raid5.c 181.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/module.h>
51
#include <linux/async.h>
52
#include <linux/seq_file.h>
53
#include <linux/cpu.h>
54
#include <linux/slab.h>
55
#include <linux/ratelimit.h>
N
NeilBrown 已提交
56 57
#include <trace/events/block.h>

58
#include "md.h"
59
#include "raid5.h"
60
#include "raid0.h"
61
#include "bitmap.h"
62

L
Linus Torvalds 已提交
63 64 65 66 67 68 69 70 71
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
72
#define BYPASS_THRESHOLD	1
73
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
74 75
#define HASH_MASK		(NR_HASH - 1)

76
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
77 78 79 80
{
	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
	return &conf->stripe_hashtbl[hash];
}
L
Linus Torvalds 已提交
81 82 83 84 85 86 87

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
88
 * This function is used to determine the 'next' bio in the list, given the sector
L
Linus Torvalds 已提交
89 90
 * of the current stripe+device
 */
91 92 93 94 95 96 97 98
static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
{
	int sectors = bio->bi_size >> 9;
	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
		return bio->bi_next;
	else
		return NULL;
}
L
Linus Torvalds 已提交
99

100
/*
101 102
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103
 */
104
static inline int raid5_bi_processed_stripes(struct bio *bio)
105
{
106 107
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return (atomic_read(segments) >> 16) & 0xffff;
108 109
}

110
static inline int raid5_dec_bi_active_stripes(struct bio *bio)
111
{
112 113
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return atomic_sub_return(1, segments) & 0xffff;
114 115
}

116
static inline void raid5_inc_bi_active_stripes(struct bio *bio)
117
{
118 119
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_inc(segments);
120 121
}

122 123
static inline void raid5_set_bi_processed_stripes(struct bio *bio,
	unsigned int cnt)
124
{
125 126
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	int old, new;
127

128 129 130 131
	do {
		old = atomic_read(segments);
		new = (old & 0xffff) | (cnt << 16);
	} while (atomic_cmpxchg(segments, old, new) != old);
132 133
}

134
static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
135
{
136 137
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_set(segments, cnt);
138 139
}

140 141 142
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
143 144 145 146
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
147 148 149 150 151
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
152 153 154 155 156
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
157

158 159 160 161 162
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
163 164
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
165
{
166
	int slot = *count;
167

168
	if (sh->ddf_layout)
169
		(*count)++;
170
	if (idx == sh->pd_idx)
171
		return syndrome_disks;
172
	if (idx == sh->qd_idx)
173
		return syndrome_disks + 1;
174
	if (!sh->ddf_layout)
175
		(*count)++;
176 177 178
	return slot;
}

179 180 181 182 183 184 185 186
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
187 188
		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
					 bi, 0);
189
		bio_endio(bi, 0);
190 191 192 193
		bi = return_bi;
	}
}

194
static void print_raid5_conf (struct r5conf *conf);
L
Linus Torvalds 已提交
195

196 197 198 199 200 201 202
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

203
static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
204
{
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
	BUG_ON(!list_empty(&sh->lru));
	BUG_ON(atomic_read(&conf->active_stripes)==0);
	if (test_bit(STRIPE_HANDLE, &sh->state)) {
		if (test_bit(STRIPE_DELAYED, &sh->state) &&
		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			list_add_tail(&sh->lru, &conf->delayed_list);
		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
			   sh->bm_seq - conf->seq_write > 0)
			list_add_tail(&sh->lru, &conf->bitmap_list);
		else {
			clear_bit(STRIPE_DELAYED, &sh->state);
			clear_bit(STRIPE_BIT_DELAY, &sh->state);
			list_add_tail(&sh->lru, &conf->handle_list);
		}
		md_wakeup_thread(conf->mddev->thread);
	} else {
		BUG_ON(stripe_operations_active(sh));
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			if (atomic_dec_return(&conf->preread_active_stripes)
			    < IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		atomic_dec(&conf->active_stripes);
		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
			list_add_tail(&sh->lru, &conf->inactive_list);
			wake_up(&conf->wait_for_stripe);
			if (conf->retry_read_aligned)
				md_wakeup_thread(conf->mddev->thread);
L
Linus Torvalds 已提交
232 233 234
		}
	}
}
235

236 237 238 239 240 241
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
{
	if (atomic_dec_and_test(&sh->count))
		do_release_stripe(conf, sh);
}

L
Linus Torvalds 已提交
242 243
static void release_stripe(struct stripe_head *sh)
{
244
	struct r5conf *conf = sh->raid_conf;
L
Linus Torvalds 已提交
245
	unsigned long flags;
246

247 248 249 250 251 252
	local_irq_save(flags);
	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
		do_release_stripe(conf, sh);
		spin_unlock(&conf->device_lock);
	}
	local_irq_restore(flags);
L
Linus Torvalds 已提交
253 254
}

255
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
256
{
257 258
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
259

260
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
261 262
}

263
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
264
{
265
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
266

267 268
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
269

270
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
271 272 273 274
}


/* find an idle stripe, make sure it is unhashed, and return it. */
275
static struct stripe_head *get_free_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

291
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
292 293 294
{
	struct page *p;
	int i;
295
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
296

297
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
298 299 300 301
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
302
		put_page(p);
L
Linus Torvalds 已提交
303 304 305
	}
}

306
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
307 308
{
	int i;
309
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
310

311
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
312 313 314 315 316 317 318 319 320 321
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

322
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
323
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
324
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
325

326
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
327
{
328
	struct r5conf *conf = sh->raid_conf;
329
	int i;
L
Linus Torvalds 已提交
330

331 332
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
333
	BUG_ON(stripe_operations_active(sh));
334

335
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
336 337 338
		(unsigned long long)sh->sector);

	remove_hash(sh);
339

340
	sh->generation = conf->generation - previous;
341
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
342
	sh->sector = sector;
343
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
344 345
	sh->state = 0;

346 347

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
348 349
		struct r5dev *dev = &sh->dev[i];

350
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
351
		    test_bit(R5_LOCKED, &dev->flags)) {
352
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
353
			       (unsigned long long)sh->sector, i, dev->toread,
354
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
355
			       test_bit(R5_LOCKED, &dev->flags));
356
			WARN_ON(1);
L
Linus Torvalds 已提交
357 358
		}
		dev->flags = 0;
359
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
360 361 362 363
	}
	insert_hash(conf, sh);
}

364
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
365
					 short generation)
L
Linus Torvalds 已提交
366 367 368
{
	struct stripe_head *sh;

369
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
370
	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
371
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
372
			return sh;
373
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
374 375 376
	return NULL;
}

377 378 379 380 381 382 383 384 385 386 387 388 389
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
390
static int calc_degraded(struct r5conf *conf)
391
{
392
	int degraded, degraded2;
393 394 395 396 397
	int i;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
398
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
399 400
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = rcu_dereference(conf->disks[i].replacement);
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
419 420
	if (conf->raid_disks == conf->previous_raid_disks)
		return degraded;
421
	rcu_read_lock();
422
	degraded2 = 0;
423
	for (i = 0; i < conf->raid_disks; i++) {
424
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
425 426
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = rcu_dereference(conf->disks[i].replacement);
427
		if (!rdev || test_bit(Faulty, &rdev->flags))
428
			degraded2++;
429 430 431 432 433 434 435 436 437
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
438
				degraded2++;
439 440
	}
	rcu_read_unlock();
441 442 443 444 445 446 447 448 449 450 451 452 453
	if (degraded2 > degraded)
		return degraded2;
	return degraded;
}

static int has_failed(struct r5conf *conf)
{
	int degraded;

	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	degraded = calc_degraded(conf);
454 455 456 457 458
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

459
static struct stripe_head *
460
get_active_stripe(struct r5conf *conf, sector_t sector,
461
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
462 463 464
{
	struct stripe_head *sh;

465
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
466 467 468 469

	spin_lock_irq(&conf->device_lock);

	do {
470
		wait_event_lock_irq(conf->wait_for_stripe,
471
				    conf->quiesce == 0 || noquiesce,
472
				    conf->device_lock);
473
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
474 475 476 477 478 479 480 481 482
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
483 484
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
485
						     || !conf->inactive_blocked),
486
						    conf->device_lock);
L
Linus Torvalds 已提交
487 488
				conf->inactive_blocked = 0;
			} else
489
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
490 491
		} else {
			if (atomic_read(&sh->count)) {
492
				BUG_ON(!list_empty(&sh->lru)
493 494
				    && !test_bit(STRIPE_EXPANDING, &sh->state)
				    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
L
Linus Torvalds 已提交
495 496 497
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
498 499
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
500 501
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
502 503 504 505 506 507 508 509 510 511 512
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
/* Determine if 'data_offset' or 'new_data_offset' should be used
 * in this stripe_head.
 */
static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
{
	sector_t progress = conf->reshape_progress;
	/* Need a memory barrier to make sure we see the value
	 * of conf->generation, or ->data_offset that was set before
	 * reshape_progress was updated.
	 */
	smp_rmb();
	if (progress == MaxSector)
		return 0;
	if (sh->generation == conf->generation - 1)
		return 0;
	/* We are in a reshape, and this is a new-generation stripe,
	 * so use new_data_offset.
	 */
	return 1;
}

534 535 536 537
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
538

539
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
540
{
541
	struct r5conf *conf = sh->raid_conf;
542 543 544 545 546 547
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
548
		int replace_only = 0;
549 550
		struct bio *bi, *rbi;
		struct md_rdev *rdev, *rrdev = NULL;
T
Tejun Heo 已提交
551 552 553 554 555
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
556
			if (test_bit(R5_Discard, &sh->dev[i].flags))
S
Shaohua Li 已提交
557
				rw |= REQ_DISCARD;
T
Tejun Heo 已提交
558
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
559
			rw = READ;
560 561 562 563 564
		else if (test_and_clear_bit(R5_WantReplace,
					    &sh->dev[i].flags)) {
			rw = WRITE;
			replace_only = 1;
		} else
565
			continue;
S
Shaohua Li 已提交
566 567
		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
			rw |= REQ_SYNC;
568 569

		bi = &sh->dev[i].req;
570
		rbi = &sh->dev[i].rreq; /* For writing to replacement */
571 572

		bi->bi_rw = rw;
573 574
		rbi->bi_rw = rw;
		if (rw & WRITE) {
575
			bi->bi_end_io = raid5_end_write_request;
576 577
			rbi->bi_end_io = raid5_end_write_request;
		} else
578 579 580
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
581
		rrdev = rcu_dereference(conf->disks[i].replacement);
582 583 584 585 586 587
		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev) {
			rdev = rrdev;
			rrdev = NULL;
		}
588 589 590
		if (rw & WRITE) {
			if (replace_only)
				rdev = NULL;
591 592 593
			if (rdev == rrdev)
				/* We raced and saw duplicates */
				rrdev = NULL;
594
		} else {
595
			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
596 597 598
				rdev = rrdev;
			rrdev = NULL;
		}
599

600 601 602 603
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
604 605 606 607
		if (rrdev && test_bit(Faulty, &rrdev->flags))
			rrdev = NULL;
		if (rrdev)
			atomic_inc(&rrdev->nr_pending);
608 609
		rcu_read_unlock();

610
		/* We have already checked bad blocks for reads.  Now
611 612
		 * need to check for writes.  We never accept write errors
		 * on the replacement, so we don't to check rrdev.
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
		 */
		while ((rw & WRITE) && rdev &&
		       test_bit(WriteErrorSeen, &rdev->flags)) {
			sector_t first_bad;
			int bad_sectors;
			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					      &first_bad, &bad_sectors);
			if (!bad)
				break;

			if (bad < 0) {
				set_bit(BlockedBadBlocks, &rdev->flags);
				if (!conf->mddev->external &&
				    conf->mddev->flags) {
					/* It is very unlikely, but we might
					 * still need to write out the
					 * bad block log - better give it
					 * a chance*/
					md_check_recovery(conf->mddev);
				}
633 634 635 636 637 638
				/*
				 * Because md_wait_for_blocked_rdev
				 * will dec nr_pending, we must
				 * increment it first.
				 */
				atomic_inc(&rdev->nr_pending);
639 640 641 642 643 644 645 646
				md_wait_for_blocked_rdev(rdev, conf->mddev);
			} else {
				/* Acknowledged bad block - skip the write */
				rdev_dec_pending(rdev, conf->mddev);
				rdev = NULL;
			}
		}

647
		if (rdev) {
648 649
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
650 651
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
652 653
			set_bit(STRIPE_IO_STARTED, &sh->state);

654 655
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
656
				__func__, (unsigned long long)sh->sector,
657 658
				bi->bi_rw, i);
			atomic_inc(&sh->count);
659 660 661 662 663 664
			if (use_new_offset(conf, sh))
				bi->bi_sector = (sh->sector
						 + rdev->new_data_offset);
			else
				bi->bi_sector = (sh->sector
						 + rdev->data_offset);
665 666 667
			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
				bi->bi_rw |= REQ_FLUSH;

668 669 670 671 672 673
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_idx = 0;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
674 675
			if (rrdev)
				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
676 677 678 679 680

			if (conf->mddev->gendisk)
				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
						      bi, disk_devt(conf->mddev->gendisk),
						      sh->dev[i].sector);
681
			generic_make_request(bi);
682 683
		}
		if (rrdev) {
684 685
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
686 687 688 689 690 691 692 693 694 695
				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);

			set_bit(STRIPE_IO_STARTED, &sh->state);

			rbi->bi_bdev = rrdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on "
				 "replacement disc %d\n",
				__func__, (unsigned long long)sh->sector,
				rbi->bi_rw, i);
			atomic_inc(&sh->count);
696 697 698 699 700 701
			if (use_new_offset(conf, sh))
				rbi->bi_sector = (sh->sector
						  + rrdev->new_data_offset);
			else
				rbi->bi_sector = (sh->sector
						  + rrdev->data_offset);
702 703 704 705 706 707
			rbi->bi_flags = 1 << BIO_UPTODATE;
			rbi->bi_idx = 0;
			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			rbi->bi_io_vec[0].bv_offset = 0;
			rbi->bi_size = STRIPE_SIZE;
			rbi->bi_next = NULL;
708 709 710 711
			if (conf->mddev->gendisk)
				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
						      rbi, disk_devt(conf->mddev->gendisk),
						      sh->dev[i].sector);
712 713 714
			generic_make_request(rbi);
		}
		if (!rdev && !rrdev) {
715
			if (rw & WRITE)
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
733
	struct async_submit_ctl submit;
D
Dan Williams 已提交
734
	enum async_tx_flags flags = 0;
735 736 737 738 739

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
740

D
Dan Williams 已提交
741 742 743 744
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

745
	bio_for_each_segment(bvl, bio, i) {
746
		int len = bvl->bv_len;
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
762 763
			b_offset += bvl->bv_offset;
			bio_page = bvl->bv_page;
764 765
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
766
						  b_offset, clen, &submit);
767 768
			else
				tx = async_memcpy(bio_page, page, b_offset,
769
						  page_offset, clen, &submit);
770
		}
771 772 773
		/* chain the operations */
		submit.depend_tx = tx;

774 775 776 777 778 779 780 781 782 783 784 785
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
786
	int i;
787

788
	pr_debug("%s: stripe %llu\n", __func__,
789 790 791 792 793 794 795
		(unsigned long long)sh->sector);

	/* clear completed biofills */
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
796 797
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
798
		 * !STRIPE_BIOFILL_RUN
799 800
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
801 802 803 804 805 806 807 808
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
809
				if (!raid5_dec_bi_active_stripes(rbi)) {
810 811 812 813 814 815 816
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
817
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
818 819 820

	return_io(return_bi);

821
	set_bit(STRIPE_HANDLE, &sh->state);
822 823 824 825 826 827
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
828
	struct async_submit_ctl submit;
829 830
	int i;

831
	pr_debug("%s: stripe %llu\n", __func__,
832 833 834 835 836 837
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
S
Shaohua Li 已提交
838
			spin_lock_irq(&sh->stripe_lock);
839 840
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
S
Shaohua Li 已提交
841
			spin_unlock_irq(&sh->stripe_lock);
842 843 844 845 846 847 848 849 850 851
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
852 853
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
854 855
}

856
static void mark_target_uptodate(struct stripe_head *sh, int target)
857
{
858
	struct r5dev *tgt;
859

860 861
	if (target < 0)
		return;
862

863
	tgt = &sh->dev[target];
864 865 866
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
867 868
}

869
static void ops_complete_compute(void *stripe_head_ref)
870 871 872
{
	struct stripe_head *sh = stripe_head_ref;

873
	pr_debug("%s: stripe %llu\n", __func__,
874 875
		(unsigned long long)sh->sector);

876
	/* mark the computed target(s) as uptodate */
877
	mark_target_uptodate(sh, sh->ops.target);
878
	mark_target_uptodate(sh, sh->ops.target2);
879

880 881 882
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
883 884 885 886
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

887 888 889 890 891 892 893 894 895
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
896 897
{
	int disks = sh->disks;
898
	struct page **xor_srcs = percpu->scribble;
899 900 901 902 903
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
904
	struct async_submit_ctl submit;
905 906 907
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
908
		__func__, (unsigned long long)sh->sector, target);
909 910 911 912 913 914 915 916
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
917
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
918
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
919
	if (unlikely(count == 1))
920
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
921
	else
922
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
923 924 925 926

	return tx;
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
945
		srcs[i] = NULL;
946 947 948 949 950 951 952 953 954 955

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

956
	return syndrome_disks;
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
977
	else
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
994 995
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
996 997 998 999 1000 1001 1002 1003 1004 1005 1006
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
1007 1008
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
1009 1010 1011
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
1012 1013 1014 1015

	return tx;
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

1037
	/* we need to open-code set_syndrome_sources to handle the
1038 1039 1040
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
1041
		blocks[i] = NULL;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
1068 1069 1070
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1071
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
1091 1092 1093 1094
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
1095 1096 1097 1098
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
1099 1100 1101
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1102 1103 1104 1105
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
1120 1121 1122 1123
	}
}


1124 1125 1126 1127
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1128
	pr_debug("%s: stripe %llu\n", __func__,
1129 1130 1131 1132
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
1133 1134
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
1135 1136
{
	int disks = sh->disks;
1137
	struct page **xor_srcs = percpu->scribble;
1138
	int count = 0, pd_idx = sh->pd_idx, i;
1139
	struct async_submit_ctl submit;
1140 1141 1142 1143

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

1144
	pr_debug("%s: stripe %llu\n", __func__,
1145 1146 1147 1148 1149
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
1150
		if (test_bit(R5_Wantdrain, &dev->flags))
1151 1152 1153
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1154
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1155
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1156
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1157 1158 1159 1160 1161

	return tx;
}

static struct dma_async_tx_descriptor *
1162
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1163 1164
{
	int disks = sh->disks;
1165
	int i;
1166

1167
	pr_debug("%s: stripe %llu\n", __func__,
1168 1169 1170 1171 1172 1173
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1174
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1175 1176
			struct bio *wbi;

S
Shaohua Li 已提交
1177
			spin_lock_irq(&sh->stripe_lock);
1178 1179 1180 1181
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
S
Shaohua Li 已提交
1182
			spin_unlock_irq(&sh->stripe_lock);
1183 1184 1185

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1186 1187
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1188 1189
				if (wbi->bi_rw & REQ_SYNC)
					set_bit(R5_SyncIO, &dev->flags);
1190
				if (wbi->bi_rw & REQ_DISCARD)
S
Shaohua Li 已提交
1191
					set_bit(R5_Discard, &dev->flags);
1192
				else
S
Shaohua Li 已提交
1193 1194
					tx = async_copy_data(1, wbi, dev->page,
						dev->sector, tx);
1195 1196 1197 1198 1199 1200 1201 1202
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1203
static void ops_complete_reconstruct(void *stripe_head_ref)
1204 1205
{
	struct stripe_head *sh = stripe_head_ref;
1206 1207 1208 1209
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
1210
	bool fua = false, sync = false, discard = false;
1211

1212
	pr_debug("%s: stripe %llu\n", __func__,
1213 1214
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1215
	for (i = disks; i--; ) {
T
Tejun Heo 已提交
1216
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
S
Shaohua Li 已提交
1217
		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1218
		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
S
Shaohua Li 已提交
1219
	}
T
Tejun Heo 已提交
1220

1221 1222
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1223

T
Tejun Heo 已提交
1224
		if (dev->written || i == pd_idx || i == qd_idx) {
1225 1226
			if (!discard)
				set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1227 1228
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1229 1230
			if (sync)
				set_bit(R5_SyncIO, &dev->flags);
T
Tejun Heo 已提交
1231
		}
1232 1233
	}

1234 1235 1236 1237 1238 1239 1240 1241
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1242 1243 1244 1245 1246 1247

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1248 1249
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1250 1251
{
	int disks = sh->disks;
1252
	struct page **xor_srcs = percpu->scribble;
1253
	struct async_submit_ctl submit;
1254 1255
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1256
	int prexor = 0;
1257 1258
	unsigned long flags;

1259
	pr_debug("%s: stripe %llu\n", __func__,
1260 1261
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	for (i = 0; i < sh->disks; i++) {
		if (pd_idx == i)
			continue;
		if (!test_bit(R5_Discard, &sh->dev[i].flags))
			break;
	}
	if (i >= sh->disks) {
		atomic_inc(&sh->count);
		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
		ops_complete_reconstruct(sh);
		return;
	}
1274 1275 1276
	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1277 1278
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1299
	flags = ASYNC_TX_ACK |
1300 1301 1302 1303
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1304
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1305
			  to_addr_conv(sh, percpu));
1306 1307 1308 1309
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1310 1311
}

1312 1313 1314 1315 1316 1317
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
S
Shaohua Li 已提交
1318
	int count, i;
1319 1320 1321

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

S
Shaohua Li 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	for (i = 0; i < sh->disks; i++) {
		if (sh->pd_idx == i || sh->qd_idx == i)
			continue;
		if (!test_bit(R5_Discard, &sh->dev[i].flags))
			break;
	}
	if (i >= sh->disks) {
		atomic_inc(&sh->count);
		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
		ops_complete_reconstruct(sh);
		return;
	}

1336 1337 1338 1339 1340 1341 1342
	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1343 1344 1345 1346 1347 1348
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1349
	pr_debug("%s: stripe %llu\n", __func__,
1350 1351
		(unsigned long long)sh->sector);

1352
	sh->check_state = check_state_check_result;
1353 1354 1355 1356
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1357
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1358 1359
{
	int disks = sh->disks;
1360 1361 1362
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1363
	struct page **xor_srcs = percpu->scribble;
1364
	struct dma_async_tx_descriptor *tx;
1365
	struct async_submit_ctl submit;
1366 1367
	int count;
	int i;
1368

1369
	pr_debug("%s: stripe %llu\n", __func__,
1370 1371
		(unsigned long long)sh->sector);

1372 1373 1374
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1375
	for (i = disks; i--; ) {
1376 1377 1378
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1379 1380
	}

1381 1382
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1383
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1384
			   &sh->ops.zero_sum_result, &submit);
1385 1386

	atomic_inc(&sh->count);
1387 1388
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1389 1390
}

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1403 1404

	atomic_inc(&sh->count);
1405 1406 1407 1408
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1409 1410
}

N
NeilBrown 已提交
1411
static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1412 1413 1414
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1415
	struct r5conf *conf = sh->raid_conf;
1416
	int level = conf->level;
1417 1418
	struct raid5_percpu *percpu;
	unsigned long cpu;
1419

1420 1421
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1422
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1423 1424 1425 1426
		ops_run_biofill(sh);
		overlap_clear++;
	}

1427
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1438 1439
			async_tx_ack(tx);
	}
1440

1441
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1442
		tx = ops_run_prexor(sh, percpu, tx);
1443

1444
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1445
		tx = ops_run_biodrain(sh, tx);
1446 1447 1448
		overlap_clear++;
	}

1449 1450 1451 1452 1453 1454
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1466 1467 1468 1469 1470 1471 1472

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1473
	put_cpu();
1474 1475
}

1476
static int grow_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1477 1478
{
	struct stripe_head *sh;
N
Namhyung Kim 已提交
1479
	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1480 1481
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1482

1483 1484
	sh->raid_conf = conf;

S
Shaohua Li 已提交
1485 1486
	spin_lock_init(&sh->stripe_lock);

1487 1488
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

1500
static int grow_stripes(struct r5conf *conf, int num)
1501
{
1502
	struct kmem_cache *sc;
1503
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1504

1505 1506 1507 1508 1509 1510 1511 1512
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1513 1514
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1515
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1516
			       0, 0, NULL);
L
Linus Torvalds 已提交
1517 1518 1519
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1520
	conf->pool_size = devs;
1521
	while (num--)
1522
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1523 1524 1525
			return 1;
	return 0;
}
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1549
static int resize_stripes(struct r5conf *conf, int newsize)
1550 1551 1552 1553 1554 1555 1556
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
M
Masanari Iida 已提交
1557
	 * 2/ gather all the old stripe_heads and transfer the pages across
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1577
	unsigned long cpu;
1578
	int err;
1579
	struct kmem_cache *sc;
1580 1581 1582 1583 1584
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1585 1586 1587
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1588

1589 1590 1591
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1592
			       0, 0, NULL);
1593 1594 1595 1596
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
N
Namhyung Kim 已提交
1597
		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1598 1599 1600 1601
		if (!nsh)
			break;

		nsh->raid_conf = conf;
1602
		spin_lock_init(&nsh->stripe_lock);
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
1624
				    conf->device_lock);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1639
	 * conf->disks and the scribble region
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1669 1670 1671 1672
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1673

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1690

1691
static int drop_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1692 1693 1694
{
	struct stripe_head *sh;

1695 1696 1697 1698 1699
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1700
	BUG_ON(atomic_read(&sh->count));
1701
	shrink_buffers(sh);
1702 1703 1704 1705 1706
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

1707
static void shrink_stripes(struct r5conf *conf)
1708 1709 1710 1711
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1712 1713
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1714 1715 1716
	conf->slab_cache = NULL;
}

1717
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1718
{
1719
	struct stripe_head *sh = bi->bi_private;
1720
	struct r5conf *conf = sh->raid_conf;
1721
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1722
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1723
	char b[BDEVNAME_SIZE];
1724
	struct md_rdev *rdev = NULL;
1725
	sector_t s;
L
Linus Torvalds 已提交
1726 1727 1728 1729 1730

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1731 1732
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1733 1734 1735
		uptodate);
	if (i == disks) {
		BUG();
1736
		return;
L
Linus Torvalds 已提交
1737
	}
1738
	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1739 1740 1741 1742 1743
		/* If replacement finished while this request was outstanding,
		 * 'replacement' might be NULL already.
		 * In that case it moved down to 'rdev'.
		 * rdev is not removed until all requests are finished.
		 */
1744
		rdev = conf->disks[i].replacement;
1745
	if (!rdev)
1746
		rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1747

1748 1749 1750 1751
	if (use_new_offset(conf, sh))
		s = sh->sector + rdev->new_data_offset;
	else
		s = sh->sector + rdev->data_offset;
L
Linus Torvalds 已提交
1752 1753
	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1754
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1755 1756 1757 1758
			/* Note that this cannot happen on a
			 * replacement device.  We just fail those on
			 * any error
			 */
1759 1760 1761 1762 1763
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
1764
				(unsigned long long)s,
1765
				bdevname(rdev->bdev, b));
1766
			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1767 1768
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1769 1770 1771
		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);

1772 1773
		if (atomic_read(&rdev->read_errors))
			atomic_set(&rdev->read_errors, 0);
L
Linus Torvalds 已提交
1774
	} else {
1775
		const char *bdn = bdevname(rdev->bdev, b);
1776
		int retry = 0;
1777
		int set_bad = 0;
1778

L
Linus Torvalds 已提交
1779
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1780
		atomic_inc(&rdev->read_errors);
1781 1782 1783 1784 1785 1786
		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error on replacement device "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1787
				(unsigned long long)s,
1788
				bdn);
1789 1790
		else if (conf->mddev->degraded >= conf->max_degraded) {
			set_bad = 1;
1791 1792 1793 1794 1795
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1796
				(unsigned long long)s,
1797
				bdn);
1798
		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1799
			/* Oh, no!!! */
1800
			set_bad = 1;
1801 1802 1803 1804 1805
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1806
				(unsigned long long)s,
1807
				bdn);
1808
		} else if (atomic_read(&rdev->read_errors)
1809
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1810
			printk(KERN_WARNING
1811
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1812
			       mdname(conf->mddev), bdn);
1813 1814 1815
		else
			retry = 1;
		if (retry)
1816 1817 1818 1819 1820
			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
				set_bit(R5_ReadError, &sh->dev[i].flags);
				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
			} else
				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1821
		else {
1822 1823
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1824 1825 1826 1827 1828
			if (!(set_bad
			      && test_bit(In_sync, &rdev->flags)
			      && rdev_set_badblocks(
				      rdev, sh->sector, STRIPE_SECTORS, 0)))
				md_error(conf->mddev, rdev);
1829
		}
L
Linus Torvalds 已提交
1830
	}
1831
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1832 1833 1834 1835 1836
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1837
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1838
{
1839
	struct stripe_head *sh = bi->bi_private;
1840
	struct r5conf *conf = sh->raid_conf;
1841
	int disks = sh->disks, i;
1842
	struct md_rdev *uninitialized_var(rdev);
L
Linus Torvalds 已提交
1843
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1844 1845
	sector_t first_bad;
	int bad_sectors;
1846
	int replacement = 0;
L
Linus Torvalds 已提交
1847

1848 1849 1850
	for (i = 0 ; i < disks; i++) {
		if (bi == &sh->dev[i].req) {
			rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1851
			break;
1852 1853 1854
		}
		if (bi == &sh->dev[i].rreq) {
			rdev = conf->disks[i].replacement;
1855 1856 1857 1858 1859 1860 1861 1862
			if (rdev)
				replacement = 1;
			else
				/* rdev was removed and 'replacement'
				 * replaced it.  rdev is not removed
				 * until all requests are finished.
				 */
				rdev = conf->disks[i].rdev;
1863 1864 1865
			break;
		}
	}
1866
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1867 1868 1869 1870
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1871
		return;
L
Linus Torvalds 已提交
1872 1873
	}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	if (replacement) {
		if (!uptodate)
			md_error(conf->mddev, rdev);
		else if (is_badblock(rdev, sh->sector,
				     STRIPE_SECTORS,
				     &first_bad, &bad_sectors))
			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
	} else {
		if (!uptodate) {
			set_bit(WriteErrorSeen, &rdev->flags);
			set_bit(R5_WriteError, &sh->dev[i].flags);
1885 1886 1887
			if (!test_and_set_bit(WantReplacement, &rdev->flags))
				set_bit(MD_RECOVERY_NEEDED,
					&rdev->mddev->recovery);
1888 1889
		} else if (is_badblock(rdev, sh->sector,
				       STRIPE_SECTORS,
1890
				       &first_bad, &bad_sectors)) {
1891
			set_bit(R5_MadeGood, &sh->dev[i].flags);
1892 1893 1894 1895 1896 1897 1898
			if (test_bit(R5_ReadError, &sh->dev[i].flags))
				/* That was a successful write so make
				 * sure it looks like we already did
				 * a re-write.
				 */
				set_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1899 1900
	}
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1901

1902 1903
	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
L
Linus Torvalds 已提交
1904
	set_bit(STRIPE_HANDLE, &sh->state);
1905
	release_stripe(sh);
L
Linus Torvalds 已提交
1906 1907
}

1908
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1909
	
1910
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1911 1912 1913 1914 1915 1916 1917 1918
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->req.bi_private = sh;
1919
	dev->vec.bv_page = dev->page;
L
Linus Torvalds 已提交
1920

1921 1922 1923 1924 1925 1926 1927
	bio_init(&dev->rreq);
	dev->rreq.bi_io_vec = &dev->rvec;
	dev->rreq.bi_vcnt++;
	dev->rreq.bi_max_vecs++;
	dev->rreq.bi_private = sh;
	dev->rvec.bv_page = dev->page;

L
Linus Torvalds 已提交
1928
	dev->flags = 0;
1929
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1930 1931
}

1932
static void error(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
1933 1934
{
	char b[BDEVNAME_SIZE];
1935
	struct r5conf *conf = mddev->private;
1936
	unsigned long flags;
1937
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1938

1939 1940 1941 1942 1943 1944
	spin_lock_irqsave(&conf->device_lock, flags);
	clear_bit(In_sync, &rdev->flags);
	mddev->degraded = calc_degraded(conf);
	spin_unlock_irqrestore(&conf->device_lock, flags);
	set_bit(MD_RECOVERY_INTR, &mddev->recovery);

1945
	set_bit(Blocked, &rdev->flags);
1946 1947 1948 1949 1950 1951 1952 1953 1954
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
1955
}
L
Linus Torvalds 已提交
1956 1957 1958 1959 1960

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1961
static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1962 1963
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1964
{
N
NeilBrown 已提交
1965
	sector_t stripe, stripe2;
1966
	sector_t chunk_number;
L
Linus Torvalds 已提交
1967
	unsigned int chunk_offset;
1968
	int pd_idx, qd_idx;
1969
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1970
	sector_t new_sector;
1971 1972
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1973 1974
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1975 1976 1977
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1990 1991
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1992
	stripe2 = stripe;
L
Linus Torvalds 已提交
1993 1994 1995
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1996
	pd_idx = qd_idx = -1;
1997 1998
	switch(conf->level) {
	case 4:
1999
		pd_idx = data_disks;
2000 2001
		break;
	case 5:
2002
		switch (algorithm) {
L
Linus Torvalds 已提交
2003
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2004
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2005
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
2006 2007 2008
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2009
			pd_idx = sector_div(stripe2, raid_disks);
2010
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
2011 2012 2013
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2014
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2015
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2016 2017
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2018
			pd_idx = sector_div(stripe2, raid_disks);
2019
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2020
			break;
2021 2022 2023 2024 2025 2026 2027
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
2028
		default:
2029
			BUG();
2030 2031 2032 2033
		}
		break;
	case 6:

2034
		switch (algorithm) {
2035
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2036
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2037 2038
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2039
				(*dd_idx)++;	/* Q D D D P */
2040 2041
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2042 2043 2044
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2045
			pd_idx = sector_div(stripe2, raid_disks);
2046 2047
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2048
				(*dd_idx)++;	/* Q D D D P */
2049 2050
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2051 2052 2053
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2054
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2055 2056
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2057 2058
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2059
			pd_idx = sector_div(stripe2, raid_disks);
2060 2061
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2062
			break;
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
2078
			pd_idx = sector_div(stripe2, raid_disks);
2079 2080 2081 2082 2083 2084
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2085
			ddf_layout = 1;
2086 2087 2088 2089 2090 2091 2092
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
2093 2094
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2095 2096 2097 2098 2099 2100
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2101
			ddf_layout = 1;
2102 2103 2104 2105
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
2106
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2107 2108
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2109
			ddf_layout = 1;
2110 2111 2112 2113
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
2114
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2115 2116 2117 2118 2119 2120
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
2121
			pd_idx = sector_div(stripe2, raid_disks-1);
2122 2123 2124 2125 2126 2127
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
2128
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2129 2130 2131 2132 2133
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
2134
			pd_idx = sector_div(stripe2, raid_disks-1);
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

2145
		default:
2146
			BUG();
2147 2148
		}
		break;
L
Linus Torvalds 已提交
2149 2150
	}

2151 2152 2153
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
2154
		sh->ddf_layout = ddf_layout;
2155
	}
L
Linus Torvalds 已提交
2156 2157 2158 2159 2160 2161 2162 2163
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


2164
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2165
{
2166
	struct r5conf *conf = sh->raid_conf;
2167 2168
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2169
	sector_t new_sector = sh->sector, check;
2170 2171
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2172 2173
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
2174 2175
	sector_t stripe;
	int chunk_offset;
2176 2177
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
2178
	sector_t r_sector;
2179
	struct stripe_head sh2;
L
Linus Torvalds 已提交
2180

2181

L
Linus Torvalds 已提交
2182 2183 2184
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

2185 2186 2187 2188 2189
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
2190
		switch (algorithm) {
L
Linus Torvalds 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
2202 2203 2204 2205 2206
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
2207
		default:
2208
			BUG();
2209 2210 2211
		}
		break;
	case 6:
2212
		if (i == sh->qd_idx)
2213
			return 0; /* It is the Q disk */
2214
		switch (algorithm) {
2215 2216
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
2217 2218 2219 2220
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2235 2236 2237 2238 2239 2240
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2241
			/* Like left_symmetric, but P is before Q */
2242 2243
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2244 2245 2246 2247 2248 2249
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2265
		default:
2266
			BUG();
2267 2268
		}
		break;
L
Linus Torvalds 已提交
2269 2270 2271
	}

	chunk_number = stripe * data_disks + i;
2272
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2273

2274
	check = raid5_compute_sector(conf, r_sector,
2275
				     previous, &dummy1, &sh2);
2276 2277
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2278 2279
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2280 2281 2282 2283 2284 2285
		return 0;
	}
	return r_sector;
}


2286
static void
2287
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2288
			 int rcw, int expand)
2289 2290
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2291
	struct r5conf *conf = sh->raid_conf;
2292
	int level = conf->level;
2293 2294 2295 2296 2297 2298 2299 2300

	if (rcw) {

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2301
				set_bit(R5_Wantdrain, &dev->flags);
2302 2303
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2304
				s->locked++;
2305 2306
			}
		}
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
			if (!s->locked)
				/* False alarm, nothing to do */
				return;
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;

		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);

2322
		if (s->locked + conf->max_degraded == disks)
2323
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2324
				atomic_inc(&conf->pending_full_writes);
2325
	} else {
2326
		BUG_ON(level == 6);
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2337 2338
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2339 2340
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2341
				s->locked++;
2342 2343
			}
		}
2344 2345 2346 2347 2348 2349 2350
		if (!s->locked)
			/* False alarm - nothing to do */
			return;
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2351 2352
	}

2353
	/* keep the parity disk(s) locked while asynchronous operations
2354 2355 2356 2357
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2358
	s->locked++;
2359

2360 2361 2362 2363 2364 2365 2366 2367 2368
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2369
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2370
		__func__, (unsigned long long)sh->sector,
2371
		s->locked, s->ops_request);
2372
}
2373

L
Linus Torvalds 已提交
2374 2375
/*
 * Each stripe/dev can have one or more bion attached.
2376
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2377 2378 2379 2380 2381
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
2382
	struct r5conf *conf = sh->raid_conf;
2383
	int firstwrite=0;
L
Linus Torvalds 已提交
2384

2385
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2386 2387 2388
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397
	/*
	 * If several bio share a stripe. The bio bi_phys_segments acts as a
	 * reference count to avoid race. The reference count should already be
	 * increased before this function is called (for example, in
	 * make_request()), so other bio sharing this stripe will not free the
	 * stripe. If a stripe is owned by one stripe, the stripe lock will
	 * protect it.
	 */
	spin_lock_irq(&sh->stripe_lock);
2398
	if (forwrite) {
L
Linus Torvalds 已提交
2399
		bip = &sh->dev[dd_idx].towrite;
2400
		if (*bip == NULL)
2401 2402
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2403 2404 2405 2406 2407 2408 2409 2410 2411
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2412
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2413 2414 2415
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2416
	raid5_inc_bi_active_stripes(bi);
2417

L
Linus Torvalds 已提交
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
2431 2432 2433 2434

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
		(unsigned long long)(*bip)->bi_sector,
		(unsigned long long)sh->sector, dd_idx);
2435
	spin_unlock_irq(&sh->stripe_lock);
2436 2437 2438 2439 2440 2441 2442

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
L
Linus Torvalds 已提交
2443 2444 2445 2446
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
S
Shaohua Li 已提交
2447
	spin_unlock_irq(&sh->stripe_lock);
L
Linus Torvalds 已提交
2448 2449 2450
	return 0;
}

2451
static void end_reshape(struct r5conf *conf);
2452

2453
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2454
			    struct stripe_head *sh)
2455
{
2456
	int sectors_per_chunk =
2457
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2458
	int dd_idx;
2459
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2460
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2461

2462 2463
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2464
			     *sectors_per_chunk + chunk_offset,
2465
			     previous,
2466
			     &dd_idx, sh);
2467 2468
}

2469
static void
2470
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2471 2472 2473 2474 2475 2476 2477 2478 2479
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2480
			struct md_rdev *rdev;
2481 2482 2483
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
2484 2485 2486
				atomic_inc(&rdev->nr_pending);
			else
				rdev = NULL;
2487
			rcu_read_unlock();
2488 2489 2490 2491 2492 2493 2494 2495
			if (rdev) {
				if (!rdev_set_badblocks(
					    rdev,
					    sh->sector,
					    STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
2496
		}
S
Shaohua Li 已提交
2497
		spin_lock_irq(&sh->stripe_lock);
2498 2499 2500
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
S
Shaohua Li 已提交
2501
		spin_unlock_irq(&sh->stripe_lock);
2502
		if (bi)
2503 2504 2505 2506 2507 2508 2509 2510 2511
			bitmap_end = 1;

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2512
			if (!raid5_dec_bi_active_stripes(bi)) {
2513 2514 2515 2516 2517 2518
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
2519 2520 2521 2522
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
				STRIPE_SECTORS, 0, 0);
		bitmap_end = 0;
2523 2524 2525 2526 2527 2528 2529 2530
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2531
			if (!raid5_dec_bi_active_stripes(bi)) {
2532 2533 2534 2535 2536 2537 2538
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2539 2540 2541 2542 2543 2544
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2545
			spin_lock_irq(&sh->stripe_lock);
2546 2547
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
2548
			spin_unlock_irq(&sh->stripe_lock);
2549 2550 2551 2552 2553 2554 2555
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2556
				if (!raid5_dec_bi_active_stripes(bi)) {
2557 2558 2559 2560 2561 2562 2563 2564 2565
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
2566 2567 2568 2569
		/* If we were in the middle of a write the parity block might
		 * still be locked - so just clear all R5_LOCKED flags
		 */
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2570 2571
	}

2572 2573 2574
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2575 2576
}

2577
static void
2578
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2579 2580 2581 2582 2583 2584
		   struct stripe_head_state *s)
{
	int abort = 0;
	int i;

	clear_bit(STRIPE_SYNCING, &sh->state);
2585 2586
	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
		wake_up(&conf->wait_for_overlap);
2587
	s->syncing = 0;
2588
	s->replacing = 0;
2589
	/* There is nothing more to do for sync/check/repair.
2590 2591 2592
	 * Don't even need to abort as that is handled elsewhere
	 * if needed, and not always wanted e.g. if there is a known
	 * bad block here.
2593
	 * For recover/replace we need to record a bad block on all
2594 2595
	 * non-sync devices, or abort the recovery
	 */
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
		/* During recovery devices cannot be removed, so
		 * locking and refcounting of rdevs is not needed
		 */
		for (i = 0; i < conf->raid_disks; i++) {
			struct md_rdev *rdev = conf->disks[i].rdev;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
			rdev = conf->disks[i].replacement;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
		}
		if (abort)
			conf->recovery_disabled =
				conf->mddev->recovery_disabled;
2619
	}
2620
	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2621 2622
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
static int want_replace(struct stripe_head *sh, int disk_idx)
{
	struct md_rdev *rdev;
	int rv = 0;
	/* Doing recovery so rcu locking not required */
	rdev = sh->raid_conf->disks[disk_idx].replacement;
	if (rdev
	    && !test_bit(Faulty, &rdev->flags)
	    && !test_bit(In_sync, &rdev->flags)
	    && (rdev->recovery_offset <= sh->sector
		|| rdev->mddev->recovery_cp <= sh->sector))
		rv = 1;

	return rv;
}

2639
/* fetch_block - checks the given member device to see if its data needs
2640 2641 2642
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
2643
 * 0 to tell the loop in handle_stripe_fill to continue
2644
 */
2645 2646
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
2647
{
2648
	struct r5dev *dev = &sh->dev[disk_idx];
2649 2650
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
2651

2652
	/* is the data in this block needed, and can we get it? */
2653 2654 2655 2656 2657
	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
2658
	     (s->replacing && want_replace(sh, disk_idx)) ||
2659 2660
	     (s->failed >= 1 && fdev[0]->toread) ||
	     (s->failed >= 2 && fdev[1]->toread) ||
2661 2662 2663
	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2664 2665 2666 2667 2668 2669
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
2670 2671
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
2672 2673
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2674
			 */
2675 2676 2677 2678 2679 2680 2681 2682
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
2683 2684 2685 2686 2687 2688
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2702
			}
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2722 2723
		}
	}
2724 2725 2726 2727 2728

	return 0;
}

/**
2729
 * handle_stripe_fill - read or compute data to satisfy pending requests.
2730
 */
2731 2732 2733
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
2744
			if (fetch_block(sh, s, i, disks))
2745
				break;
2746 2747 2748 2749
	set_bit(STRIPE_HANDLE, &sh->state);
}


2750
/* handle_stripe_clean_event
2751 2752 2753 2754
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2755
static void handle_stripe_clean_event(struct r5conf *conf,
2756 2757 2758 2759
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;
2760
	int discard_pending = 0;
2761 2762 2763 2764 2765

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
2766
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2767
			     test_bit(R5_Discard, &dev->flags))) {
2768 2769
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
2770
				pr_debug("Return write for disc %d\n", i);
2771 2772
				if (test_and_clear_bit(R5_Discard, &dev->flags))
					clear_bit(R5_UPTODATE, &dev->flags);
2773 2774 2775 2776 2777
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2778
					if (!raid5_dec_bi_active_stripes(wbi)) {
2779 2780 2781 2782 2783 2784
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
2785 2786
				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
						STRIPE_SECTORS,
2787
					 !test_bit(STRIPE_DEGRADED, &sh->state),
2788
						0);
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
			} else if (test_bit(R5_Discard, &dev->flags))
				discard_pending = 1;
		}
	if (!discard_pending &&
	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
		if (sh->qd_idx >= 0) {
			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
		}
		/* now that discard is done we can proceed with any sync */
		clear_bit(STRIPE_DISCARD, &sh->state);
		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
			set_bit(STRIPE_HANDLE, &sh->state);

	}
2806 2807 2808 2809

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2810 2811
}

2812
static void handle_stripe_dirtying(struct r5conf *conf,
2813 2814 2815
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
2816 2817
{
	int rmw = 0, rcw = 0, i;
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
	sector_t recovery_cp = conf->mddev->recovery_cp;

	/* RAID6 requires 'rcw' in current implementation.
	 * Otherwise, check whether resync is now happening or should start.
	 * If yes, then the array is dirty (after unclean shutdown or
	 * initial creation), so parity in some stripes might be inconsistent.
	 * In this case, we need to always do reconstruct-write, to ensure
	 * that in case of drive failure or read-error correction, we
	 * generate correct data from the parity.
	 */
	if (conf->max_degraded == 2 ||
	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
		/* Calculate the real rcw later - for now make it
2831 2832 2833
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
2834 2835 2836
		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
			 conf->max_degraded, (unsigned long long)recovery_cp,
			 (unsigned long long)sh->sector);
2837
	} else for (i = disks; i--; ) {
2838 2839 2840 2841
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2842 2843
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2844 2845 2846 2847 2848 2849 2850 2851
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2852 2853 2854
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2855 2856 2857 2858
			else
				rcw += 2*disks;
		}
	}
2859
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2860 2861
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
N
NeilBrown 已提交
2862
	if (rmw < rcw && rmw > 0) {
2863
		/* prefer read-modify-write, but need to get some data */
2864 2865 2866 2867
		if (conf->mddev->queue)
			blk_add_trace_msg(conf->mddev->queue,
					  "raid5 rmw %llu %d",
					  (unsigned long long)sh->sector, rmw);
2868 2869 2870 2871
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2872 2873
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2874 2875 2876
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2877
					pr_debug("Read_old block "
N
NeilBrown 已提交
2878
						 "%d for r-m-w\n", i);
2879 2880 2881 2882 2883 2884 2885 2886 2887
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
N
NeilBrown 已提交
2888
	}
2889
	if (rcw <= rmw && rcw > 0) {
2890
		/* want reconstruct write, but need to get some data */
N
NeilBrown 已提交
2891
		int qread =0;
2892
		rcw = 0;
2893 2894 2895
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2896
			    i != sh->pd_idx && i != sh->qd_idx &&
2897
			    !test_bit(R5_LOCKED, &dev->flags) &&
2898
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2899 2900 2901 2902
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
				if (!test_bit(R5_Insync, &dev->flags))
					continue; /* it's a failed drive */
2903 2904
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2905
					pr_debug("Read_old block "
2906 2907 2908 2909
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
N
NeilBrown 已提交
2910
					qread++;
2911 2912 2913 2914 2915 2916
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2917
		if (rcw && conf->mddev->queue)
N
NeilBrown 已提交
2918 2919 2920
			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
					  (unsigned long long)sh->sector,
					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
2921
	}
2922 2923 2924
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2925 2926
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2927 2928
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2929 2930 2931
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2932 2933 2934
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2935
		schedule_reconstruction(sh, s, rcw == 0, 0);
2936 2937
}

2938
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2939 2940
				struct stripe_head_state *s, int disks)
{
2941
	struct r5dev *dev = NULL;
2942

2943
	set_bit(STRIPE_HANDLE, &sh->state);
2944

2945 2946 2947
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2948 2949
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2950 2951
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2952 2953
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2954
			break;
2955
		}
2956
		dev = &sh->dev[s->failed_num[0]];
2957 2958 2959 2960 2961 2962 2963 2964 2965
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2966

2967 2968 2969 2970 2971
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2972
		s->locked++;
2973
		set_bit(R5_Wantwrite, &dev->flags);
2974

2975 2976
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2993
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2994 2995 2996 2997 2998
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
2999
			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3000 3001 3002 3003 3004
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
3005
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3006 3007 3008 3009
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
3010
				sh->ops.target2 = -1;
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3022 3023 3024 3025
	}
}


3026
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3027
				  struct stripe_head_state *s,
3028
				  int disks)
3029 3030
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
3031
	int qd_idx = sh->qd_idx;
3032
	struct r5dev *dev;
3033 3034 3035 3036

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
3037

3038 3039 3040 3041 3042 3043
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

3044 3045 3046
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
3047
		if (s->failed == s->q_failed) {
3048
			/* The only possible failed device holds Q, so it
3049 3050 3051
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
3052
			sh->check_state = check_state_run;
3053
		}
3054
		if (!s->q_failed && s->failed < 2) {
3055
			/* Q is not failed, and we didn't use it to generate
3056 3057
			 * anything, so it makes sense to check it
			 */
3058 3059 3060 3061
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
3062 3063
		}

3064 3065
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
3066

3067 3068 3069 3070
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
3071
		}
3072 3073 3074 3075 3076 3077 3078
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
3079 3080
		}

3081 3082 3083 3084 3085
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
3086

3087 3088 3089
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
3090 3091

		/* now write out any block on a failed drive,
3092
		 * or P or Q if they were recomputed
3093
		 */
3094
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3095
		if (s->failed == 2) {
3096
			dev = &sh->dev[s->failed_num[1]];
3097 3098 3099 3100 3101
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
3102
			dev = &sh->dev[s->failed_num[0]];
3103 3104 3105 3106
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3107
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3108 3109 3110 3111 3112
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3113
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3114 3115 3116 3117 3118 3119 3120 3121
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
3151
			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3186 3187 3188
	}
}

3189
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3190 3191 3192 3193 3194 3195
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
3196
	struct dma_async_tx_descriptor *tx = NULL;
3197 3198
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
3199
		if (i != sh->pd_idx && i != sh->qd_idx) {
3200
			int dd_idx, j;
3201
			struct stripe_head *sh2;
3202
			struct async_submit_ctl submit;
3203

3204
			sector_t bn = compute_blocknr(sh, i, 1);
3205 3206
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
3207
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
3220 3221

			/* place all the copies on one channel */
3222
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3223
			tx = async_memcpy(sh2->dev[dd_idx].page,
3224
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3225
					  &submit);
3226

3227 3228 3229 3230
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
3231
				    j != sh2->qd_idx &&
3232 3233 3234 3235 3236 3237 3238
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
3239

3240
		}
3241
	/* done submitting copies, wait for them to complete */
3242
	async_tx_quiesce(&tx);
3243
}
L
Linus Torvalds 已提交
3244 3245 3246 3247

/*
 * handle_stripe - do things to a stripe.
 *
3248 3249
 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
 * state of various bits to see what needs to be done.
L
Linus Torvalds 已提交
3250
 * Possible results:
3251 3252
 *    return some read requests which now have data
 *    return some write requests which are safely on storage
L
Linus Torvalds 已提交
3253 3254 3255 3256 3257
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 */
3258

3259
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
3260
{
3261
	struct r5conf *conf = sh->raid_conf;
3262
	int disks = sh->disks;
3263 3264
	struct r5dev *dev;
	int i;
3265
	int do_recovery = 0;
L
Linus Torvalds 已提交
3266

3267 3268 3269 3270 3271 3272
	memset(s, 0, sizeof(*s));

	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
3273

3274
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3275
	rcu_read_lock();
3276
	for (i=disks; i--; ) {
3277
		struct md_rdev *rdev;
3278 3279 3280
		sector_t first_bad;
		int bad_sectors;
		int is_bad = 0;
3281

3282
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3283

3284
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3285 3286
			 i, dev->flags,
			 dev->toread, dev->towrite, dev->written);
3287 3288 3289 3290 3291 3292 3293 3294
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3295

3296
		/* now count some things */
3297 3298 3299 3300
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
3301
		if (test_bit(R5_Wantcompute, &dev->flags)) {
3302 3303
			s->compute++;
			BUG_ON(s->compute > 2);
3304
		}
L
Linus Torvalds 已提交
3305

3306
		if (test_bit(R5_Wantfill, &dev->flags))
3307
			s->to_fill++;
3308
		else if (dev->toread)
3309
			s->to_read++;
3310
		if (dev->towrite) {
3311
			s->to_write++;
3312
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3313
				s->non_overwrite++;
3314
		}
3315
		if (dev->written)
3316
			s->written++;
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
		/* Prefer to use the replacement for reads, but only
		 * if it is recovered enough and has no bad blocks.
		 */
		rdev = rcu_dereference(conf->disks[i].replacement);
		if (rdev && !test_bit(Faulty, &rdev->flags) &&
		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
				 &first_bad, &bad_sectors))
			set_bit(R5_ReadRepl, &dev->flags);
		else {
3327 3328
			if (rdev)
				set_bit(R5_NeedReplace, &dev->flags);
3329 3330 3331
			rdev = rcu_dereference(conf->disks[i].rdev);
			clear_bit(R5_ReadRepl, &dev->flags);
		}
3332 3333
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
		if (rdev) {
			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					     &first_bad, &bad_sectors);
			if (s->blocked_rdev == NULL
			    && (test_bit(Blocked, &rdev->flags)
				|| is_bad < 0)) {
				if (is_bad < 0)
					set_bit(BlockedBadBlocks,
						&rdev->flags);
				s->blocked_rdev = rdev;
				atomic_inc(&rdev->nr_pending);
			}
3346
		}
3347 3348 3349
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
3350 3351
		else if (is_bad) {
			/* also not in-sync */
3352 3353
			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
			    test_bit(R5_UPTODATE, &dev->flags)) {
3354 3355 3356 3357 3358 3359 3360
				/* treat as in-sync, but with a read error
				 * which we can now try to correct
				 */
				set_bit(R5_Insync, &dev->flags);
				set_bit(R5_ReadError, &dev->flags);
			}
		} else if (test_bit(In_sync, &rdev->flags))
3361
			set_bit(R5_Insync, &dev->flags);
3362
		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3363
			/* in sync if before recovery_offset */
3364 3365 3366 3367 3368 3369 3370 3371 3372
			set_bit(R5_Insync, &dev->flags);
		else if (test_bit(R5_UPTODATE, &dev->flags) &&
			 test_bit(R5_Expanded, &dev->flags))
			/* If we've reshaped into here, we assume it is Insync.
			 * We will shortly update recovery_offset to make
			 * it official.
			 */
			set_bit(R5_Insync, &dev->flags);

A
Adam Kwolek 已提交
3373
		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3374 3375 3376 3377 3378 3379 3380
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 == rdev)
				clear_bit(R5_Insync, &dev->flags);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3381
				s->handle_bad_blocks = 1;
3382
				atomic_inc(&rdev2->nr_pending);
3383 3384 3385
			} else
				clear_bit(R5_WriteError, &dev->flags);
		}
A
Adam Kwolek 已提交
3386
		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3387 3388 3389 3390 3391
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3392
				s->handle_bad_blocks = 1;
3393
				atomic_inc(&rdev2->nr_pending);
3394 3395 3396
			} else
				clear_bit(R5_MadeGood, &dev->flags);
		}
3397 3398 3399 3400 3401 3402 3403 3404 3405
		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].replacement);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
				s->handle_bad_blocks = 1;
				atomic_inc(&rdev2->nr_pending);
			} else
				clear_bit(R5_MadeGoodRepl, &dev->flags);
		}
3406
		if (!test_bit(R5_Insync, &dev->flags)) {
3407 3408 3409
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3410
		}
3411 3412 3413
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3414 3415 3416
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
3417 3418
			if (rdev && !test_bit(Faulty, &rdev->flags))
				do_recovery = 1;
3419
		}
L
Linus Torvalds 已提交
3420
	}
3421 3422 3423 3424
	if (test_bit(STRIPE_SYNCING, &sh->state)) {
		/* If there is a failed device being replaced,
		 *     we must be recovering.
		 * else if we are after recovery_cp, we must be syncing
3425
		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3426 3427 3428 3429 3430
		 * else we can only be replacing
		 * sync and recovery both need to read all devices, and so
		 * use the same flag.
		 */
		if (do_recovery ||
3431 3432
		    sh->sector >= conf->mddev->recovery_cp ||
		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3433 3434 3435 3436
			s->syncing = 1;
		else
			s->replacing = 1;
	}
L
Linus Torvalds 已提交
3437
	rcu_read_unlock();
3438 3439 3440 3441 3442
}

static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
3443
	struct r5conf *conf = sh->raid_conf;
3444
	int i;
3445 3446
	int prexor;
	int disks = sh->disks;
3447
	struct r5dev *pdev, *qdev;
3448 3449

	clear_bit(STRIPE_HANDLE, &sh->state);
3450
	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3451 3452 3453 3454 3455 3456
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

3457 3458 3459 3460 3461 3462 3463 3464 3465
	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
		spin_lock(&sh->stripe_lock);
		/* Cannot process 'sync' concurrently with 'discard' */
		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
			set_bit(STRIPE_SYNCING, &sh->state);
			clear_bit(STRIPE_INSYNC, &sh->state);
		}
		spin_unlock(&sh->stripe_lock);
3466 3467 3468 3469 3470 3471 3472 3473
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
3474

3475
	analyse_stripe(sh, &s);
3476

3477 3478 3479 3480 3481
	if (s.handle_bad_blocks) {
		set_bit(STRIPE_HANDLE, &sh->state);
		goto finish;
	}

3482 3483
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
3484
		    s.replacing || s.to_write || s.written) {
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
3505 3506 3507 3508 3509
	if (s.failed > conf->max_degraded) {
		sh->check_state = 0;
		sh->reconstruct_state = 0;
		if (s.to_read+s.to_write+s.written)
			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3510
		if (s.syncing + s.replacing)
3511 3512
			handle_failed_sync(conf, sh, &s);
	}
3513

3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
3527 3528
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3529
		BUG_ON(sh->qd_idx >= 0 &&
3530 3531
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
				 test_bit(R5_Discard, &pdev->flags))))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
				 test_bit(R5_Discard, &qdev->flags))))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
	    || (s.syncing && (s.uptodate + s.compute < disks))
	    || s.replacing
	    || s.expanding)
		handle_stripe_fill(sh, &s, disks);

3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
3608

3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
	if (s.replacing && s.locked == 0
	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
		/* Write out to replacement devices where possible */
		for (i = 0; i < conf->raid_disks; i++)
			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
				set_bit(R5_WantReplace, &sh->dev[i].flags);
				set_bit(R5_LOCKED, &sh->dev[i].flags);
				s.locked++;
			}
		set_bit(STRIPE_INSYNC, &sh->state);
	}
	if ((s.syncing || s.replacing) && s.locked == 0 &&
	    test_bit(STRIPE_INSYNC, &sh->state)) {
3623 3624
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
3625 3626
		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
			wake_up(&conf->wait_for_overlap);
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}


3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
3681

3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
3698

3699
finish:
3700
	/* wait for this device to become unblocked */
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
	if (unlikely(s.blocked_rdev)) {
		if (conf->mddev->external)
			md_wait_for_blocked_rdev(s.blocked_rdev,
						 conf->mddev);
		else
			/* Internal metadata will immediately
			 * be written by raid5d, so we don't
			 * need to wait here.
			 */
			rdev_dec_pending(s.blocked_rdev,
					 conf->mddev);
	}
3713

3714 3715
	if (s.handle_bad_blocks)
		for (i = disks; i--; ) {
3716
			struct md_rdev *rdev;
3717 3718 3719 3720 3721 3722 3723 3724 3725
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
				/* We own a safe reference to the rdev */
				rdev = conf->disks[i].rdev;
				if (!rdev_set_badblocks(rdev, sh->sector,
							STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
3726 3727 3728
			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
				rdev = conf->disks[i].rdev;
				rdev_clear_badblocks(rdev, sh->sector,
3729
						     STRIPE_SECTORS, 0);
3730 3731
				rdev_dec_pending(rdev, conf->mddev);
			}
3732 3733
			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
				rdev = conf->disks[i].replacement;
3734 3735 3736
				if (!rdev)
					/* rdev have been moved down */
					rdev = conf->disks[i].rdev;
3737
				rdev_clear_badblocks(rdev, sh->sector,
3738
						     STRIPE_SECTORS, 0);
3739 3740
				rdev_dec_pending(rdev, conf->mddev);
			}
3741 3742
		}

3743 3744 3745
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3746
	ops_run_io(sh, &s);
3747

3748
	if (s.dec_preread_active) {
3749
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3750
		 * is waiting on a flush, it won't continue until the writes
3751 3752 3753 3754 3755 3756 3757 3758
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

3759
	return_io(s.return_bi);
3760

3761
	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3762 3763
}

3764
static void raid5_activate_delayed(struct r5conf *conf)
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3775
			list_add_tail(&sh->lru, &conf->hold_list);
3776
		}
N
NeilBrown 已提交
3777
	}
3778 3779
}

3780
static void activate_bit_delay(struct r5conf *conf)
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

3794
int md_raid5_congested(struct mddev *mddev, int bits)
3795
{
3796
	struct r5conf *conf = mddev->private;
3797 3798 3799 3800

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3801

3802 3803 3804 3805 3806 3807 3808 3809 3810
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3811 3812 3813 3814
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
3815
	struct mddev *mddev = data;
N
NeilBrown 已提交
3816 3817 3818 3819

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3820

3821 3822 3823
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3824 3825 3826
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3827
{
3828
	struct mddev *mddev = q->queuedata;
3829
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3830
	int max;
3831
	unsigned int chunk_sectors = mddev->chunk_sectors;
3832
	unsigned int bio_sectors = bvm->bi_size >> 9;
3833

3834
	if ((bvm->bi_rw & 1) == WRITE)
3835 3836
		return biovec->bv_len; /* always allow writes to be mergeable */

3837 3838
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3839 3840 3841 3842 3843 3844 3845 3846
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3847

3848
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3849 3850
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3851
	unsigned int chunk_sectors = mddev->chunk_sectors;
3852 3853
	unsigned int bio_sectors = bio->bi_size >> 9;

3854 3855
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3856 3857 3858 3859
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3860 3861 3862 3863
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
3864
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


3878
static struct bio *remove_bio_from_retry(struct r5conf *conf)
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3889
		conf->retry_read_aligned_list = bi->bi_next;
3890
		bi->bi_next = NULL;
3891 3892 3893 3894
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3895
		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3896 3897 3898 3899 3900 3901
	}

	return bi;
}


3902 3903 3904 3905 3906 3907
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3908
static void raid5_align_endio(struct bio *bi, int error)
3909 3910
{
	struct bio* raid_bi  = bi->bi_private;
3911
	struct mddev *mddev;
3912
	struct r5conf *conf;
3913
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3914
	struct md_rdev *rdev;
3915

3916
	bio_put(bi);
3917 3918 3919

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3920 3921
	mddev = rdev->mddev;
	conf = mddev->private;
3922 3923 3924 3925

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3926 3927
		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
					 raid_bi, 0);
3928
		bio_endio(raid_bi, 0);
3929 3930
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3931
		return;
3932 3933 3934
	}


3935
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3936 3937

	add_bio_to_retry(raid_bi, conf);
3938 3939
}

3940 3941
static int bio_fits_rdev(struct bio *bi)
{
3942
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3943

3944
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3945 3946
		return 0;
	blk_recount_segments(q, bi);
3947
	if (bi->bi_phys_segments > queue_max_segments(q))
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3960
static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3961
{
3962
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
3963
	int dd_idx;
3964
	struct bio* align_bi;
3965
	struct md_rdev *rdev;
3966
	sector_t end_sector;
3967 3968

	if (!in_chunk_boundary(mddev, raid_bio)) {
3969
		pr_debug("chunk_aligned_read : non aligned\n");
3970 3971 3972
		return 0;
	}
	/*
3973
	 * use bio_clone_mddev to make a copy of the bio
3974
	 */
3975
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3987 3988
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3989
						    &dd_idx, NULL);
3990

3991
	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3992
	rcu_read_lock();
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
	if (!rdev || test_bit(Faulty, &rdev->flags) ||
	    rdev->recovery_offset < end_sector) {
		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
		if (rdev &&
		    (test_bit(Faulty, &rdev->flags) ||
		    !(test_bit(In_sync, &rdev->flags) ||
		      rdev->recovery_offset >= end_sector)))
			rdev = NULL;
	}
	if (rdev) {
4004 4005 4006
		sector_t first_bad;
		int bad_sectors;

4007 4008
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
4009 4010 4011 4012
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);

4013 4014 4015 4016
		if (!bio_fits_rdev(align_bi) ||
		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
				&first_bad, &bad_sectors)) {
			/* too big in some way, or has a known bad block */
4017 4018 4019 4020 4021
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

4022 4023 4024
		/* No reshape active, so we can trust rdev->data_offset */
		align_bi->bi_sector += rdev->data_offset;

4025 4026 4027
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
4028
				    conf->device_lock);
4029 4030 4031
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

4032 4033 4034 4035
		if (mddev->gendisk)
			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
					      align_bi, disk_devt(mddev->gendisk),
					      raid_bio->bi_sector);
4036 4037 4038 4039
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
4040
		bio_put(align_bi);
4041 4042 4043 4044
		return 0;
	}
}

4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
4055
static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
4097

4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
struct raid5_plug_cb {
	struct blk_plug_cb	cb;
	struct list_head	list;
};

static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
{
	struct raid5_plug_cb *cb = container_of(
		blk_cb, struct raid5_plug_cb, cb);
	struct stripe_head *sh;
	struct mddev *mddev = cb->cb.data;
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
4110
	int cnt = 0;
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124

	if (cb->list.next && !list_empty(&cb->list)) {
		spin_lock_irq(&conf->device_lock);
		while (!list_empty(&cb->list)) {
			sh = list_first_entry(&cb->list, struct stripe_head, lru);
			list_del_init(&sh->lru);
			/*
			 * avoid race release_stripe_plug() sees
			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
			 * is still in our list
			 */
			smp_mb__before_clear_bit();
			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
			__release_stripe(conf, sh);
N
NeilBrown 已提交
4125
			cnt++;
4126 4127 4128
		}
		spin_unlock_irq(&conf->device_lock);
	}
4129 4130
	if (mddev->queue)
		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
	kfree(cb);
}

static void release_stripe_plug(struct mddev *mddev,
				struct stripe_head *sh)
{
	struct blk_plug_cb *blk_cb = blk_check_plugged(
		raid5_unplug, mddev,
		sizeof(struct raid5_plug_cb));
	struct raid5_plug_cb *cb;

	if (!blk_cb) {
		release_stripe(sh);
		return;
	}

	cb = container_of(blk_cb, struct raid5_plug_cb, cb);

	if (cb->list.next == NULL)
		INIT_LIST_HEAD(&cb->list);

	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
		list_add_tail(&sh->lru, &cb->list);
	else
		release_stripe(sh);
}

S
Shaohua Li 已提交
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
static void make_discard_request(struct mddev *mddev, struct bio *bi)
{
	struct r5conf *conf = mddev->private;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
	int remaining;
	int stripe_sectors;

	if (mddev->reshape_position != MaxSector)
		/* Skip discard while reshape is happening */
		return;

	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);

	bi->bi_next = NULL;
	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */

	stripe_sectors = conf->chunk_sectors *
		(conf->raid_disks - conf->max_degraded);
	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
					       stripe_sectors);
	sector_div(last_sector, stripe_sectors);

	logical_sector *= conf->chunk_sectors;
	last_sector *= conf->chunk_sectors;

	for (; logical_sector < last_sector;
	     logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
		int d;
	again:
		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
		prepare_to_wait(&conf->wait_for_overlap, &w,
				TASK_UNINTERRUPTIBLE);
4193 4194 4195 4196 4197 4198 4199
		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
		if (test_bit(STRIPE_SYNCING, &sh->state)) {
			release_stripe(sh);
			schedule();
			goto again;
		}
		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
S
Shaohua Li 已提交
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
		spin_lock_irq(&sh->stripe_lock);
		for (d = 0; d < conf->raid_disks; d++) {
			if (d == sh->pd_idx || d == sh->qd_idx)
				continue;
			if (sh->dev[d].towrite || sh->dev[d].toread) {
				set_bit(R5_Overlap, &sh->dev[d].flags);
				spin_unlock_irq(&sh->stripe_lock);
				release_stripe(sh);
				schedule();
				goto again;
			}
		}
4212
		set_bit(STRIPE_DISCARD, &sh->state);
S
Shaohua Li 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
		finish_wait(&conf->wait_for_overlap, &w);
		for (d = 0; d < conf->raid_disks; d++) {
			if (d == sh->pd_idx || d == sh->qd_idx)
				continue;
			sh->dev[d].towrite = bi;
			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
			raid5_inc_bi_active_stripes(bi);
		}
		spin_unlock_irq(&sh->stripe_lock);
		if (conf->mddev->bitmap) {
			for (d = 0;
			     d < conf->raid_disks - conf->max_degraded;
			     d++)
				bitmap_startwrite(mddev->bitmap,
						  sh->sector,
						  STRIPE_SECTORS,
						  0);
			sh->bm_seq = conf->seq_flush + 1;
			set_bit(STRIPE_BIT_DELAY, &sh->state);
		}

		set_bit(STRIPE_HANDLE, &sh->state);
		clear_bit(STRIPE_DELAYED, &sh->state);
		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			atomic_inc(&conf->preread_active_stripes);
		release_stripe_plug(mddev, sh);
	}

	remaining = raid5_dec_bi_active_stripes(bi);
	if (remaining == 0) {
		md_write_end(mddev);
		bio_endio(bi, 0);
	}
}

4248
static void make_request(struct mddev *mddev, struct bio * bi)
L
Linus Torvalds 已提交
4249
{
4250
	struct r5conf *conf = mddev->private;
4251
	int dd_idx;
L
Linus Torvalds 已提交
4252 4253 4254
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
4255
	const int rw = bio_data_dir(bi);
4256
	int remaining;
L
Linus Torvalds 已提交
4257

T
Tejun Heo 已提交
4258 4259
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
4260
		return;
4261 4262
	}

4263
	md_write_start(mddev, bi);
4264

4265
	if (rw == READ &&
4266
	     mddev->reshape_position == MaxSector &&
4267
	     chunk_aligned_read(mddev,bi))
4268
		return;
4269

S
Shaohua Li 已提交
4270 4271 4272 4273 4274
	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
		make_discard_request(mddev, bi);
		return;
	}

L
Linus Torvalds 已提交
4275 4276 4277 4278
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4279

L
Linus Torvalds 已提交
4280 4281
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
4282
		int previous;
4283

4284
	retry:
4285
		previous = 0;
4286
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4287
		if (unlikely(conf->reshape_progress != MaxSector)) {
4288
			/* spinlock is needed as reshape_progress may be
4289 4290
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
4291
			 * Of course reshape_progress could change after
4292 4293 4294 4295
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
4296
			spin_lock_irq(&conf->device_lock);
4297
			if (mddev->reshape_backwards
4298 4299
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
4300 4301
				previous = 1;
			} else {
4302
				if (mddev->reshape_backwards
4303 4304
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
4305 4306 4307 4308 4309
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
4310 4311
			spin_unlock_irq(&conf->device_lock);
		}
4312

4313 4314
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
4315
						  &dd_idx, NULL);
4316
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
4317 4318 4319
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

4320
		sh = get_active_stripe(conf, new_sector, previous,
4321
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
4322
		if (sh) {
4323
			if (unlikely(previous)) {
4324
				/* expansion might have moved on while waiting for a
4325 4326 4327 4328 4329 4330
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4331 4332 4333
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4334
				if (mddev->reshape_backwards
4335 4336
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4337 4338 4339 4340 4341
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4342
					schedule();
4343 4344 4345
					goto retry;
				}
			}
4346

4347
			if (rw == WRITE &&
4348
			    logical_sector >= mddev->suspend_lo &&
4349 4350
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4361 4362
				goto retry;
			}
4363 4364

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4365
			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4366 4367
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4368 4369
				 * and wait a while
				 */
N
NeilBrown 已提交
4370
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
4371 4372 4373 4374 4375
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4376 4377
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
4378
			if ((bi->bi_rw & REQ_SYNC) &&
4379 4380
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
4381
			release_stripe_plug(mddev, sh);
L
Linus Torvalds 已提交
4382 4383 4384 4385 4386 4387 4388
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
	}
4389

4390
	remaining = raid5_dec_bi_active_stripes(bi);
4391
	if (remaining == 0) {
L
Linus Torvalds 已提交
4392

4393
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4394
			md_write_end(mddev);
4395

4396 4397
		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
					 bi, 0);
4398
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4399 4400 4401
	}
}

4402
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
D
Dan Williams 已提交
4403

4404
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4405
{
4406 4407 4408 4409 4410 4411 4412 4413 4414
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4415
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4416
	struct stripe_head *sh;
4417
	sector_t first_sector, last_sector;
4418 4419 4420
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4421 4422
	int i;
	int dd_idx;
4423
	sector_t writepos, readpos, safepos;
4424
	sector_t stripe_addr;
4425
	int reshape_sectors;
4426
	struct list_head stripes;
4427

4428 4429
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
4430
		if (mddev->reshape_backwards &&
4431 4432 4433
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4434
		} else if (!mddev->reshape_backwards &&
4435 4436
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4437
		sector_div(sector_nr, new_data_disks);
4438
		if (sector_nr) {
4439 4440
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4441 4442 4443
			*skipped = 1;
			return sector_nr;
		}
4444 4445
	}

4446 4447 4448 4449
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4450 4451
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4452
	else
4453
		reshape_sectors = mddev->chunk_sectors;
4454

4455 4456 4457 4458 4459
	/* We update the metadata at least every 10 seconds, or when
	 * the data about to be copied would over-write the source of
	 * the data at the front of the range.  i.e. one new_stripe
	 * along from reshape_progress new_maps to after where
	 * reshape_safe old_maps to
4460
	 */
4461
	writepos = conf->reshape_progress;
4462
	sector_div(writepos, new_data_disks);
4463 4464
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4465
	safepos = conf->reshape_safe;
4466
	sector_div(safepos, data_disks);
4467
	if (mddev->reshape_backwards) {
4468
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4469
		readpos += reshape_sectors;
4470
		safepos += reshape_sectors;
4471
	} else {
4472
		writepos += reshape_sectors;
4473 4474
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4475
	}
4476

4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
	/* Having calculated the 'writepos' possibly use it
	 * to set 'stripe_addr' which is where we will write to.
	 */
	if (mddev->reshape_backwards) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
		       != sector_nr);
	} else {
		BUG_ON(writepos != sector_nr + reshape_sectors);
		stripe_addr = sector_nr;
	}

4492 4493 4494 4495
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
4496 4497 4498 4499
	 * If there is a min_offset_diff, these are adjusted either by
	 * increasing the safepos/readpos if diff is negative, or
	 * increasing writepos if diff is positive.
	 * If 'readpos' is then behind 'writepos', there is no way that we can
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4512 4513 4514 4515 4516 4517
	if (conf->min_offset_diff < 0) {
		safepos += -conf->min_offset_diff;
		readpos += -conf->min_offset_diff;
	} else
		writepos += conf->min_offset_diff;

4518
	if ((mddev->reshape_backwards
4519 4520 4521
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4522 4523 4524
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4525
		mddev->reshape_position = conf->reshape_progress;
4526
		mddev->curr_resync_completed = sector_nr;
4527
		conf->reshape_checkpoint = jiffies;
4528
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4529
		md_wakeup_thread(mddev->thread);
4530
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4531 4532
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4533
		conf->reshape_safe = mddev->reshape_position;
4534 4535
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4536
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4537 4538
	}

4539
	INIT_LIST_HEAD(&stripes);
4540
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4541
		int j;
4542
		int skipped_disk = 0;
4543
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4544 4545 4546 4547 4548 4549 4550 4551 4552
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4553
			if (conf->level == 6 &&
4554
			    j == sh->qd_idx)
4555
				continue;
4556
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4557
			if (s < raid5_size(mddev, 0, 0)) {
4558
				skipped_disk = 1;
4559 4560 4561 4562 4563 4564
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4565
		if (!skipped_disk) {
4566 4567 4568
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4569
		list_add(&sh->lru, &stripes);
4570 4571
	}
	spin_lock_irq(&conf->device_lock);
4572
	if (mddev->reshape_backwards)
4573
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4574
	else
4575
		conf->reshape_progress += reshape_sectors * new_data_disks;
4576 4577 4578 4579 4580 4581 4582
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4583
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4584
				     1, &dd_idx, NULL);
4585
	last_sector =
4586
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4587
					    * new_data_disks - 1),
4588
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4589 4590
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4591
	while (first_sector <= last_sector) {
4592
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4593 4594 4595 4596 4597
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4598 4599 4600 4601 4602 4603 4604 4605
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4606 4607 4608
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4609
	sector_nr += reshape_sectors;
4610 4611
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4612 4613 4614
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4615
		mddev->reshape_position = conf->reshape_progress;
4616
		mddev->curr_resync_completed = sector_nr;
4617
		conf->reshape_checkpoint = jiffies;
4618 4619 4620 4621 4622 4623
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4624
		conf->reshape_safe = mddev->reshape_position;
4625 4626
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4627
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4628
	}
4629
	return reshape_sectors;
4630 4631 4632
}

/* FIXME go_faster isn't used */
4633
static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4634
{
4635
	struct r5conf *conf = mddev->private;
4636
	struct stripe_head *sh;
A
Andre Noll 已提交
4637
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
4638
	sector_t sync_blocks;
4639 4640
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4641

4642
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4643
		/* just being told to finish up .. nothing much to do */
4644

4645 4646 4647 4648
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4649 4650 4651 4652

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4653
		else /* completed sync */
4654 4655 4656
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4657 4658
		return 0;
	}
4659

4660 4661 4662
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4663 4664
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4665

4666 4667 4668 4669 4670 4671
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4672
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4673 4674 4675
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4676
	if (mddev->degraded >= conf->max_degraded &&
4677
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4678
		sector_t rv = mddev->dev_sectors - sector_nr;
4679
		*skipped = 1;
L
Linus Torvalds 已提交
4680 4681
		return rv;
	}
4682 4683 4684 4685
	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
	    !conf->fullsync &&
	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
	    sync_blocks >= STRIPE_SECTORS) {
4686 4687 4688 4689 4690
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4691

N
NeilBrown 已提交
4692 4693
	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4694
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4695
	if (sh == NULL) {
4696
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4697
		/* make sure we don't swamp the stripe cache if someone else
4698
		 * is trying to get access
L
Linus Torvalds 已提交
4699
		 */
4700
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4701
	}
4702 4703 4704 4705
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4706
	for (i = 0; i < conf->raid_disks; i++)
4707 4708 4709 4710 4711
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

4712
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
L
Linus Torvalds 已提交
4713

4714
	handle_stripe(sh);
L
Linus Torvalds 已提交
4715 4716 4717 4718 4719
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4720
static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4733
	int dd_idx;
4734 4735 4736 4737 4738 4739
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4740
	sector = raid5_compute_sector(conf, logical_sector,
4741
				      0, &dd_idx, NULL);
4742 4743 4744
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4745 4746 4747
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4748

4749
		if (scnt < raid5_bi_processed_stripes(raid_bio))
4750 4751 4752
			/* already done this stripe */
			continue;

4753
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4754 4755 4756

		if (!sh) {
			/* failed to get a stripe - must wait */
4757
			raid5_set_bi_processed_stripes(raid_bio, scnt);
4758 4759 4760 4761
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4762 4763
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4764
			raid5_set_bi_processed_stripes(raid_bio, scnt);
4765 4766 4767 4768
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4769
		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4770
		handle_stripe(sh);
4771 4772 4773
		release_stripe(sh);
		handled++;
	}
4774
	remaining = raid5_dec_bi_active_stripes(raid_bio);
4775 4776 4777
	if (remaining == 0) {
		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
					 raid_bio, 0);
4778
		bio_endio(raid_bio, 0);
4779
	}
4780 4781 4782 4783 4784
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}

4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
#define MAX_STRIPE_BATCH 8
static int handle_active_stripes(struct r5conf *conf)
{
	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
	int i, batch_size = 0;

	while (batch_size < MAX_STRIPE_BATCH &&
			(sh = __get_priority_stripe(conf)) != NULL)
		batch[batch_size++] = sh;

	if (batch_size == 0)
		return batch_size;
	spin_unlock_irq(&conf->device_lock);

	for (i = 0; i < batch_size; i++)
		handle_stripe(batch[i]);

	cond_resched();

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < batch_size; i++)
		__release_stripe(conf, batch[i]);
	return batch_size;
}
4809

L
Linus Torvalds 已提交
4810 4811 4812 4813 4814 4815 4816
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
S
Shaohua Li 已提交
4817
static void raid5d(struct md_thread *thread)
L
Linus Torvalds 已提交
4818
{
S
Shaohua Li 已提交
4819
	struct mddev *mddev = thread->mddev;
4820
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4821
	int handled;
4822
	struct blk_plug plug;
L
Linus Torvalds 已提交
4823

4824
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4825 4826 4827

	md_check_recovery(mddev);

4828
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4829 4830 4831
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4832
		struct bio *bio;
4833
		int batch_size;
L
Linus Torvalds 已提交
4834

4835
		if (
4836 4837 4838
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
4839
			spin_unlock_irq(&conf->device_lock);
4840
			bitmap_unplug(mddev->bitmap);
4841
			spin_lock_irq(&conf->device_lock);
4842
			conf->seq_write = conf->seq_flush;
4843 4844
			activate_bit_delay(conf);
		}
4845
		raid5_activate_delayed(conf);
4846

4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4857 4858
		batch_size = handle_active_stripes(conf);
		if (!batch_size)
L
Linus Torvalds 已提交
4859
			break;
4860
		handled += batch_size;
L
Linus Torvalds 已提交
4861

4862 4863
		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
			spin_unlock_irq(&conf->device_lock);
4864
			md_check_recovery(mddev);
4865 4866
			spin_lock_irq(&conf->device_lock);
		}
L
Linus Torvalds 已提交
4867
	}
4868
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4869 4870 4871

	spin_unlock_irq(&conf->device_lock);

4872
	async_tx_issue_pending_all();
4873
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4874

4875
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4876 4877
}

4878
static ssize_t
4879
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4880
{
4881
	struct r5conf *conf = mddev->private;
4882 4883 4884 4885
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4886 4887
}

4888
int
4889
raid5_set_cache_size(struct mddev *mddev, int size)
4890
{
4891
	struct r5conf *conf = mddev->private;
4892 4893
	int err;

4894
	if (size <= 16 || size > 32768)
4895
		return -EINVAL;
4896
	while (size < conf->max_nr_stripes) {
4897 4898 4899 4900 4901
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4902 4903 4904
	err = md_allow_write(mddev);
	if (err)
		return err;
4905
	while (size > conf->max_nr_stripes) {
4906 4907 4908 4909
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4910 4911 4912 4913 4914
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
4915
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4916
{
4917
	struct r5conf *conf = mddev->private;
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4931 4932
	return len;
}
4933

4934 4935 4936 4937
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4938

4939
static ssize_t
4940
raid5_show_preread_threshold(struct mddev *mddev, char *page)
4941
{
4942
	struct r5conf *conf = mddev->private;
4943 4944 4945 4946 4947 4948 4949
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
4950
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4951
{
4952
	struct r5conf *conf = mddev->private;
4953
	unsigned long new;
4954 4955 4956 4957 4958
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4959
	if (strict_strtoul(page, 10, &new))
4960
		return -EINVAL;
4961
	if (new > conf->max_nr_stripes)
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4973
static ssize_t
4974
stripe_cache_active_show(struct mddev *mddev, char *page)
4975
{
4976
	struct r5conf *conf = mddev->private;
4977 4978 4979 4980
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4981 4982
}

4983 4984
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4985

4986
static struct attribute *raid5_attrs[] =  {
4987 4988
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4989
	&raid5_preread_bypass_threshold.attr,
4990 4991
	NULL,
};
4992 4993 4994
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4995 4996
};

4997
static sector_t
4998
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4999
{
5000
	struct r5conf *conf = mddev->private;
5001 5002 5003

	if (!sectors)
		sectors = mddev->dev_sectors;
5004
	if (!raid_disks)
5005
		/* size is defined by the smallest of previous and new size */
5006
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5007

5008
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5009
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5010 5011 5012
	return sectors * (raid_disks - conf->max_degraded);
}

5013
static void raid5_free_percpu(struct r5conf *conf)
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
5025
		kfree(percpu->scribble);
5026 5027 5028 5029 5030 5031 5032 5033 5034
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

5035
static void free_conf(struct r5conf *conf)
5036 5037
{
	shrink_stripes(conf);
5038
	raid5_free_percpu(conf);
5039 5040 5041 5042 5043
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

5044 5045 5046 5047
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
5048
	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5049 5050 5051 5052 5053 5054
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5055
		if (conf->level == 6 && !percpu->spare_page)
5056
			percpu->spare_page = alloc_page(GFP_KERNEL);
5057 5058 5059 5060 5061 5062 5063
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
5064 5065
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
5066
			return notifier_from_errno(-ENOMEM);
5067 5068 5069 5070 5071
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
5072
		kfree(percpu->scribble);
5073
		percpu->spare_page = NULL;
5074
		percpu->scribble = NULL;
5075 5076 5077 5078 5079 5080 5081 5082
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

5083
static int raid5_alloc_percpu(struct r5conf *conf)
5084 5085 5086
{
	unsigned long cpu;
	struct page *spare_page;
5087
	struct raid5_percpu __percpu *allcpus;
5088
	void *scribble;
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
5099 5100 5101 5102 5103 5104 5105 5106
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
5107
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5108
		if (!scribble) {
5109 5110 5111
			err = -ENOMEM;
			break;
		}
5112
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

5125
static struct r5conf *setup_conf(struct mddev *mddev)
L
Linus Torvalds 已提交
5126
{
5127
	struct r5conf *conf;
5128
	int raid_disk, memory, max_disks;
5129
	struct md_rdev *rdev;
L
Linus Torvalds 已提交
5130
	struct disk_info *disk;
5131
	char pers_name[6];
L
Linus Torvalds 已提交
5132

N
NeilBrown 已提交
5133 5134 5135
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
5136
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
5137 5138
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
5139
	}
N
NeilBrown 已提交
5140 5141 5142 5143
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
5144
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
5145 5146
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
5147
	}
N
NeilBrown 已提交
5148
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5149
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
5150 5151
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
5152 5153
	}

5154 5155 5156
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
5157 5158
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
5159
		return ERR_PTR(-EINVAL);
5160 5161
	}

5162
	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
N
NeilBrown 已提交
5163
	if (conf == NULL)
L
Linus Torvalds 已提交
5164
		goto abort;
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
5177
	conf->recovery_disabled = mddev->recovery_disabled - 1;
N
NeilBrown 已提交
5178 5179 5180 5181 5182

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
5183
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5184 5185
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
5186

5187
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5188 5189 5190
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
5191

L
Linus Torvalds 已提交
5192 5193
	conf->mddev = mddev;

5194
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
5195 5196
		goto abort;

5197 5198 5199 5200
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

5201
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
5202

N
NeilBrown 已提交
5203
	rdev_for_each(rdev, mddev) {
L
Linus Torvalds 已提交
5204
		raid_disk = rdev->raid_disk;
5205
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
5206 5207 5208 5209
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

5210 5211 5212 5213 5214 5215 5216 5217 5218
		if (test_bit(Replacement, &rdev->flags)) {
			if (disk->replacement)
				goto abort;
			disk->replacement = rdev;
		} else {
			if (disk->rdev)
				goto abort;
			disk->rdev = rdev;
		}
L
Linus Torvalds 已提交
5219

5220
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
5221
			char b[BDEVNAME_SIZE];
5222 5223 5224
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
5225
		} else if (rdev->saved_raid_disk != raid_disk)
5226 5227
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
5228 5229
	}

5230
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
5231
	conf->level = mddev->new_level;
5232 5233 5234 5235
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
5236
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
5237
	conf->max_nr_stripes = NR_STRIPES;
5238
	conf->reshape_progress = mddev->reshape_position;
5239
	if (conf->reshape_progress != MaxSector) {
5240
		conf->prev_chunk_sectors = mddev->chunk_sectors;
5241 5242
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
5243

N
NeilBrown 已提交
5244
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5245
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
5246 5247
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
5248 5249
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
5250 5251
		goto abort;
	} else
5252 5253
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
5254

5255 5256
	sprintf(pers_name, "raid%d", mddev->new_level);
	conf->thread = md_register_thread(raid5d, mddev, pers_name);
N
NeilBrown 已提交
5257 5258
	if (!conf->thread) {
		printk(KERN_ERR
5259
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
5260
		       mdname(mddev));
5261 5262
		goto abort;
	}
N
NeilBrown 已提交
5263 5264 5265 5266 5267

	return conf;

 abort:
	if (conf) {
5268
		free_conf(conf);
N
NeilBrown 已提交
5269 5270 5271 5272 5273
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

5301
static int run(struct mddev *mddev)
N
NeilBrown 已提交
5302
{
5303
	struct r5conf *conf;
5304
	int working_disks = 0;
5305
	int dirty_parity_disks = 0;
5306
	struct md_rdev *rdev;
5307
	sector_t reshape_offset = 0;
5308
	int i;
5309 5310
	long long min_offset_diff = 0;
	int first = 1;
N
NeilBrown 已提交
5311

5312
	if (mddev->recovery_cp != MaxSector)
5313
		printk(KERN_NOTICE "md/raid:%s: not clean"
5314 5315
		       " -- starting background reconstruction\n",
		       mdname(mddev));
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332

	rdev_for_each(rdev, mddev) {
		long long diff;
		if (rdev->raid_disk < 0)
			continue;
		diff = (rdev->new_data_offset - rdev->data_offset);
		if (first) {
			min_offset_diff = diff;
			first = 0;
		} else if (mddev->reshape_backwards &&
			 diff < min_offset_diff)
			min_offset_diff = diff;
		else if (!mddev->reshape_backwards &&
			 diff > min_offset_diff)
			min_offset_diff = diff;
	}

N
NeilBrown 已提交
5333 5334
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
		 * Difficulties arise if the stripe we would write to
		 * next is at or after the stripe we would read from next.
		 * For a reshape that changes the number of devices, this
		 * is only possible for a very short time, and mdadm makes
		 * sure that time appears to have past before assembling
		 * the array.  So we fail if that time hasn't passed.
		 * For a reshape that keeps the number of devices the same
		 * mdadm must be monitoring the reshape can keeping the
		 * critical areas read-only and backed up.  It will start
		 * the array in read-only mode, so we check for that.
N
NeilBrown 已提交
5345 5346 5347
		 */
		sector_t here_new, here_old;
		int old_disks;
5348
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
5349

5350
		if (mddev->new_level != mddev->level) {
5351
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
5362
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
5363
			       (mddev->raid_disks - max_degraded))) {
5364 5365
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
5366 5367
			return -EINVAL;
		}
5368
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
5369 5370
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
5371
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
5372 5373 5374
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
5375
		if (mddev->delta_disks == 0) {
5376 5377 5378 5379 5380 5381
			if ((here_new * mddev->new_chunk_sectors !=
			     here_old * mddev->chunk_sectors)) {
				printk(KERN_ERR "md/raid:%s: reshape position is"
				       " confused - aborting\n", mdname(mddev));
				return -EINVAL;
			}
5382
			/* We cannot be sure it is safe to start an in-place
5383
			 * reshape.  It is only safe if user-space is monitoring
5384 5385 5386 5387 5388
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
5389 5390 5391 5392 5393 5394 5395
			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
				/* not really in-place - so OK */;
			else if (mddev->ro == 0) {
				printk(KERN_ERR "md/raid:%s: in-place reshape "
				       "must be started in read-only mode "
				       "- aborting\n",
5396
				       mdname(mddev));
5397 5398
				return -EINVAL;
			}
5399
		} else if (mddev->reshape_backwards
5400
		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5401 5402
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
5403
		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
N
NeilBrown 已提交
5404
			/* Reading from the same stripe as writing to - bad */
5405 5406 5407
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
5408 5409
			return -EINVAL;
		}
5410 5411
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
5412 5413 5414 5415
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
5416
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
5417
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
5418
	}
N
NeilBrown 已提交
5419

5420 5421 5422 5423 5424
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
5425 5426 5427
	if (IS_ERR(conf))
		return PTR_ERR(conf);

5428
	conf->min_offset_diff = min_offset_diff;
N
NeilBrown 已提交
5429 5430 5431 5432
	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
	     i++) {
		rdev = conf->disks[i].rdev;
		if (!rdev && conf->disks[i].replacement) {
			/* The replacement is all we have yet */
			rdev = conf->disks[i].replacement;
			conf->disks[i].replacement = NULL;
			clear_bit(Replacement, &rdev->flags);
			conf->disks[i].rdev = rdev;
		}
		if (!rdev)
5444
			continue;
5445 5446 5447 5448 5449 5450 5451
		if (conf->disks[i].replacement &&
		    conf->reshape_progress != MaxSector) {
			/* replacements and reshape simply do not mix. */
			printk(KERN_ERR "md: cannot handle concurrent "
			       "replacement and reshape.\n");
			goto abort;
		}
5452
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5453
			working_disks++;
5454 5455
			continue;
		}
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5484

5485 5486 5487
	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5488
	mddev->degraded = calc_degraded(conf);
N
NeilBrown 已提交
5489

5490
	if (has_failed(conf)) {
5491
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5492
			" (%d/%d failed)\n",
5493
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5494 5495 5496
		goto abort;
	}

N
NeilBrown 已提交
5497
	/* device size must be a multiple of chunk size */
5498
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5499 5500
	mddev->resync_max_sectors = mddev->dev_sectors;

5501
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5502
	    mddev->recovery_cp != MaxSector) {
5503 5504
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5505 5506
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5507 5508 5509
			       mdname(mddev));
		else {
			printk(KERN_ERR
5510
			       "md/raid:%s: cannot start dirty degraded array.\n",
5511 5512 5513
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5514 5515 5516
	}

	if (mddev->degraded == 0)
5517 5518
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5519 5520
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5521
	else
5522 5523 5524 5525 5526
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5527 5528 5529

	print_raid5_conf(conf);

5530 5531
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5532 5533 5534 5535 5536 5537
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5538
							"reshape");
5539 5540
	}

L
Linus Torvalds 已提交
5541 5542

	/* Ok, everything is just fine now */
5543 5544
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
5545 5546
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5547
		printk(KERN_WARNING
5548
		       "raid5: failed to create sysfs attributes for %s\n",
5549
		       mdname(mddev));
5550
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5551

5552
	if (mddev->queue) {
5553
		int chunk_size;
S
Shaohua Li 已提交
5554
		bool discard_supported = true;
5555 5556 5557 5558 5559 5560 5561 5562 5563
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
5564

5565
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5566

N
NeilBrown 已提交
5567 5568
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5569

5570 5571 5572 5573
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
S
Shaohua Li 已提交
5574 5575 5576 5577 5578
		/*
		 * We can only discard a whole stripe. It doesn't make sense to
		 * discard data disk but write parity disk
		 */
		stripe = stripe * PAGE_SIZE;
5579 5580 5581 5582
		/* Round up to power of 2, as discard handling
		 * currently assumes that */
		while ((stripe-1) & stripe)
			stripe = (stripe | (stripe-1)) + 1;
S
Shaohua Li 已提交
5583 5584 5585 5586 5587 5588 5589
		mddev->queue->limits.discard_alignment = stripe;
		mddev->queue->limits.discard_granularity = stripe;
		/*
		 * unaligned part of discard request will be ignored, so can't
		 * guarantee discard_zerors_data
		 */
		mddev->queue->limits.discard_zeroes_data = 0;
5590

5591
		rdev_for_each(rdev, mddev) {
5592 5593
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
5594 5595
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->new_data_offset << 9);
S
Shaohua Li 已提交
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
			/*
			 * discard_zeroes_data is required, otherwise data
			 * could be lost. Consider a scenario: discard a stripe
			 * (the stripe could be inconsistent if
			 * discard_zeroes_data is 0); write one disk of the
			 * stripe (the stripe could be inconsistent again
			 * depending on which disks are used to calculate
			 * parity); the disk is broken; The stripe data of this
			 * disk is lost.
			 */
			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
			    !bdev_get_queue(rdev->bdev)->
						limits.discard_zeroes_data)
				discard_supported = false;
5610
		}
S
Shaohua Li 已提交
5611 5612 5613 5614 5615 5616 5617 5618 5619

		if (discard_supported &&
		   mddev->queue->limits.max_discard_sectors >= stripe &&
		   mddev->queue->limits.discard_granularity >= stripe)
			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
						mddev->queue);
		else
			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
						mddev->queue);
5620
	}
5621

L
Linus Torvalds 已提交
5622 5623
	return 0;
abort:
5624
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5625 5626
	print_raid5_conf(conf);
	free_conf(conf);
L
Linus Torvalds 已提交
5627
	mddev->private = NULL;
5628
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5629 5630 5631
	return -EIO;
}

5632
static int stop(struct mddev *mddev)
L
Linus Torvalds 已提交
5633
{
5634
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5635

5636
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5637 5638
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
5639
	free_conf(conf);
5640 5641
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5642 5643 5644
	return 0;
}

5645
static void status(struct seq_file *seq, struct mddev *mddev)
L
Linus Torvalds 已提交
5646
{
5647
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5648 5649
	int i;

5650 5651
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5652
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5653 5654 5655
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5656
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5657 5658 5659
	seq_printf (seq, "]");
}

5660
static void print_raid5_conf (struct r5conf *conf)
L
Linus Torvalds 已提交
5661 5662 5663 5664
{
	int i;
	struct disk_info *tmp;

5665
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5666 5667 5668 5669
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5670 5671 5672
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5673 5674 5675 5676 5677

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5678 5679 5680
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5681 5682 5683
	}
}

5684
static int raid5_spare_active(struct mddev *mddev)
L
Linus Torvalds 已提交
5685 5686
{
	int i;
5687
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5688
	struct disk_info *tmp;
5689 5690
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
5691 5692 5693

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
		if (tmp->replacement
		    && tmp->replacement->recovery_offset == MaxSector
		    && !test_bit(Faulty, &tmp->replacement->flags)
		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
			/* Replacement has just become active. */
			if (!tmp->rdev
			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
				count++;
			if (tmp->rdev) {
				/* Replaced device not technically faulty,
				 * but we need to be sure it gets removed
				 * and never re-added.
				 */
				set_bit(Faulty, &tmp->rdev->flags);
				sysfs_notify_dirent_safe(
					tmp->rdev->sysfs_state);
			}
			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
		} else if (tmp->rdev
5713
		    && tmp->rdev->recovery_offset == MaxSector
5714
		    && !test_bit(Faulty, &tmp->rdev->flags)
5715
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5716
			count++;
5717
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
5718 5719
		}
	}
5720
	spin_lock_irqsave(&conf->device_lock, flags);
5721
	mddev->degraded = calc_degraded(conf);
5722
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5723
	print_raid5_conf(conf);
5724
	return count;
L
Linus Torvalds 已提交
5725 5726
}

5727
static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5728
{
5729
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5730
	int err = 0;
5731
	int number = rdev->raid_disk;
5732
	struct md_rdev **rdevp;
L
Linus Torvalds 已提交
5733 5734 5735
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
	if (rdev == p->rdev)
		rdevp = &p->rdev;
	else if (rdev == p->replacement)
		rdevp = &p->replacement;
	else
		return 0;

	if (number >= conf->raid_disks &&
	    conf->reshape_progress == MaxSector)
		clear_bit(In_sync, &rdev->flags);

	if (test_bit(In_sync, &rdev->flags) ||
	    atomic_read(&rdev->nr_pending)) {
		err = -EBUSY;
		goto abort;
	}
	/* Only remove non-faulty devices if recovery
	 * isn't possible.
	 */
	if (!test_bit(Faulty, &rdev->flags) &&
	    mddev->recovery_disabled != conf->recovery_disabled &&
	    !has_failed(conf) &&
5758
	    (!p->replacement || p->replacement == rdev) &&
5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
	    number < conf->raid_disks) {
		err = -EBUSY;
		goto abort;
	}
	*rdevp = NULL;
	synchronize_rcu();
	if (atomic_read(&rdev->nr_pending)) {
		/* lost the race, try later */
		err = -EBUSY;
		*rdevp = rdev;
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
	} else if (p->replacement) {
		/* We must have just cleared 'rdev' */
		p->rdev = p->replacement;
		clear_bit(Replacement, &p->replacement->flags);
		smp_mb(); /* Make sure other CPUs may see both as identical
			   * but will never see neither - if they are careful
			   */
		p->replacement = NULL;
		clear_bit(WantReplacement, &rdev->flags);
	} else
		/* We might have just removed the Replacement as faulty-
		 * clear the bit just in case
		 */
		clear_bit(WantReplacement, &rdev->flags);
L
Linus Torvalds 已提交
5783 5784 5785 5786 5787 5788
abort:

	print_raid5_conf(conf);
	return err;
}

5789
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5790
{
5791
	struct r5conf *conf = mddev->private;
5792
	int err = -EEXIST;
L
Linus Torvalds 已提交
5793 5794
	int disk;
	struct disk_info *p;
5795 5796
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5797

5798 5799 5800
	if (mddev->recovery_disabled == conf->recovery_disabled)
		return -EBUSY;

N
NeilBrown 已提交
5801
	if (rdev->saved_raid_disk < 0 && has_failed(conf))
L
Linus Torvalds 已提交
5802
		/* no point adding a device */
5803
		return -EINVAL;
L
Linus Torvalds 已提交
5804

5805 5806
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5807 5808

	/*
5809 5810
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5811
	 */
5812
	if (rdev->saved_raid_disk >= 0 &&
5813
	    rdev->saved_raid_disk >= first &&
5814
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5815 5816 5817
		first = rdev->saved_raid_disk;

	for (disk = first; disk <= last; disk++) {
5818 5819
		p = conf->disks + disk;
		if (p->rdev == NULL) {
5820
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5821
			rdev->raid_disk = disk;
5822
			err = 0;
5823 5824
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5825
			rcu_assign_pointer(p->rdev, rdev);
5826
			goto out;
L
Linus Torvalds 已提交
5827
		}
5828 5829 5830
	}
	for (disk = first; disk <= last; disk++) {
		p = conf->disks + disk;
5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
		if (test_bit(WantReplacement, &p->rdev->flags) &&
		    p->replacement == NULL) {
			clear_bit(In_sync, &rdev->flags);
			set_bit(Replacement, &rdev->flags);
			rdev->raid_disk = disk;
			err = 0;
			conf->fullsync = 1;
			rcu_assign_pointer(p->replacement, rdev);
			break;
		}
	}
5842
out:
L
Linus Torvalds 已提交
5843
	print_raid5_conf(conf);
5844
	return err;
L
Linus Torvalds 已提交
5845 5846
}

5847
static int raid5_resize(struct mddev *mddev, sector_t sectors)
L
Linus Torvalds 已提交
5848 5849 5850 5851 5852 5853 5854 5855
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5856
	sector_t newsize;
5857
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5858 5859 5860
	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
	if (mddev->external_size &&
	    mddev->array_sectors > newsize)
D
Dan Williams 已提交
5861
		return -EINVAL;
5862 5863 5864 5865 5866 5867
	if (mddev->bitmap) {
		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
		if (ret)
			return ret;
	}
	md_set_array_sectors(mddev, newsize);
5868
	set_capacity(mddev->gendisk, mddev->array_sectors);
5869
	revalidate_disk(mddev->gendisk);
5870 5871
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
5872
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5873 5874
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5875
	mddev->dev_sectors = sectors;
5876
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5877 5878 5879
	return 0;
}

5880
static int check_stripe_cache(struct mddev *mddev)
5881 5882 5883 5884 5885 5886 5887 5888 5889
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
5890
	struct r5conf *conf = mddev->private;
5891 5892 5893 5894
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5895 5896
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5897 5898 5899 5900 5901 5902 5903
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5904
static int check_reshape(struct mddev *mddev)
5905
{
5906
	struct r5conf *conf = mddev->private;
5907

5908 5909
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5910
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5911
		return 0; /* nothing to do */
5912
	if (has_failed(conf))
5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5926

5927
	if (!check_stripe_cache(mddev))
5928 5929
		return -ENOSPC;

5930 5931
	return resize_stripes(conf, (conf->previous_raid_disks
				     + mddev->delta_disks));
5932 5933
}

5934
static int raid5_start_reshape(struct mddev *mddev)
5935
{
5936
	struct r5conf *conf = mddev->private;
5937
	struct md_rdev *rdev;
5938
	int spares = 0;
5939
	unsigned long flags;
5940

5941
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5942 5943
		return -EBUSY;

5944 5945 5946
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5947 5948 5949
	if (has_failed(conf))
		return -EINVAL;

5950
	rdev_for_each(rdev, mddev) {
5951 5952
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5953
			spares++;
5954
	}
5955

5956
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5957 5958 5959 5960 5961
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5962 5963 5964 5965 5966 5967
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5968
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5969 5970 5971 5972
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5973
	atomic_set(&conf->reshape_stripes, 0);
5974 5975
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5976
	conf->raid_disks += mddev->delta_disks;
5977 5978
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5979 5980
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5981 5982 5983 5984 5985
	conf->generation++;
	/* Code that selects data_offset needs to see the generation update
	 * if reshape_progress has been set - so a memory barrier needed.
	 */
	smp_mb();
5986
	if (mddev->reshape_backwards)
5987 5988 5989 5990
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5991 5992 5993 5994
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5995 5996 5997 5998
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5999
	 */
6000
	if (mddev->delta_disks >= 0) {
N
NeilBrown 已提交
6001
		rdev_for_each(rdev, mddev)
6002 6003 6004 6005
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
6006
					    >= conf->previous_raid_disks)
6007
						set_bit(In_sync, &rdev->flags);
6008
					else
6009
						rdev->recovery_offset = 0;
6010 6011

					if (sysfs_link_rdev(mddev, rdev))
6012
						/* Failure here is OK */;
6013
				}
6014 6015 6016 6017 6018
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
			}
6019

6020 6021 6022 6023
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
6024
		spin_lock_irqsave(&conf->device_lock, flags);
6025
		mddev->degraded = calc_degraded(conf);
6026 6027
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
6028
	mddev->raid_disks = conf->raid_disks;
6029
	mddev->reshape_position = conf->reshape_progress;
6030
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6031

6032 6033 6034 6035 6036
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6037
						"reshape");
6038 6039 6040 6041
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6042 6043 6044
		rdev_for_each(rdev, mddev)
			rdev->new_data_offset = rdev->data_offset;
		smp_wmb();
6045
		conf->reshape_progress = MaxSector;
6046
		mddev->reshape_position = MaxSector;
6047 6048 6049
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
6050
	conf->reshape_checkpoint = jiffies;
6051 6052 6053 6054 6055
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

6056 6057 6058
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
6059
static void end_reshape(struct r5conf *conf)
6060 6061
{

6062
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6063
		struct md_rdev *rdev;
6064 6065

		spin_lock_irq(&conf->device_lock);
6066
		conf->previous_raid_disks = conf->raid_disks;
6067 6068 6069
		rdev_for_each(rdev, conf->mddev)
			rdev->data_offset = rdev->new_data_offset;
		smp_wmb();
6070
		conf->reshape_progress = MaxSector;
6071
		spin_unlock_irq(&conf->device_lock);
6072
		wake_up(&conf->wait_for_overlap);
6073 6074 6075 6076

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
6077
		if (conf->mddev->queue) {
6078
			int data_disks = conf->raid_disks - conf->max_degraded;
6079
			int stripe = data_disks * ((conf->chunk_sectors << 9)
6080
						   / PAGE_SIZE);
6081 6082 6083
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
6084 6085 6086
	}
}

6087 6088 6089
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
6090
static void raid5_finish_reshape(struct mddev *mddev)
6091
{
6092
	struct r5conf *conf = mddev->private;
6093 6094 6095

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

6096 6097 6098
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
6099
			revalidate_disk(mddev->gendisk);
6100 6101
		} else {
			int d;
6102 6103 6104
			spin_lock_irq(&conf->device_lock);
			mddev->degraded = calc_degraded(conf);
			spin_unlock_irq(&conf->device_lock);
6105 6106
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
6107
			     d++) {
6108
				struct md_rdev *rdev = conf->disks[d].rdev;
6109 6110 6111 6112 6113
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
				rdev = conf->disks[d].replacement;
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
6114
			}
6115
		}
6116
		mddev->layout = conf->algorithm;
6117
		mddev->chunk_sectors = conf->chunk_sectors;
6118 6119
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
6120
		mddev->reshape_backwards = 0;
6121 6122 6123
	}
}

6124
static void raid5_quiesce(struct mddev *mddev, int state)
6125
{
6126
	struct r5conf *conf = mddev->private;
6127 6128

	switch(state) {
6129 6130 6131 6132
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

6133 6134
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
6135 6136 6137 6138
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
6139
		wait_event_lock_irq(conf->wait_for_stripe,
6140 6141
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
6142
				    conf->device_lock);
6143
		conf->quiesce = 1;
6144
		spin_unlock_irq(&conf->device_lock);
6145 6146
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
6147 6148 6149 6150 6151 6152
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
6153
		wake_up(&conf->wait_for_overlap);
6154 6155 6156 6157
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
6158

6159

6160
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6161
{
6162
	struct r0conf *raid0_conf = mddev->private;
6163
	sector_t sectors;
6164

D
Dan Williams 已提交
6165
	/* for raid0 takeover only one zone is supported */
6166
	if (raid0_conf->nr_strip_zones > 1) {
6167 6168
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
6169 6170 6171
		return ERR_PTR(-EINVAL);
	}

6172 6173
	sectors = raid0_conf->strip_zone[0].zone_end;
	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6174
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
6175
	mddev->new_level = level;
6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


6187
static void *raid5_takeover_raid1(struct mddev *mddev)
6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6209
	mddev->new_chunk_sectors = chunksect;
6210 6211 6212 6213

	return setup_conf(mddev);
}

6214
static void *raid5_takeover_raid6(struct mddev *mddev)
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

6247

6248
static int raid5_check_reshape(struct mddev *mddev)
6249
{
6250 6251 6252 6253
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
6254
	 */
6255
	struct r5conf *conf = mddev->private;
6256
	int new_chunk = mddev->new_chunk_sectors;
6257

6258
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6259 6260
		return -EINVAL;
	if (new_chunk > 0) {
6261
		if (!is_power_of_2(new_chunk))
6262
			return -EINVAL;
6263
		if (new_chunk < (PAGE_SIZE>>9))
6264
			return -EINVAL;
6265
		if (mddev->array_sectors & (new_chunk-1))
6266 6267 6268 6269 6270 6271
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

6272
	if (mddev->raid_disks == 2) {
6273 6274 6275 6276
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
6277 6278
		}
		if (new_chunk > 0) {
6279 6280
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
6281 6282 6283
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
6284
	}
6285
	return check_reshape(mddev);
6286 6287
}

6288
static int raid6_check_reshape(struct mddev *mddev)
6289
{
6290
	int new_chunk = mddev->new_chunk_sectors;
6291

6292
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6293
		return -EINVAL;
6294
	if (new_chunk > 0) {
6295
		if (!is_power_of_2(new_chunk))
6296
			return -EINVAL;
6297
		if (new_chunk < (PAGE_SIZE >> 9))
6298
			return -EINVAL;
6299
		if (mddev->array_sectors & (new_chunk-1))
6300 6301
			/* not factor of array size */
			return -EINVAL;
6302
	}
6303 6304

	/* They look valid */
6305
	return check_reshape(mddev);
6306 6307
}

6308
static void *raid5_takeover(struct mddev *mddev)
6309 6310
{
	/* raid5 can take over:
D
Dan Williams 已提交
6311
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6312 6313 6314 6315
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
6316 6317
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
6318 6319
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
6320 6321 6322 6323 6324
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
6325 6326
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
6327 6328 6329 6330

	return ERR_PTR(-EINVAL);
}

6331
static void *raid4_takeover(struct mddev *mddev)
6332
{
D
Dan Williams 已提交
6333 6334 6335
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
6336
	 */
D
Dan Williams 已提交
6337 6338
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
6339 6340 6341 6342 6343 6344 6345 6346
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
6347

6348
static struct md_personality raid5_personality;
6349

6350
static void *raid6_takeover(struct mddev *mddev)
6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


6397
static struct md_personality raid6_personality =
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6412
	.size		= raid5_size,
6413
	.check_reshape	= raid6_check_reshape,
6414
	.start_reshape  = raid5_start_reshape,
6415
	.finish_reshape = raid5_finish_reshape,
6416
	.quiesce	= raid5_quiesce,
6417
	.takeover	= raid6_takeover,
6418
};
6419
static struct md_personality raid5_personality =
L
Linus Torvalds 已提交
6420 6421
{
	.name		= "raid5",
6422
	.level		= 5,
L
Linus Torvalds 已提交
6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6434
	.size		= raid5_size,
6435 6436
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6437
	.finish_reshape = raid5_finish_reshape,
6438
	.quiesce	= raid5_quiesce,
6439
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
6440 6441
};

6442
static struct md_personality raid4_personality =
L
Linus Torvalds 已提交
6443
{
6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6457
	.size		= raid5_size,
6458 6459
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6460
	.finish_reshape = raid5_finish_reshape,
6461
	.quiesce	= raid5_quiesce,
6462
	.takeover	= raid4_takeover,
6463 6464 6465 6466
};

static int __init raid5_init(void)
{
6467
	register_md_personality(&raid6_personality);
6468 6469 6470
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
6471 6472
}

6473
static void raid5_exit(void)
L
Linus Torvalds 已提交
6474
{
6475
	unregister_md_personality(&raid6_personality);
6476 6477
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
6478 6479 6480 6481 6482
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
6483
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
6484
MODULE_ALIAS("md-personality-4"); /* RAID5 */
6485 6486
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
6487 6488
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
6489 6490 6491 6492 6493 6494 6495
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");