
	 * Spinlock count overflowing soon?
	 */
3178 3179
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3180
#endif
3181
	preempt_latency_start(val);
L
Linus Torvalds 已提交
3182
}
3183
EXPORT_SYMBOL(preempt_count_add);
3184
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
3185

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
/*
 * If the value passed in equals to the current preempt count
 * then we just enabled preemption. Stop timing the latency.
 */
static inline void preempt_latency_stop(int val)
{
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
}

3196
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
3197
{
3198
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3199 3200 3201
	/*
	 * Underflow?
	 */
3202
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3203
		return;
L
Linus Torvalds 已提交
3204 3205 3206
	/*
	 * Is the spinlock portion underflowing?
	 */
3207 3208 3209
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3210
#endif
3211

3212
	preempt_latency_stop(val);
3213
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
3214
}
3215
EXPORT_SYMBOL(preempt_count_sub);
3216
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
3217

3218 3219 3220
#else
static inline void preempt_latency_start(int val) { }
static inline void preempt_latency_stop(int val) { }
L
Linus Torvalds 已提交
3221 3222
#endif

3223 3224 3225 3226 3227 3228 3229 3230 3231
static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
{
#ifdef CONFIG_DEBUG_PREEMPT
	return p->preempt_disable_ip;
#else
	return 0;
#endif
}

L
Linus Torvalds 已提交
3232
/*
I
Ingo Molnar 已提交
3233
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3234
 */
I
Ingo Molnar 已提交
3235
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3236
{
3237 3238 3239
	/* Save this before calling printk(), since that will clobber it */
	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);

3240 3241 3242
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3243 3244
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3245

I
Ingo Molnar 已提交
3246
	debug_show_held_locks(prev);
3247
	print_modules();
I
Ingo Molnar 已提交
3248 3249
	if (irqs_disabled())
		print_irqtrace_events(prev);
3250 3251
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && in_atomic_preempt_off()) {
3252
		pr_err("Preemption disabled at:");
3253
		print_ip_sym(preempt_disable_ip);
3254 3255
		pr_cont("\n");
	}
3256 3257 3258
	if (panic_on_warn)
		panic("scheduling while atomic\n");

3259
	dump_stack();
3260
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
3261
}
L
Linus Torvalds 已提交
3262

I
Ingo Molnar 已提交
3263 3264 3265 3266 3267
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
3268
#ifdef CONFIG_SCHED_STACK_END_CHECK
J
Jann Horn 已提交
3269 3270
	if (task_stack_end_corrupted(prev))
		panic("corrupted stack end detected inside scheduler\n");
3271
#endif
3272

3273
	if (unlikely(in_atomic_preempt_off())) {
I
Ingo Molnar 已提交
3274
		__schedule_bug(prev);
3275 3276
		preempt_count_set(PREEMPT_DISABLED);
	}
3277
	rcu_sleep_check();
I
Ingo Molnar 已提交
3278

L
Linus Torvalds 已提交
3279 3280
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3281
	schedstat_inc(this_rq()->sched_count);
I
Ingo Molnar 已提交
3282 3283 3284 3285 3286 3287
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3288
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
I
Ingo Molnar 已提交
3289
{
3290
	const struct sched_class *class;
I
Ingo Molnar 已提交
3291
	struct task_struct *p;
L
Linus Torvalds 已提交
3292 3293

	/*
3294 3295 3296 3297
	 * Optimization: we know that if all tasks are in the fair class we can
	 * call that function directly, but only if the @prev task wasn't of a
	 * higher scheduling class, because otherwise those loose the
	 * opportunity to pull in more work from other CPUs.
L
Linus Torvalds 已提交
3298
	 */
3299 3300 3301 3302
	if (likely((prev->sched_class == &idle_sched_class ||
		    prev->sched_class == &fair_sched_class) &&
		   rq->nr_running == rq->cfs.h_nr_running)) {

3303
		p = fair_sched_class.pick_next_task(rq, prev, rf);
3304 3305 3306
		if (unlikely(p == RETRY_TASK))
			goto again;

I
Ingo Molnar 已提交
3307
		/* Assumes fair_sched_class->next == idle_sched_class */
3308
		if (unlikely(!p))
3309
			p = idle_sched_class.pick_next_task(rq, prev, rf);
3310 3311

		return p;
L
Linus Torvalds 已提交
3312 3313
	}

3314
again:
3315
	for_each_class(class) {
3316
		p = class->pick_next_task(rq, prev, rf);
3317 3318 3319
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
3320
			return p;
3321
		}
I
Ingo Molnar 已提交
3322
	}
3323

I
Ingo Molnar 已提交
3324 3325
	/* The idle class should always have a runnable task: */
	BUG();
I
Ingo Molnar 已提交
3326
}
L
Linus Torvalds 已提交
3327

I
Ingo Molnar 已提交
3328
/*
3329
 * __schedule() is the main scheduler function.
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
3364
 *
3365
 * WARNING: must be called with preemption disabled!
I
Ingo Molnar 已提交
3366
 */
3367
static void __sched notrace __schedule(bool preempt)
I
Ingo Molnar 已提交
3368 3369
{
	struct task_struct *prev, *next;
3370
	unsigned long *switch_count;
3371
	struct rq_flags rf;
I
Ingo Molnar 已提交
3372
	struct rq *rq;
3373
	int cpu;
I
Ingo Molnar 已提交
3374 3375 3376 3377 3378 3379

	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3380

3381
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3382
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3383

3384
	local_irq_disable();
3385
	rcu_note_context_switch(preempt);
3386

3387 3388 3389 3390 3391 3392
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
3393
	rq_lock(rq, &rf);
L
Linus Torvalds 已提交
3394

I
Ingo Molnar 已提交
3395 3396
	/* Promote REQ to ACT */
	rq->clock_update_flags <<= 1;
3397
	update_rq_clock(rq);
3398

3399
	switch_count = &prev->nivcsw;
3400
	if (!preempt && prev->state) {
T
Tejun Heo 已提交
3401
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3402
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3403
		} else {
3404
			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3405 3406
			prev->on_rq = 0;

3407 3408 3409 3410 3411
			if (prev->in_iowait) {
				atomic_inc(&rq->nr_iowait);
				delayacct_blkio_start();
			}

T
Tejun Heo 已提交
3412
			/*
3413 3414 3415
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3416 3417 3418 3419
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

3420
				to_wakeup = wq_worker_sleeping(prev);
T
Tejun Heo 已提交
3421
				if (to_wakeup)
3422
					try_to_wake_up_local(to_wakeup, &rf);
T
Tejun Heo 已提交
3423 3424
			}
		}
I
Ingo Molnar 已提交
3425
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3426 3427
	}

3428
	next = pick_next_task(rq, prev, &rf);
3429
	clear_tsk_need_resched(prev);
3430
	clear_preempt_need_resched();
L
Linus Torvalds 已提交
3431 3432 3433 3434 3435 3436

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

3437
		trace_sched_switch(preempt, prev, next);
I
Ingo Molnar 已提交
3438 3439 3440

		/* Also unlocks the rq: */
		rq = context_switch(rq, prev, next, &rf);
3441
	} else {
3442
		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3443
		rq_unlock_irq(rq, &rf);
3444
	}
L
Linus Torvalds 已提交
3445

3446
	balance_callback(rq);
L
Linus Torvalds 已提交
3447
}
3448

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
void __noreturn do_task_dead(void)
{
	/*
	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
	 * when the following two conditions become true.
	 *   - There is race condition of mmap_sem (It is acquired by
	 *     exit_mm()), and
	 *   - SMI occurs before setting TASK_RUNINNG.
	 *     (or hypervisor of virtual machine switches to other guest)
	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
	 *
	 * To avoid it, we have to wait for releasing tsk->pi_lock which
	 * is held by try_to_wake_up()
	 */
	smp_mb();
	raw_spin_unlock_wait(&current->pi_lock);

I
Ingo Molnar 已提交
3466
	/* Causes final put_task_struct in finish_task_switch(): */
3467
	__set_current_state(TASK_DEAD);
I
Ingo Molnar 已提交
3468 3469 3470 3471

	/* Tell freezer to ignore us: */
	current->flags |= PF_NOFREEZE;

3472 3473
	__schedule(false);
	BUG();
I
Ingo Molnar 已提交
3474 3475

	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3476
	for (;;)
I
Ingo Molnar 已提交
3477
		cpu_relax();
3478 3479
}

3480 3481
static inline void sched_submit_work(struct task_struct *tsk)
{
3482
	if (!tsk->state || tsk_is_pi_blocked(tsk))
3483 3484 3485 3486 3487 3488 3489 3490 3491
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

3492
asmlinkage __visible void __sched schedule(void)
3493
{
3494 3495 3496
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3497
	do {
3498
		preempt_disable();
3499
		__schedule(false);
3500
		sched_preempt_enable_no_resched();
3501
	} while (need_resched());
3502
}
L
Linus Torvalds 已提交
3503 3504
EXPORT_SYMBOL(schedule);

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
/*
 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 * state (have scheduled out non-voluntarily) by making sure that all
 * tasks have either left the run queue or have gone into user space.
 * As idle tasks do not do either, they must not ever be preempted
 * (schedule out non-voluntarily).
 *
 * schedule_idle() is similar to schedule_preempt_disable() except that it
 * never enables preemption because it does not call sched_submit_work().
 */
void __sched schedule_idle(void)
{
	/*
	 * As this skips calling sched_submit_work(), which the idle task does
	 * regardless because that function is a nop when the task is in a
	 * TASK_RUNNING state, make sure this isn't used someplace that the
	 * current task can be in any other state. Note, idle is always in the
	 * TASK_RUNNING state.
	 */
	WARN_ON_ONCE(current->state);
	do {
		__schedule(false);
	} while (need_resched());
}

3530
#ifdef CONFIG_CONTEXT_TRACKING
3531
asmlinkage __visible void __sched schedule_user(void)
3532 3533 3534 3535 3536 3537
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
3538 3539
	 *
	 * NB: There are buggy callers of this function.  Ideally we
3540
	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3541
	 * too frequently to make sense yet.
3542
	 */
3543
	enum ctx_state prev_state = exception_enter();
3544
	schedule();
3545
	exception_exit(prev_state);
3546 3547 3548
}
#endif

3549 3550 3551 3552 3553 3554 3555
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
3556
	sched_preempt_enable_no_resched();
3557 3558 3559 3560
	schedule();
	preempt_disable();
}

3561
static void __sched notrace preempt_schedule_common(void)
3562 3563
{
	do {
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3577
		preempt_disable_notrace();
3578
		preempt_latency_start(1);
3579
		__schedule(true);
3580
		preempt_latency_stop(1);
3581
		preempt_enable_no_resched_notrace();
3582 3583 3584 3585 3586 3587 3588 3589

		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
	} while (need_resched());
}

L
Linus Torvalds 已提交
3590 3591
#ifdef CONFIG_PREEMPT
/*
3592
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3593
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3594 3595
 * occur there and call schedule directly.
 */
3596
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3597 3598 3599
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3600
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3601
	 */
3602
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
3603 3604
		return;

3605
	preempt_schedule_common();
L
Linus Torvalds 已提交
3606
}
3607
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
3608
EXPORT_SYMBOL(preempt_schedule);
3609 3610

/**
3611
 * preempt_schedule_notrace - preempt_schedule called by tracing
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
 *
 * The tracing infrastructure uses preempt_enable_notrace to prevent
 * recursion and tracing preempt enabling caused by the tracing
 * infrastructure itself. But as tracing can happen in areas coming
 * from userspace or just about to enter userspace, a preempt enable
 * can occur before user_exit() is called. This will cause the scheduler
 * to be called when the system is still in usermode.
 *
 * To prevent this, the preempt_enable_notrace will use this function
 * instead of preempt_schedule() to exit user context if needed before
 * calling the scheduler.
 */
3624
asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3625 3626 3627 3628 3629 3630 3631
{
	enum ctx_state prev_ctx;

	if (likely(!preemptible()))
		return;

	do {
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
		/*
		 * Because the function tracer can trace preempt_count_sub()
		 * and it also uses preempt_enable/disable_notrace(), if
		 * NEED_RESCHED is set, the preempt_enable_notrace() called
		 * by the function tracer will call this function again and
		 * cause infinite recursion.
		 *
		 * Preemption must be disabled here before the function
		 * tracer can trace. Break up preempt_disable() into two
		 * calls. One to disable preemption without fear of being
		 * traced. The other to still record the preemption latency,
		 * which can also be traced by the function tracer.
		 */
3645
		preempt_disable_notrace();
3646
		preempt_latency_start(1);
3647 3648 3649 3650 3651 3652
		/*
		 * Needs preempt disabled in case user_exit() is traced
		 * and the tracer calls preempt_enable_notrace() causing
		 * an infinite recursion.
		 */
		prev_ctx = exception_enter();
3653
		__schedule(true);
3654 3655
		exception_exit(prev_ctx);

3656
		preempt_latency_stop(1);
3657
		preempt_enable_no_resched_notrace();
3658 3659
	} while (need_resched());
}
3660
EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3661

3662
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
3663 3664

/*
3665
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3666 3667 3668 3669
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
3670
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
3671
{
3672
	enum ctx_state prev_state;
3673

3674
	/* Catch callers which need to be fixed */
3675
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
3676

3677 3678
	prev_state = exception_enter();

3679
	do {
3680
		preempt_disable();
3681
		local_irq_enable();
3682
		__schedule(true);
3683
		local_irq_disable();
3684
		sched_preempt_enable_no_resched();
3685
	} while (need_resched());
3686 3687

	exception_exit(prev_state);
L
Linus Torvalds 已提交
3688 3689
}

P
Peter Zijlstra 已提交
3690
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3691
			  void *key)
L
Linus Torvalds 已提交
3692
{
P
Peter Zijlstra 已提交
3693
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3694 3695 3696
}
EXPORT_SYMBOL(default_wake_function);

3697 3698
#ifdef CONFIG_RT_MUTEXES

3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
{
	if (pi_task)
		prio = min(prio, pi_task->prio);

	return prio;
}

static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	struct task_struct *pi_task = rt_mutex_get_top_task(p);

	return __rt_effective_prio(pi_task, prio);
}

3714 3715
/*
 * rt_mutex_setprio - set the current priority of a task
3716 3717
 * @p: task to boost
 * @pi_task: donor task
3718 3719 3720 3721
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3722 3723
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3724
 */
3725
void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3726
{
3727
	int prio, oldprio, queued, running, queue_flag =
3728
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3729
	const struct sched_class *prev_class;
3730 3731
	struct rq_flags rf;
	struct rq *rq;
3732

3733 3734 3735 3736 3737 3738 3739 3740
	/* XXX used to be waiter->prio, not waiter->task->prio */
	prio = __rt_effective_prio(pi_task, p->normal_prio);

	/*
	 * If nothing changed; bail early.
	 */
	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
		return;
3741

3742
	rq = __task_rq_lock(p, &rf);
3743
	update_rq_clock(rq);
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
	/*
	 * Set under pi_lock && rq->lock, such that the value can be used under
	 * either lock.
	 *
	 * Note that there is loads of tricky to make this pointer cache work
	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
	 * ensure a task is de-boosted (pi_task is set to NULL) before the
	 * task is allowed to run again (and can exit). This ensures the pointer
	 * points to a blocked task -- which guaratees the task is present.
	 */
	p->pi_top_task = pi_task;

	/*
	 * For FIFO/RR we only need to set prio, if that matches we're done.
	 */
	if (prio == p->prio && !dl_prio(prio))
		goto out_unlock;
3761

3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3780
	trace_sched_pi_setprio(p, pi_task);
3781
	oldprio = p->prio;
3782 3783 3784 3785

	if (oldprio == prio)
		queue_flag &= ~DEQUEUE_MOVE;

3786
	prev_class = p->sched_class;
3787
	queued = task_on_rq_queued(p);
3788
	running = task_current(rq, p);
3789
	if (queued)
3790
		dequeue_task(rq, p, queue_flag);
3791
	if (running)
3792
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3793

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3804 3805
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3806
			p->dl.dl_boosted = 1;
3807
			queue_flag |= ENQUEUE_REPLENISH;
3808 3809
		} else
			p->dl.dl_boosted = 0;
3810
		p->sched_class = &dl_sched_class;
3811 3812 3813 3814
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
3815
			queue_flag |= ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3816
		p->sched_class = &rt_sched_class;
3817 3818 3819
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
3820 3821
		if (rt_prio(oldprio))
			p->rt.timeout = 0;
I
Ingo Molnar 已提交
3822
		p->sched_class = &fair_sched_class;
3823
	}
I
Ingo Molnar 已提交
3824

3825 3826
	p->prio = prio;

3827
	if (queued)
3828
		enqueue_task(rq, p, queue_flag);
3829
	if (running)
3830
		set_curr_task(rq, p);
3831

P
Peter Zijlstra 已提交
3832
	check_class_changed(rq, p, prev_class, oldprio);
3833
out_unlock:
I
Ingo Molnar 已提交
3834 3835
	/* Avoid rq from going away on us: */
	preempt_disable();
3836
	__task_rq_unlock(rq, &rf);
3837 3838 3839

	balance_callback(rq);
	preempt_enable();
3840
}
3841 3842 3843 3844 3845
#else
static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	return prio;
}
3846
#endif
3847

3848
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3849
{
P
Peter Zijlstra 已提交
3850 3851
	bool queued, running;
	int old_prio, delta;
3852
	struct rq_flags rf;
3853
	struct rq *rq;
L
Linus Torvalds 已提交
3854

3855
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3856 3857 3858 3859 3860
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
3861
	rq = task_rq_lock(p, &rf);
3862 3863
	update_rq_clock(rq);

L
Linus Torvalds 已提交
3864 3865 3866 3867
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3868
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3869
	 */
3870
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3871 3872 3873
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3874
	queued = task_on_rq_queued(p);
P
Peter Zijlstra 已提交
3875
	running = task_current(rq, p);
3876
	if (queued)
3877
		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
P
Peter Zijlstra 已提交
3878 3879
	if (running)
		put_prev_task(rq, p);
L
Linus Torvalds 已提交
3880 3881

	p->static_prio = NICE_TO_PRIO(nice);
3882
	set_load_weight(p);
3883 3884 3885
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3886

3887
	if (queued) {
3888
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
L
Linus Torvalds 已提交
3889
		/*
3890 3891
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3892
		 */
3893
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3894
			resched_curr(rq);
L
Linus Torvalds 已提交
3895
	}
P
Peter Zijlstra 已提交
3896 3897
	if (running)
		set_curr_task(rq, p);
L
Linus Torvalds 已提交
3898
out_unlock:
3899
	task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
3900 3901 3902
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3903 3904 3905 3906 3907
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3908
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3909
{
I
Ingo Molnar 已提交
3910
	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
3911
	int nice_rlim = nice_to_rlimit(nice);
3912

3913
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3914 3915 3916
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3917 3918 3919 3920 3921 3922 3923 3924 3925
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3926
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3927
{
3928
	long nice, retval;
L
Linus Torvalds 已提交
3929 3930 3931 3932 3933 3934

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3935
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3936
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3937

3938
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3939 3940 3941
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3956
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3957 3958 3959
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3960
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3961 3962 3963 3964 3965
{
	return p->prio - MAX_RT_PRIO;
}

/**
I
Ingo Molnar 已提交
3966
 * idle_cpu - is a given CPU idle currently?
L
Linus Torvalds 已提交
3967
 * @cpu: the processor in question.
3968 3969
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3970 3971 3972
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3987 3988 3989
}

/**
I
Ingo Molnar 已提交
3990
 * idle_task - return the idle task for a given CPU.
L
Linus Torvalds 已提交
3991
 * @cpu: the processor in question.
3992
 *
I
Ingo Molnar 已提交
3993
 * Return: The idle task for the CPU @cpu.
L
Linus Torvalds 已提交
3994
 */
3995
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3996 3997 3998 3999 4000 4001 4002
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
4003 4004
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
4005
 */
A
Alexey Dobriyan 已提交
4006
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4007
{
4008
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4009 4010
}

4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
4026
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
4027
	dl_se->flags = attr->sched_flags;
4028
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048

	/*
	 * Changing the parameters of a task is 'tricky' and we're not doing
	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
	 *
	 * What we SHOULD do is delay the bandwidth release until the 0-lag
	 * point. This would include retaining the task_struct until that time
	 * and change dl_overflow() to not immediately decrement the current
	 * amount.
	 *
	 * Instead we retain the current runtime/deadline and let the new
	 * parameters take effect after the current reservation period lapses.
	 * This is safe (albeit pessimistic) because the 0-lag point is always
	 * before the current scheduling deadline.
	 *
	 * We can still have temporary overloads because we do not delay the
	 * change in bandwidth until that time; so admission control is
	 * not on the safe side. It does however guarantee tasks will never
	 * consume more than promised.
	 */
4049 4050
}

4051 4052 4053 4054 4055 4056
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

4057 4058
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
4059
{
4060 4061
	int policy = attr->sched_policy;

4062
	if (policy == SETPARAM_POLICY)
4063 4064
		policy = p->policy;

L
Linus Torvalds 已提交
4065
	p->policy = policy;
4066

4067 4068
	if (dl_policy(policy))
		__setparam_dl(p, attr);
4069
	else if (fair_policy(policy))
4070 4071
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

4072 4073 4074 4075 4076 4077
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
4078
	p->normal_prio = normal_prio(p);
4079 4080
	set_load_weight(p);
}
4081

4082 4083
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
4084
			   const struct sched_attr *attr, bool keep_boost)
4085 4086
{
	__setscheduler_params(p, attr);
4087

4088
	/*
4089 4090
	 * Keep a potential priority boosting if called from
	 * sched_setscheduler().
4091
	 */
4092
	p->prio = normal_prio(p);
4093
	if (keep_boost)
4094
		p->prio = rt_effective_prio(p, p->prio);
4095

4096 4097 4098
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
4099 4100 4101
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
4102
}
4103 4104 4105 4106 4107 4108 4109 4110 4111

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
4112
	attr->sched_period = dl_se->dl_period;
4113 4114 4115 4116 4117 4118
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
4119
 * than the runtime, as well as the period of being zero or
4120
 * greater than deadline. Furthermore, we have to be sure that
4121 4122 4123 4124
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
4125 4126 4127 4128
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
4155 4156
}

4157
/*
I
Ingo Molnar 已提交
4158
 * Check the target process has a UID that matches the current process's:
4159 4160 4161 4162 4163 4164 4165 4166
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
4167 4168
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
4169 4170 4171 4172
	rcu_read_unlock();
	return match;
}

I
Ingo Molnar 已提交
4173
static bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
{
	struct sched_dl_entity *dl_se = &p->dl;

	if (dl_se->dl_runtime != attr->sched_runtime ||
		dl_se->dl_deadline != attr->sched_deadline ||
		dl_se->dl_period != attr->sched_period ||
		dl_se->flags != attr->sched_flags)
		return true;

	return false;
}

4186 4187
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
4188
				bool user, bool pi)
L
Linus Torvalds 已提交
4189
{
4190 4191
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
4192
	int retval, oldprio, oldpolicy = -1, queued, running;
4193
	int new_effective_prio, policy = attr->sched_policy;
4194
	const struct sched_class *prev_class;
4195
	struct rq_flags rf;
4196
	int reset_on_fork;
4197
	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4198
	struct rq *rq;
L
Linus Torvalds 已提交
4199

I
Ingo Molnar 已提交
4200
	/* May grab non-irq protected spin_locks: */
4201
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4202
recheck:
I
Ingo Molnar 已提交
4203
	/* Double check policy once rq lock held: */
4204 4205
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4206
		policy = oldpolicy = p->policy;
4207
	} else {
4208
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4209

4210
		if (!valid_policy(policy))
4211 4212 4213
			return -EINVAL;
	}

4214 4215 4216
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
4217 4218
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4219 4220
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4221
	 */
4222
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4223
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4224
		return -EINVAL;
4225 4226
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
4227 4228
		return -EINVAL;

4229 4230 4231
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4232
	if (user && !capable(CAP_SYS_NICE)) {
4233
		if (fair_policy(policy)) {
4234
			if (attr->sched_nice < task_nice(p) &&
4235
			    !can_nice(p, attr->sched_nice))
4236 4237 4238
				return -EPERM;
		}

4239
		if (rt_policy(policy)) {
4240 4241
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4242

I
Ingo Molnar 已提交
4243
			/* Can't set/change the rt policy: */
4244 4245 4246
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

I
Ingo Molnar 已提交
4247
			/* Can't increase priority: */
4248 4249
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
4250 4251
				return -EPERM;
		}
4252

4253 4254 4255 4256 4257 4258 4259 4260 4261
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
4262
		/*
4263 4264
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4265
		 */
4266
		if (idle_policy(p->policy) && !idle_policy(policy)) {
4267
			if (!can_nice(p, task_nice(p)))
4268 4269
				return -EPERM;
		}
4270

I
Ingo Molnar 已提交
4271
		/* Can't change other user's priorities: */
4272
		if (!check_same_owner(p))
4273
			return -EPERM;
4274

I
Ingo Molnar 已提交
4275
		/* Normal users shall not reset the sched_reset_on_fork flag: */
4276 4277
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4278
	}
L
Linus Torvalds 已提交
4279

4280
	if (user) {
4281
		retval = security_task_setscheduler(p);
4282 4283 4284 4285
		if (retval)
			return retval;
	}

4286
	/*
I
Ingo Molnar 已提交
4287
	 * Make sure no PI-waiters arrive (or leave) while we are
4288
	 * changing the priority of the task:
4289
	 *
L
Lucas De Marchi 已提交
4290
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4291 4292
	 * runqueue lock must be held.
	 */
4293
	rq = task_rq_lock(p, &rf);
4294
	update_rq_clock(rq);
4295

4296
	/*
I
Ingo Molnar 已提交
4297
	 * Changing the policy of the stop threads its a very bad idea:
4298 4299
	 */
	if (p == rq->stop) {
4300
		task_rq_unlock(rq, p, &rf);
4301 4302 4303
		return -EINVAL;
	}

4304
	/*
4305 4306
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
4307
	 */
4308
	if (unlikely(policy == p->policy)) {
4309
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4310 4311 4312
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
4313
		if (dl_policy(policy) && dl_param_changed(p, attr))
4314
			goto change;
4315

4316
		p->sched_reset_on_fork = reset_on_fork;
4317
		task_rq_unlock(rq, p, &rf);
4318 4319
		return 0;
	}
4320
change:
4321

4322
	if (user) {
4323
#ifdef CONFIG_RT_GROUP_SCHED
4324 4325 4326 4327 4328
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4329 4330
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4331
			task_rq_unlock(rq, p, &rf);
4332 4333 4334
			return -EPERM;
		}
#endif
4335 4336 4337 4338 4339 4340 4341 4342 4343
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
4344 4345
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
4346
				task_rq_unlock(rq, p, &rf);
4347 4348 4349 4350 4351
				return -EPERM;
			}
		}
#endif
	}
4352

I
Ingo Molnar 已提交
4353
	/* Re-check policy now with rq lock held: */
L
Linus Torvalds 已提交
4354 4355
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4356
		task_rq_unlock(rq, p, &rf);
L
Linus Torvalds 已提交
4357 4358
		goto recheck;
	}
4359 4360 4361 4362 4363 4364

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
4365
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4366
		task_rq_unlock(rq, p, &rf);
4367 4368 4369
		return -EBUSY;
	}

4370 4371 4372
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

4373 4374 4375 4376 4377 4378 4379 4380
	if (pi) {
		/*
		 * Take priority boosted tasks into account. If the new
		 * effective priority is unchanged, we just store the new
		 * normal parameters and do not touch the scheduler class and
		 * the runqueue. This will be done when the task deboost
		 * itself.
		 */
4381
		new_effective_prio = rt_effective_prio(p, newprio);
4382 4383
		if (new_effective_prio == oldprio)
			queue_flags &= ~DEQUEUE_MOVE;
4384 4385
	}

4386
	queued = task_on_rq_queued(p);
4387
	running = task_current(rq, p);
4388
	if (queued)
4389
		dequeue_task(rq, p, queue_flags);
4390
	if (running)
4391
		put_prev_task(rq, p);
4392

4393
	prev_class = p->sched_class;
4394
	__setscheduler(rq, p, attr, pi);
4395

4396
	if (queued) {
4397 4398 4399 4400
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
4401 4402
		if (oldprio < p->prio)
			queue_flags |= ENQUEUE_HEAD;
4403

4404
		enqueue_task(rq, p, queue_flags);
4405
	}
4406
	if (running)
4407
		set_curr_task(rq, p);
4408

P
Peter Zijlstra 已提交
4409
	check_class_changed(rq, p, prev_class, oldprio);
I
Ingo Molnar 已提交
4410 4411 4412

	/* Avoid rq from going away on us: */
	preempt_disable();
4413
	task_rq_unlock(rq, p, &rf);
4414

4415 4416
	if (pi)
		rt_mutex_adjust_pi(p);
4417

I
Ingo Molnar 已提交
4418
	/* Run balance callbacks after we've adjusted the PI chain: */
4419 4420
	balance_callback(rq);
	preempt_enable();
4421

L
Linus Torvalds 已提交
4422 4423
	return 0;
}
4424

4425 4426 4427 4428 4429 4430 4431 4432 4433
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

4434 4435
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4436 4437 4438 4439 4440
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

4441
	return __sched_setscheduler(p, &attr, check, true);
4442
}
4443 4444 4445 4446 4447 4448
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
4449 4450
 * Return: 0 on success. An error code otherwise.
 *
4451 4452 4453
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4454
		       const struct sched_param *param)
4455
{
4456
	return _sched_setscheduler(p, policy, param, true);
4457
}
L
Linus Torvalds 已提交
4458 4459
EXPORT_SYMBOL_GPL(sched_setscheduler);

4460 4461
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
4462
	return __sched_setscheduler(p, attr, true, true);
4463 4464 4465
}
EXPORT_SYMBOL_GPL(sched_setattr);

4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
4476 4477
 *
 * Return: 0 on success. An error code otherwise.
4478 4479
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4480
			       const struct sched_param *param)
4481
{
4482
	return _sched_setscheduler(p, policy, param, false);
4483
}
4484
EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4485

I
Ingo Molnar 已提交
4486 4487
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4488 4489 4490
{
	struct sched_param lparam;
	struct task_struct *p;
4491
	int retval;
L
Linus Torvalds 已提交
4492 4493 4494 4495 4496

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4497 4498 4499

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4500
	p = find_process_by_pid(pid);
4501 4502 4503
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4504

L
Linus Torvalds 已提交
4505 4506 4507
	return retval;
}

4508 4509 4510
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
I
Ingo Molnar 已提交
4511
static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4512 4513 4514 4515 4516 4517 4518
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

I
Ingo Molnar 已提交
4519
	/* Zero the full structure, so that a short copy will be nice: */
4520 4521 4522 4523 4524 4525
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

I
Ingo Molnar 已提交
4526 4527
	/* Bail out on silly large: */
	if (size > PAGE_SIZE)
4528 4529
		goto err_size;

I
Ingo Molnar 已提交
4530 4531
	/* ABI compatibility quirk: */
	if (!size)
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
I
Ingo Molnar 已提交
4566
	 * XXX: Do we want to be lenient like existing syscalls; or do we want
4567 4568
	 * to be strict and return an error on out-of-bounds values?
	 */
4569
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4570

4571
	return 0;
4572 4573 4574

err_size:
	put_user(sizeof(*attr), &uattr->size);
4575
	return -E2BIG;
4576 4577
}

L
Linus Torvalds 已提交
4578 4579 4580 4581 4582
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4583 4584
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4585
 */
I
Ingo Molnar 已提交
4586
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4587
{
4588 4589 4590
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4591 4592 4593 4594 4595 4596 4597
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
4598 4599
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4600
 */
4601
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4602
{
4603
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
4604 4605
}

4606 4607 4608
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
4609
 * @uattr: structure containing the extended parameters.
4610
 * @flags: for future extension.
4611
 */
4612 4613
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
4614 4615 4616 4617 4618
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

4619
	if (!uattr || pid < 0 || flags)
4620 4621
		return -EINVAL;

4622 4623 4624
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
4625

4626
	if ((int)attr.sched_policy < 0)
4627
		return -EINVAL;
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
4639 4640 4641
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
4642 4643 4644
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
4645
 */
4646
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4647
{
4648
	struct task_struct *p;
4649
	int retval;
L
Linus Torvalds 已提交
4650 4651

	if (pid < 0)
4652
		return -EINVAL;
L
Linus Torvalds 已提交
4653 4654

	retval = -ESRCH;
4655
	rcu_read_lock();
L
Linus Torvalds 已提交
4656 4657 4658 4659
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4660 4661
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4662
	}
4663
	rcu_read_unlock();
L
Linus Torvalds 已提交
4664 4665 4666 4667
	return retval;
}

/**
4668
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4669 4670
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
4671 4672 4673
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
4674
 */
4675
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4676
{
4677
	struct sched_param lp = { .sched_priority = 0 };
4678
	struct task_struct *p;
4679
	int retval;
L
Linus Torvalds 已提交
4680 4681

	if (!param || pid < 0)
4682
		return -EINVAL;
L
Linus Torvalds 已提交
4683

4684
	rcu_read_lock();
L
Linus Torvalds 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4694 4695
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
4696
	rcu_read_unlock();
L
Linus Torvalds 已提交
4697 4698 4699 4700 4701 4702 4703 4704 4705

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4706
	rcu_read_unlock();
L
Linus Torvalds 已提交
4707 4708 4709
	return retval;
}

4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
4733
				return -EFBIG;
4734 4735 4736 4737 4738
		}

		attr->size = usize;
	}

4739
	ret = copy_to_user(uattr, attr, attr->size);
4740 4741 4742
	if (ret)
		return -EFAULT;

4743
	return 0;
4744 4745 4746
}

/**
4747
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4748
 * @pid: the pid in question.
J
Juri Lelli 已提交
4749
 * @uattr: structure containing the extended parameters.
4750
 * @size: sizeof(attr) for fwd/bwd comp.
4751
 * @flags: for future extension.
4752
 */
4753 4754
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
4755 4756 4757 4758 4759 4760 4761 4762
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4763
	    size < SCHED_ATTR_SIZE_VER0 || flags)
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
4777 4778
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4779 4780 4781
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
4782 4783
		attr.sched_priority = p->rt_priority;
	else
4784
		attr.sched_nice = task_nice(p);
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

4796
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4797
{
4798
	cpumask_var_t cpus_allowed, new_mask;
4799 4800
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4801

4802
	rcu_read_lock();
L
Linus Torvalds 已提交
4803 4804 4805

	p = find_process_by_pid(pid);
	if (!p) {
4806
		rcu_read_unlock();
L
Linus Torvalds 已提交
4807 4808 4809
		return -ESRCH;
	}

4810
	/* Prevent p going away */
L
Linus Torvalds 已提交
4811
	get_task_struct(p);
4812
	rcu_read_unlock();
L
Linus Torvalds 已提交
4813

4814 4815 4816 4817
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4818 4819 4820 4821 4822 4823 4824 4825
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4826
	retval = -EPERM;
E
Eric W. Biederman 已提交
4827 4828 4829 4830
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
4831
			goto out_free_new_mask;
E
Eric W. Biederman 已提交
4832 4833 4834
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4835

4836
	retval = security_task_setscheduler(p);
4837
	if (retval)
4838
		goto out_free_new_mask;
4839

4840 4841 4842 4843

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4844 4845 4846 4847 4848 4849 4850
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
4851 4852 4853
	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
		rcu_read_lock();
		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4854
			retval = -EBUSY;
4855
			rcu_read_unlock();
4856
			goto out_free_new_mask;
4857
		}
4858
		rcu_read_unlock();
4859 4860
	}
#endif
P
Peter Zijlstra 已提交
4861
again:
4862
	retval = __set_cpus_allowed_ptr(p, new_mask, true);
L
Linus Torvalds 已提交
4863

P
Paul Menage 已提交
4864
	if (!retval) {
4865 4866
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4867 4868 4869 4870 4871
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4872
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4873 4874 4875
			goto again;
		}
	}
4876
out_free_new_mask:
4877 4878 4879 4880
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4881 4882 4883 4884 4885
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4886
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4887
{
4888 4889 4890 4891 4892
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4893 4894 4895 4896
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
I
Ingo Molnar 已提交
4897
 * sys_sched_setaffinity - set the CPU affinity of a process
L
Linus Torvalds 已提交
4898 4899
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4900
 * @user_mask_ptr: user-space pointer to the new CPU mask
4901 4902
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4903
 */
4904 4905
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4906
{
4907
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4908 4909
	int retval;

4910 4911
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4912

4913 4914 4915 4916 4917
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4918 4919
}

4920
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4921
{
4922
	struct task_struct *p;
4923
	unsigned long flags;
L
Linus Torvalds 已提交
4924 4925
	int retval;

4926
	rcu_read_lock();
L
Linus Torvalds 已提交
4927 4928 4929 4930 4931 4932

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4933 4934 4935 4936
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4937
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4938
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4939
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4940 4941

out_unlock:
4942
	rcu_read_unlock();
L
Linus Torvalds 已提交
4943

4944
	return retval;
L
Linus Torvalds 已提交
4945 4946 4947
}

/**
I
Ingo Molnar 已提交
4948
 * sys_sched_getaffinity - get the CPU affinity of a process
L
Linus Torvalds 已提交
4949 4950
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
I
Ingo Molnar 已提交
4951
 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4952
 *
4953 4954
 * Return: size of CPU mask copied to user_mask_ptr on success. An
 * error code otherwise.
L
Linus Torvalds 已提交
4955
 */
4956 4957
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4958 4959
{
	int ret;
4960
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4961

A
Anton Blanchard 已提交
4962
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4963 4964
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4965 4966
		return -EINVAL;

4967 4968
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4969

4970 4971
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4972
		size_t retlen = min_t(size_t, len, cpumask_size());
4973 4974

		if (copy_to_user(user_mask_ptr, mask, retlen))
4975 4976
			ret = -EFAULT;
		else
4977
			ret = retlen;
4978 4979
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4980

4981
	return ret;
L
Linus Torvalds 已提交
4982 4983 4984 4985 4986
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4987 4988
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4989 4990
 *
 * Return: 0.
L
Linus Torvalds 已提交
4991
 */
4992
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4993
{
4994 4995 4996 4997 4998 4999
	struct rq_flags rf;
	struct rq *rq;

	local_irq_disable();
	rq = this_rq();
	rq_lock(rq, &rf);
L
Linus Torvalds 已提交
5000

5001
	schedstat_inc(rq->yld_count);
5002
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5003 5004 5005 5006 5007

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
5008 5009
	preempt_disable();
	rq_unlock(rq, &rf);
5010
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
5011 5012 5013 5014 5015 5016

	schedule();

	return 0;
}

5017
#ifndef CONFIG_PREEMPT
5018
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5019
{
5020
	if (should_resched(0)) {
5021
		preempt_schedule_common();
L
Linus Torvalds 已提交
5022 5023 5024 5025
		return 1;
	}
	return 0;
}
5026
EXPORT_SYMBOL(_cond_resched);
5027
#endif
L
Linus Torvalds 已提交
5028 5029

/*
5030
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
5031 5032
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5033
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5034 5035 5036
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
5037
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5038
{
5039
	int resched = should_resched(PREEMPT_LOCK_OFFSET);
J
Jan Kara 已提交
5040 5041
	int ret = 0;

5042 5043
	lockdep_assert_held(lock);

5044
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5045
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5046
		if (resched)
5047
			preempt_schedule_common();
N
Nick Piggin 已提交
5048 5049
		else
			cpu_relax();
J
Jan Kara 已提交
5050
		ret = 1;
L
Linus Torvalds 已提交
5051 5052
		spin_lock(lock);
	}
J
Jan Kara 已提交
5053
	return ret;
L
Linus Torvalds 已提交
5054
}
5055
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5056

5057
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5058 5059 5060
{
	BUG_ON(!in_softirq());

5061
	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
5062
		local_bh_enable();
5063
		preempt_schedule_common();
L
Linus Torvalds 已提交
5064 5065 5066 5067 5068
		local_bh_disable();
		return 1;
	}
	return 0;
}
5069
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5070 5071 5072 5073

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
5074 5075 5076 5077 5078 5079 5080 5081 5082
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
I
Ingo Molnar 已提交
5083
 *	yield();
P
Peter Zijlstra 已提交
5084 5085 5086 5087 5088 5089 5090 5091
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
5092 5093 5094 5095 5096 5097 5098 5099
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

5100 5101 5102 5103
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
5104 5105
 * @p: target task
 * @preempt: whether task preemption is allowed or not
5106 5107 5108 5109
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
5110
 * Return:
5111 5112 5113
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
5114
 */
5115
int __sched yield_to(struct task_struct *p, bool preempt)
5116 5117 5118 5119
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
5120
	int yielded = 0;
5121 5122 5123 5124 5125 5126

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
5127 5128 5129 5130 5131 5132 5133 5134 5135
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

5136
	double_rq_lock(rq, p_rq);
5137
	if (task_rq(p) != p_rq) {
5138 5139 5140 5141 5142
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
5143
		goto out_unlock;
5144 5145

	if (curr->sched_class != p->sched_class)
5146
		goto out_unlock;
5147 5148

	if (task_running(p_rq, p) || p->state)
5149
		goto out_unlock;
5150 5151

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5152
	if (yielded) {
5153
		schedstat_inc(rq->yld_count);
5154 5155 5156 5157 5158
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
5159
			resched_curr(p_rq);
5160
	}
5161

5162
out_unlock:
5163
	double_rq_unlock(rq, p_rq);
5164
out_irq:
5165 5166
	local_irq_restore(flags);

5167
	if (yielded > 0)
5168 5169 5170 5171 5172 5173
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
int io_schedule_prepare(void)
{
	int old_iowait = current->in_iowait;

	current->in_iowait = 1;
	blk_schedule_flush_plug(current);

	return old_iowait;
}

void io_schedule_finish(int token)
{
	current->in_iowait = token;
}

L
Linus Torvalds 已提交
5189
/*
I
Ingo Molnar 已提交
5190
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5191 5192 5193 5194
 * that process accounting knows that this is a task in IO wait state.
 */
long __sched io_schedule_timeout(long timeout)
{
5195
	int token;
L
Linus Torvalds 已提交
5196 5197
	long ret;

5198
	token = io_schedule_prepare();
L
Linus Torvalds 已提交
5199
	ret = schedule_timeout(timeout);
5200
	io_schedule_finish(token);
5201

L
Linus Torvalds 已提交
5202 5203
	return ret;
}
5204
EXPORT_SYMBOL(io_schedule_timeout);
L
Linus Torvalds 已提交
5205

5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
void io_schedule(void)
{
	int token;

	token = io_schedule_prepare();
	schedule();
	io_schedule_finish(token);
}
EXPORT_SYMBOL(io_schedule);

L
Linus Torvalds 已提交
5216 5217 5218 5219
/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
5220 5221 5222
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5223
 */
5224
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5225 5226 5227 5228 5229 5230 5231 5232
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
5233
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5234
	case SCHED_NORMAL:
5235
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5236
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
5247 5248 5249
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
5250
 */
5251
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5252 5253 5254 5255 5256 5257 5258 5259
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
5260
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
5261
	case SCHED_NORMAL:
5262
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5263
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
5276 5277 5278
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
5279
 */
5280
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5281
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5282
{
5283
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5284
	unsigned int time_slice;
5285 5286
	struct rq_flags rf;
	struct timespec t;
5287
	struct rq *rq;
5288
	int retval;
L
Linus Torvalds 已提交
5289 5290

	if (pid < 0)
5291
		return -EINVAL;
L
Linus Torvalds 已提交
5292 5293

	retval = -ESRCH;
5294
	rcu_read_lock();
L
Linus Torvalds 已提交
5295 5296 5297 5298 5299 5300 5301 5302
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5303
	rq = task_rq_lock(p, &rf);
5304 5305 5306
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
5307
	task_rq_unlock(rq, p, &rf);
D
Dmitry Adamushko 已提交
5308

5309
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5310
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5311 5312
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5313

L
Linus Torvalds 已提交
5314
out_unlock:
5315
	rcu_read_unlock();
L
Linus Torvalds 已提交
5316 5317 5318
	return retval;
}

5319
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5320

5321
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5322 5323
{
	unsigned long free = 0;
5324
	int ppid;
5325
	unsigned long state = p->state;
L
Linus Torvalds 已提交
5326

5327 5328 5329
	/* Make sure the string lines up properly with the number of task states: */
	BUILD_BUG_ON(sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1);

5330 5331
	if (!try_get_task_stack(p))
		return;
5332 5333
	if (state)
		state = __ffs(state) + 1;
5334
	printk(KERN_INFO "%-15.15s %c", p->comm,
5335
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
L
Linus Torvalds 已提交
5336
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5337
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5338
#ifdef CONFIG_DEBUG_STACK_USAGE
5339
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5340
#endif
5341
	ppid = 0;
5342
	rcu_read_lock();
5343 5344
	if (pid_alive(p))
		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5345
	rcu_read_unlock();
P
Peter Zijlstra 已提交
5346
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5347
		task_pid_nr(p), ppid,
5348
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5349

5350
	print_worker_info(KERN_INFO, p);
5351
	show_stack(p, NULL);
5352
	put_task_stack(p);
L
Linus Torvalds 已提交
5353 5354
}

I
Ingo Molnar 已提交
5355
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5356
{
5357
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5358

5359
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5360 5361
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5362
#else
P
Peter Zijlstra 已提交
5363 5364
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5365
#endif
5366
	rcu_read_lock();
5367
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
5368 5369
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
5370
		 * console might take a lot of time:
5371 5372 5373
		 * Also, reset softlockup watchdogs on all CPUs, because
		 * another CPU might be blocked waiting for us to process
		 * an IPI.
L
Linus Torvalds 已提交
5374 5375
		 */
		touch_nmi_watchdog();
5376
		touch_all_softlockup_watchdogs();
I
Ingo Molnar 已提交
5377
		if (!state_filter || (p->state & state_filter))
5378
			sched_show_task(p);
5379
	}
L
Linus Torvalds 已提交
5380

I
Ingo Molnar 已提交
5381
#ifdef CONFIG_SCHED_DEBUG
5382 5383
	if (!state_filter)
		sysrq_sched_debug_show();
I
Ingo Molnar 已提交
5384
#endif
5385
	rcu_read_unlock();
I
Ingo Molnar 已提交
5386 5387 5388
	/*
	 * Only show locks if all tasks are dumped:
	 */
5389
	if (!state_filter)
I
Ingo Molnar 已提交
5390
		debug_show_all_locks();
L
Linus Torvalds 已提交
5391 5392
}

5393
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
5394
{
I
Ingo Molnar 已提交
5395
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5396 5397
}

5398 5399 5400
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
I
Ingo Molnar 已提交
5401
 * @cpu: CPU the idle task belongs to
5402 5403 5404 5405
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5406
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5407
{
5408
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5409 5410
	unsigned long flags;

5411 5412
	raw_spin_lock_irqsave(&idle->pi_lock, flags);
	raw_spin_lock(&rq->lock);
5413

5414
	__sched_fork(0, idle);
5415
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5416
	idle->se.exec_start = sched_clock();
5417
	idle->flags |= PF_IDLE;
I
Ingo Molnar 已提交
5418

5419 5420
	kasan_unpoison_task_stack(idle);

5421 5422 5423 5424 5425 5426 5427 5428 5429
#ifdef CONFIG_SMP
	/*
	 * Its possible that init_idle() gets called multiple times on a task,
	 * in that case do_set_cpus_allowed() will not do the right thing.
	 *
	 * And since this is boot we can forgo the serialization.
	 */
	set_cpus_allowed_common(idle, cpumask_of(cpu));
#endif
5430 5431
	/*
	 * We're having a chicken and egg problem, even though we are
I
Ingo Molnar 已提交
5432
	 * holding rq->lock, the CPU isn't yet set to this CPU so the
5433 5434 5435 5436 5437 5438 5439 5440
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
5441
	__set_task_cpu(idle, cpu);
5442
	rcu_read_unlock();
L
Linus Torvalds 已提交
5443 5444

	rq->curr = rq->idle = idle;
5445
	idle->on_rq = TASK_ON_RQ_QUEUED;
5446
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
5447
	idle->on_cpu = 1;
5448
#endif
5449 5450
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
L
Linus Torvalds 已提交
5451 5452

	/* Set the preempt count _outside_ the spinlocks! */
5453
	init_idle_preempt_count(idle, cpu);
5454

I
Ingo Molnar 已提交
5455 5456 5457 5458
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5459
	ftrace_graph_init_idle_task(idle, cpu);
5460
	vtime_init_idle(idle, cpu);
5461
#ifdef CONFIG_SMP
5462 5463
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
5464 5465
}

5466 5467 5468 5469 5470 5471 5472
int cpuset_cpumask_can_shrink(const struct cpumask *cur,
			      const struct cpumask *trial)
{
	int ret = 1, trial_cpus;
	struct dl_bw *cur_dl_b;
	unsigned long flags;

5473 5474 5475
	if (!cpumask_weight(cur))
		return ret;

5476
	rcu_read_lock_sched();
5477 5478 5479 5480 5481 5482 5483 5484
	cur_dl_b = dl_bw_of(cpumask_any(cur));
	trial_cpus = cpumask_weight(trial);

	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
	if (cur_dl_b->bw != -1 &&
	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
		ret = 0;
	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5485
	rcu_read_unlock_sched();
5486 5487 5488 5489

	return ret;
}

5490 5491 5492 5493 5494 5495 5496
int task_can_attach(struct task_struct *p,
		    const struct cpumask *cs_cpus_allowed)
{
	int ret = 0;

	/*
	 * Kthreads which disallow setaffinity shouldn't be moved
I
Ingo Molnar 已提交
5497
	 * to a new cpuset; we don't want to change their CPU
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
	 * affinity and isolating such threads by their set of
	 * allowed nodes is unnecessary.  Thus, cpusets are not
	 * applicable for such threads.  This prevents checking for
	 * success of set_cpus_allowed_ptr() on all attached tasks
	 * before cpus_allowed may be changed.
	 */
	if (p->flags & PF_NO_SETAFFINITY) {
		ret = -EINVAL;
		goto out;
	}

#ifdef CONFIG_SMP
	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
					      cs_cpus_allowed)) {
		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
							cs_cpus_allowed);
5514
		struct dl_bw *dl_b;
5515 5516 5517 5518
		bool overflow;
		int cpus;
		unsigned long flags;

5519 5520
		rcu_read_lock_sched();
		dl_b = dl_bw_of(dest_cpu);
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(dest_cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
		if (overflow)
			ret = -EBUSY;
		else {
			/*
			 * We reserve space for this task in the destination
			 * root_domain, as we can't fail after this point.
			 * We will free resources in the source root_domain
			 * later on (see set_cpus_allowed_dl()).
			 */
			__dl_add(dl_b, p->dl.dl_bw);
		}
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5536
		rcu_read_unlock_sched();
5537 5538 5539 5540 5541 5542 5543

	}
#endif
out:
	return ret;
}

L
Linus Torvalds 已提交
5544 5545
#ifdef CONFIG_SMP

5546
bool sched_smp_initialized __read_mostly;
5547

5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

5558
	if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5559 5560 5561 5562
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

5563
	trace_sched_move_numa(p, curr_cpu, target_cpu);
5564 5565
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
5566 5567 5568 5569 5570 5571 5572

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
5573
	bool queued, running;
5574 5575
	struct rq_flags rf;
	struct rq *rq;
5576

5577
	rq = task_rq_lock(p, &rf);
5578
	queued = task_on_rq_queued(p);
5579 5580
	running = task_current(rq, p);

5581
	if (queued)
5582
		dequeue_task(rq, p, DEQUEUE_SAVE);
5583
	if (running)
5584
		put_prev_task(rq, p);
5585 5586 5587

	p->numa_preferred_nid = nid;

5588
	if (queued)
5589
		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5590
	if (running)
5591
		set_curr_task(rq, p);
5592
	task_rq_unlock(rq, p, &rf);
5593
}
P
Peter Zijlstra 已提交
5594
#endif /* CONFIG_NUMA_BALANCING */
5595

L
Linus Torvalds 已提交
5596
#ifdef CONFIG_HOTPLUG_CPU
5597
/*
I
Ingo Molnar 已提交
5598
 * Ensure that the idle task is using init_mm right before its CPU goes
5599
 * offline.
5600
 */
5601
void idle_task_exit(void)
L
Linus Torvalds 已提交
5602
{
5603
	struct mm_struct *mm = current->active_mm;
5604

5605
	BUG_ON(cpu_online(smp_processor_id()));
5606

5607
	if (mm != &init_mm) {
5608
		switch_mm_irqs_off(mm, &init_mm, current);
5609 5610
		finish_arch_post_lock_switch();
	}
5611
	mmdrop(mm);
L
Linus Torvalds 已提交
5612 5613 5614
}

/*
5615 5616
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
5617 5618 5619
 * nr_active count is stable. We need to take the teardown thread which
 * is calling this into account, so we hand in adjust = 1 to the load
 * calculation.
5620 5621
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
5622
 */
5623
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
5624
{
5625
	long delta = calc_load_fold_active(rq, 1);
5626 5627
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
5628 5629
}

5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

5646
/*
5647 5648 5649 5650 5651 5652
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5653
 */
5654
static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
L
Linus Torvalds 已提交
5655
{
5656
	struct rq *rq = dead_rq;
5657
	struct task_struct *next, *stop = rq->stop;
5658
	struct rq_flags orf = *rf;
5659
	int dest_cpu;
L
Linus Torvalds 已提交
5660 5661

	/*
5662 5663 5664 5665 5666 5667 5668
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5669
	 */
5670
	rq->stop = NULL;
5671

5672 5673 5674 5675 5676 5677 5678
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

5679
	for (;;) {
5680 5681
		/*
		 * There's this thread running, bail when that's the only
I
Ingo Molnar 已提交
5682
		 * remaining thread:
5683 5684
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5685
			break;
5686

5687
		/*
I
Ingo Molnar 已提交
5688
		 * pick_next_task() assumes pinned rq->lock:
5689
		 */
5690
		next = pick_next_task(rq, &fake_task, rf);
5691
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5692
		next->sched_class->put_prev_task(rq, next);
5693

W
Wanpeng Li 已提交
5694 5695 5696 5697 5698 5699 5700 5701 5702
		/*
		 * Rules for changing task_struct::cpus_allowed are holding
		 * both pi_lock and rq->lock, such that holding either
		 * stabilizes the mask.
		 *
		 * Drop rq->lock is not quite as disastrous as it usually is
		 * because !cpu_active at this point, which means load-balance
		 * will not interfere. Also, stop-machine.
		 */
5703
		rq_unlock(rq, rf);
W
Wanpeng Li 已提交
5704
		raw_spin_lock(&next->pi_lock);
5705
		rq_relock(rq, rf);
W
Wanpeng Li 已提交
5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716

		/*
		 * Since we're inside stop-machine, _nothing_ should have
		 * changed the task, WARN if weird stuff happened, because in
		 * that case the above rq->lock drop is a fail too.
		 */
		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
			raw_spin_unlock(&next->pi_lock);
			continue;
		}

5717
		/* Find suitable destination for @next, with force if needed. */
5718
		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5719
		rq = __migrate_task(rq, rf, next, dest_cpu);
5720
		if (rq != dead_rq) {
5721
			rq_unlock(rq, rf);
5722
			rq = dead_rq;
5723 5724
			*rf = orf;
			rq_relock(rq, rf);
5725
		}
W
Wanpeng Li 已提交
5726
		raw_spin_unlock(&next->pi_lock);
L
Linus Torvalds 已提交
5727
	}
5728

5729
	rq->stop = stop;
5730
}
L
Linus Torvalds 已提交
5731 5732
#endif /* CONFIG_HOTPLUG_CPU */

5733
void set_rq_online(struct rq *rq)
5734 5735 5736 5737
{
	if (!rq->online) {
		const struct sched_class *class;

5738
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5739 5740 5741 5742 5743 5744 5745 5746 5747
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

5748
void set_rq_offline(struct rq *rq)
5749 5750 5751 5752 5753 5754 5755 5756 5757
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5758
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5759 5760 5761 5762
		rq->online = 0;
	}
}

5763
static void set_cpu_rq_start_time(unsigned int cpu)
L
Linus Torvalds 已提交
5764
{
5765
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5766

5767 5768 5769
	rq->age_stamp = sched_clock_cpu(cpu);
}

I
Ingo Molnar 已提交
5770 5771 5772 5773
/*
 * used to mark begin/end of suspend/resume:
 */
static int num_cpus_frozen;
5774

L
Linus Torvalds 已提交
5775
/*
5776 5777 5778
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
5779 5780 5781
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
5782
 */
5783
static void cpuset_cpu_active(void)
5784
{
5785
	if (cpuhp_tasks_frozen) {
5786 5787 5788 5789 5790 5791 5792 5793 5794
		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
5795
			return;
5796 5797 5798 5799 5800 5801
		}
		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */
5802
	}
5803
	cpuset_update_active_cpus();
5804
}
5805

5806
static int cpuset_cpu_inactive(unsigned int cpu)
5807
{
5808 5809
	unsigned long flags;
	struct dl_bw *dl_b;
5810 5811
	bool overflow;
	int cpus;
5812

5813
	if (!cpuhp_tasks_frozen) {
5814 5815
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
5816

5817 5818 5819 5820
		raw_spin_lock_irqsave(&dl_b->lock, flags);
		cpus = dl_bw_cpus(cpu);
		overflow = __dl_overflow(dl_b, cpus, 0, 0);
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5821

5822
		rcu_read_unlock_sched();
5823

5824
		if (overflow)
5825
			return -EBUSY;
5826
		cpuset_update_active_cpus();
5827
	} else {
5828 5829
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
5830
	}
5831
	return 0;
5832 5833
}

5834
int sched_cpu_activate(unsigned int cpu)
5835
{
5836
	struct rq *rq = cpu_rq(cpu);
5837
	struct rq_flags rf;
5838

5839
	set_cpu_active(cpu, true);
5840

5841
	if (sched_smp_initialized) {
5842
		sched_domains_numa_masks_set(cpu);
5843
		cpuset_cpu_active();
5844
	}
5845 5846 5847 5848 5849

	/*
	 * Put the rq online, if not already. This happens:
	 *
	 * 1) In the early boot process, because we build the real domains
I
Ingo Molnar 已提交
5850
	 *    after all CPUs have been brought up.
5851 5852 5853 5854
	 *
	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
	 *    domains.
	 */
5855
	rq_lock_irqsave(rq, &rf);
5856 5857 5858 5859
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_online(rq);
	}
5860
	rq_unlock_irqrestore(rq, &rf);
5861 5862 5863

	update_max_interval();

5864
	return 0;
5865 5866
}

5867
int sched_cpu_deactivate(unsigned int cpu)
5868 5869 5870
{
	int ret;

5871
	set_cpu_active(cpu, false);
5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
	/*
	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
	 * users of this state to go away such that all new such users will
	 * observe it.
	 *
	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
	 * not imply sync_sched(), so wait for both.
	 *
	 * Do sync before park smpboot threads to take care the rcu boost case.
	 */
	if (IS_ENABLED(CONFIG_PREEMPT))
		synchronize_rcu_mult(call_rcu, call_rcu_sched);
	else
		synchronize_rcu();
5886 5887 5888 5889 5890 5891 5892 5893

	if (!sched_smp_initialized)
		return 0;

	ret = cpuset_cpu_inactive(cpu);
	if (ret) {
		set_cpu_active(cpu, true);
		return ret;
5894
	}
5895 5896
	sched_domains_numa_masks_clear(cpu);
	return 0;
5897 5898
}

5899 5900 5901 5902 5903 5904 5905 5906
static void sched_rq_cpu_starting(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	rq->calc_load_update = calc_load_update;
	update_max_interval();
}

5907 5908 5909
int sched_cpu_starting(unsigned int cpu)
{
	set_cpu_rq_start_time(cpu);
5910
	sched_rq_cpu_starting(cpu);
5911
	return 0;
5912 5913
}

5914 5915 5916 5917
#ifdef CONFIG_HOTPLUG_CPU
int sched_cpu_dying(unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5918
	struct rq_flags rf;
5919 5920 5921

	/* Handle pending wakeups and then migrate everything off */
	sched_ttwu_pending();
5922 5923

	rq_lock_irqsave(rq, &rf);
5924 5925 5926 5927
	if (rq->rd) {
		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
		set_rq_offline(rq);
	}
5928
	migrate_tasks(rq, &rf);
5929
	BUG_ON(rq->nr_running != 1);
5930 5931
	rq_unlock_irqrestore(rq, &rf);

5932 5933
	calc_load_migrate(rq);
	update_max_interval();
5934
	nohz_balance_exit_idle(cpu);
5935
	hrtick_clear(rq);
5936 5937 5938 5939
	return 0;
}
#endif

P
Peter Zijlstra 已提交
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955
#ifdef CONFIG_SCHED_SMT
DEFINE_STATIC_KEY_FALSE(sched_smt_present);

static void sched_init_smt(void)
{
	/*
	 * We've enumerated all CPUs and will assume that if any CPU
	 * has SMT siblings, CPU0 will too.
	 */
	if (cpumask_weight(cpu_smt_mask(0)) > 1)
		static_branch_enable(&sched_smt_present);
}
#else
static inline void sched_init_smt(void) { }
#endif

L
Linus Torvalds 已提交
5956 5957
void __init sched_init_smp(void)
{
5958 5959 5960
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5961
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5962

5963 5964
	sched_init_numa();

5965 5966
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
I
Ingo Molnar 已提交
5967
	 * CPU masks are stable and all blatant races in the below code cannot
5968 5969
	 * happen.
	 */
5970
	mutex_lock(&sched_domains_mutex);
5971
	init_sched_domains(cpu_active_mask);
5972 5973 5974
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
5975
	mutex_unlock(&sched_domains_mutex);
5976

5977
	/* Move init over to a non-isolated CPU */
5978
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5979
		BUG();
I
Ingo Molnar 已提交
5980
	sched_init_granularity();
5981
	free_cpumask_var(non_isolated_cpus);
5982

5983
	init_sched_rt_class();
5984
	init_sched_dl_class();
P
Peter Zijlstra 已提交
5985 5986

	sched_init_smt();
5987
	sched_clock_init_late();
P
Peter Zijlstra 已提交
5988

5989
	sched_smp_initialized = true;
L
Linus Torvalds 已提交
5990
}
5991 5992 5993

static int __init migration_init(void)
{
5994
	sched_rq_cpu_starting(smp_processor_id());
5995
	return 0;
L
Linus Torvalds 已提交
5996
}
5997 5998
early_initcall(migration_init);

L
Linus Torvalds 已提交
5999 6000 6001
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6002
	sched_init_granularity();
6003
	sched_clock_init_late();
L
Linus Torvalds 已提交
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6014
#ifdef CONFIG_CGROUP_SCHED
6015 6016 6017 6018
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6019
struct task_group root_task_group;
6020
LIST_HEAD(task_groups);
6021 6022 6023

/* Cacheline aligned slab cache for task_group */
static struct kmem_cache *task_group_cache __read_mostly;
6024
#endif
P
Peter Zijlstra 已提交
6025

6026
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6027
DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
P
Peter Zijlstra 已提交
6028

6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
#define WAIT_TABLE_BITS 8
#define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;

wait_queue_head_t *bit_waitqueue(void *word, int bit)
{
	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
	unsigned long val = (unsigned long)word << shift | bit;

	return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
}
EXPORT_SYMBOL(bit_waitqueue);

L
Linus Torvalds 已提交
6042 6043
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6044
	int i, j;
6045 6046
	unsigned long alloc_size = 0, ptr;

6047 6048
	sched_clock_init();

6049 6050 6051
	for (i = 0; i < WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(bit_wait_table + i);

6052 6053 6054 6055 6056 6057 6058
#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	if (alloc_size) {
6059
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6060 6061

#ifdef CONFIG_FAIR_GROUP_SCHED
6062
		root_task_group.se = (struct sched_entity **)ptr;
6063 6064
		ptr += nr_cpu_ids * sizeof(void **);

6065
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6066
		ptr += nr_cpu_ids * sizeof(void **);
6067

6068
#endif /* CONFIG_FAIR_GROUP_SCHED */
6069
#ifdef CONFIG_RT_GROUP_SCHED
6070
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6071 6072
		ptr += nr_cpu_ids * sizeof(void **);

6073
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6074 6075
		ptr += nr_cpu_ids * sizeof(void **);

6076
#endif /* CONFIG_RT_GROUP_SCHED */
6077
	}
6078
#ifdef CONFIG_CPUMASK_OFFSTACK
6079 6080 6081
	for_each_possible_cpu(i) {
		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6082 6083
		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6084
	}
6085
#endif /* CONFIG_CPUMASK_OFFSTACK */
I
Ingo Molnar 已提交
6086

I
Ingo Molnar 已提交
6087 6088
	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6089

G
Gregory Haskins 已提交
6090 6091 6092 6093
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6094
#ifdef CONFIG_RT_GROUP_SCHED
6095
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6096
			global_rt_period(), global_rt_runtime());
6097
#endif /* CONFIG_RT_GROUP_SCHED */
6098

D
Dhaval Giani 已提交
6099
#ifdef CONFIG_CGROUP_SCHED
6100 6101
	task_group_cache = KMEM_CACHE(task_group, 0);

6102 6103
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6104
	INIT_LIST_HEAD(&root_task_group.siblings);
6105
	autogroup_init(&init_task);
D
Dhaval Giani 已提交
6106
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6107

6108
	for_each_possible_cpu(i) {
6109
		struct rq *rq;
L
Linus Torvalds 已提交
6110 6111

		rq = cpu_rq(i);
6112
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6113
		rq->nr_running = 0;
6114 6115
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6116
		init_cfs_rq(&rq->cfs);
6117 6118
		init_rt_rq(&rq->rt);
		init_dl_rq(&rq->dl);
I
Ingo Molnar 已提交
6119
#ifdef CONFIG_FAIR_GROUP_SCHED
6120
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6121
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6122
		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
D
Dhaval Giani 已提交
6123
		/*
I
Ingo Molnar 已提交
6124
		 * How much CPU bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6125 6126
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
I
Ingo Molnar 已提交
6127 6128
		 * gets 100% of the CPU resources in the system. This overall
		 * system CPU resource is divided among the tasks of
6129
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6130 6131 6132
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6133
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6134
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
I
Ingo Molnar 已提交
6135
		 * then A0's share of the CPU resource is:
D
Dhaval Giani 已提交
6136
		 *
6137
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6138
		 *
6139 6140
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6141
		 */
6142
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6143
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6144 6145 6146
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6147
#ifdef CONFIG_RT_GROUP_SCHED
6148
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6149
#endif
L
Linus Torvalds 已提交
6150

I
Ingo Molnar 已提交
6151 6152
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6153

L
Linus Torvalds 已提交
6154
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6155
		rq->sd = NULL;
G
Gregory Haskins 已提交
6156
		rq->rd = NULL;
6157
		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6158
		rq->balance_callback = NULL;
L
Linus Torvalds 已提交
6159
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6160
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6161
		rq->push_cpu = 0;
6162
		rq->cpu = i;
6163
		rq->online = 0;
6164 6165
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6166
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6167 6168 6169

		INIT_LIST_HEAD(&rq->cfs_tasks);

6170
		rq_attach_root(rq, &def_root_domain);
6171
#ifdef CONFIG_NO_HZ_COMMON
6172
		rq->last_load_update_tick = jiffies;
6173
		rq->nohz_flags = 0;
6174
#endif
6175 6176 6177
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
6178
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
6179
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6180 6181 6182
		atomic_set(&rq->nr_iowait, 0);
	}

6183
	set_load_weight(&init_task);
6184

L
Linus Torvalds 已提交
6185 6186 6187
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
V
Vegard Nossum 已提交
6188
	mmgrab(&init_mm);
L
Linus Torvalds 已提交
6189 6190 6191 6192 6193 6194 6195 6196 6197
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6198 6199 6200

	calc_load_update = jiffies + LOAD_FREQ;

6201
#ifdef CONFIG_SMP
6202
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6203 6204 6205
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6206
	idle_thread_set_boot_cpu();
6207
	set_cpu_rq_start_time(smp_processor_id());
6208 6209
#endif
	init_sched_fair_class();
6210

6211 6212
	init_schedstats();

6213
	scheduler_running = 1;
L
Linus Torvalds 已提交
6214 6215
}

6216
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6217 6218
static inline int preempt_count_equals(int preempt_offset)
{
6219
	int nested = preempt_count() + rcu_preempt_depth();
6220

A
Arnd Bergmann 已提交
6221
	return (nested == preempt_offset);
6222 6223
}

6224
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6225
{
P
Peter Zijlstra 已提交
6226 6227 6228 6229 6230
	/*
	 * Blocking primitives will set (and therefore destroy) current->state,
	 * since we will exit with TASK_RUNNING make sure we enter with it,
	 * otherwise we will destroy state.
	 */
6231
	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
P
Peter Zijlstra 已提交
6232 6233 6234 6235
			"do not call blocking ops when !TASK_RUNNING; "
			"state=%lx set at [<%p>] %pS\n",
			current->state,
			(void *)current->task_state_change,
6236
			(void *)current->task_state_change);
P
Peter Zijlstra 已提交
6237

6238 6239 6240 6241 6242
	___might_sleep(file, line, preempt_offset);
}
EXPORT_SYMBOL(__might_sleep);

void ___might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
6243
{
I
Ingo Molnar 已提交
6244 6245 6246
	/* Ratelimiting timestamp: */
	static unsigned long prev_jiffy;

6247
	unsigned long preempt_disable_ip;
L
Linus Torvalds 已提交
6248

I
Ingo Molnar 已提交
6249 6250 6251
	/* WARN_ON_ONCE() by default, no rate limit required: */
	rcu_sleep_check();

6252 6253
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
6254
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
6255 6256 6257 6258 6259
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

I
Ingo Molnar 已提交
6260
	/* Save this before calling printk(), since that will clobber it: */
6261 6262
	preempt_disable_ip = get_preempt_disable_ip(current);

P
Peter Zijlstra 已提交
6263 6264 6265 6266 6267 6268 6269
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
6270

6271 6272 6273
	if (task_stack_end_corrupted(current))
		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");

I
Ingo Molnar 已提交
6274 6275 6276
	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
6277 6278
	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
	    && !preempt_count_equals(preempt_offset)) {
6279
		pr_err("Preemption disabled at:");
6280
		print_ip_sym(preempt_disable_ip);
6281 6282
		pr_cont("\n");
	}
I
Ingo Molnar 已提交
6283
	dump_stack();
6284
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
L
Linus Torvalds 已提交
6285
}
6286
EXPORT_SYMBOL(___might_sleep);
L
Linus Torvalds 已提交
6287 6288 6289
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6290
void normalize_rt_tasks(void)
6291
{
6292
	struct task_struct *g, *p;
6293 6294 6295
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
L
Linus Torvalds 已提交
6296

6297
	read_lock(&tasklist_lock);
6298
	for_each_process_thread(g, p) {
6299 6300 6301
		/*
		 * Only normalize user tasks:
		 */
6302
		if (p->flags & PF_KTHREAD)
6303 6304
			continue;

6305 6306 6307 6308
		p->se.exec_start = 0;
		schedstat_set(p->se.statistics.wait_start,  0);
		schedstat_set(p->se.statistics.sleep_start, 0);
		schedstat_set(p->se.statistics.block_start, 0);
I
Ingo Molnar 已提交
6309

6310
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
6311 6312 6313 6314
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
6315
			if (task_nice(p) < 0)
I
Ingo Molnar 已提交
6316
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6317
			continue;
I
Ingo Molnar 已提交
6318
		}
L
Linus Torvalds 已提交
6319

6320
		__sched_setscheduler(p, &attr, false, false);
6321
	}
6322
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6323 6324 6325
}

#endif /* CONFIG_MAGIC_SYSRQ */
6326

6327
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6328
/*
6329
 * These functions are only useful for the IA64 MCA handling, or kdb.
6330 6331 6332 6333 6334 6335 6336 6337 6338
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
I
Ingo Molnar 已提交
6339
 * curr_task - return the current task for a given CPU.
6340 6341 6342
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6343 6344
 *
 * Return: The current task for @cpu.
6345
 */
6346
struct task_struct *curr_task(int cpu)
6347 6348 6349 6350
{
	return cpu_curr(cpu);
}

6351 6352 6353
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
6354
/**
I
Ingo Molnar 已提交
6355
 * set_curr_task - set the current task for a given CPU.
6356 6357 6358 6359
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6360
 * are serviced on a separate stack. It allows the architecture to switch the
I
Ingo Molnar 已提交
6361
 * notion of the current task on a CPU in a non-blocking manner. This function
6362 6363 6364 6365 6366 6367 6368
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6369
void ia64_set_curr_task(int cpu, struct task_struct *p)
6370 6371 6372 6373 6374
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6375

D
Dhaval Giani 已提交
6376
#ifdef CONFIG_CGROUP_SCHED
6377 6378 6379
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

6380
static void sched_free_group(struct task_group *tg)
6381 6382 6383
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
6384
	autogroup_free(tg);
6385
	kmem_cache_free(task_group_cache, tg);
6386 6387 6388
}

/* allocate runqueue etc for a new task group */
6389
struct task_group *sched_create_group(struct task_group *parent)
6390 6391 6392
{
	struct task_group *tg;

6393
	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6394 6395 6396
	if (!tg)
		return ERR_PTR(-ENOMEM);

6397
	if (!alloc_fair_sched_group(tg, parent))
6398 6399
		goto err;

6400
	if (!alloc_rt_sched_group(tg, parent))
6401 6402
		goto err;

6403 6404 6405
	return tg;

err:
6406
	sched_free_group(tg);
6407 6408 6409 6410 6411 6412 6413
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

6414
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6415
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
6416

I
Ingo Molnar 已提交
6417 6418
	/* Root should already exist: */
	WARN_ON(!parent);
P
Peter Zijlstra 已提交
6419 6420 6421

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
6422
	list_add_rcu(&tg->siblings, &parent->children);
6423
	spin_unlock_irqrestore(&task_group_lock, flags);
6424 6425

	online_fair_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
6426 6427
}

6428
/* rcu callback to free various structures associated with a task group */
6429
static void sched_free_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6430
{
I
Ingo Molnar 已提交
6431
	/* Now it should be safe to free those cfs_rqs: */
6432
	sched_free_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
6433 6434
}

6435
void sched_destroy_group(struct task_group *tg)
6436
{
I
Ingo Molnar 已提交
6437
	/* Wait for possible concurrent references to cfs_rqs complete: */
6438
	call_rcu(&tg->rcu, sched_free_group_rcu);
6439 6440 6441
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6442
{
6443
	unsigned long flags;
S
Srivatsa Vaddagiri 已提交
6444

I
Ingo Molnar 已提交
6445
	/* End participation in shares distribution: */
6446
	unregister_fair_sched_group(tg);
6447 6448

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
6449
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
6450
	list_del_rcu(&tg->siblings);
6451
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
6452 6453
}

6454
static void sched_change_group(struct task_struct *tsk, int type)
S
Srivatsa Vaddagiri 已提交
6455
{
P
Peter Zijlstra 已提交
6456
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6457

6458 6459 6460 6461 6462 6463
	/*
	 * All callers are synchronized by task_rq_lock(); we do not use RCU
	 * which is pointless here. Thus, we pass "true" to task_css_check()
	 * to prevent lockdep warnings.
	 */
	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
P
Peter Zijlstra 已提交
6464 6465 6466 6467
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
6468
#ifdef CONFIG_FAIR_GROUP_SCHED
6469 6470
	if (tsk->sched_class->task_change_group)
		tsk->sched_class->task_change_group(tsk, type);
6471
	else
P
Peter Zijlstra 已提交
6472
#endif
6473
		set_task_rq(tsk, task_cpu(tsk));
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
}

/*
 * Change task's runqueue when it moves between groups.
 *
 * The caller of this function should have put the task in its new group by
 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
 * its new group.
 */
void sched_move_task(struct task_struct *tsk)
{
6485 6486
	int queued, running, queue_flags =
		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6487 6488 6489 6490
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(tsk, &rf);
6491
	update_rq_clock(rq);
6492 6493 6494 6495 6496

	running = task_current(rq, tsk);
	queued = task_on_rq_queued(tsk);

	if (queued)
6497
		dequeue_task(rq, tsk, queue_flags);
6498
	if (running)
6499 6500 6501
		put_prev_task(rq, tsk);

	sched_change_group(tsk, TASK_MOVE_GROUP);
P
Peter Zijlstra 已提交
6502

6503
	if (queued)
6504
		enqueue_task(rq, tsk, queue_flags);
6505
	if (running)
6506
		set_curr_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
6507

6508
	task_rq_unlock(rq, tsk, &rf);
S
Srivatsa Vaddagiri 已提交
6509
}
D
Dhaval Giani 已提交
6510
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
6511

6512 6513 6514 6515 6516
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
6517

P
Peter Zijlstra 已提交
6518 6519
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
6520
{
P
Peter Zijlstra 已提交
6521
	struct task_struct *g, *p;
6522

6523 6524 6525 6526 6527 6528
	/*
	 * Autogroups do not have RT tasks; see autogroup_create().
	 */
	if (task_group_is_autogroup(tg))
		return 0;

6529
	for_each_process_thread(g, p) {
6530
		if (rt_task(p) && task_group(p) == tg)
P
Peter Zijlstra 已提交
6531
			return 1;
6532
	}
6533

P
Peter Zijlstra 已提交
6534 6535
	return 0;
}
6536

P
Peter Zijlstra 已提交
6537 6538 6539 6540 6541
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
6542

6543
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
6544 6545 6546 6547 6548
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
6549

P
Peter Zijlstra 已提交
6550 6551
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
6552

P
Peter Zijlstra 已提交
6553 6554 6555
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
6556 6557
	}

6558 6559 6560 6561 6562
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
6563

6564 6565 6566
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
6567 6568
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
6569

P
Peter Zijlstra 已提交
6570
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6571

6572 6573 6574 6575 6576
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
6577

6578 6579 6580
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
6581 6582 6583
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6584

P
Peter Zijlstra 已提交
6585 6586 6587 6588
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
6589

P
Peter Zijlstra 已提交
6590
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
6591
	}
P
Peter Zijlstra 已提交
6592

P
Peter Zijlstra 已提交
6593 6594 6595 6596
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
6597 6598
}

P
Peter Zijlstra 已提交
6599
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6600
{
6601 6602
	int ret;

P
Peter Zijlstra 已提交
6603 6604 6605 6606 6607 6608
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

6609 6610 6611 6612 6613
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
6614 6615
}

6616
static int tg_set_rt_bandwidth(struct task_group *tg,
6617
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
6618
{
P
Peter Zijlstra 已提交
6619
	int i, err = 0;
P
Peter Zijlstra 已提交
6620

6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
	/*
	 * Disallowing the root group RT runtime is BAD, it would disallow the
	 * kernel creating (and or operating) RT threads.
	 */
	if (tg == &root_task_group && rt_runtime == 0)
		return -EINVAL;

	/* No period doesn't make any sense. */
	if (rt_period == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
6632
	mutex_lock(&rt_constraints_mutex);
6633
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
6634 6635
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
6636
		goto unlock;
P
Peter Zijlstra 已提交
6637

6638
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6639 6640
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
6641 6642 6643 6644

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

6645
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6646
		rt_rq->rt_runtime = rt_runtime;
6647
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6648
	}
6649
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
6650
unlock:
6651
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
6652 6653 6654
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
6655 6656
}

6657
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6658 6659 6660 6661 6662 6663 6664 6665
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

6666
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6667 6668
}

6669
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
6670 6671 6672
{
	u64 rt_runtime_us;

6673
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
6674 6675
		return -1;

6676
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
6677 6678 6679
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
6680

6681
static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
6682 6683 6684
{
	u64 rt_runtime, rt_period;

6685
	rt_period = rt_period_us * NSEC_PER_USEC;
6686 6687
	rt_runtime = tg->rt_bandwidth.rt_runtime;

6688
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6689 6690
}

6691
static long sched_group_rt_period(struct task_group *tg)
6692 6693 6694 6695 6696 6697 6698
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
6699
#endif /* CONFIG_RT_GROUP_SCHED */
6700

6701
#ifdef CONFIG_RT_GROUP_SCHED
6702 6703 6704 6705 6706
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
6707
	read_lock(&tasklist_lock);
6708
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
6709
	read_unlock(&tasklist_lock);
6710 6711 6712 6713
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
6714

6715
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6716 6717 6718 6719 6720 6721 6722 6723
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

6724
#else /* !CONFIG_RT_GROUP_SCHED */
6725 6726
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
6727
	unsigned long flags;
6728
	int i;
6729

6730
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
6731 6732 6733
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

6734
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6735
		rt_rq->rt_runtime = global_rt_runtime();
6736
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
6737
	}
6738
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
6739

6740
	return 0;
6741
}
6742
#endif /* CONFIG_RT_GROUP_SCHED */
6743

6744
static int sched_dl_global_validate(void)
6745
{
6746 6747
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
6748
	u64 new_bw = to_ratio(period, runtime);
6749
	struct dl_bw *dl_b;
6750
	int cpu, ret = 0;
6751
	unsigned long flags;
6752 6753 6754 6755 6756 6757 6758 6759 6760 6761

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
6762
	for_each_possible_cpu(cpu) {
6763 6764
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
6765

6766
		raw_spin_lock_irqsave(&dl_b->lock, flags);
6767 6768
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
6769
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6770

6771 6772
		rcu_read_unlock_sched();

6773 6774
		if (ret)
			break;
6775 6776
	}

6777
	return ret;
6778 6779
}

6780
static void sched_dl_do_global(void)
6781
{
6782
	u64 new_bw = -1;
6783
	struct dl_bw *dl_b;
6784
	int cpu;
6785
	unsigned long flags;
6786

6787 6788 6789 6790 6791 6792 6793 6794 6795 6796
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
6797 6798
		rcu_read_lock_sched();
		dl_b = dl_bw_of(cpu);
6799

6800
		raw_spin_lock_irqsave(&dl_b->lock, flags);
6801
		dl_b->bw = new_bw;
6802
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6803 6804

		rcu_read_unlock_sched();
6805
	}
6806 6807 6808 6809 6810 6811 6812
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

6813 6814
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
6815 6816 6817 6818 6819 6820 6821 6822 6823
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
6824 6825
}

6826
int sched_rt_handler(struct ctl_table *table, int write,
6827
		void __user *buffer, size_t *lenp,
6828 6829 6830 6831
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
6832
	int ret;
6833 6834 6835 6836 6837

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

6838
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
6839 6840

	if (!ret && write) {
6841 6842 6843 6844
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

6845
		ret = sched_dl_global_validate();
6846 6847 6848
		if (ret)
			goto undo;

6849
		ret = sched_rt_global_constraints();
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
6860 6861 6862 6863 6864
	}
	mutex_unlock(&mutex);

	return ret;
}
6865

6866
int sched_rr_handler(struct ctl_table *table, int write,
6867 6868 6869 6870 6871 6872 6873 6874
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
I
Ingo Molnar 已提交
6875 6876 6877 6878
	/*
	 * Make sure that internally we keep jiffies.
	 * Also, writing zero resets the timeslice to default:
	 */
6879
	if (!ret && write) {
6880 6881 6882
		sched_rr_timeslice =
			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
			msecs_to_jiffies(sysctl_sched_rr_timeslice);
6883 6884 6885 6886 6887
	}
	mutex_unlock(&mutex);
	return ret;
}

6888
#ifdef CONFIG_CGROUP_SCHED
6889

6890
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6891
{
6892
	return css ? container_of(css, struct task_group, css) : NULL;
6893 6894
}

6895 6896
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6897
{
6898 6899
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
6900

6901
	if (!parent) {
6902
		/* This is early initialization for the top cgroup */
6903
		return &root_task_group.css;
6904 6905
	}

6906
	tg = sched_create_group(parent);
6907 6908 6909 6910 6911 6912
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923
/* Expose task group only after completing cgroup initialization */
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
{
	struct task_group *tg = css_tg(css);
	struct task_group *parent = css_tg(css->parent);

	if (parent)
		sched_online_group(tg, parent);
	return 0;
}

6924
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6925
{
6926
	struct task_group *tg = css_tg(css);
6927

6928
	sched_offline_group(tg);
6929 6930
}

6931
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6932
{
6933
	struct task_group *tg = css_tg(css);
6934

6935 6936 6937 6938
	/*
	 * Relies on the RCU grace period between css_released() and this.
	 */
	sched_free_group(tg);
6939 6940
}

6941 6942 6943 6944
/*
 * This is called before wake_up_new_task(), therefore we really only
 * have to set its group bits, all the other stuff does not apply.
 */
6945
static void cpu_cgroup_fork(struct task_struct *task)
6946
{
6947 6948 6949 6950 6951
	struct rq_flags rf;
	struct rq *rq;

	rq = task_rq_lock(task, &rf);

6952
	update_rq_clock(rq);
6953 6954 6955
	sched_change_group(task, TASK_SET_GROUP);

	task_rq_unlock(rq, task, &rf);
6956 6957
}

6958
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6959
{
6960
	struct task_struct *task;
6961
	struct cgroup_subsys_state *css;
6962
	int ret = 0;
6963

6964
	cgroup_taskset_for_each(task, css, tset) {
6965
#ifdef CONFIG_RT_GROUP_SCHED
6966
		if (!sched_rt_can_attach(css_tg(css), task))
6967
			return -EINVAL;
6968
#else
6969 6970 6971
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
6972
#endif
6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988
		/*
		 * Serialize against wake_up_new_task() such that if its
		 * running, we're sure to observe its full state.
		 */
		raw_spin_lock_irq(&task->pi_lock);
		/*
		 * Avoid calling sched_move_task() before wake_up_new_task()
		 * has happened. This would lead to problems with PELT, due to
		 * move wanting to detach+attach while we're not attached yet.
		 */
		if (task->state == TASK_NEW)
			ret = -EINVAL;
		raw_spin_unlock_irq(&task->pi_lock);

		if (ret)
			break;
6989
	}
6990
	return ret;
6991
}
6992

6993
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6994
{
6995
	struct task_struct *task;
6996
	struct cgroup_subsys_state *css;
6997

6998
	cgroup_taskset_for_each(task, css, tset)
6999
		sched_move_task(task);
7000 7001
}

7002
#ifdef CONFIG_FAIR_GROUP_SCHED
7003 7004
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
7005
{
7006
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7007 7008
}

7009 7010
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
7011
{
7012
	struct task_group *tg = css_tg(css);
7013

7014
	return (u64) scale_load_down(tg->shares);
7015
}
7016 7017

#ifdef CONFIG_CFS_BANDWIDTH
7018 7019
static DEFINE_MUTEX(cfs_constraints_mutex);

7020 7021 7022
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7023 7024
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7025 7026
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7027
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7028
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7049 7050 7051 7052 7053
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
7054 7055 7056 7057 7058
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7059
	runtime_enabled = quota != RUNTIME_INF;
7060
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7061 7062 7063 7064 7065 7066
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
7067 7068 7069
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7070

P
Paul Turner 已提交
7071
	__refill_cfs_bandwidth_runtime(cfs_b);
I
Ingo Molnar 已提交
7072 7073

	/* Restart the period timer (if active) to handle new period expiry: */
P
Peter Zijlstra 已提交
7074 7075
	if (runtime_enabled)
		start_cfs_bandwidth(cfs_b);
I
Ingo Molnar 已提交
7076

7077 7078
	raw_spin_unlock_irq(&cfs_b->lock);

7079
	for_each_online_cpu(i) {
7080
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7081
		struct rq *rq = cfs_rq->rq;
7082
		struct rq_flags rf;
7083

7084
		rq_lock_irq(rq, &rf);
7085
		cfs_rq->runtime_enabled = runtime_enabled;
7086
		cfs_rq->runtime_remaining = 0;
7087

7088
		if (cfs_rq->throttled)
7089
			unthrottle_cfs_rq(cfs_rq);
7090
		rq_unlock_irq(rq, &rf);
7091
	}
7092 7093
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
7094 7095
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7096
	put_online_cpus();
7097

7098
	return ret;
7099 7100 7101 7102 7103 7104
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7105
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7118
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7119 7120
		return -1;

7121
	quota_us = tg->cfs_bandwidth.quota;
7122 7123 7124 7125 7126 7127 7128 7129 7130 7131
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7132
	quota = tg->cfs_bandwidth.quota;
7133 7134 7135 7136 7137 7138 7139 7140

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7141
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7142 7143 7144 7145 7146
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

7147 7148
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
7149
{
7150
	return tg_get_cfs_quota(css_tg(css));
7151 7152
}

7153 7154
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
7155
{
7156
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7157 7158
}

7159 7160
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7161
{
7162
	return tg_get_cfs_period(css_tg(css));
7163 7164
}

7165 7166
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
7167
{
7168
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7169 7170
}

7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7203
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7204 7205 7206 7207 7208
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7209
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7210 7211

		quota = normalize_cfs_quota(tg, d);
7212
		parent_quota = parent_b->hierarchical_quota;
7213 7214

		/*
I
Ingo Molnar 已提交
7215 7216
		 * Ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set:
7217 7218 7219 7220 7221 7222
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
7223
	cfs_b->hierarchical_quota = quota;
7224 7225 7226 7227 7228 7229

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7230
	int ret;
7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7242 7243 7244 7245 7246
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7247
}
7248

7249
static int cpu_stats_show(struct seq_file *sf, void *v)
7250
{
7251
	struct task_group *tg = css_tg(seq_css(sf));
7252
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7253

7254 7255 7256
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7257 7258 7259

	return 0;
}
7260
#endif /* CONFIG_CFS_BANDWIDTH */
7261
#endif /* CONFIG_FAIR_GROUP_SCHED */
7262

7263
#ifdef CONFIG_RT_GROUP_SCHED
7264 7265
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
7266
{
7267
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
7268 7269
}

7270 7271
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
7272
{
7273
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
7274
}
7275

7276 7277
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
7278
{
7279
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
7280 7281
}

7282 7283
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7284
{
7285
	return sched_group_rt_period(css_tg(css));
7286
}
7287
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7288

7289
static struct cftype cpu_files[] = {
7290
#ifdef CONFIG_FAIR_GROUP_SCHED
7291 7292
	{
		.name = "shares",
7293 7294
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7295
	},
7296
#endif
7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7308 7309
	{
		.name = "stat",
7310
		.seq_show = cpu_stats_show,
7311
	},
7312
#endif
7313
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7314
	{
P
Peter Zijlstra 已提交
7315
		.name = "rt_runtime_us",
7316 7317
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7318
	},
7319 7320
	{
		.name = "rt_period_us",
7321 7322
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7323
	},
7324
#endif
I
Ingo Molnar 已提交
7325
	{ }	/* Terminate */
7326 7327
};

7328
struct cgroup_subsys cpu_cgrp_subsys = {
7329
	.css_alloc	= cpu_cgroup_css_alloc,
7330
	.css_online	= cpu_cgroup_css_online,
7331
	.css_released	= cpu_cgroup_css_released,
7332
	.css_free	= cpu_cgroup_css_free,
7333
	.fork		= cpu_cgroup_fork,
7334 7335
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
7336
	.legacy_cftypes	= cpu_files,
7337
	.early_init	= true,
7338 7339
};

7340
#endif	/* CONFIG_CGROUP_SCHED */
7341

7342 7343 7344 7345 7346
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}
7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
 */
const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

/*
 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
const u32 sched_prio_to_wmult[40] = {
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};