raid5.c 157.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include <linux/slab.h>
54
#include <linux/ratelimit.h>
55
#include "md.h"
56
#include "raid5.h"
57
#include "raid0.h"
58
#include "bitmap.h"
59

L
Linus Torvalds 已提交
60 61 62 63 64 65 66 67 68
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
69
#define BYPASS_THRESHOLD	1
70
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
71 72
#define HASH_MASK		(NR_HASH - 1)

73
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

95
#ifdef DEBUG
L
Linus Torvalds 已提交
96 97 98 99
#define inline
#define __inline__
#endif

100
/*
101 102
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 104 105
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
106
	return bio->bi_phys_segments & 0xffff;
107 108 109 110
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
111
	return (bio->bi_phys_segments >> 16) & 0xffff;
112 113 114 115 116 117 118 119 120 121 122 123 124
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
125
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126 127 128 129 130
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
131
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
132 133
}

134 135 136
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
137 138 139 140
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
141 142 143 144 145
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
146 147 148 149 150
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
151

152 153 154 155 156
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
157 158
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
159
{
160
	int slot = *count;
161

162
	if (sh->ddf_layout)
163
		(*count)++;
164
	if (idx == sh->pd_idx)
165
		return syndrome_disks;
166
	if (idx == sh->qd_idx)
167
		return syndrome_disks + 1;
168
	if (!sh->ddf_layout)
169
		(*count)++;
170 171 172
	return slot;
}

173 174 175 176 177 178 179 180
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
181
		bio_endio(bi, 0);
182 183 184 185
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
186 187
static void print_raid5_conf (raid5_conf_t *conf);

188 189 190 191 192 193 194
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

195
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
196 197
{
	if (atomic_dec_and_test(&sh->count)) {
198 199
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
200
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
N
NeilBrown 已提交
201
			if (test_bit(STRIPE_DELAYED, &sh->state))
L
Linus Torvalds 已提交
202
				list_add_tail(&sh->lru, &conf->delayed_list);
N
NeilBrown 已提交
203 204
			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
				   sh->bm_seq - conf->seq_write > 0)
205
				list_add_tail(&sh->lru, &conf->bitmap_list);
N
NeilBrown 已提交
206
			else {
207
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
208
				list_add_tail(&sh->lru, &conf->handle_list);
209
			}
L
Linus Torvalds 已提交
210 211
			md_wakeup_thread(conf->mddev->thread);
		} else {
212
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
213 214 215 216 217 218
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
219 220
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
221
				wake_up(&conf->wait_for_stripe);
222 223
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
224
			}
L
Linus Torvalds 已提交
225 226 227
		}
	}
}
228

L
Linus Torvalds 已提交
229 230 231 232
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
233

L
Linus Torvalds 已提交
234 235 236 237 238
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

239
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
240
{
241 242
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
243

244
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
245 246
}

247
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
248
{
249
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
250

251 252
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
253 254

	CHECK_DEVLOCK();
255
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

277
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
278 279 280
{
	struct page *p;
	int i;
281
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
282

283
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
284 285 286 287
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
288
		put_page(p);
L
Linus Torvalds 已提交
289 290 291
	}
}

292
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
293 294
{
	int i;
295
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
296

297
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
298 299 300 301 302 303 304 305 306 307
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

308
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309 310
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
311

312
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
313 314
{
	raid5_conf_t *conf = sh->raid_conf;
315
	int i;
L
Linus Torvalds 已提交
316

317 318
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319
	BUG_ON(stripe_operations_active(sh));
320

L
Linus Torvalds 已提交
321
	CHECK_DEVLOCK();
322
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
323 324 325
		(unsigned long long)sh->sector);

	remove_hash(sh);
326

327
	sh->generation = conf->generation - previous;
328
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
329
	sh->sector = sector;
330
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
331 332
	sh->state = 0;

333 334

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
335 336
		struct r5dev *dev = &sh->dev[i];

337
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
338
		    test_bit(R5_LOCKED, &dev->flags)) {
339
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
340
			       (unsigned long long)sh->sector, i, dev->toread,
341
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
342
			       test_bit(R5_LOCKED, &dev->flags));
343
			WARN_ON(1);
L
Linus Torvalds 已提交
344 345
		}
		dev->flags = 0;
346
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
347 348 349 350
	}
	insert_hash(conf, sh);
}

351 352
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
353 354
{
	struct stripe_head *sh;
355
	struct hlist_node *hn;
L
Linus Torvalds 已提交
356 357

	CHECK_DEVLOCK();
358
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
361
			return sh;
362
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
363 364 365
	return NULL;
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
static int has_failed(raid5_conf_t *conf)
{
	int degraded;
	int i;
	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

433 434
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
435
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
436 437 438
{
	struct stripe_head *sh;

439
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
440 441 442 443

	spin_lock_irq(&conf->device_lock);

	do {
444
		wait_event_lock_irq(conf->wait_for_stripe,
445
				    conf->quiesce == 0 || noquiesce,
446
				    conf->device_lock, /* nothing */);
447
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
448 449 450 451 452 453 454 455 456
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
457 458
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
459 460
						     || !conf->inactive_blocked),
						    conf->device_lock,
461
						    );
L
Linus Torvalds 已提交
462 463
				conf->inactive_blocked = 0;
			} else
464
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
465 466
		} else {
			if (atomic_read(&sh->count)) {
467 468
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
469 470 471
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
472 473
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
474 475
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
476 477 478 479 480 481 482 483 484 485 486
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

487 488 489 490
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
491

492
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
493 494 495 496 497 498 499 500 501 502
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
T
Tejun Heo 已提交
503 504 505 506 507 508
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
509 510 511 512 513 514 515
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
516
		if (rw & WRITE)
517 518 519 520 521 522 523 524 525 526 527 528 529
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
530
			if (s->syncing || s->expanding || s->expanded)
531 532
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
533 534
			set_bit(STRIPE_IO_STARTED, &sh->state);

535 536
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
537
				__func__, (unsigned long long)sh->sector,
538 539 540 541 542 543 544 545 546 547 548 549 550 551
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			generic_make_request(bi);
		} else {
552
			if (rw & WRITE)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
570
	struct async_submit_ctl submit;
D
Dan Williams 已提交
571
	enum async_tx_flags flags = 0;
572 573 574 575 576

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
577

D
Dan Williams 已提交
578 579 580 581
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

582
	bio_for_each_segment(bvl, bio, i) {
583
		int len = bvl->bv_len;
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
599 600
			b_offset += bvl->bv_offset;
			bio_page = bvl->bv_page;
601 602
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
603
						  b_offset, clen, &submit);
604 605
			else
				tx = async_memcpy(bio_page, page, b_offset,
606
						  page_offset, clen, &submit);
607
		}
608 609 610
		/* chain the operations */
		submit.depend_tx = tx;

611 612 613 614 615 616 617 618 619 620 621 622 623
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
624
	int i;
625

626
	pr_debug("%s: stripe %llu\n", __func__,
627 628 629
		(unsigned long long)sh->sector);

	/* clear completed biofills */
630
	spin_lock_irq(&conf->device_lock);
631 632 633 634
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
635 636
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
637
		 * !STRIPE_BIOFILL_RUN
638 639
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
640 641 642 643 644 645 646 647
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
648
				if (!raid5_dec_bi_phys_segments(rbi)) {
649 650 651 652 653 654 655
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
656 657
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
658 659 660

	return_io(return_bi);

661
	set_bit(STRIPE_HANDLE, &sh->state);
662 663 664 665 666 667 668
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
669
	struct async_submit_ctl submit;
670 671
	int i;

672
	pr_debug("%s: stripe %llu\n", __func__,
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
693 694
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
695 696
}

697
static void mark_target_uptodate(struct stripe_head *sh, int target)
698
{
699
	struct r5dev *tgt;
700

701 702
	if (target < 0)
		return;
703

704
	tgt = &sh->dev[target];
705 706 707
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
708 709
}

710
static void ops_complete_compute(void *stripe_head_ref)
711 712 713
{
	struct stripe_head *sh = stripe_head_ref;

714
	pr_debug("%s: stripe %llu\n", __func__,
715 716
		(unsigned long long)sh->sector);

717
	/* mark the computed target(s) as uptodate */
718
	mark_target_uptodate(sh, sh->ops.target);
719
	mark_target_uptodate(sh, sh->ops.target2);
720

721 722 723
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
724 725 726 727
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

728 729 730 731 732 733 734 735 736
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
737 738
{
	int disks = sh->disks;
739
	struct page **xor_srcs = percpu->scribble;
740 741 742 743 744
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
745
	struct async_submit_ctl submit;
746 747 748
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
749
		__func__, (unsigned long long)sh->sector, target);
750 751 752 753 754 755 756 757
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
758
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
759
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
760
	if (unlikely(count == 1))
761
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
762
	else
763
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
764 765 766 767

	return tx;
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
786
		srcs[i] = NULL;
787 788 789 790 791 792 793 794 795 796

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

797
	return syndrome_disks;
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
818
	else
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
835 836
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
837 838 839 840 841 842 843 844 845 846 847
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
848 849
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
850 851 852
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
853 854 855 856

	return tx;
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

878
	/* we need to open-code set_syndrome_sources to handle the
879 880 881
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
882
		blocks[i] = NULL;
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
909 910 911
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
912
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
932 933 934 935
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
936 937 938 939
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
940 941 942
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
943 944 945 946
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
947 948 949 950 951 952 953 954 955 956 957 958 959 960
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
961 962 963 964
	}
}


965 966 967 968
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

969
	pr_debug("%s: stripe %llu\n", __func__,
970 971 972 973
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
974 975
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
976 977
{
	int disks = sh->disks;
978
	struct page **xor_srcs = percpu->scribble;
979
	int count = 0, pd_idx = sh->pd_idx, i;
980
	struct async_submit_ctl submit;
981 982 983 984

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

985
	pr_debug("%s: stripe %llu\n", __func__,
986 987 988 989 990
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
991
		if (test_bit(R5_Wantdrain, &dev->flags))
992 993 994
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
995
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
996
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
997
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
998 999 1000 1001 1002

	return tx;
}

static struct dma_async_tx_descriptor *
1003
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1004 1005
{
	int disks = sh->disks;
1006
	int i;
1007

1008
	pr_debug("%s: stripe %llu\n", __func__,
1009 1010 1011 1012 1013 1014
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1015
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1016 1017
			struct bio *wbi;

1018
			spin_lock_irq(&sh->raid_conf->device_lock);
1019 1020 1021 1022
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
1023
			spin_unlock_irq(&sh->raid_conf->device_lock);
1024 1025 1026

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1027 1028
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1039
static void ops_complete_reconstruct(void *stripe_head_ref)
1040 1041
{
	struct stripe_head *sh = stripe_head_ref;
1042 1043 1044 1045
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
T
Tejun Heo 已提交
1046
	bool fua = false;
1047

1048
	pr_debug("%s: stripe %llu\n", __func__,
1049 1050
		(unsigned long long)sh->sector);

T
Tejun Heo 已提交
1051 1052 1053
	for (i = disks; i--; )
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);

1054 1055
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1056

T
Tejun Heo 已提交
1057
		if (dev->written || i == pd_idx || i == qd_idx) {
1058
			set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1059 1060 1061
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
		}
1062 1063
	}

1064 1065 1066 1067 1068 1069 1070 1071
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1072 1073 1074 1075 1076 1077

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1078 1079
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1080 1081
{
	int disks = sh->disks;
1082
	struct page **xor_srcs = percpu->scribble;
1083
	struct async_submit_ctl submit;
1084 1085
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1086
	int prexor = 0;
1087 1088
	unsigned long flags;

1089
	pr_debug("%s: stripe %llu\n", __func__,
1090 1091 1092 1093 1094
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1095 1096
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1117
	flags = ASYNC_TX_ACK |
1118 1119 1120 1121
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1122
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1123
			  to_addr_conv(sh, percpu));
1124 1125 1126 1127
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1128 1129
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1147 1148 1149 1150 1151 1152
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1153
	pr_debug("%s: stripe %llu\n", __func__,
1154 1155
		(unsigned long long)sh->sector);

1156
	sh->check_state = check_state_check_result;
1157 1158 1159 1160
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1161
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1162 1163
{
	int disks = sh->disks;
1164 1165 1166
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1167
	struct page **xor_srcs = percpu->scribble;
1168
	struct dma_async_tx_descriptor *tx;
1169
	struct async_submit_ctl submit;
1170 1171
	int count;
	int i;
1172

1173
	pr_debug("%s: stripe %llu\n", __func__,
1174 1175
		(unsigned long long)sh->sector);

1176 1177 1178
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1179
	for (i = disks; i--; ) {
1180 1181 1182
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1183 1184
	}

1185 1186
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1187
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1188
			   &sh->ops.zero_sum_result, &submit);
1189 1190

	atomic_inc(&sh->count);
1191 1192
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1193 1194
}

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1207 1208

	atomic_inc(&sh->count);
1209 1210 1211 1212
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1213 1214
}

1215
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1216 1217 1218
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1219
	raid5_conf_t *conf = sh->raid_conf;
1220
	int level = conf->level;
1221 1222
	struct raid5_percpu *percpu;
	unsigned long cpu;
1223

1224 1225
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1226
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1227 1228 1229 1230
		ops_run_biofill(sh);
		overlap_clear++;
	}

1231
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1242 1243
			async_tx_ack(tx);
	}
1244

1245
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1246
		tx = ops_run_prexor(sh, percpu, tx);
1247

1248
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1249
		tx = ops_run_biodrain(sh, tx);
1250 1251 1252
		overlap_clear++;
	}

1253 1254 1255 1256 1257 1258
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1270 1271 1272 1273 1274 1275 1276

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1277
	put_cpu();
1278 1279
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1310
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1311 1312
{
	struct stripe_head *sh;
N
Namhyung Kim 已提交
1313
	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1314 1315
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1316

1317
	sh->raid_conf = conf;
1318 1319 1320
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1321

1322 1323
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1337
	struct kmem_cache *sc;
1338
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1339

1340 1341 1342 1343 1344 1345 1346 1347
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1348 1349
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1350
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1351
			       0, 0, NULL);
L
Linus Torvalds 已提交
1352 1353 1354
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1355
	conf->pool_size = devs;
1356
	while (num--)
1357
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1358 1359 1360
			return 1;
	return 0;
}
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1412
	unsigned long cpu;
1413
	int err;
1414
	struct kmem_cache *sc;
1415 1416 1417 1418 1419
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1420 1421 1422
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1423

1424 1425 1426
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1427
			       0, 0, NULL);
1428 1429 1430 1431
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
N
Namhyung Kim 已提交
1432
		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1433 1434 1435 1436
		if (!nsh)
			break;

		nsh->raid_conf = conf;
1437 1438 1439
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
N
NeilBrown 已提交
1462
				    );
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1477
	 * conf->disks and the scribble region
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1507 1508 1509 1510
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1528

1529
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1530 1531 1532
{
	struct stripe_head *sh;

1533 1534 1535 1536 1537
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1538
	BUG_ON(atomic_read(&sh->count));
1539
	shrink_buffers(sh);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1550 1551
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1552 1553 1554
	conf->slab_cache = NULL;
}

1555
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1556
{
1557
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1558
	raid5_conf_t *conf = sh->raid_conf;
1559
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1560
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1561 1562
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1563 1564 1565 1566 1567 1568


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1569 1570
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1571 1572 1573
		uptodate);
	if (i == disks) {
		BUG();
1574
		return;
L
Linus Torvalds 已提交
1575 1576 1577 1578
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1579
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1580
			rdev = conf->disks[i].rdev;
1581 1582 1583 1584 1585 1586 1587 1588
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
				(unsigned long long)(sh->sector
						     + rdev->data_offset),
				bdevname(rdev->bdev, b));
1589
			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1590 1591 1592
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1593 1594
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1595
	} else {
1596
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1597
		int retry = 0;
1598 1599
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1600
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1601
		atomic_inc(&rdev->read_errors);
1602
		if (conf->mddev->degraded >= conf->max_degraded)
1603 1604 1605 1606 1607 1608 1609 1610
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
				(unsigned long long)(sh->sector
						     + rdev->data_offset),
				bdn);
1611
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1612
			/* Oh, no!!! */
1613 1614 1615 1616 1617 1618 1619 1620
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
				(unsigned long long)(sh->sector
						     + rdev->data_offset),
				bdn);
1621
		else if (atomic_read(&rdev->read_errors)
1622
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1623
			printk(KERN_WARNING
1624
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1625
			       mdname(conf->mddev), bdn);
1626 1627 1628 1629 1630
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1631 1632
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1633
			md_error(conf->mddev, rdev);
1634
		}
L
Linus Torvalds 已提交
1635 1636 1637 1638 1639 1640 1641
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1642
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1643
{
1644
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1645
	raid5_conf_t *conf = sh->raid_conf;
1646
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1647 1648 1649 1650 1651 1652
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1653
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1654 1655 1656 1657
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1658
		return;
L
Linus Torvalds 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1668
	release_stripe(sh);
L
Linus Torvalds 已提交
1669 1670 1671
}


1672
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1673
	
1674
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1690
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1691 1692 1693 1694 1695
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
1696
	raid5_conf_t *conf = mddev->private;
1697
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1698

1699 1700 1701 1702 1703 1704 1705 1706 1707
	if (test_and_clear_bit(In_sync, &rdev->flags)) {
		unsigned long flags;
		spin_lock_irqsave(&conf->device_lock, flags);
		mddev->degraded++;
		spin_unlock_irqrestore(&conf->device_lock, flags);
		/*
		 * if recovery was running, make sure it aborts.
		 */
		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1708
	}
1709
	set_bit(Blocked, &rdev->flags);
1710 1711 1712 1713 1714 1715 1716 1717 1718
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
1719
}
L
Linus Torvalds 已提交
1720 1721 1722 1723 1724

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1725
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1726 1727
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1728
{
N
NeilBrown 已提交
1729
	sector_t stripe, stripe2;
1730
	sector_t chunk_number;
L
Linus Torvalds 已提交
1731
	unsigned int chunk_offset;
1732
	int pd_idx, qd_idx;
1733
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1734
	sector_t new_sector;
1735 1736
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1737 1738
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1739 1740 1741
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1754 1755
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1756
	stripe2 = stripe;
L
Linus Torvalds 已提交
1757 1758 1759
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1760
	pd_idx = qd_idx = -1;
1761 1762
	switch(conf->level) {
	case 4:
1763
		pd_idx = data_disks;
1764 1765
		break;
	case 5:
1766
		switch (algorithm) {
L
Linus Torvalds 已提交
1767
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1768
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1769
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1770 1771 1772
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1773
			pd_idx = sector_div(stripe2, raid_disks);
1774
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1775 1776 1777
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1778
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1779
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1780 1781
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1782
			pd_idx = sector_div(stripe2, raid_disks);
1783
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1784
			break;
1785 1786 1787 1788 1789 1790 1791
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1792
		default:
1793
			BUG();
1794 1795 1796 1797
		}
		break;
	case 6:

1798
		switch (algorithm) {
1799
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1800
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1801 1802
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1803
				(*dd_idx)++;	/* Q D D D P */
1804 1805
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1806 1807 1808
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1809
			pd_idx = sector_div(stripe2, raid_disks);
1810 1811
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1812
				(*dd_idx)++;	/* Q D D D P */
1813 1814
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1815 1816 1817
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1818
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1819 1820
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1821 1822
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1823
			pd_idx = sector_div(stripe2, raid_disks);
1824 1825
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1826
			break;
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
1842
			pd_idx = sector_div(stripe2, raid_disks);
1843 1844 1845 1846 1847 1848
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1849
			ddf_layout = 1;
1850 1851 1852 1853 1854 1855 1856
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
1857 1858
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1859 1860 1861 1862 1863 1864
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1865
			ddf_layout = 1;
1866 1867 1868 1869
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
1870
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1871 1872
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1873
			ddf_layout = 1;
1874 1875 1876 1877
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
1878
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1879 1880 1881 1882 1883 1884
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
1885
			pd_idx = sector_div(stripe2, raid_disks-1);
1886 1887 1888 1889 1890 1891
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
1892
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1893 1894 1895 1896 1897
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
1898
			pd_idx = sector_div(stripe2, raid_disks-1);
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

1909
		default:
1910
			BUG();
1911 1912
		}
		break;
L
Linus Torvalds 已提交
1913 1914
	}

1915 1916 1917
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1918
		sh->ddf_layout = ddf_layout;
1919
	}
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924 1925 1926 1927
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1928
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1929 1930
{
	raid5_conf_t *conf = sh->raid_conf;
1931 1932
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1933
	sector_t new_sector = sh->sector, check;
1934 1935
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1936 1937
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1938 1939
	sector_t stripe;
	int chunk_offset;
1940 1941
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1942
	sector_t r_sector;
1943
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1944

1945

L
Linus Torvalds 已提交
1946 1947 1948
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

1949 1950 1951 1952 1953
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1954
		switch (algorithm) {
L
Linus Torvalds 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1966 1967 1968 1969 1970
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1971
		default:
1972
			BUG();
1973 1974 1975
		}
		break;
	case 6:
1976
		if (i == sh->qd_idx)
1977
			return 0; /* It is the Q disk */
1978
		switch (algorithm) {
1979 1980
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1981 1982 1983 1984
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1999 2000 2001 2002 2003 2004
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2005
			/* Like left_symmetric, but P is before Q */
2006 2007
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2008 2009 2010 2011 2012 2013
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2029
		default:
2030
			BUG();
2031 2032
		}
		break;
L
Linus Torvalds 已提交
2033 2034 2035
	}

	chunk_number = stripe * data_disks + i;
2036
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2037

2038
	check = raid5_compute_sector(conf, r_sector,
2039
				     previous, &dummy1, &sh2);
2040 2041
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2042 2043
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2044 2045 2046 2047 2048 2049
		return 0;
	}
	return r_sector;
}


2050
static void
2051
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2052
			 int rcw, int expand)
2053 2054
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2055 2056
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
2057 2058 2059 2060 2061 2062 2063

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2064 2065 2066 2067
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2068

2069
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2070 2071 2072 2073 2074 2075

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2076
				set_bit(R5_Wantdrain, &dev->flags);
2077 2078
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2079
				s->locked++;
2080 2081
			}
		}
2082
		if (s->locked + conf->max_degraded == disks)
2083
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2084
				atomic_inc(&conf->pending_full_writes);
2085
	} else {
2086
		BUG_ON(level == 6);
2087 2088 2089
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2090
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2091 2092
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2093
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2094 2095 2096 2097 2098 2099 2100 2101

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2102 2103
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2104 2105
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2106
				s->locked++;
2107 2108 2109 2110
			}
		}
	}

2111
	/* keep the parity disk(s) locked while asynchronous operations
2112 2113 2114 2115
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2116
	s->locked++;
2117

2118 2119 2120 2121 2122 2123 2124 2125 2126
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2127
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2128
		__func__, (unsigned long long)sh->sector,
2129
		s->locked, s->ops_request);
2130
}
2131

L
Linus Torvalds 已提交
2132 2133
/*
 * Each stripe/dev can have one or more bion attached.
2134
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2135 2136 2137 2138 2139 2140
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2141
	int firstwrite=0;
L
Linus Torvalds 已提交
2142

2143
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2144 2145 2146 2147 2148
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock_irq(&conf->device_lock);
2149
	if (forwrite) {
L
Linus Torvalds 已提交
2150
		bip = &sh->dev[dd_idx].towrite;
2151 2152 2153
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2163
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2164 2165 2166
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2167
	bi->bi_phys_segments++;
2168

L
Linus Torvalds 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	spin_unlock_irq(&conf->device_lock);

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
		(unsigned long long)(*bip)->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
L
Linus Torvalds 已提交
2194 2195 2196 2197 2198 2199 2200 2201
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	return 0;
}

2202 2203
static void end_reshape(raid5_conf_t *conf);

2204 2205
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2206
{
2207
	int sectors_per_chunk =
2208
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2209
	int dd_idx;
2210
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2211
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2212

2213 2214
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2215
			     *sectors_per_chunk + chunk_offset,
2216
			     previous,
2217
			     &dd_idx, sh);
2218 2219
}

2220
static void
2221
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
2235 2236 2237
				atomic_inc(&rdev->nr_pending);
			else
				rdev = NULL;
2238
			rcu_read_unlock();
2239 2240 2241 2242 2243 2244 2245 2246
			if (rdev) {
				if (!rdev_set_badblocks(
					    rdev,
					    sh->sector,
					    STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2264
			if (!raid5_dec_bi_phys_segments(bi)) {
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2279
			if (!raid5_dec_bi_phys_segments(bi)) {
2280 2281 2282 2283 2284 2285 2286
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2287 2288 2289 2290 2291 2292
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2303
				if (!raid5_dec_bi_phys_segments(bi)) {
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
2314 2315 2316 2317
		/* If we were in the middle of a write the parity block might
		 * still be locked - so just clear all R5_LOCKED flags
		 */
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2318 2319
	}

2320 2321 2322
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2323 2324
}

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
static void
handle_failed_sync(raid5_conf_t *conf, struct stripe_head *sh,
		   struct stripe_head_state *s)
{
	int abort = 0;
	int i;

	md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
	clear_bit(STRIPE_SYNCING, &sh->state);
	s->syncing = 0;
	/* There is nothing more to do for sync/check/repair.
	 * For recover we need to record a bad block on all
	 * non-sync devices, or abort the recovery
	 */
	if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
		return;
	/* During recovery devices cannot be removed, so locking and
	 * refcounting of rdevs is not needed
	 */
	for (i = 0; i < conf->raid_disks; i++) {
		mdk_rdev_t *rdev = conf->disks[i].rdev;
		if (!rdev
		    || test_bit(Faulty, &rdev->flags)
		    || test_bit(In_sync, &rdev->flags))
			continue;
		if (!rdev_set_badblocks(rdev, sh->sector,
					STRIPE_SECTORS, 0))
			abort = 1;
	}
	if (abort) {
		conf->recovery_disabled = conf->mddev->recovery_disabled;
		set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
	}
}

2360
/* fetch_block - checks the given member device to see if its data needs
2361 2362 2363
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
2364
 * 0 to tell the loop in handle_stripe_fill to continue
2365
 */
2366 2367
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
2368
{
2369
	struct r5dev *dev = &sh->dev[disk_idx];
2370 2371
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
2372

2373
	/* is the data in this block needed, and can we get it? */
2374 2375 2376 2377 2378
	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
2379 2380
	     (s->failed >= 1 && fdev[0]->toread) ||
	     (s->failed >= 2 && fdev[1]->toread) ||
2381 2382 2383
	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2384 2385 2386 2387 2388 2389
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
2390 2391
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
2392 2393
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2394
			 */
2395 2396 2397 2398 2399 2400 2401 2402
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
2403 2404 2405 2406 2407 2408
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2422
			}
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2442 2443
		}
	}
2444 2445 2446 2447 2448

	return 0;
}

/**
2449
 * handle_stripe_fill - read or compute data to satisfy pending requests.
2450
 */
2451 2452 2453
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
2464
			if (fetch_block(sh, s, i, disks))
2465
				break;
2466 2467 2468 2469
	set_bit(STRIPE_HANDLE, &sh->state);
}


2470
/* handle_stripe_clean_event
2471 2472 2473 2474
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2475
static void handle_stripe_clean_event(raid5_conf_t *conf,
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2489
				pr_debug("Return write for disc %d\n", i);
2490 2491 2492 2493 2494 2495
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2496
					if (!raid5_dec_bi_phys_segments(wbi)) {
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2514 2515 2516 2517

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2518 2519
}

2520 2521 2522 2523
static void handle_stripe_dirtying(raid5_conf_t *conf,
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
2524 2525
{
	int rmw = 0, rcw = 0, i;
2526 2527 2528 2529 2530 2531 2532
	if (conf->max_degraded == 2) {
		/* RAID6 requires 'rcw' in current implementation
		 * Calculate the real rcw later - for now fake it
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
	} else for (i = disks; i--; ) {
2533 2534 2535 2536
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2537 2538
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2539 2540 2541 2542 2543 2544 2545 2546
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2547 2548 2549
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2550 2551 2552 2553
			else
				rcw += 2*disks;
		}
	}
2554
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2555 2556 2557 2558 2559 2560 2561 2562
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2563 2564
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2565 2566 2567
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2568
					pr_debug("Read_old block "
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2579
	if (rcw <= rmw && rcw > 0) {
2580
		/* want reconstruct write, but need to get some data */
2581
		rcw = 0;
2582 2583 2584
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2585
			    i != sh->pd_idx && i != sh->qd_idx &&
2586
			    !test_bit(R5_LOCKED, &dev->flags) &&
2587
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2588 2589 2590 2591
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
				if (!test_bit(R5_Insync, &dev->flags))
					continue; /* it's a failed drive */
2592 2593
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2594
					pr_debug("Read_old block "
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2605
	}
2606 2607 2608
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2609 2610
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2611 2612
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2613 2614 2615
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2616 2617 2618
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2619
		schedule_reconstruction(sh, s, rcw == 0, 0);
2620 2621 2622 2623 2624
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2625
	struct r5dev *dev = NULL;
2626

2627
	set_bit(STRIPE_HANDLE, &sh->state);
2628

2629 2630 2631
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2632 2633
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2634 2635
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2636 2637
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2638
			break;
2639
		}
2640
		dev = &sh->dev[s->failed_num[0]];
2641 2642 2643 2644 2645 2646 2647 2648 2649
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2650

2651 2652 2653 2654 2655
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2656
		s->locked++;
2657
		set_bit(R5_Wantwrite, &dev->flags);
2658

2659 2660
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2677
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2689
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2690 2691 2692 2693
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2694
				sh->ops.target2 = -1;
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2706 2707 2708 2709 2710
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2711
				  struct stripe_head_state *s,
2712
				  int disks)
2713 2714
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2715
	int qd_idx = sh->qd_idx;
2716
	struct r5dev *dev;
2717 2718 2719 2720

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2721

2722 2723 2724 2725 2726 2727
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2728 2729 2730
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2731
		if (s->failed == s->q_failed) {
2732
			/* The only possible failed device holds Q, so it
2733 2734 2735
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2736
			sh->check_state = check_state_run;
2737
		}
2738
		if (!s->q_failed && s->failed < 2) {
2739
			/* Q is not failed, and we didn't use it to generate
2740 2741
			 * anything, so it makes sense to check it
			 */
2742 2743 2744 2745
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2746 2747
		}

2748 2749
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2750

2751 2752 2753 2754
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2755
		}
2756 2757 2758 2759 2760 2761 2762
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2763 2764
		}

2765 2766 2767 2768 2769
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2770

2771 2772 2773
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2774 2775

		/* now write out any block on a failed drive,
2776
		 * or P or Q if they were recomputed
2777
		 */
2778
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2779
		if (s->failed == 2) {
2780
			dev = &sh->dev[s->failed_num[1]];
2781 2782 2783 2784 2785
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
2786
			dev = &sh->dev[s->failed_num[0]];
2787 2788 2789 2790
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2791
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2792 2793 2794 2795 2796
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2797
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2798 2799 2800 2801 2802 2803 2804 2805
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2870 2871 2872
	}
}

2873
static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2874 2875 2876 2877 2878 2879
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2880
	struct dma_async_tx_descriptor *tx = NULL;
2881 2882
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2883
		if (i != sh->pd_idx && i != sh->qd_idx) {
2884
			int dd_idx, j;
2885
			struct stripe_head *sh2;
2886
			struct async_submit_ctl submit;
2887

2888
			sector_t bn = compute_blocknr(sh, i, 1);
2889 2890
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2891
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2904 2905

			/* place all the copies on one channel */
2906
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2907
			tx = async_memcpy(sh2->dev[dd_idx].page,
2908
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2909
					  &submit);
2910

2911 2912 2913 2914
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2915
				    j != sh2->qd_idx &&
2916 2917 2918 2919 2920 2921 2922
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2923

2924
		}
2925 2926 2927 2928 2929
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2930
}
L
Linus Torvalds 已提交
2931

2932

L
Linus Torvalds 已提交
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2949

2950
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
2951
{
2952
	raid5_conf_t *conf = sh->raid_conf;
2953
	int disks = sh->disks;
2954 2955
	struct r5dev *dev;
	int i;
L
Linus Torvalds 已提交
2956

2957 2958 2959 2960 2961 2962 2963
	memset(s, 0, sizeof(*s));

	s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
2964

2965
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
2966
	rcu_read_lock();
2967
	spin_lock_irq(&conf->device_lock);
2968 2969
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2970 2971 2972
		sector_t first_bad;
		int bad_sectors;
		int is_bad = 0;
2973

2974
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
2975

2976
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2977
			i, dev->flags, dev->toread, dev->towrite, dev->written);
2978 2979 2980 2981 2982 2983 2984 2985
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2986

2987
		/* now count some things */
2988 2989 2990 2991
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
2992
		if (test_bit(R5_Wantcompute, &dev->flags)) {
2993 2994
			s->compute++;
			BUG_ON(s->compute > 2);
2995
		}
L
Linus Torvalds 已提交
2996

2997
		if (test_bit(R5_Wantfill, &dev->flags))
2998
			s->to_fill++;
2999
		else if (dev->toread)
3000
			s->to_read++;
3001
		if (dev->towrite) {
3002
			s->to_write++;
3003
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3004
				s->non_overwrite++;
3005
		}
3006
		if (dev->written)
3007
			s->written++;
3008
		rdev = rcu_dereference(conf->disks[i].rdev);
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
		if (rdev) {
			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					     &first_bad, &bad_sectors);
			if (s->blocked_rdev == NULL
			    && (test_bit(Blocked, &rdev->flags)
				|| is_bad < 0)) {
				if (is_bad < 0)
					set_bit(BlockedBadBlocks,
						&rdev->flags);
				s->blocked_rdev = rdev;
				atomic_inc(&rdev->nr_pending);
			}
3021
		}
3022 3023 3024
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
		else if (is_bad) {
			/* also not in-sync */
			if (!test_bit(WriteErrorSeen, &rdev->flags)) {
				/* treat as in-sync, but with a read error
				 * which we can now try to correct
				 */
				set_bit(R5_Insync, &dev->flags);
				set_bit(R5_ReadError, &dev->flags);
			}
		} else if (test_bit(In_sync, &rdev->flags))
3035 3036 3037 3038 3039 3040 3041
			set_bit(R5_Insync, &dev->flags);
		else {
			/* in sync if before recovery_offset */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
3042 3043 3044
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3045
		}
3046 3047 3048
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3049 3050 3051
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
3052
		}
L
Linus Torvalds 已提交
3053
	}
3054
	spin_unlock_irq(&conf->device_lock);
L
Linus Torvalds 已提交
3055
	rcu_read_unlock();
3056 3057 3058 3059 3060
}

static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
3061
	raid5_conf_t *conf = sh->raid_conf;
3062
	int i;
3063 3064
	int prexor;
	int disks = sh->disks;
3065
	struct r5dev *pdev, *qdev;
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085

	clear_bit(STRIPE_HANDLE, &sh->state);
	if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
		set_bit(STRIPE_SYNCING, &sh->state);
		clear_bit(STRIPE_INSYNC, &sh->state);
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
3086

3087
	analyse_stripe(sh, &s);
3088

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
	if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
		handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3114 3115
	if (s.failed > conf->max_degraded && s.syncing)
		handle_failed_sync(conf, sh, &s);
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
	    || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
		handle_stripe_fill(sh, &s, disks);

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(sh->qd_idx >= 0 &&
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235

	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}


3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
3263

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
3280

3281
finish:
3282
	/* wait for this device to become unblocked */
3283 3284
	if (unlikely(s.blocked_rdev))
		md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3285

3286 3287 3288
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3289
	ops_run_io(sh, &s);
3290

3291

3292
	if (s.dec_preread_active) {
3293
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3294
		 * is waiting on a flush, it won't continue until the writes
3295 3296 3297 3298 3299 3300 3301 3302
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

3303
	return_io(s.return_bi);
3304

3305
	clear_bit(STRIPE_ACTIVE, &sh->state);
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3319
			list_add_tail(&sh->lru, &conf->hold_list);
3320
		}
N
NeilBrown 已提交
3321
	}
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

N
NeilBrown 已提交
3338
int md_raid5_congested(mddev_t *mddev, int bits)
3339
{
3340
	raid5_conf_t *conf = mddev->private;
3341 3342 3343 3344

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3345

3346 3347 3348 3349 3350 3351 3352 3353 3354
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3355 3356 3357 3358 3359 3360 3361 3362 3363
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3364

3365 3366 3367
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3368 3369 3370
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3371 3372
{
	mddev_t *mddev = q->queuedata;
3373
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3374
	int max;
3375
	unsigned int chunk_sectors = mddev->chunk_sectors;
3376
	unsigned int bio_sectors = bvm->bi_size >> 9;
3377

3378
	if ((bvm->bi_rw & 1) == WRITE)
3379 3380
		return biovec->bv_len; /* always allow writes to be mergeable */

3381 3382
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3383 3384 3385 3386 3387 3388 3389 3390
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3391 3392 3393 3394

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3395
	unsigned int chunk_sectors = mddev->chunk_sectors;
3396 3397
	unsigned int bio_sectors = bio->bi_size >> 9;

3398 3399
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3400 3401 3402 3403
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3433
		conf->retry_read_aligned_list = bi->bi_next;
3434
		bi->bi_next = NULL;
3435 3436 3437 3438
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3439 3440 3441 3442 3443 3444 3445
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3446 3447 3448 3449 3450 3451
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3452
static void raid5_align_endio(struct bio *bi, int error)
3453 3454
{
	struct bio* raid_bi  = bi->bi_private;
3455 3456 3457 3458 3459
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3460
	bio_put(bi);
3461 3462 3463

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3464 3465
	mddev = rdev->mddev;
	conf = mddev->private;
3466 3467 3468 3469

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3470
		bio_endio(raid_bi, 0);
3471 3472
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3473
		return;
3474 3475 3476
	}


3477
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3478 3479

	add_bio_to_retry(raid_bi, conf);
3480 3481
}

3482 3483
static int bio_fits_rdev(struct bio *bi)
{
3484
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3485

3486
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3487 3488
		return 0;
	blk_recount_segments(q, bi);
3489
	if (bi->bi_phys_segments > queue_max_segments(q))
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3502
static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3503
{
3504
	raid5_conf_t *conf = mddev->private;
N
NeilBrown 已提交
3505
	int dd_idx;
3506 3507 3508 3509
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3510
		pr_debug("chunk_aligned_read : non aligned\n");
3511 3512 3513
		return 0;
	}
	/*
3514
	 * use bio_clone_mddev to make a copy of the bio
3515
	 */
3516
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3528 3529
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3530
						    &dd_idx, NULL);
3531 3532 3533 3534

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
3535 3536 3537
		sector_t first_bad;
		int bad_sectors;

3538 3539
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3540 3541 3542 3543 3544
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3545 3546 3547 3548
		if (!bio_fits_rdev(align_bi) ||
		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
				&first_bad, &bad_sectors)) {
			/* too big in some way, or has a known bad block */
3549 3550 3551 3552 3553
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3554 3555 3556 3557 3558 3559 3560
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3561 3562 3563 3564
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3565
		bio_put(align_bi);
3566 3567 3568 3569
		return 0;
	}
}

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3622

3623
static int make_request(mddev_t *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3624
{
3625
	raid5_conf_t *conf = mddev->private;
3626
	int dd_idx;
L
Linus Torvalds 已提交
3627 3628 3629
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3630
	const int rw = bio_data_dir(bi);
3631
	int remaining;
3632
	int plugged;
L
Linus Torvalds 已提交
3633

T
Tejun Heo 已提交
3634 3635
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
3636 3637 3638
		return 0;
	}

3639
	md_write_start(mddev, bi);
3640

3641
	if (rw == READ &&
3642
	     mddev->reshape_position == MaxSector &&
3643
	     chunk_aligned_read(mddev,bi))
3644
		return 0;
3645

L
Linus Torvalds 已提交
3646 3647 3648 3649
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3650

3651
	plugged = mddev_check_plugged(mddev);
L
Linus Torvalds 已提交
3652 3653
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3654
		int disks, data_disks;
3655
		int previous;
3656

3657
	retry:
3658
		previous = 0;
3659
		disks = conf->raid_disks;
3660
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3661
		if (unlikely(conf->reshape_progress != MaxSector)) {
3662
			/* spinlock is needed as reshape_progress may be
3663 3664
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3665
			 * Of course reshape_progress could change after
3666 3667 3668 3669
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3670
			spin_lock_irq(&conf->device_lock);
3671 3672 3673
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3674
				disks = conf->previous_raid_disks;
3675 3676
				previous = 1;
			} else {
3677 3678 3679
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3680 3681 3682 3683 3684
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3685 3686
			spin_unlock_irq(&conf->device_lock);
		}
3687 3688
		data_disks = disks - conf->max_degraded;

3689 3690
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3691
						  &dd_idx, NULL);
3692
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3693 3694 3695
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3696
		sh = get_active_stripe(conf, new_sector, previous,
3697
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
3698
		if (sh) {
3699
			if (unlikely(previous)) {
3700
				/* expansion might have moved on while waiting for a
3701 3702 3703 3704 3705 3706
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3707 3708 3709
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3710 3711 3712
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
3713 3714 3715 3716 3717
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
3718
					schedule();
3719 3720 3721
					goto retry;
				}
			}
3722

3723
			if (rw == WRITE &&
3724
			    logical_sector >= mddev->suspend_lo &&
3725 3726
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
3737 3738
				goto retry;
			}
3739 3740

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3741
			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
3742 3743
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3744 3745
				 * and wait a while
				 */
N
NeilBrown 已提交
3746
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
3747 3748 3749 3750 3751
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3752 3753
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
T
Tejun Heo 已提交
3754
			if ((bi->bi_rw & REQ_SYNC) &&
3755 3756
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
3757 3758 3759 3760 3761 3762 3763 3764 3765
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
3766 3767 3768
	if (!plugged)
		md_wakeup_thread(mddev->thread);

L
Linus Torvalds 已提交
3769
	spin_lock_irq(&conf->device_lock);
3770
	remaining = raid5_dec_bi_phys_segments(bi);
3771 3772
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
3773

3774
		if ( rw == WRITE )
L
Linus Torvalds 已提交
3775
			md_write_end(mddev);
3776

3777
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
3778
	}
3779

L
Linus Torvalds 已提交
3780 3781 3782
	return 0;
}

D
Dan Williams 已提交
3783 3784
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

3785
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
3786
{
3787 3788 3789 3790 3791 3792 3793 3794 3795
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
3796
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
3797
	struct stripe_head *sh;
3798
	sector_t first_sector, last_sector;
3799 3800 3801
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
3802 3803
	int i;
	int dd_idx;
3804
	sector_t writepos, readpos, safepos;
3805
	sector_t stripe_addr;
3806
	int reshape_sectors;
3807
	struct list_head stripes;
3808

3809 3810 3811 3812 3813 3814
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
3815
		} else if (mddev->delta_disks >= 0 &&
3816 3817
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
3818
		sector_div(sector_nr, new_data_disks);
3819
		if (sector_nr) {
3820 3821
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3822 3823 3824
			*skipped = 1;
			return sector_nr;
		}
3825 3826
	}

3827 3828 3829 3830
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
3831 3832
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
3833
	else
3834
		reshape_sectors = mddev->chunk_sectors;
3835

3836 3837 3838 3839 3840
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
3841 3842
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
3843
	 */
3844
	writepos = conf->reshape_progress;
3845
	sector_div(writepos, new_data_disks);
3846 3847
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
3848
	safepos = conf->reshape_safe;
3849
	sector_div(safepos, data_disks);
3850
	if (mddev->delta_disks < 0) {
3851
		writepos -= min_t(sector_t, reshape_sectors, writepos);
3852
		readpos += reshape_sectors;
3853
		safepos += reshape_sectors;
3854
	} else {
3855
		writepos += reshape_sectors;
3856 3857
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
3858
	}
3859

3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
3877
	if ((mddev->delta_disks < 0
3878 3879 3880
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3881 3882 3883
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
3884
		mddev->reshape_position = conf->reshape_progress;
3885
		mddev->curr_resync_completed = sector_nr;
3886
		conf->reshape_checkpoint = jiffies;
3887
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3888
		md_wakeup_thread(mddev->thread);
3889
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3890 3891
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
3892
		conf->reshape_safe = mddev->reshape_position;
3893 3894
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
3895
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3896 3897
	}

3898 3899 3900 3901
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
3902 3903
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
3904 3905
		       != sector_nr);
	} else {
3906
		BUG_ON(writepos != sector_nr + reshape_sectors);
3907 3908
		stripe_addr = sector_nr;
	}
3909
	INIT_LIST_HEAD(&stripes);
3910
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3911
		int j;
3912
		int skipped_disk = 0;
3913
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3914 3915 3916 3917 3918 3919 3920 3921 3922
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
3923
			if (conf->level == 6 &&
3924
			    j == sh->qd_idx)
3925
				continue;
3926
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
3927
			if (s < raid5_size(mddev, 0, 0)) {
3928
				skipped_disk = 1;
3929 3930 3931 3932 3933 3934
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
3935
		if (!skipped_disk) {
3936 3937 3938
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
3939
		list_add(&sh->lru, &stripes);
3940 3941
	}
	spin_lock_irq(&conf->device_lock);
3942
	if (mddev->delta_disks < 0)
3943
		conf->reshape_progress -= reshape_sectors * new_data_disks;
3944
	else
3945
		conf->reshape_progress += reshape_sectors * new_data_disks;
3946 3947 3948 3949 3950 3951 3952
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
3953
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3954
				     1, &dd_idx, NULL);
3955
	last_sector =
3956
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
3957
					    * new_data_disks - 1),
3958
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
3959 3960
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
3961
	while (first_sector <= last_sector) {
3962
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
3963 3964 3965 3966 3967
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
3968 3969 3970 3971 3972 3973 3974 3975
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
3976 3977 3978
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
3979
	sector_nr += reshape_sectors;
3980 3981
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
3982 3983 3984
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
3985
		mddev->reshape_position = conf->reshape_progress;
3986
		mddev->curr_resync_completed = sector_nr;
3987
		conf->reshape_checkpoint = jiffies;
3988 3989 3990 3991 3992 3993
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
3994
		conf->reshape_safe = mddev->reshape_position;
3995 3996
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
3997
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3998
	}
3999
	return reshape_sectors;
4000 4001 4002 4003 4004
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
4005
	raid5_conf_t *conf = mddev->private;
4006
	struct stripe_head *sh;
A
Andre Noll 已提交
4007
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
4008
	sector_t sync_blocks;
4009 4010
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4011

4012
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4013
		/* just being told to finish up .. nothing much to do */
4014

4015 4016 4017 4018
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4019 4020 4021 4022

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4023
		else /* completed sync */
4024 4025 4026
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4027 4028
		return 0;
	}
4029

4030 4031 4032
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4033 4034
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4035

4036 4037 4038 4039 4040 4041
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4042
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4043 4044 4045
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4046
	if (mddev->degraded >= conf->max_degraded &&
4047
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4048
		sector_t rv = mddev->dev_sectors - sector_nr;
4049
		*skipped = 1;
L
Linus Torvalds 已提交
4050 4051
		return rv;
	}
4052
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4053
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4054 4055 4056 4057 4058 4059
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4060

N
NeilBrown 已提交
4061 4062 4063

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4064
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4065
	if (sh == NULL) {
4066
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4067
		/* make sure we don't swamp the stripe cache if someone else
4068
		 * is trying to get access
L
Linus Torvalds 已提交
4069
		 */
4070
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4071
	}
4072 4073 4074 4075
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4076
	for (i = 0; i < conf->raid_disks; i++)
4077 4078 4079 4080 4081
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

4082
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
L
Linus Torvalds 已提交
4083

4084
	handle_stripe(sh);
L
Linus Torvalds 已提交
4085 4086 4087 4088 4089
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4103
	int dd_idx;
4104 4105 4106 4107 4108 4109
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4110
	sector = raid5_compute_sector(conf, logical_sector,
4111
				      0, &dd_idx, NULL);
4112 4113 4114
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4115 4116 4117
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4118

4119
		if (scnt < raid5_bi_hw_segments(raid_bio))
4120 4121 4122
			/* already done this stripe */
			continue;

4123
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4124 4125 4126

		if (!sh) {
			/* failed to get a stripe - must wait */
4127
			raid5_set_bi_hw_segments(raid_bio, scnt);
4128 4129 4130 4131 4132
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4133 4134
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4135
			raid5_set_bi_hw_segments(raid_bio, scnt);
4136 4137 4138 4139
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4140
		handle_stripe(sh);
4141 4142 4143 4144
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4145
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4146
	spin_unlock_irq(&conf->device_lock);
4147 4148
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4149 4150 4151 4152 4153 4154
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4155 4156 4157 4158 4159 4160 4161
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4162
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4163 4164
{
	struct stripe_head *sh;
4165
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4166
	int handled;
4167
	struct blk_plug plug;
L
Linus Torvalds 已提交
4168

4169
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4170 4171 4172

	md_check_recovery(mddev);

4173
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4174 4175 4176
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4177
		struct bio *bio;
L
Linus Torvalds 已提交
4178

4179 4180 4181 4182
		if (atomic_read(&mddev->plug_cnt) == 0 &&
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
4183
			spin_unlock_irq(&conf->device_lock);
4184
			bitmap_unplug(mddev->bitmap);
4185
			spin_lock_irq(&conf->device_lock);
4186
			conf->seq_write = conf->seq_flush;
4187 4188
			activate_bit_delay(conf);
		}
4189 4190
		if (atomic_read(&mddev->plug_cnt) == 0)
			raid5_activate_delayed(conf);
4191

4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4202 4203
		sh = __get_priority_stripe(conf);

4204
		if (!sh)
L
Linus Torvalds 已提交
4205 4206 4207 4208
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4209 4210 4211
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4212

4213 4214 4215
		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
			md_check_recovery(mddev);

L
Linus Torvalds 已提交
4216 4217
		spin_lock_irq(&conf->device_lock);
	}
4218
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4219 4220 4221

	spin_unlock_irq(&conf->device_lock);

4222
	async_tx_issue_pending_all();
4223
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4224

4225
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4226 4227
}

4228
static ssize_t
4229
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4230
{
4231
	raid5_conf_t *conf = mddev->private;
4232 4233 4234 4235
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4236 4237
}

4238 4239
int
raid5_set_cache_size(mddev_t *mddev, int size)
4240
{
4241
	raid5_conf_t *conf = mddev->private;
4242 4243
	int err;

4244
	if (size <= 16 || size > 32768)
4245
		return -EINVAL;
4246
	while (size < conf->max_nr_stripes) {
4247 4248 4249 4250 4251
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4252 4253 4254
	err = md_allow_write(mddev);
	if (err)
		return err;
4255
	while (size > conf->max_nr_stripes) {
4256 4257 4258 4259
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev->private;
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4281 4282
	return len;
}
4283

4284 4285 4286 4287
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4288

4289 4290 4291
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4292
	raid5_conf_t *conf = mddev->private;
4293 4294 4295 4296 4297 4298 4299 4300 4301
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4302
	raid5_conf_t *conf = mddev->private;
4303
	unsigned long new;
4304 4305 4306 4307 4308
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4309
	if (strict_strtoul(page, 10, &new))
4310
		return -EINVAL;
4311
	if (new > conf->max_nr_stripes)
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4323
static ssize_t
4324
stripe_cache_active_show(mddev_t *mddev, char *page)
4325
{
4326
	raid5_conf_t *conf = mddev->private;
4327 4328 4329 4330
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4331 4332
}

4333 4334
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4335

4336
static struct attribute *raid5_attrs[] =  {
4337 4338
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4339
	&raid5_preread_bypass_threshold.attr,
4340 4341
	NULL,
};
4342 4343 4344
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4345 4346
};

4347 4348 4349
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4350
	raid5_conf_t *conf = mddev->private;
4351 4352 4353

	if (!sectors)
		sectors = mddev->dev_sectors;
4354
	if (!raid_disks)
4355
		/* size is defined by the smallest of previous and new size */
4356
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4357

4358
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4359
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4360 4361 4362
	return sectors * (raid_disks - conf->max_degraded);
}

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4375
		kfree(percpu->scribble);
4376 4377 4378 4379 4380 4381 4382 4383 4384
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4385 4386 4387
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4388
	raid5_free_percpu(conf);
4389 4390 4391 4392 4393
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4405
		if (conf->level == 6 && !percpu->spare_page)
4406
			percpu->spare_page = alloc_page(GFP_KERNEL);
4407 4408 4409 4410 4411 4412 4413
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4414 4415
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4416
			return notifier_from_errno(-ENOMEM);
4417 4418 4419 4420 4421
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4422
		kfree(percpu->scribble);
4423
		percpu->spare_page = NULL;
4424
		percpu->scribble = NULL;
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
4437
	struct raid5_percpu __percpu *allcpus;
4438
	void *scribble;
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4449 4450 4451 4452 4453 4454 4455 4456
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4457
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4458
		if (!scribble) {
4459 4460 4461
			err = -ENOMEM;
			break;
		}
4462
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4475
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4476 4477
{
	raid5_conf_t *conf;
4478
	int raid_disk, memory, max_disks;
L
Linus Torvalds 已提交
4479 4480 4481
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4482 4483 4484
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4485
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4486 4487
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4488
	}
N
NeilBrown 已提交
4489 4490 4491 4492
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4493
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4494 4495
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4496
	}
N
NeilBrown 已提交
4497
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4498
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4499 4500
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4501 4502
	}

4503 4504 4505
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4506 4507
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4508
		return ERR_PTR(-EINVAL);
4509 4510
	}

N
NeilBrown 已提交
4511 4512
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4513
		goto abort;
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
N
NeilBrown 已提交
4526 4527 4528 4529 4530

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4531
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4532 4533
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4534

4535
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4536 4537 4538
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4539

L
Linus Torvalds 已提交
4540 4541
	conf->mddev = mddev;

4542
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4543 4544
		goto abort;

4545 4546 4547 4548
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4549
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4550

4551
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4552
		raid_disk = rdev->raid_disk;
4553
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4554 4555 4556 4557 4558 4559
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4560
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4561
			char b[BDEVNAME_SIZE];
4562 4563 4564
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
4565
		} else if (rdev->saved_raid_disk != raid_disk)
4566 4567
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4568 4569
	}

4570
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4571
	conf->level = mddev->new_level;
4572 4573 4574 4575
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4576
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4577
	conf->max_nr_stripes = NR_STRIPES;
4578
	conf->reshape_progress = mddev->reshape_position;
4579
	if (conf->reshape_progress != MaxSector) {
4580
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4581 4582
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4583

N
NeilBrown 已提交
4584
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4585
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4586 4587
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4588 4589
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4590 4591
		goto abort;
	} else
4592 4593
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4594

4595
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4596 4597
	if (!conf->thread) {
		printk(KERN_ERR
4598
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4599
		       mdname(mddev));
4600 4601
		goto abort;
	}
N
NeilBrown 已提交
4602 4603 4604 4605 4606

	return conf;

 abort:
	if (conf) {
4607
		free_conf(conf);
N
NeilBrown 已提交
4608 4609 4610 4611 4612
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

N
NeilBrown 已提交
4640 4641 4642
static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4643
	int working_disks = 0;
4644
	int dirty_parity_disks = 0;
N
NeilBrown 已提交
4645
	mdk_rdev_t *rdev;
4646
	sector_t reshape_offset = 0;
N
NeilBrown 已提交
4647

4648
	if (mddev->recovery_cp != MaxSector)
4649
		printk(KERN_NOTICE "md/raid:%s: not clean"
4650 4651
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4652 4653 4654 4655 4656 4657 4658 4659
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4660
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4661

4662
		if (mddev->new_level != mddev->level) {
4663
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4674
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4675
			       (mddev->raid_disks - max_degraded))) {
4676 4677
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
4678 4679
			return -EINVAL;
		}
4680
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
4681 4682
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4683
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4684 4685 4686
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
4698 4699 4700
				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
				       " in read-only mode - aborting\n",
				       mdname(mddev));
4701 4702 4703 4704 4705 4706 4707
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
4708
			/* Reading from the same stripe as writing to - bad */
4709 4710 4711
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
4712 4713
			return -EINVAL;
		}
4714 4715
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
4716 4717 4718 4719
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
4720
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
4721
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4722
	}
N
NeilBrown 已提交
4723

4724 4725 4726 4727 4728
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
4739 4740 4741
	list_for_each_entry(rdev, &mddev->disks, same_set) {
		if (rdev->raid_disk < 0)
			continue;
4742
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
4743
			working_disks++;
4744 4745
			continue;
		}
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
4774

4775 4776
	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
			   - working_disks);
N
NeilBrown 已提交
4777

4778
	if (has_failed(conf)) {
4779
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
4780
			" (%d/%d failed)\n",
4781
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
4782 4783 4784
		goto abort;
	}

N
NeilBrown 已提交
4785
	/* device size must be a multiple of chunk size */
4786
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
4787 4788
	mddev->resync_max_sectors = mddev->dev_sectors;

4789
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
4790
	    mddev->recovery_cp != MaxSector) {
4791 4792
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
4793 4794
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
4795 4796 4797
			       mdname(mddev));
		else {
			printk(KERN_ERR
4798
			       "md/raid:%s: cannot start dirty degraded array.\n",
4799 4800 4801
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
4802 4803 4804
	}

	if (mddev->degraded == 0)
4805 4806
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
4807 4808
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
4809
	else
4810 4811 4812 4813 4814
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
4815 4816 4817

	print_raid5_conf(conf);

4818 4819
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
4820 4821 4822 4823 4824 4825
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4826
							"reshape");
4827 4828
	}

L
Linus Torvalds 已提交
4829 4830

	/* Ok, everything is just fine now */
4831 4832
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
4833 4834
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4835
		printk(KERN_WARNING
4836
		       "raid5: failed to create sysfs attributes for %s\n",
4837
		       mdname(mddev));
4838
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4839

4840
	if (mddev->queue) {
4841
		int chunk_size;
4842 4843 4844 4845 4846 4847 4848 4849 4850
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
4851

4852
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4853

N
NeilBrown 已提交
4854 4855
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4856

4857 4858 4859 4860
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
4861

4862 4863 4864 4865
		list_for_each_entry(rdev, &mddev->disks, same_set)
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
	}
4866

L
Linus Torvalds 已提交
4867 4868
	return 0;
abort:
4869
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
4870
	mddev->thread = NULL;
L
Linus Torvalds 已提交
4871 4872
	if (conf) {
		print_raid5_conf(conf);
4873
		free_conf(conf);
L
Linus Torvalds 已提交
4874 4875
	}
	mddev->private = NULL;
4876
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
4877 4878 4879
	return -EIO;
}

4880
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
4881
{
4882
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4883 4884 4885

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
N
NeilBrown 已提交
4886 4887
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
4888
	free_conf(conf);
4889 4890
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
4891 4892 4893
	return 0;
}

4894
#ifdef DEBUG
4895
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
4896 4897 4898
{
	int i;

4899 4900 4901 4902 4903
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4904
	for (i = 0; i < sh->disks; i++) {
4905 4906
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
4907
	}
4908
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
4909 4910
}

4911
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
4912 4913
{
	struct stripe_head *sh;
4914
	struct hlist_node *hn;
L
Linus Torvalds 已提交
4915 4916 4917 4918
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
4919
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
4920 4921
			if (sh->raid_conf != conf)
				continue;
4922
			print_sh(seq, sh);
L
Linus Torvalds 已提交
4923 4924 4925 4926 4927 4928
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

4929
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
4930
{
4931
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4932 4933
	int i;

4934 4935
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
4936
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
4937 4938 4939
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
4940
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
4941
	seq_printf (seq, "]");
4942
#ifdef DEBUG
4943 4944
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
4945 4946 4947 4948 4949 4950 4951 4952
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

4953
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
4954 4955 4956 4957
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
4958 4959 4960
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
4961 4962 4963 4964 4965

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
4966 4967 4968
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
4969 4970 4971 4972 4973 4974 4975 4976
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;
4977 4978
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
4979 4980 4981 4982

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
4983
		    && tmp->rdev->recovery_offset == MaxSector
4984
		    && !test_bit(Faulty, &tmp->rdev->flags)
4985
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4986
			count++;
4987
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
4988 4989
		}
	}
4990 4991 4992
	spin_lock_irqsave(&conf->device_lock, flags);
	mddev->degraded -= count;
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4993
	print_raid5_conf(conf);
4994
	return count;
L
Linus Torvalds 已提交
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
5007 5008 5009 5010
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

5011
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
5012 5013 5014 5015
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
5016 5017 5018 5019
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
5020
		    mddev->recovery_disabled != conf->recovery_disabled &&
5021
		    !has_failed(conf) &&
5022
		    number < conf->raid_disks) {
5023 5024 5025
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
5026
		p->rdev = NULL;
5027
		synchronize_rcu();
L
Linus Torvalds 已提交
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
5043
	int err = -EEXIST;
L
Linus Torvalds 已提交
5044 5045
	int disk;
	struct disk_info *p;
5046 5047
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5048

5049 5050 5051
	if (mddev->recovery_disabled == conf->recovery_disabled)
		return -EBUSY;

5052
	if (has_failed(conf))
L
Linus Torvalds 已提交
5053
		/* no point adding a device */
5054
		return -EINVAL;
L
Linus Torvalds 已提交
5055

5056 5057
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5058 5059

	/*
5060 5061
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5062
	 */
5063
	if (rdev->saved_raid_disk >= 0 &&
5064
	    rdev->saved_raid_disk >= first &&
5065 5066 5067
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5068 5069
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5070
		if ((p=conf->disks + disk)->rdev == NULL) {
5071
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5072
			rdev->raid_disk = disk;
5073
			err = 0;
5074 5075
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5076
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5077 5078 5079
			break;
		}
	print_raid5_conf(conf);
5080
	return err;
L
Linus Torvalds 已提交
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5092
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5093 5094
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5095 5096 5097
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5098
	set_capacity(mddev->gendisk, mddev->array_sectors);
5099
	revalidate_disk(mddev->gendisk);
5100 5101
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
5102
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5103 5104
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5105
	mddev->dev_sectors = sectors;
5106
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5107 5108 5109
	return 0;
}

5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5125 5126
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5127 5128 5129 5130 5131 5132 5133
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5134
static int check_reshape(mddev_t *mddev)
5135
{
5136
	raid5_conf_t *conf = mddev->private;
5137

5138 5139
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5140
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5141
		return 0; /* nothing to do */
5142 5143 5144
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5145
	if (has_failed(conf))
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5159

5160
	if (!check_stripe_cache(mddev))
5161 5162
		return -ENOSPC;

5163
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5164 5165 5166 5167
}

static int raid5_start_reshape(mddev_t *mddev)
{
5168
	raid5_conf_t *conf = mddev->private;
5169 5170
	mdk_rdev_t *rdev;
	int spares = 0;
5171
	unsigned long flags;
5172

5173
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5174 5175
		return -EBUSY;

5176 5177 5178
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5179
	list_for_each_entry(rdev, &mddev->disks, same_set)
5180 5181
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5182
			spares++;
5183

5184
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5185 5186 5187 5188 5189
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5190 5191 5192 5193 5194 5195
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5196
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5197 5198 5199 5200
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5201
	atomic_set(&conf->reshape_stripes, 0);
5202 5203
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5204
	conf->raid_disks += mddev->delta_disks;
5205 5206
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5207 5208
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5209 5210 5211 5212 5213
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5214
	conf->generation++;
5215 5216 5217 5218
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5219 5220 5221 5222
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5223
	 */
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
	if (mddev->delta_disks >= 0) {
		int added_devices = 0;
		list_for_each_entry(rdev, &mddev->disks, same_set)
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
					    >= conf->previous_raid_disks) {
						set_bit(In_sync, &rdev->flags);
						added_devices++;
					} else
						rdev->recovery_offset = 0;
5236 5237

					if (sysfs_link_rdev(mddev, rdev))
5238
						/* Failure here is OK */;
5239
				}
5240 5241 5242 5243 5244 5245
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
				added_devices++;
			}
5246

5247 5248 5249 5250
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
5251
		spin_lock_irqsave(&conf->device_lock, flags);
5252
		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5253 5254 5255
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5256
	mddev->raid_disks = conf->raid_disks;
5257
	mddev->reshape_position = conf->reshape_progress;
5258
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5259

5260 5261 5262 5263 5264
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5265
						"reshape");
5266 5267 5268 5269
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5270
		conf->reshape_progress = MaxSector;
5271 5272 5273
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5274
	conf->reshape_checkpoint = jiffies;
5275 5276 5277 5278 5279
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5280 5281 5282
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5283 5284 5285
static void end_reshape(raid5_conf_t *conf)
{

5286 5287 5288
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5289
		conf->previous_raid_disks = conf->raid_disks;
5290
		conf->reshape_progress = MaxSector;
5291
		spin_unlock_irq(&conf->device_lock);
5292
		wake_up(&conf->wait_for_overlap);
5293 5294 5295 5296

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5297
		if (conf->mddev->queue) {
5298
			int data_disks = conf->raid_disks - conf->max_degraded;
5299
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5300
						   / PAGE_SIZE);
5301 5302 5303
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5304 5305 5306
	}
}

5307 5308 5309
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5310 5311
static void raid5_finish_reshape(mddev_t *mddev)
{
5312
	raid5_conf_t *conf = mddev->private;
5313 5314 5315

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5316 5317 5318
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5319
			revalidate_disk(mddev->gendisk);
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5330 5331 5332
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5333
					sysfs_unlink_rdev(mddev, rdev);
5334 5335 5336
					rdev->raid_disk = -1;
				}
			}
5337
		}
5338
		mddev->layout = conf->algorithm;
5339
		mddev->chunk_sectors = conf->chunk_sectors;
5340 5341
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5342 5343 5344
	}
}

5345 5346
static void raid5_quiesce(mddev_t *mddev, int state)
{
5347
	raid5_conf_t *conf = mddev->private;
5348 5349

	switch(state) {
5350 5351 5352 5353
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5354 5355
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5356 5357 5358 5359
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5360
		wait_event_lock_irq(conf->wait_for_stripe,
5361 5362
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5363
				    conf->device_lock, /* nothing */);
5364
		conf->quiesce = 1;
5365
		spin_unlock_irq(&conf->device_lock);
5366 5367
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5368 5369 5370 5371 5372 5373
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5374
		wake_up(&conf->wait_for_overlap);
5375 5376 5377 5378
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5379

5380

D
Dan Williams 已提交
5381
static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5382
{
D
Dan Williams 已提交
5383
	struct raid0_private_data *raid0_priv = mddev->private;
5384
	sector_t sectors;
5385

D
Dan Williams 已提交
5386 5387
	/* for raid0 takeover only one zone is supported */
	if (raid0_priv->nr_strip_zones > 1) {
5388 5389
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5390 5391 5392
		return ERR_PTR(-EINVAL);
	}

5393 5394 5395
	sectors = raid0_priv->strip_zone[0].zone_end;
	sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
5396
	mddev->new_level = level;
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5430
	mddev->new_chunk_sectors = chunksect;
5431 5432 5433 5434

	return setup_conf(mddev);
}

5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5468

5469
static int raid5_check_reshape(mddev_t *mddev)
5470
{
5471 5472 5473 5474
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5475
	 */
5476
	raid5_conf_t *conf = mddev->private;
5477
	int new_chunk = mddev->new_chunk_sectors;
5478

5479
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5480 5481
		return -EINVAL;
	if (new_chunk > 0) {
5482
		if (!is_power_of_2(new_chunk))
5483
			return -EINVAL;
5484
		if (new_chunk < (PAGE_SIZE>>9))
5485
			return -EINVAL;
5486
		if (mddev->array_sectors & (new_chunk-1))
5487 5488 5489 5490 5491 5492
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5493
	if (mddev->raid_disks == 2) {
5494 5495 5496 5497
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5498 5499
		}
		if (new_chunk > 0) {
5500 5501
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5502 5503 5504
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5505
	}
5506
	return check_reshape(mddev);
5507 5508
}

5509
static int raid6_check_reshape(mddev_t *mddev)
5510
{
5511
	int new_chunk = mddev->new_chunk_sectors;
5512

5513
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5514
		return -EINVAL;
5515
	if (new_chunk > 0) {
5516
		if (!is_power_of_2(new_chunk))
5517
			return -EINVAL;
5518
		if (new_chunk < (PAGE_SIZE >> 9))
5519
			return -EINVAL;
5520
		if (mddev->array_sectors & (new_chunk-1))
5521 5522
			/* not factor of array size */
			return -EINVAL;
5523
	}
5524 5525

	/* They look valid */
5526
	return check_reshape(mddev);
5527 5528
}

5529 5530 5531
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
D
Dan Williams 已提交
5532
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5533 5534 5535 5536
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5537 5538
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5539 5540
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5541 5542 5543 5544 5545
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5546 5547
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5548 5549 5550 5551

	return ERR_PTR(-EINVAL);
}

5552 5553
static void *raid4_takeover(mddev_t *mddev)
{
D
Dan Williams 已提交
5554 5555 5556
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5557
	 */
D
Dan Williams 已提交
5558 5559
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5560 5561 5562 5563 5564 5565 5566 5567
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5568

5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5633
	.size		= raid5_size,
5634
	.check_reshape	= raid6_check_reshape,
5635
	.start_reshape  = raid5_start_reshape,
5636
	.finish_reshape = raid5_finish_reshape,
5637
	.quiesce	= raid5_quiesce,
5638
	.takeover	= raid6_takeover,
5639
};
5640
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5641 5642
{
	.name		= "raid5",
5643
	.level		= 5,
L
Linus Torvalds 已提交
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5655
	.size		= raid5_size,
5656 5657
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5658
	.finish_reshape = raid5_finish_reshape,
5659
	.quiesce	= raid5_quiesce,
5660
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5661 5662
};

5663
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5664
{
5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5678
	.size		= raid5_size,
5679 5680
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5681
	.finish_reshape = raid5_finish_reshape,
5682
	.quiesce	= raid5_quiesce,
5683
	.takeover	= raid4_takeover,
5684 5685 5686 5687
};

static int __init raid5_init(void)
{
5688
	register_md_personality(&raid6_personality);
5689 5690 5691
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5692 5693
}

5694
static void raid5_exit(void)
L
Linus Torvalds 已提交
5695
{
5696
	unregister_md_personality(&raid6_personality);
5697 5698
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5699 5700 5701 5702 5703
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
5704
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
5705
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5706 5707
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5708 5709
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5710 5711 5712 5713 5714 5715 5716
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");