raid5.c 142.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/async_tx.h>
49
#include <linux/seq_file.h>
50
#include "md.h"
51
#include "raid5.h"
52 53
#include "raid6.h"
#include "bitmap.h"
54

L
Linus Torvalds 已提交
55 56 57 58 59 60 61 62 63
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
64
#define BYPASS_THRESHOLD	1
65
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
66 67
#define HASH_MASK		(NR_HASH - 1)

68
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

90
#ifdef DEBUG
L
Linus Torvalds 已提交
91 92 93 94
#define inline
#define __inline__
#endif

95 96
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

97 98 99 100 101
#if !RAID6_USE_EMPTY_ZERO_PAGE
/* In .bss so it's zeroed */
const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
#endif

102
/*
103 104
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105 106 107
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
108
	return bio->bi_phys_segments & 0xffff;
109 110 111 112
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
113
	return (bio->bi_phys_segments >> 16) & 0xffff;
114 115 116 117 118 119 120 121 122 123 124 125 126
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
127
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
128 129 130 131 132
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
133
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
134 135
}

136 137 138
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
139 140 141 142
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
143 144 145 146 147
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
148 149 150 151 152
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
153

154 155 156 157 158
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
159 160
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
161 162
{
	int slot;
163

164
	if (idx == sh->pd_idx)
165
		return syndrome_disks;
166
	if (idx == sh->qd_idx)
167
		return syndrome_disks + 1;
168 169 170 171
	slot = (*count)++;
	return slot;
}

172 173 174 175 176 177 178 179
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
180
		bio_endio(bi, 0);
181 182 183 184
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
185 186
static void print_raid5_conf (raid5_conf_t *conf);

187 188 189 190 191 192 193
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

194
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
195 196
{
	if (atomic_dec_and_test(&sh->count)) {
197 198
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
199
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
200
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
201
				list_add_tail(&sh->lru, &conf->delayed_list);
202 203
				blk_plug_device(conf->mddev->queue);
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204
				   sh->bm_seq - conf->seq_write > 0) {
205
				list_add_tail(&sh->lru, &conf->bitmap_list);
206 207
				blk_plug_device(conf->mddev->queue);
			} else {
208
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
209
				list_add_tail(&sh->lru, &conf->handle_list);
210
			}
L
Linus Torvalds 已提交
211 212
			md_wakeup_thread(conf->mddev->thread);
		} else {
213
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
214 215 216 217 218 219
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
220 221
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
222
				wake_up(&conf->wait_for_stripe);
223 224
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
225
			}
L
Linus Torvalds 已提交
226 227 228
		}
	}
}
229

L
Linus Torvalds 已提交
230 231 232 233
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
234

L
Linus Torvalds 已提交
235 236 237 238 239
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

240
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
241
{
242 243
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
244

245
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
246 247
}

248
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
249
{
250
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
251

252 253
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
254 255

	CHECK_DEVLOCK();
256
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

static void shrink_buffers(struct stripe_head *sh, int num)
{
	struct page *p;
	int i;

	for (i=0; i<num ; i++) {
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
288
		put_page(p);
L
Linus Torvalds 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	}
}

static int grow_buffers(struct stripe_head *sh, int num)
{
	int i;

	for (i=0; i<num; i++) {
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

307
static void raid5_build_block(struct stripe_head *sh, int i);
308 309
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
310

311
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
312 313
{
	raid5_conf_t *conf = sh->raid_conf;
314
	int i;
L
Linus Torvalds 已提交
315

316 317
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
318
	BUG_ON(stripe_operations_active(sh));
319

L
Linus Torvalds 已提交
320
	CHECK_DEVLOCK();
321
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
322 323 324
		(unsigned long long)sh->sector);

	remove_hash(sh);
325

326
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
327
	sh->sector = sector;
328
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
329 330
	sh->state = 0;

331 332

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
333 334
		struct r5dev *dev = &sh->dev[i];

335
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
336
		    test_bit(R5_LOCKED, &dev->flags)) {
337
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
338
			       (unsigned long long)sh->sector, i, dev->toread,
339
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
340 341 342 343 344 345 346 347 348
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
		raid5_build_block(sh, i);
	}
	insert_hash(conf, sh);
}

349
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
L
Linus Torvalds 已提交
350 351
{
	struct stripe_head *sh;
352
	struct hlist_node *hn;
L
Linus Torvalds 已提交
353 354

	CHECK_DEVLOCK();
355
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
356
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
357
		if (sh->sector == sector && sh->disks == disks)
L
Linus Torvalds 已提交
358
			return sh;
359
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
360 361 362 363
	return NULL;
}

static void unplug_slaves(mddev_t *mddev);
364
static void raid5_unplug_device(struct request_queue *q);
L
Linus Torvalds 已提交
365

366 367 368
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
		  int previous, int noblock)
L
Linus Torvalds 已提交
369 370
{
	struct stripe_head *sh;
371
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
372

373
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
374 375 376 377

	spin_lock_irq(&conf->device_lock);

	do {
378 379 380
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
381
		sh = __find_stripe(conf, sector, disks);
L
Linus Torvalds 已提交
382 383 384 385 386 387 388 389 390
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
391 392
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
393 394
						     || !conf->inactive_blocked),
						    conf->device_lock,
395
						    raid5_unplug_device(conf->mddev->queue)
L
Linus Torvalds 已提交
396 397 398
					);
				conf->inactive_blocked = 0;
			} else
399
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
400 401
		} else {
			if (atomic_read(&sh->count)) {
402
			  BUG_ON(!list_empty(&sh->lru));
L
Linus Torvalds 已提交
403 404 405
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
406 407
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
408 409
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
410 411 412 413 414 415 416 417 418 419 420
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

421 422 423 424
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
425

426
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
			rw = WRITE;
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
461
			if (s->syncing || s->expanding || s->expanded)
462 463
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
464 465
			set_bit(STRIPE_IO_STARTED, &sh->state);

466 467
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
468
				__func__, (unsigned long long)sh->sector,
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
					b_offset, clen,
532
					ASYNC_TX_DEP_ACK,
533 534 535 536
					tx, NULL, NULL);
			else
				tx = async_memcpy(bio_page, page, b_offset,
					page_offset, clen,
537
					ASYNC_TX_DEP_ACK,
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
					tx, NULL, NULL);
		}
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
553
	int i;
554

555
	pr_debug("%s: stripe %llu\n", __func__,
556 557 558
		(unsigned long long)sh->sector);

	/* clear completed biofills */
559
	spin_lock_irq(&conf->device_lock);
560 561 562 563
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
564 565
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
566
		 * !STRIPE_BIOFILL_RUN
567 568
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
569 570 571 572 573 574 575 576
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
577
				if (!raid5_dec_bi_phys_segments(rbi)) {
578 579 580 581 582 583 584
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
585 586
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
587 588 589

	return_io(return_bi);

590
	set_bit(STRIPE_HANDLE, &sh->state);
591 592 593 594 595 596 597 598 599
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
	int i;

600
	pr_debug("%s: stripe %llu\n", __func__,
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
		ops_complete_biofill, sh);
}

static void ops_complete_compute5(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];

631
	pr_debug("%s: stripe %llu\n", __func__,
632 633 634 635 636
		(unsigned long long)sh->sector);

	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
637 638 639
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
640 641 642 643
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

644
static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
645 646 647 648 649 650 651 652 653 654 655 656
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
657
		__func__, (unsigned long long)sh->sector, target);
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
			0, NULL, ops_complete_compute5, sh);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
			ASYNC_TX_XOR_ZERO_DST, NULL,
			ops_complete_compute5, sh);

	return tx;
}

static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

681
	pr_debug("%s: stripe %llu\n", __func__,
682 683 684 685 686 687 688 689 690 691 692 693 694 695
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];
	int count = 0, pd_idx = sh->pd_idx, i;

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

696
	pr_debug("%s: stripe %llu\n", __func__,
697 698 699 700 701
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
702
		if (test_bit(R5_Wantdrain, &dev->flags))
703 704 705 706 707 708 709 710 711 712 713
			xor_srcs[count++] = dev->page;
	}

	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
		ops_complete_prexor, sh);

	return tx;
}

static struct dma_async_tx_descriptor *
714
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
715 716
{
	int disks = sh->disks;
717
	int i;
718

719
	pr_debug("%s: stripe %llu\n", __func__,
720 721 722 723 724 725
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

726
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

static void ops_complete_postxor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	int disks = sh->disks, i, pd_idx = sh->pd_idx;

753
	pr_debug("%s: stripe %llu\n", __func__,
754 755 756 757 758 759 760 761
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (dev->written || i == pd_idx)
			set_bit(R5_UPTODATE, &dev->flags);
	}

762 763 764 765 766 767 768 769
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
770 771 772 773 774 775

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
776
ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
777 778 779 780 781 782 783
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];

	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
784
	int prexor = 0;
785 786
	unsigned long flags;

787
	pr_debug("%s: stripe %llu\n", __func__,
788 789 790 791 792
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
793 794
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

	if (unlikely(count == 1)) {
		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
823
			flags, tx, ops_complete_postxor, sh);
824 825
	} else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
826
			flags, tx, ops_complete_postxor, sh);
827 828 829 830 831 832
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

833
	pr_debug("%s: stripe %llu\n", __func__,
834 835
		(unsigned long long)sh->sector);

836
	sh->check_state = check_state_check_result;
837 838 839 840 841 842 843 844 845 846 847 848 849 850
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void ops_run_check(struct stripe_head *sh)
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];
	struct dma_async_tx_descriptor *tx;

	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

851
	pr_debug("%s: stripe %llu\n", __func__,
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (i != pd_idx)
			xor_srcs[count++] = dev->page;
	}

	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);

	atomic_inc(&sh->count);
	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
		ops_complete_check, sh);
}

868
static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
869 870 871 872
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;

873
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
874 875 876 877
		ops_run_biofill(sh);
		overlap_clear++;
	}

878 879 880 881 882 883
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
		tx = ops_run_compute5(sh);
		/* terminate the chain if postxor is not set to be run */
		if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
			async_tx_ack(tx);
	}
884

885
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
886 887
		tx = ops_run_prexor(sh, tx);

888
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
889
		tx = ops_run_biodrain(sh, tx);
890 891 892
		overlap_clear++;
	}

893
	if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
894
		ops_run_postxor(sh, tx);
895

896
	if (test_bit(STRIPE_OP_CHECK, &ops_request))
897 898 899 900 901 902 903 904 905 906
		ops_run_check(sh);

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
}

907
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
908 909
{
	struct stripe_head *sh;
910 911 912 913 914 915 916 917 918 919 920 921
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);

	if (grow_buffers(sh, conf->raid_disks)) {
		shrink_buffers(sh, conf->raid_disks);
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
922
	sh->disks = conf->raid_disks;
923 924 925 926 927 928 929 930 931 932
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
933
	struct kmem_cache *sc;
L
Linus Torvalds 已提交
934 935
	int devs = conf->raid_disks;

936 937 938 939
	sprintf(conf->cache_name[0],
		"raid%d-%s", conf->level, mdname(conf->mddev));
	sprintf(conf->cache_name[1],
		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
940 941
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
942
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
943
			       0, 0, NULL);
L
Linus Torvalds 已提交
944 945 946
	if (!sc)
		return 1;
	conf->slab_cache = sc;
947
	conf->pool_size = devs;
948
	while (num--)
949
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
950 951 952
			return 1;
	return 0;
}
953 954

#ifdef CONFIG_MD_RAID5_RESHAPE
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
983
	int err;
984
	struct kmem_cache *sc;
985 986 987 988 989
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

990 991 992
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
993

994 995 996
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
997
			       0, 0, NULL);
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1032
				    unplug_slaves(conf->mddev)
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
	 * conf->disks.
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
1079
#endif
L
Linus Torvalds 已提交
1080

1081
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1082 1083 1084
{
	struct stripe_head *sh;

1085 1086 1087 1088 1089
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1090
	BUG_ON(atomic_read(&sh->count));
1091
	shrink_buffers(sh, conf->pool_size);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1102 1103
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1104 1105 1106
	conf->slab_cache = NULL;
}

1107
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1108
{
1109
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1110
	raid5_conf_t *conf = sh->raid_conf;
1111
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1112
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1113 1114
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1115 1116 1117 1118 1119 1120


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1121 1122
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1123 1124 1125
		uptodate);
	if (i == disks) {
		BUG();
1126
		return;
L
Linus Torvalds 已提交
1127 1128 1129 1130
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1131
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1132
			rdev = conf->disks[i].rdev;
1133 1134 1135 1136 1137 1138
			printk_rl(KERN_INFO "raid5:%s: read error corrected"
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1139 1140 1141
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1142 1143
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1144
	} else {
1145
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1146
		int retry = 0;
1147 1148
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1149
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1150
		atomic_inc(&rdev->read_errors);
1151
		if (conf->mddev->degraded)
1152 1153 1154 1155 1156 1157 1158
			printk_rl(KERN_WARNING
				  "raid5:%s: read error not correctable "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1159
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1160
			/* Oh, no!!! */
1161 1162 1163 1164 1165 1166 1167
			printk_rl(KERN_WARNING
				  "raid5:%s: read error NOT corrected!! "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1168
		else if (atomic_read(&rdev->read_errors)
1169
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1170
			printk(KERN_WARNING
1171 1172
			       "raid5:%s: Too many read errors, failing device %s.\n",
			       mdname(conf->mddev), bdn);
1173 1174 1175 1176 1177
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1178 1179
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1180
			md_error(conf->mddev, rdev);
1181
		}
L
Linus Torvalds 已提交
1182 1183 1184 1185 1186 1187 1188
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1189
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1190
{
1191
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1192
	raid5_conf_t *conf = sh->raid_conf;
1193
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1194 1195 1196 1197 1198 1199
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1200
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1201 1202 1203 1204
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1205
		return;
L
Linus Torvalds 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1215
	release_stripe(sh);
L
Linus Torvalds 已提交
1216 1217 1218 1219 1220
}


static sector_t compute_blocknr(struct stripe_head *sh, int i);
	
1221
static void raid5_build_block(struct stripe_head *sh, int i)
L
Linus Torvalds 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1237
	dev->sector = compute_blocknr(sh, i);
L
Linus Torvalds 已提交
1238 1239 1240 1241 1242 1243
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1244
	pr_debug("raid5: error called\n");
L
Linus Torvalds 已提交
1245

1246
	if (!test_bit(Faulty, &rdev->flags)) {
1247
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1248 1249 1250
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1251
			mddev->degraded++;
1252
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1253 1254 1255
			/*
			 * if recovery was running, make sure it aborts.
			 */
1256
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1257
		}
1258
		set_bit(Faulty, &rdev->flags);
1259 1260 1261 1262
		printk(KERN_ALERT
		       "raid5: Disk failure on %s, disabling device.\n"
		       "raid5: Operation continuing on %d devices.\n",
		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1263
	}
1264
}
L
Linus Torvalds 已提交
1265 1266 1267 1268 1269

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1270
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1271 1272
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1273 1274 1275 1276
{
	long stripe;
	unsigned long chunk_number;
	unsigned int chunk_offset;
1277
	int pd_idx, qd_idx;
1278
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1279 1280
	sector_t new_sector;
	int sectors_per_chunk = conf->chunk_size >> 9;
1281 1282 1283
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;
	BUG_ON(r_sector != chunk_number);

	/*
	 * Compute the stripe number
	 */
	stripe = chunk_number / data_disks;

	/*
	 * Compute the data disk and parity disk indexes inside the stripe
	 */
	*dd_idx = chunk_number % data_disks;

	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1307
	pd_idx = qd_idx = ~0;
1308 1309
	switch(conf->level) {
	case 4:
1310
		pd_idx = data_disks;
1311 1312 1313
		break;
	case 5:
		switch (conf->algorithm) {
L
Linus Torvalds 已提交
1314
		case ALGORITHM_LEFT_ASYMMETRIC:
1315 1316
			pd_idx = data_disks - stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1317 1318 1319
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1320 1321
			pd_idx = stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1322 1323 1324
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1325 1326
			pd_idx = data_disks - stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1327 1328
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1329 1330
			pd_idx = stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1331
			break;
1332 1333 1334 1335 1336 1337 1338
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1339
		default:
N
NeilBrown 已提交
1340
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
L
Linus Torvalds 已提交
1341
				conf->algorithm);
1342
			BUG();
1343 1344 1345 1346 1347 1348
		}
		break;
	case 6:

		switch (conf->algorithm) {
		case ALGORITHM_LEFT_ASYMMETRIC:
1349 1350 1351
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1352
				(*dd_idx)++;	/* Q D D D P */
1353 1354
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1355 1356 1357
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1358 1359 1360
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1361
				(*dd_idx)++;	/* Q D D D P */
1362 1363
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1364 1365 1366
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1367 1368 1369
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1370 1371
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1372 1373 1374
			pd_idx = stripe % raid_disks;
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1375
			break;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1398
			ddf_layout = 1;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1413
			ddf_layout = 1;
1414 1415 1416 1417 1418 1419 1420
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1421
			ddf_layout = 1;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
			pd_idx = data_disks - stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
			pd_idx = data_disks - stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;


1458
		default:
1459 1460
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
			       conf->algorithm);
1461
			BUG();
1462 1463
		}
		break;
L
Linus Torvalds 已提交
1464 1465
	}

1466 1467 1468
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1469
		sh->ddf_layout = ddf_layout;
1470
	}
L
Linus Torvalds 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


static sector_t compute_blocknr(struct stripe_head *sh, int i)
{
	raid5_conf_t *conf = sh->raid_conf;
1482 1483
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1484 1485 1486 1487
	sector_t new_sector = sh->sector, check;
	int sectors_per_chunk = conf->chunk_size >> 9;
	sector_t stripe;
	int chunk_offset;
1488
	int chunk_number, dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1489
	sector_t r_sector;
1490
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1491

1492

L
Linus Torvalds 已提交
1493 1494 1495 1496
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;
	BUG_ON(new_sector != stripe);

1497 1498 1499 1500 1501 1502
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
		switch (conf->algorithm) {
L
Linus Torvalds 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1514 1515 1516 1517 1518
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1519
		default:
N
NeilBrown 已提交
1520
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1521
			       conf->algorithm);
1522
			BUG();
1523 1524 1525
		}
		break;
	case 6:
1526
		if (i == sh->qd_idx)
1527 1528 1529 1530
			return 0; /* It is the Q disk */
		switch (conf->algorithm) {
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1531 1532 1533 1534
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
			else if (i > sh->pd_idx)
				i -= 2; /* D D Q P D */
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
1574
		default:
1575 1576
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
			       conf->algorithm);
1577
			BUG();
1578 1579
		}
		break;
L
Linus Torvalds 已提交
1580 1581 1582 1583 1584
	}

	chunk_number = stripe * data_disks + i;
	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;

1585 1586
	check = raid5_compute_sector(conf, r_sector,
				     (raid_disks != conf->raid_disks),
1587 1588 1589
				     &dummy1, &sh2);
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
N
NeilBrown 已提交
1590
		printk(KERN_ERR "compute_blocknr: map not correct\n");
L
Linus Torvalds 已提交
1591 1592 1593 1594 1595 1596 1597 1598
		return 0;
	}
	return r_sector;
}



/*
1599 1600 1601 1602 1603
 * Copy data between a page in the stripe cache, and one or more bion
 * The page could align with the middle of the bio, or there could be
 * several bion, each with several bio_vecs, which cover part of the page
 * Multiple bion are linked together on bi_next.  There may be extras
 * at the end of this list.  We ignore them.
L
Linus Torvalds 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
 */
static void copy_data(int frombio, struct bio *bio,
		     struct page *page,
		     sector_t sector)
{
	char *pa = page_address(page);
	struct bio_vec *bvl;
	int i;
	int page_offset;

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio,i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else clen = len;
1632

L
Linus Torvalds 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
		if (clen > 0) {
			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
			if (frombio)
				memcpy(pa+page_offset, ba+b_offset, clen);
			else
				memcpy(ba+b_offset, pa+page_offset, clen);
			__bio_kunmap_atomic(ba, KM_USER0);
		}
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}
}

D
Dan Williams 已提交
1647 1648 1649 1650 1651
#define check_xor()	do {						  \
				if (count == MAX_XOR_BLOCKS) {		  \
				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
				count = 0;				  \
			   }						  \
L
Linus Torvalds 已提交
1652 1653
			} while(0)

1654 1655
static void compute_parity6(struct stripe_head *sh, int method)
{
1656
	raid5_conf_t *conf = sh->raid_conf;
1657
	int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1658
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1659 1660
	struct bio *chosen;
	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1661
	void *ptrs[syndrome_disks+2];
1662

1663 1664 1665
	pd_idx = sh->pd_idx;
	qd_idx = sh->qd_idx;
	d0_idx = raid6_d0(sh);
1666

1667
	pr_debug("compute_parity, stripe %llu, method %d\n",
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
		(unsigned long long)sh->sector, method);

	switch(method) {
	case READ_MODIFY_WRITE:
		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
	case RECONSTRUCT_WRITE:
		for (i= disks; i-- ;)
			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
				chosen = sh->dev[i].towrite;
				sh->dev[i].towrite = NULL;

				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
					wake_up(&conf->wait_for_overlap);

E
Eric Sesterhenn 已提交
1682
				BUG_ON(sh->dev[i].written);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
				sh->dev[i].written = chosen;
			}
		break;
	case CHECK_PARITY:
		BUG();		/* Not implemented yet */
	}

	for (i = disks; i--;)
		if (sh->dev[i].written) {
			sector_t sector = sh->dev[i].sector;
			struct bio *wbi = sh->dev[i].written;
			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
				copy_data(1, wbi, sh->dev[i].page, sector);
				wbi = r5_next_bio(wbi, sector);
			}

			set_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(R5_UPTODATE, &sh->dev[i].flags);
		}

1703
	/* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1704 1705 1706 1707

	for (i = 0; i < disks; i++)
		ptrs[i] = (void *)raid6_empty_zero_page;

1708 1709 1710
	count = 0;
	i = d0_idx;
	do {
1711 1712
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

1713
		ptrs[slot] = page_address(sh->dev[i].page);
1714
		if (slot < syndrome_disks &&
1715 1716 1717 1718 1719
		    !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
			printk(KERN_ERR "block %d/%d not uptodate "
			       "on parity calc\n", i, count);
			BUG();
		}
1720

1721 1722
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
1723
	BUG_ON(count != syndrome_disks);
1724

1725
	raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

	switch(method) {
	case RECONSTRUCT_WRITE:
		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
		break;
	case UPDATE_PARITY:
		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
		break;
	}
}


/* Compute one missing block */
static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
{
1745
	int i, count, disks = sh->disks;
D
Dan Williams 已提交
1746
	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1747
	int qd_idx = sh->qd_idx;
1748

1749
	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1750 1751 1752 1753 1754 1755
		(unsigned long long)sh->sector, dd_idx);

	if ( dd_idx == qd_idx ) {
		/* We're actually computing the Q drive */
		compute_parity6(sh, UPDATE_PARITY);
	} else {
D
Dan Williams 已提交
1756 1757 1758
		dest = page_address(sh->dev[dd_idx].page);
		if (!nozero) memset(dest, 0, STRIPE_SIZE);
		count = 0;
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
		for (i = disks ; i--; ) {
			if (i == dd_idx || i == qd_idx)
				continue;
			p = page_address(sh->dev[i].page);
			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
				ptr[count++] = p;
			else
				printk("compute_block() %d, stripe %llu, %d"
				       " not present\n", dd_idx,
				       (unsigned long long)sh->sector, i);

			check_xor();
		}
D
Dan Williams 已提交
1772 1773
		if (count)
			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1774 1775 1776 1777 1778 1779 1780 1781
		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
	}
}

/* Compute two missing blocks */
static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
{
1782
	int i, count, disks = sh->disks;
1783
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1784 1785 1786
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1787
	void *ptrs[syndrome_disks+2];
1788

1789 1790
	for (i = 0; i < disks ; i++)
		ptrs[i] = (void *)raid6_empty_zero_page;
1791 1792 1793
	count = 0;
	i = d0_idx;
	do {
1794 1795
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

1796
		ptrs[slot] = page_address(sh->dev[i].page);
1797

1798 1799 1800 1801 1802 1803
		if (i == dd_idx1)
			faila = slot;
		if (i == dd_idx2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
1804
	BUG_ON(count != syndrome_disks);
1805 1806 1807 1808

	BUG_ON(faila == failb);
	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }

1809
	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1810 1811
		 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
		 faila, failb);
1812

1813
	if (failb == syndrome_disks+1) {
1814
		/* Q disk is one of the missing disks */
1815
		if (faila == syndrome_disks) {
1816 1817 1818 1819 1820
			/* Missing P+Q, just recompute */
			compute_parity6(sh, UPDATE_PARITY);
			return;
		} else {
			/* We're missing D+Q; recompute D from P */
1821 1822 1823
			compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
					     dd_idx2 : dd_idx1),
					0);
1824 1825 1826 1827 1828
			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
			return;
		}
	}

1829
	/* We're missing D+P or D+D; */
1830
	if (failb == syndrome_disks) {
1831
		/* We're missing D+P. */
1832
		raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1833 1834
	} else {
		/* We're missing D+D. */
1835 1836
		raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
				  ptrs);
1837
	}
1838 1839 1840 1841

	/* Both the above update both missing blocks */
	set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
	set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1842 1843
}

1844
static void
1845
schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1846
			 int rcw, int expand)
1847 1848 1849 1850 1851 1852 1853 1854 1855
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
1856 1857 1858 1859
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
1860

1861
		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1862 1863 1864 1865 1866 1867

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
1868
				set_bit(R5_Wantdrain, &dev->flags);
1869 1870
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
1871
				s->locked++;
1872 1873
			}
		}
1874
		if (s->locked + 1 == disks)
1875 1876
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
				atomic_inc(&sh->raid_conf->pending_full_writes);
1877 1878 1879 1880
	} else {
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

1881
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1882 1883 1884
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1885 1886 1887 1888 1889 1890 1891 1892

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
1893 1894
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
1895 1896
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
1897
				s->locked++;
1898 1899 1900 1901 1902 1903 1904 1905 1906
			}
		}
	}

	/* keep the parity disk locked while asynchronous operations
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1907
	s->locked++;
1908

1909
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1910
		__func__, (unsigned long long)sh->sector,
1911
		s->locked, s->ops_request);
1912
}
1913

L
Linus Torvalds 已提交
1914 1915
/*
 * Each stripe/dev can have one or more bion attached.
1916
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
1917 1918 1919 1920 1921 1922
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
1923
	int firstwrite=0;
L
Linus Torvalds 已提交
1924

1925
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
1926 1927 1928 1929 1930 1931
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
1932
	if (forwrite) {
L
Linus Torvalds 已提交
1933
		bip = &sh->dev[dd_idx].towrite;
1934 1935 1936
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

1946
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
1947 1948 1949
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
1950
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
1951 1952 1953
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

1954
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
1955 1956 1957
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

1958 1959 1960
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
1961
		sh->bm_seq = conf->seq_flush+1;
1962 1963 1964
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

1987 1988
static void end_reshape(raid5_conf_t *conf);

1989 1990 1991 1992 1993 1994 1995
static int page_is_zero(struct page *p)
{
	char *a = page_address(p);
	return ((*(u32*)a) == 0 &&
		memcmp(a, a+4, STRIPE_SIZE-4)==0);
}

1996 1997
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
1998 1999
{
	int sectors_per_chunk = conf->chunk_size >> 9;
2000
	int dd_idx;
2001
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2002
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2003

2004 2005
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2006
			     *sectors_per_chunk + chunk_offset,
2007
			     previous,
2008
			     &dd_idx, sh);
2009 2010
}

2011
static void
2012
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2046
			if (!raid5_dec_bi_phys_segments(bi)) {
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2061
			if (!raid5_dec_bi_phys_segments(bi)) {
2062 2063 2064 2065 2066 2067 2068
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2069 2070 2071 2072 2073 2074
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2085
				if (!raid5_dec_bi_phys_segments(bi)) {
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2098 2099 2100
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2101 2102
}

2103 2104 2105 2106 2107
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2108
 */
2109 2110
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2111 2112 2113 2114 2115 2116
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2117 2118 2119 2120 2121 2122 2123 2124
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2125 2126
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2127 2128
		 */
		if ((s->uptodate == disks - 1) &&
2129
		    (s->failed && disk_idx == s->failed_num)) {
2130 2131
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid5_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2142
			return 1; /* uptodate + compute == disks */
2143
		} else if (test_bit(R5_Insync, &dev->flags)) {
2144 2145 2146 2147 2148 2149 2150 2151
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2152
	return 0;
2153 2154
}

2155 2156 2157 2158
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2159 2160 2161
			struct stripe_head_state *s, int disks)
{
	int i;
2162 2163 2164 2165 2166

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2167
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2168
	    !sh->reconstruct_state)
2169
		for (i = disks; i--; )
2170
			if (fetch_block5(sh, s, i, disks))
2171
				break;
2172 2173 2174
	set_bit(STRIPE_HANDLE, &sh->state);
}

2175
static void handle_stripe_fill6(struct stripe_head *sh,
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (!test_bit(R5_LOCKED, &dev->flags) &&
		    !test_bit(R5_UPTODATE, &dev->flags) &&
		    (dev->toread || (dev->towrite &&
		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
		     s->syncing || s->expanding ||
		     (s->failed >= 1 &&
		      (sh->dev[r6s->failed_num[0]].toread ||
		       s->to_write)) ||
		     (s->failed >= 2 &&
		      (sh->dev[r6s->failed_num[1]].toread ||
		       s->to_write)))) {
			/* we would like to get this block, possibly
			 * by computing it, but we might not be able to
			 */
2196 2197 2198
			if ((s->uptodate == disks - 1) &&
			    (s->failed && (i == r6s->failed_num[0] ||
					   i == r6s->failed_num[1]))) {
2199
				pr_debug("Computing stripe %llu block %d\n",
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
				       (unsigned long long)sh->sector, i);
				compute_block_1(sh, i, 0);
				s->uptodate++;
			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
				/* Computing 2-failure is *very* expensive; only
				 * do it if failed >= 2
				 */
				int other;
				for (other = disks; other--; ) {
					if (other == i)
						continue;
					if (!test_bit(R5_UPTODATE,
					      &sh->dev[other].flags))
						break;
				}
				BUG_ON(other < 0);
2216
				pr_debug("Computing stripe %llu blocks %d,%d\n",
2217 2218 2219 2220 2221 2222 2223 2224
				       (unsigned long long)sh->sector,
				       i, other);
				compute_block_2(sh, i, other);
				s->uptodate += 2;
			} else if (test_bit(R5_Insync, &dev->flags)) {
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
2225
				pr_debug("Reading block %d (sync=%d)\n",
2226 2227 2228 2229 2230 2231 2232 2233
					i, s->syncing);
			}
		}
	}
	set_bit(STRIPE_HANDLE, &sh->state);
}


2234
/* handle_stripe_clean_event
2235 2236 2237 2238
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2239
static void handle_stripe_clean_event(raid5_conf_t *conf,
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2253
				pr_debug("Return write for disc %d\n", i);
2254 2255 2256 2257 2258 2259
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2260
					if (!raid5_dec_bi_phys_segments(wbi)) {
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2278 2279 2280 2281

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2282 2283
}

2284
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2285 2286 2287 2288 2289 2290 2291 2292
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2293 2294
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2295 2296 2297 2298 2299 2300 2301 2302
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2303 2304 2305
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2306 2307 2308 2309
			else
				rcw += 2*disks;
		}
	}
2310
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2311 2312 2313 2314 2315 2316 2317 2318
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2319 2320
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2321 2322 2323
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2324
					pr_debug("Read_old block "
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2342 2343
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2344 2345 2346
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2347
					pr_debug("Read_old block "
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2361 2362 2363 2364 2365 2366 2367
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
	 * subsequent call wants to start a write request.  raid5_run_ops only
	 * handles the case where compute block and postxor are requested
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2368 2369 2370
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2371
		schedule_reconstruction5(sh, s, rcw == 0, 0);
2372 2373
}

2374
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
	int qd_idx = r6s->qd_idx;
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags)
		    && i != pd_idx && i != qd_idx
		    && (!test_bit(R5_LOCKED, &dev->flags)
			    ) &&
		    !test_bit(R5_UPTODATE, &dev->flags)) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
			else {
2390
				pr_debug("raid6: must_compute: "
2391 2392 2393 2394 2395
					"disk %d flags=%#lx\n", i, dev->flags);
				must_compute++;
			}
		}
	}
2396
	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	       (unsigned long long)sh->sector, rcw, must_compute);
	set_bit(STRIPE_HANDLE, &sh->state);

	if (rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags)
			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
			    && !test_bit(R5_LOCKED, &dev->flags) &&
			    !test_bit(R5_UPTODATE, &dev->flags) &&
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2411
					pr_debug("Read_old stripe %llu "
2412 2413 2414 2415 2416 2417
						"block %d for Reconstruct\n",
					     (unsigned long long)sh->sector, i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
2418
					pr_debug("Request delayed stripe %llu "
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
						"block %d for Reconstruct\n",
					     (unsigned long long)sh->sector, i);
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
	if (s->locked == 0 && rcw == 0 &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
		if (must_compute > 0) {
			/* We have failed blocks and need to compute them */
			switch (s->failed) {
			case 0:
				BUG();
			case 1:
				compute_block_1(sh, r6s->failed_num[0], 0);
				break;
			case 2:
				compute_block_2(sh, r6s->failed_num[0],
						r6s->failed_num[1]);
				break;
			default: /* This request should have been failed? */
				BUG();
			}
		}

2448
		pr_debug("Computing parity for stripe %llu\n",
2449 2450 2451 2452 2453
			(unsigned long long)sh->sector);
		compute_parity6(sh, RECONSTRUCT_WRITE);
		/* now every locked buffer is ready to be written */
		for (i = disks; i--; )
			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2454
				pr_debug("Writing stripe %llu block %d\n",
2455 2456 2457 2458
				       (unsigned long long)sh->sector, i);
				s->locked++;
				set_bit(R5_Wantwrite, &sh->dev[i].flags);
			}
2459 2460 2461
		if (s->locked == disks)
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
				atomic_inc(&conf->pending_full_writes);
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
		set_bit(STRIPE_INSYNC, &sh->state);

		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
			    IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2477
	struct r5dev *dev = NULL;
2478

2479
	set_bit(STRIPE_HANDLE, &sh->state);
2480

2481 2482 2483
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2484 2485
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2486 2487
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2488 2489
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2490
			break;
2491
		}
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2502

2503 2504 2505 2506 2507
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2508
		s->locked++;
2509
		set_bit(R5_Wantwrite, &dev->flags);
2510

2511 2512
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0)
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2541
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s,
				struct r6_state *r6s, struct page *tmp_page,
				int disks)
{
	int update_p = 0, update_q = 0;
	struct r5dev *dev;
	int pd_idx = sh->pd_idx;
	int qd_idx = r6s->qd_idx;

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
	BUG_ON(s->uptodate < disks);
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

	/* If !tmp_page, we cannot do the calculations,
	 * but as we have set STRIPE_HANDLE, we will soon be called
	 * by stripe_handle with a tmp_page - just wait until then.
	 */
	if (tmp_page) {
		if (s->failed == r6s->q_failed) {
			/* The only possible failed device holds 'Q', so it
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
			compute_block_1(sh, pd_idx, 1);
			if (!page_is_zero(sh->dev[pd_idx].page)) {
				compute_block_1(sh, pd_idx, 0);
				update_p = 1;
			}
		}
		if (!r6s->q_failed && s->failed < 2) {
			/* q is not failed, and we didn't use it to generate
			 * anything, so it makes sense to check it
			 */
			memcpy(page_address(tmp_page),
			       page_address(sh->dev[qd_idx].page),
			       STRIPE_SIZE);
			compute_parity6(sh, UPDATE_PARITY);
			if (memcmp(page_address(tmp_page),
				   page_address(sh->dev[qd_idx].page),
				   STRIPE_SIZE) != 0) {
				clear_bit(STRIPE_INSYNC, &sh->state);
				update_q = 1;
			}
		}
		if (update_p || update_q) {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				update_p = update_q = 0;
		}

		/* now write out any block on a failed drive,
		 * or P or Q if they need it
		 */

		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}

		if (update_p) {
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (update_q) {
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2662
	struct dma_async_tx_descriptor *tx = NULL;
2663 2664
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
2665
		if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2666
			int dd_idx, j;
2667 2668 2669
			struct stripe_head *sh2;

			sector_t bn = compute_blocknr(sh, i);
2670 2671
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2672
			sh2 = get_active_stripe(conf, s, 0, 1);
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2685 2686 2687 2688 2689 2690

			/* place all the copies on one channel */
			tx = async_memcpy(sh2->dev[dd_idx].page,
				sh->dev[i].page, 0, 0, STRIPE_SIZE,
				ASYNC_TX_DEP_ACK, tx, NULL, NULL);

2691 2692 2693 2694
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2695
				    (!r6s || j != sh2->qd_idx) &&
2696 2697 2698 2699 2700 2701 2702
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2703

2704
		}
2705 2706 2707 2708 2709
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2710
}
L
Linus Torvalds 已提交
2711

2712

L
Linus Torvalds 已提交
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2729

2730
static bool handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
2731 2732
{
	raid5_conf_t *conf = sh->raid_conf;
2733 2734 2735
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
2736
	struct r5dev *dev;
2737
	mdk_rdev_t *blocked_rdev = NULL;
2738
	int prexor;
L
Linus Torvalds 已提交
2739

2740
	memset(&s, 0, sizeof(s));
2741 2742 2743 2744
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
2745 2746 2747 2748 2749

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

2750 2751 2752
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
2753

2754
	/* Now to look around and see what can be done */
2755
	rcu_read_lock();
L
Linus Torvalds 已提交
2756 2757
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2758
		struct r5dev *dev = &sh->dev[i];
L
Linus Torvalds 已提交
2759 2760
		clear_bit(R5_Insync, &dev->flags);

2761 2762 2763 2764 2765 2766 2767
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
2768
		 * ops_complete_biofill is guaranteed to be inactive
2769 2770
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2771
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2772
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2773 2774

		/* now count some things */
2775 2776
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2777
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
2778

2779 2780 2781
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
2782
			s.to_read++;
L
Linus Torvalds 已提交
2783
		if (dev->towrite) {
2784
			s.to_write++;
L
Linus Torvalds 已提交
2785
			if (!test_bit(R5_OVERWRITE, &dev->flags))
2786
				s.non_overwrite++;
L
Linus Torvalds 已提交
2787
		}
2788 2789
		if (dev->written)
			s.written++;
2790
		rdev = rcu_dereference(conf->disks[i].rdev);
2791 2792
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2793 2794 2795
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
2796
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
2797
			/* The ReadError flag will just be confusing now */
2798 2799 2800
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
2801
		if (!rdev || !test_bit(In_sync, &rdev->flags)
2802
		    || test_bit(R5_ReadError, &dev->flags)) {
2803 2804
			s.failed++;
			s.failed_num = i;
L
Linus Torvalds 已提交
2805 2806 2807
		} else
			set_bit(R5_Insync, &dev->flags);
	}
2808
	rcu_read_unlock();
2809

2810
	if (unlikely(blocked_rdev)) {
2811 2812 2813 2814 2815 2816 2817 2818
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
2819 2820
	}

2821 2822 2823 2824
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
2825

2826
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
2827
		" to_write=%d failed=%d failed_num=%d\n",
2828 2829
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
2830 2831 2832
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
2833
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2834
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2835
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
2836 2837
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
2838
		s.syncing = 0;
L
Linus Torvalds 已提交
2839 2840 2841 2842 2843 2844
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
2845 2846 2847 2848 2849
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2850
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
2851 2852 2853 2854 2855

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
2856
	if (s.to_read || s.non_overwrite ||
2857
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2858
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
2859

2860 2861 2862
	/* Now we check to see if any write operations have recently
	 * completed
	 */
2863
	prexor = 0;
2864
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2865
		prexor = 1;
2866 2867
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2868
		sh->reconstruct_state = reconstruct_state_idle;
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
2880 2881
				if (prexor)
					continue;
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
				IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
2901
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2902
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
2903 2904

	/* maybe we need to check and possibly fix the parity for this stripe
2905 2906 2907
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
2908
	 */
2909 2910
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
2911
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2912
	     !test_bit(STRIPE_INSYNC, &sh->state)))
2913
		handle_parity_checks5(conf, sh, &s, disks);
2914

2915
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
2916 2917 2918
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
2919 2920 2921 2922

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
2923 2924 2925 2926
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2927
		) {
2928
		dev = &sh->dev[s.failed_num];
2929 2930 2931 2932
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
2933
			s.locked++;
2934 2935 2936 2937
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
2938
			s.locked++;
2939 2940 2941
		}
	}

2942 2943 2944
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
2945
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
2946
		for (i = conf->raid_disks; i--; ) {
2947
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
2948
			set_bit(R5_LOCKED, &sh->dev[i].flags);
2949
			s.locked++;
D
Dan Williams 已提交
2950
		}
2951 2952 2953
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2954
	    !sh->reconstruct_state) {
2955 2956
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
2957
		stripe_set_idx(sh->sector, conf, 0, sh);
2958
		schedule_reconstruction5(sh, &s, 1, 1);
2959
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2960
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2961
		atomic_dec(&conf->reshape_stripes);
2962 2963 2964 2965
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

2966
	if (s.expanding && s.locked == 0 &&
2967
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2968
		handle_stripe_expansion(conf, sh, NULL);
2969

2970
 unlock:
L
Linus Torvalds 已提交
2971 2972
	spin_unlock(&sh->lock);

2973 2974 2975 2976
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

2977 2978
	if (s.ops_request)
		raid5_run_ops(sh, s.ops_request);
2979

2980
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
2981

2982
	return_io(return_bi);
2983 2984

	return blocked_rdev == NULL;
L
Linus Torvalds 已提交
2985 2986
}

2987
static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
L
Linus Torvalds 已提交
2988
{
2989
	raid5_conf_t *conf = sh->raid_conf;
2990
	int disks = sh->disks;
2991 2992 2993 2994
	struct bio *return_bi = NULL;
	int i, pd_idx = sh->pd_idx;
	struct stripe_head_state s;
	struct r6_state r6s;
2995
	struct r5dev *dev, *pdev, *qdev;
2996
	mdk_rdev_t *blocked_rdev = NULL;
L
Linus Torvalds 已提交
2997

2998
	r6s.qd_idx = sh->qd_idx;
2999
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3000 3001 3002 3003
		"pd_idx=%d, qd_idx=%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), pd_idx, r6s.qd_idx);
	memset(&s, 0, sizeof(s));
3004

3005 3006 3007 3008
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3009 3010 3011
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3012
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3013 3014

	rcu_read_lock();
3015 3016 3017 3018
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
		clear_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3019

3020
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3021 3022 3023 3024
			i, dev->flags, dev->toread, dev->towrite, dev->written);
		/* maybe we can reply to a read */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
			struct bio *rbi, *rbi2;
3025
			pr_debug("Return read for disc %d\n", i);
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
			spin_lock_irq(&conf->device_lock);
			rbi = dev->toread;
			dev->toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&conf->wait_for_overlap);
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
				copy_data(0, rbi, dev->page, dev->sector);
				rbi2 = r5_next_bio(rbi, dev->sector);
				spin_lock_irq(&conf->device_lock);
3036
				if (!raid5_dec_bi_phys_segments(rbi)) {
3037 3038 3039 3040 3041 3042 3043
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				spin_unlock_irq(&conf->device_lock);
				rbi = rbi2;
			}
		}
L
Linus Torvalds 已提交
3044

3045
		/* now count some things */
3046 3047
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
L
Linus Torvalds 已提交
3048

3049

3050 3051
		if (dev->toread)
			s.to_read++;
3052
		if (dev->towrite) {
3053
			s.to_write++;
3054
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3055
				s.non_overwrite++;
3056
		}
3057 3058
		if (dev->written)
			s.written++;
3059
		rdev = rcu_dereference(conf->disks[i].rdev);
3060 3061
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3062 3063 3064
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3065 3066 3067 3068
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3069
		}
3070 3071
		if (!rdev || !test_bit(In_sync, &rdev->flags)
		    || test_bit(R5_ReadError, &dev->flags)) {
3072 3073 3074
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3075 3076
		} else
			set_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3077 3078
	}
	rcu_read_unlock();
3079 3080

	if (unlikely(blocked_rdev)) {
3081 3082 3083 3084 3085 3086 3087 3088
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3089
	}
3090

3091
	pr_debug("locked=%d uptodate=%d to_read=%d"
3092
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3093 3094 3095 3096
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3097
	 */
3098
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3099
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3100
	if (s.failed > 2 && s.syncing) {
3101 3102
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3103
		s.syncing = 0;
3104 3105 3106 3107 3108 3109 3110
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3111 3112 3113 3114 3115 3116 3117 3118
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
	qdev = &sh->dev[r6s.qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3119
			     && !test_bit(R5_LOCKED, &pdev->flags)
3120 3121
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3122
			     && !test_bit(R5_LOCKED, &qdev->flags)
3123
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3124
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3125 3126 3127 3128 3129

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3130 3131
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
	    (s.syncing && (s.uptodate < disks)) || s.expanding)
3132
		handle_stripe_fill6(sh, &s, &r6s, disks);
3133 3134

	/* now to consider writing and what else, if anything should be read */
3135
	if (s.to_write)
3136
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3137 3138

	/* maybe we need to check and possibly fix the parity for this stripe
3139 3140
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available
3141
	 */
3142 3143
	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3144

3145
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3146 3147 3148 3149 3150 3151 3152
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3153 3154 3155
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
				}
			}
		}
3171

3172
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3173 3174
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3175
		stripe_set_idx(sh->sector, conf, 0, sh);
3176 3177 3178
		compute_parity6(sh, RECONSTRUCT_WRITE);
		for (i = conf->raid_disks ; i-- ;  ) {
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3179
			s.locked++;
3180 3181 3182
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
		}
		clear_bit(STRIPE_EXPANDING, &sh->state);
3183
	} else if (s.expanded) {
3184 3185 3186 3187 3188 3189
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3190
	if (s.expanding && s.locked == 0 &&
3191
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3192
		handle_stripe_expansion(conf, sh, &r6s);
3193

3194
 unlock:
3195 3196
	spin_unlock(&sh->lock);

3197 3198 3199 3200
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

D
Dan Williams 已提交
3201
	ops_run_io(sh, &s);
3202

D
Dan Williams 已提交
3203
	return_io(return_bi);
3204 3205

	return blocked_rdev == NULL;
3206 3207
}

3208 3209
/* returns true if the stripe was handled */
static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3210 3211
{
	if (sh->raid_conf->level == 6)
3212
		return handle_stripe6(sh, tmp_page);
3213
	else
3214
		return handle_stripe5(sh);
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
}



static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3230
			list_add_tail(&sh->lru, &conf->hold_list);
3231
		}
3232 3233
	} else
		blk_plug_device(conf->mddev->queue);
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	int i;

	rcu_read_lock();
	for (i=0; i<mddev->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3259
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3260 3261 3262 3263

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3264
			blk_unplug(r_queue);
3265 3266 3267 3268 3269 3270 3271 3272

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3273
static void raid5_unplug_device(struct request_queue *q)
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	if (blk_remove_plug(q)) {
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3284
	}
L
Linus Torvalds 已提交
3285 3286 3287 3288 3289 3290 3291
	md_wakeup_thread(mddev->thread);

	spin_unlock_irqrestore(&conf->device_lock, flags);

	unplug_slaves(mddev);
}

3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;
	raid5_conf_t *conf = mddev_to_conf(mddev);

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}

3310 3311 3312
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3313 3314 3315
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3316 3317
{
	mddev_t *mddev = q->queuedata;
3318
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3319 3320
	int max;
	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3321
	unsigned int bio_sectors = bvm->bi_size >> 9;
3322

3323
	if ((bvm->bi_rw & 1) == WRITE)
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
		return biovec->bv_len; /* always allow writes to be mergeable */

	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
	unsigned int chunk_sectors = mddev->chunk_size >> 9;
	unsigned int bio_sectors = bio->bi_size >> 9;

	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3374
		conf->retry_read_aligned_list = bi->bi_next;
3375
		bi->bi_next = NULL;
3376 3377 3378 3379
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3380 3381 3382 3383 3384 3385 3386
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3387 3388 3389 3390 3391 3392
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3393
static void raid5_align_endio(struct bio *bi, int error)
3394 3395
{
	struct bio* raid_bi  = bi->bi_private;
3396 3397 3398 3399 3400
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3401
	bio_put(bi);
3402 3403 3404 3405 3406 3407 3408 3409 3410

	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
	conf = mddev_to_conf(mddev);
	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3411
		bio_endio(raid_bi, 0);
3412 3413
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3414
		return;
3415 3416 3417
	}


3418
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3419 3420

	add_bio_to_retry(raid_bi, conf);
3421 3422
}

3423 3424
static int bio_fits_rdev(struct bio *bi)
{
3425
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3426 3427 3428 3429

	if ((bi->bi_size>>9) > q->max_sectors)
		return 0;
	blk_recount_segments(q, bi);
3430
	if (bi->bi_phys_segments > q->max_phys_segments)
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3443
static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3444 3445 3446
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
3447
	unsigned int dd_idx;
3448 3449 3450 3451
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3452
		pr_debug("chunk_aligned_read : non aligned\n");
3453 3454 3455
		return 0;
	}
	/*
3456
	 * use bio_clone to make a copy of the bio
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3470 3471
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3472
						    &dd_idx, NULL);
3473 3474 3475 3476 3477 3478

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3479 3480 3481 3482 3483
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3484 3485 3486 3487 3488 3489 3490
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3491 3492 3493 3494 3495 3496 3497
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3498 3499 3500 3501
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3502
		bio_put(align_bi);
3503 3504 3505 3506
		return 0;
	}
}

3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3559

3560
static int make_request(struct request_queue *q, struct bio * bi)
L
Linus Torvalds 已提交
3561 3562 3563
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
3564
	int dd_idx;
L
Linus Torvalds 已提交
3565 3566 3567
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3568
	const int rw = bio_data_dir(bi);
T
Tejun Heo 已提交
3569
	int cpu, remaining;
L
Linus Torvalds 已提交
3570

3571
	if (unlikely(bio_barrier(bi))) {
3572
		bio_endio(bi, -EOPNOTSUPP);
3573 3574 3575
		return 0;
	}

3576
	md_write_start(mddev, bi);
3577

T
Tejun Heo 已提交
3578 3579 3580 3581 3582
	cpu = part_stat_lock();
	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
		      bio_sectors(bi));
	part_stat_unlock();
L
Linus Torvalds 已提交
3583

3584
	if (rw == READ &&
3585 3586
	     mddev->reshape_position == MaxSector &&
	     chunk_aligned_read(q,bi))
3587
		return 0;
3588

L
Linus Torvalds 已提交
3589 3590 3591 3592
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3593

L
Linus Torvalds 已提交
3594 3595
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3596
		int disks, data_disks;
3597
		int previous;
3598

3599
	retry:
3600
		previous = 0;
3601
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3602 3603 3604
		if (likely(conf->expand_progress == MaxSector))
			disks = conf->raid_disks;
		else {
3605 3606 3607 3608 3609 3610 3611 3612
			/* spinlock is needed as expand_progress may be
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
			 * Ofcourse expand_progress could change after
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3613 3614
			spin_lock_irq(&conf->device_lock);
			disks = conf->raid_disks;
3615
			if (logical_sector >= conf->expand_progress) {
3616
				disks = conf->previous_raid_disks;
3617 3618
				previous = 1;
			} else {
3619 3620 3621 3622 3623 3624
				if (logical_sector >= conf->expand_lo) {
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3625 3626
			spin_unlock_irq(&conf->device_lock);
		}
3627 3628
		data_disks = disks - conf->max_degraded;

3629 3630
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3631
						  &dd_idx, NULL);
3632
		pr_debug("raid5: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3633 3634 3635
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3636 3637
		sh = get_active_stripe(conf, new_sector, previous,
				       (bi->bi_rw&RWA_MASK));
L
Linus Torvalds 已提交
3638
		if (sh) {
3639 3640
			if (unlikely(conf->expand_progress != MaxSector)) {
				/* expansion might have moved on while waiting for a
3641 3642 3643 3644 3645 3646
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
				if (logical_sector <  conf->expand_progress &&
				    disks == conf->previous_raid_disks)
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
					goto retry;
				}
			}
3660 3661 3662 3663 3664 3665 3666 3667 3668
			/* FIXME what if we get a false positive because these
			 * are being updated.
			 */
			if (logical_sector >= mddev->suspend_lo &&
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
				schedule();
				goto retry;
			}
3669 3670 3671 3672 3673

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3674 3675 3676 3677 3678 3679 3680 3681
				 * and wait a while
				 */
				raid5_unplug_device(mddev->queue);
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3682 3683
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
L
Linus Torvalds 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
3694
	remaining = raid5_dec_bi_phys_segments(bi);
3695 3696
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
3697

3698
		if ( rw == WRITE )
L
Linus Torvalds 已提交
3699
			md_write_end(mddev);
3700

3701
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
3702 3703 3704 3705
	}
	return 0;
}

D
Dan Williams 已提交
3706 3707
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

3708
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
3709
{
3710 3711 3712 3713 3714 3715 3716 3717 3718
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
L
Linus Torvalds 已提交
3719 3720
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
3721
	sector_t first_sector, last_sector;
3722 3723 3724
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
3725 3726 3727 3728 3729 3730 3731 3732
	int i;
	int dd_idx;
	sector_t writepos, safepos, gap;

	if (sector_nr == 0 &&
	    conf->expand_progress != 0) {
		/* restarting in the middle, skip the initial sectors */
		sector_nr = conf->expand_progress;
3733
		sector_div(sector_nr, new_data_disks);
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
		*skipped = 1;
		return sector_nr;
	}

	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
	 * i.e. one new_stripe forward from expand_progress new_maps
	 * to after where expand_lo old_maps to
	 */
	writepos = conf->expand_progress +
3747 3748
		conf->chunk_size/512*(new_data_disks);
	sector_div(writepos, new_data_disks);
3749
	safepos = conf->expand_lo;
3750
	sector_div(safepos, data_disks);
3751 3752 3753
	gap = conf->expand_progress - conf->expand_lo;

	if (writepos >= safepos ||
3754
	    gap > (new_data_disks)*3000*2 /*3Meg*/) {
3755 3756 3757 3758
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
		mddev->reshape_position = conf->expand_progress;
3759
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3760
		md_wakeup_thread(mddev->thread);
3761
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
		conf->expand_lo = mddev->reshape_position;
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
	}

	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
		int j;
		int skipped = 0;
3772
		sh = get_active_stripe(conf, sector_nr+i, 0, 0);
3773 3774 3775 3776 3777 3778 3779 3780 3781
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
3782
			if (conf->level == 6 &&
3783
			    j == sh->qd_idx)
3784
				continue;
3785
			s = compute_blocknr(sh, j);
D
Dan Williams 已提交
3786
			if (s < raid5_size(mddev, 0, 0)) {
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
				skipped = 1;
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
		if (!skipped) {
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
		release_stripe(sh);
	}
	spin_lock_irq(&conf->device_lock);
N
NeilBrown 已提交
3801
	conf->expand_progress = (sector_nr + i) * new_data_disks;
3802 3803 3804 3805 3806 3807 3808
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
3809
		raid5_compute_sector(conf, sector_nr*(new_data_disks),
3810
				     1, &dd_idx, NULL);
3811
	last_sector =
3812 3813
		raid5_compute_sector(conf, ((sector_nr+conf->chunk_size/512)
					    *(new_data_disks) - 1),
3814
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
3815 3816
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
3817
	while (first_sector <= last_sector) {
3818
		sh = get_active_stripe(conf, first_sector, 1, 0);
3819 3820 3821 3822 3823
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
	sector_nr += conf->chunk_size>>9;
	if (sector_nr >= mddev->resync_max) {
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
		mddev->reshape_position = conf->expand_progress;
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
		conf->expand_lo = mddev->reshape_position;
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
	}
3843 3844 3845 3846 3847 3848 3849 3850
	return conf->chunk_size>>9;
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
A
Andre Noll 已提交
3851
	sector_t max_sector = mddev->dev_sectors;
3852
	int sync_blocks;
3853 3854
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
3855

3856
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
3857 3858
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
3859 3860 3861 3862
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
3863 3864 3865 3866

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
3867
		else /* completed sync */
3868 3869 3870
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
3871 3872
		return 0;
	}
3873

3874 3875
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
3876

3877 3878 3879 3880 3881 3882
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

3883
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
3884 3885 3886
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
3887
	if (mddev->degraded >= conf->max_degraded &&
3888
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
3889
		sector_t rv = mddev->dev_sectors - sector_nr;
3890
		*skipped = 1;
L
Linus Torvalds 已提交
3891 3892
		return rv;
	}
3893
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3894
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3895 3896 3897 3898 3899 3900
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
3901

N
NeilBrown 已提交
3902 3903 3904

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

3905
	sh = get_active_stripe(conf, sector_nr, 0, 1);
L
Linus Torvalds 已提交
3906
	if (sh == NULL) {
3907
		sh = get_active_stripe(conf, sector_nr, 0, 0);
L
Linus Torvalds 已提交
3908
		/* make sure we don't swamp the stripe cache if someone else
3909
		 * is trying to get access
L
Linus Torvalds 已提交
3910
		 */
3911
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3912
	}
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
	for (i=0; i<mddev->raid_disks; i++)
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
3924 3925 3926 3927
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

3928 3929 3930
	/* wait for any blocked device to be handled */
	while(unlikely(!handle_stripe(sh, NULL)))
		;
L
Linus Torvalds 已提交
3931 3932 3933 3934 3935
	release_stripe(sh);

	return STRIPE_SECTORS;
}

3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
3949
	int dd_idx;
3950 3951 3952 3953 3954 3955
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3956
	sector = raid5_compute_sector(conf, logical_sector,
3957
				      0, &dd_idx, NULL);
3958 3959 3960
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
3961 3962 3963
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
3964

3965
		if (scnt < raid5_bi_hw_segments(raid_bio))
3966 3967 3968
			/* already done this stripe */
			continue;

3969
		sh = get_active_stripe(conf, sector, 0, 1);
3970 3971 3972

		if (!sh) {
			/* failed to get a stripe - must wait */
3973
			raid5_set_bi_hw_segments(raid_bio, scnt);
3974 3975 3976 3977 3978
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3979 3980
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
3981
			raid5_set_bi_hw_segments(raid_bio, scnt);
3982 3983 3984 3985
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

3986 3987 3988 3989 3990
		handle_stripe(sh, NULL);
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
3991
	remaining = raid5_dec_bi_phys_segments(raid_bio);
3992
	spin_unlock_irq(&conf->device_lock);
3993 3994
	if (remaining == 0)
		bio_endio(raid_bio, 0);
3995 3996 3997 3998 3999 4000 4001
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}



L
Linus Torvalds 已提交
4002 4003 4004 4005 4006 4007 4008
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4009
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4010 4011 4012 4013 4014
{
	struct stripe_head *sh;
	raid5_conf_t *conf = mddev_to_conf(mddev);
	int handled;

4015
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4016 4017 4018 4019 4020 4021

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4022
		struct bio *bio;
L
Linus Torvalds 已提交
4023

4024
		if (conf->seq_flush != conf->seq_write) {
4025
			int seq = conf->seq_flush;
4026
			spin_unlock_irq(&conf->device_lock);
4027
			bitmap_unplug(mddev->bitmap);
4028
			spin_lock_irq(&conf->device_lock);
4029 4030 4031 4032
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4043 4044
		sh = __get_priority_stripe(conf);

4045
		if (!sh)
L
Linus Torvalds 已提交
4046 4047 4048 4049
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4050
		handle_stripe(sh, conf->spare_page);
L
Linus Torvalds 已提交
4051 4052 4053 4054
		release_stripe(sh);

		spin_lock_irq(&conf->device_lock);
	}
4055
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4056 4057 4058

	spin_unlock_irq(&conf->device_lock);

4059
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4060 4061
	unplug_slaves(mddev);

4062
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4063 4064
}

4065
static ssize_t
4066
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4067
{
4068
	raid5_conf_t *conf = mddev_to_conf(mddev);
4069 4070 4071 4072
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4073 4074 4075
}

static ssize_t
4076
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4077
{
4078
	raid5_conf_t *conf = mddev_to_conf(mddev);
4079
	unsigned long new;
4080 4081
	int err;

4082 4083
	if (len >= PAGE_SIZE)
		return -EINVAL;
4084 4085
	if (!conf)
		return -ENODEV;
4086

4087
	if (strict_strtoul(page, 10, &new))
4088 4089 4090 4091 4092 4093 4094 4095 4096
		return -EINVAL;
	if (new <= 16 || new > 32768)
		return -EINVAL;
	while (new < conf->max_nr_stripes) {
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4097 4098 4099
	err = md_allow_write(mddev);
	if (err)
		return err;
4100 4101 4102 4103 4104 4105 4106
	while (new > conf->max_nr_stripes) {
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
	return len;
}
4107

4108 4109 4110 4111
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4112

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
4127
	unsigned long new;
4128 4129 4130 4131 4132
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4133
	if (strict_strtoul(page, 10, &new))
4134
		return -EINVAL;
4135
	if (new > conf->max_nr_stripes)
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4147
static ssize_t
4148
stripe_cache_active_show(mddev_t *mddev, char *page)
4149
{
4150
	raid5_conf_t *conf = mddev_to_conf(mddev);
4151 4152 4153 4154
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4155 4156
}

4157 4158
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4159

4160
static struct attribute *raid5_attrs[] =  {
4161 4162
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4163
	&raid5_preread_bypass_threshold.attr,
4164 4165
	NULL,
};
4166 4167 4168
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4169 4170
};

4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);

	if (!sectors)
		sectors = mddev->dev_sectors;
	if (!raid_disks)
		raid_disks = conf->previous_raid_disks;

	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
	return sectors * (raid_disks - conf->max_degraded);
}

N
NeilBrown 已提交
4185
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4186 4187 4188 4189 4190 4191
{
	raid5_conf_t *conf;
	int raid_disk, memory;
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4192 4193 4194
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4195
		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4196 4197
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4198
	}
N
NeilBrown 已提交
4199 4200 4201 4202
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4203
		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
N
NeilBrown 已提交
4204 4205
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4206
	}
N
NeilBrown 已提交
4207 4208 4209 4210
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4211 4212
	}

N
NeilBrown 已提交
4213 4214 4215 4216
	if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
			mddev->new_chunk, mdname(mddev));
		return ERR_PTR(-EINVAL);
4217 4218
	}

N
NeilBrown 已提交
4219 4220
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4221
		goto abort;
N
NeilBrown 已提交
4222 4223 4224 4225 4226

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4227 4228 4229
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;

	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4230 4231 4232
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4233

L
Linus Torvalds 已提交
4234 4235
	conf->mddev = mddev;

4236
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4237 4238
		goto abort;

N
NeilBrown 已提交
4239
	if (mddev->new_level == 6) {
4240 4241 4242 4243
		conf->spare_page = alloc_page(GFP_KERNEL);
		if (!conf->spare_page)
			goto abort;
	}
L
Linus Torvalds 已提交
4244 4245 4246 4247
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
4248
	INIT_LIST_HEAD(&conf->hold_list);
L
Linus Torvalds 已提交
4249
	INIT_LIST_HEAD(&conf->delayed_list);
4250
	INIT_LIST_HEAD(&conf->bitmap_list);
L
Linus Torvalds 已提交
4251 4252 4253
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
4254
	atomic_set(&conf->active_aligned_reads, 0);
4255
	conf->bypass_threshold = BYPASS_THRESHOLD;
L
Linus Torvalds 已提交
4256

4257
	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4258

4259
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4260
		raid_disk = rdev->raid_disk;
4261
		if (raid_disk >= conf->raid_disks
L
Linus Torvalds 已提交
4262 4263 4264 4265 4266 4267
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4268
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4269 4270 4271 4272
			char b[BDEVNAME_SIZE];
			printk(KERN_INFO "raid5: device %s operational as raid"
				" disk %d\n", bdevname(rdev->bdev,b),
				raid_disk);
4273 4274 4275
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4276 4277
	}

N
NeilBrown 已提交
4278 4279
	conf->chunk_size = mddev->new_chunk;
	conf->level = mddev->new_level;
4280 4281 4282 4283
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4284
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4285
	conf->max_nr_stripes = NR_STRIPES;
4286
	conf->expand_progress = mddev->reshape_position;
L
Linus Torvalds 已提交
4287

N
NeilBrown 已提交
4288 4289 4290 4291 4292 4293 4294 4295 4296
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
			"raid5: couldn't allocate %dkB for buffers\n", memory);
		goto abort;
	} else
		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
			memory, mdname(mddev));
L
Linus Torvalds 已提交
4297

N
NeilBrown 已提交
4298 4299 4300 4301 4302
	conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
	if (!conf->thread) {
		printk(KERN_ERR
		       "raid5: couldn't allocate thread for %s\n",
		       mdname(mddev));
4303 4304
		goto abort;
	}
N
NeilBrown 已提交
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380

	return conf;

 abort:
	if (conf) {
		shrink_stripes(conf);
		safe_put_page(conf->spare_page);
		kfree(conf->disks);
		kfree(conf->stripe_hashtbl);
		kfree(conf);
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
	int working_disks = 0;
	mdk_rdev_t *rdev;

	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
		int max_degraded = (mddev->level == 5 ? 1 : 2);

		if (mddev->new_level != mddev->level ||
		    mddev->new_layout != mddev->layout ||
		    mddev->new_chunk != mddev->chunk_size) {
			printk(KERN_ERR "raid5: %s: unsupported reshape "
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		if (mddev->delta_disks <= 0) {
			printk(KERN_ERR "raid5: %s: unsupported reshape "
			       "(reduce disks) required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
		if (sector_div(here_new, (mddev->chunk_size>>9)*
			       (mddev->raid_disks - max_degraded))) {
			printk(KERN_ERR "raid5: reshape_position not "
			       "on a stripe boundary\n");
			return -EINVAL;
		}
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
		sector_div(here_old, (mddev->chunk_size>>9)*
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
		if (here_new >= here_old) {
			/* Reading from the same stripe as writing to - bad */
			printk(KERN_ERR "raid5: reshape_position too early for "
			       "auto-recovery - aborting.\n");
			return -EINVAL;
		}
		printk(KERN_INFO "raid5: reshape will continue\n");
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
		BUG_ON(mddev->chunk_size != mddev->new_chunk);
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4381
	}
N
NeilBrown 已提交
4382

4383 4384 4385 4386 4387
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
	list_for_each_entry(rdev, &mddev->disks, same_set)
		if (rdev->raid_disk >= 0 &&
		    test_bit(In_sync, &rdev->flags))
			working_disks++;

	mddev->degraded = conf->raid_disks - working_disks;

4405
	if (mddev->degraded > conf->max_degraded) {
L
Linus Torvalds 已提交
4406 4407
		printk(KERN_ERR "raid5: not enough operational devices for %s"
			" (%d/%d failed)\n",
4408
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
4409 4410 4411
		goto abort;
	}

N
NeilBrown 已提交
4412 4413 4414 4415
	/* device size must be a multiple of chunk size */
	mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
	mddev->resync_max_sectors = mddev->dev_sectors;

4416
	if (mddev->degraded > 0 &&
L
Linus Torvalds 已提交
4417
	    mddev->recovery_cp != MaxSector) {
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
			       "raid5: starting dirty degraded array: %s"
			       "- data corruption possible.\n",
			       mdname(mddev));
		else {
			printk(KERN_ERR
			       "raid5: cannot start dirty degraded array for %s\n",
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
	}

	if (mddev->degraded == 0)
		printk("raid5: raid level %d set %s active with %d out of %d"
			" devices, algorithm %d\n", conf->level, mdname(mddev), 
			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
			conf->algorithm);
	else
		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
			" out of %d devices, algorithm %d\n", conf->level,
			mdname(mddev), mddev->raid_disks - mddev->degraded,
			mddev->raid_disks, conf->algorithm);

	print_raid5_conf(conf);

4444 4445
	if (conf->expand_progress != MaxSector) {
		printk("...ok start reshape thread\n");
4446
		conf->expand_lo = conf->expand_progress;
4447 4448 4449 4450 4451 4452 4453 4454 4455
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
							"%s_reshape");
	}

L
Linus Torvalds 已提交
4456
	/* read-ahead size must cover two whole stripes, which is
4457
	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
L
Linus Torvalds 已提交
4458 4459
	 */
	{
4460 4461
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
4462
			(mddev->chunk_size / PAGE_SIZE);
L
Linus Torvalds 已提交
4463 4464 4465 4466 4467
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
	}

	/* Ok, everything is just fine now */
4468 4469 4470 4471
	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
		printk(KERN_WARNING
		       "raid5: failed to create sysfs attributes for %s\n",
		       mdname(mddev));
4472

N
NeilBrown 已提交
4473 4474
	mddev->queue->queue_lock = &conf->device_lock;

4475
	mddev->queue->unplug_fn = raid5_unplug_device;
4476
	mddev->queue->backing_dev_info.congested_data = mddev;
4477
	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4478

4479
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4480

4481 4482
	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);

L
Linus Torvalds 已提交
4483 4484
	return 0;
abort:
4485
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
4486
	mddev->thread = NULL;
L
Linus Torvalds 已提交
4487
	if (conf) {
N
NeilBrown 已提交
4488
		shrink_stripes(conf);
L
Linus Torvalds 已提交
4489
		print_raid5_conf(conf);
4490
		safe_put_page(conf->spare_page);
4491
		kfree(conf->disks);
4492
		kfree(conf->stripe_hashtbl);
L
Linus Torvalds 已提交
4493 4494 4495 4496 4497 4498 4499 4500 4501
		kfree(conf);
	}
	mddev->private = NULL;
	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
	return -EIO;
}



4502
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
4503 4504 4505 4506 4507 4508
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
	shrink_stripes(conf);
4509
	kfree(conf->stripe_hashtbl);
4510
	mddev->queue->backing_dev_info.congested_fn = NULL;
L
Linus Torvalds 已提交
4511
	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4512
	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4513
	kfree(conf->disks);
4514
	kfree(conf);
L
Linus Torvalds 已提交
4515 4516 4517 4518
	mddev->private = NULL;
	return 0;
}

4519
#ifdef DEBUG
4520
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
4521 4522 4523
{
	int i;

4524 4525 4526 4527 4528
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4529
	for (i = 0; i < sh->disks; i++) {
4530 4531
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
4532
	}
4533
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
4534 4535
}

4536
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
4537 4538
{
	struct stripe_head *sh;
4539
	struct hlist_node *hn;
L
Linus Torvalds 已提交
4540 4541 4542 4543
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
4544
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
4545 4546
			if (sh->raid_conf != conf)
				continue;
4547
			print_sh(seq, sh);
L
Linus Torvalds 已提交
4548 4549 4550 4551 4552 4553
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

4554
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
4555 4556 4557 4558 4559
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	int i;

	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4560
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
4561 4562 4563
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
4564
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
4565
	seq_printf (seq, "]");
4566
#ifdef DEBUG
4567 4568
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

	printk("RAID5 conf printout:\n");
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
4582 4583
	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
		 conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
4584 4585 4586 4587 4588 4589

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
		printk(" disk %d, o:%d, dev:%s\n",
4590
			i, !test_bit(Faulty, &tmp->rdev->flags),
L
Linus Torvalds 已提交
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
			bdevname(tmp->rdev->bdev,b));
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
4604
		    && !test_bit(Faulty, &tmp->rdev->flags)
4605 4606 4607
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4608
			mddev->degraded--;
4609
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
		}
	}
	print_raid5_conf(conf);
	return 0;
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
4626
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
4627 4628 4629 4630
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
4631 4632 4633 4634 4635 4636 4637 4638
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
		    mddev->degraded <= conf->max_degraded) {
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
4639
		p->rdev = NULL;
4640
		synchronize_rcu();
L
Linus Torvalds 已提交
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
4656
	int err = -EEXIST;
L
Linus Torvalds 已提交
4657 4658
	int disk;
	struct disk_info *p;
4659 4660
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
4661

4662
	if (mddev->degraded > conf->max_degraded)
L
Linus Torvalds 已提交
4663
		/* no point adding a device */
4664
		return -EINVAL;
L
Linus Torvalds 已提交
4665

4666 4667
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
4668 4669

	/*
4670 4671
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
4672
	 */
4673
	if (rdev->saved_raid_disk >= 0 &&
4674
	    rdev->saved_raid_disk >= first &&
4675 4676 4677
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
4678 4679
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
4680
		if ((p=conf->disks + disk)->rdev == NULL) {
4681
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
4682
			rdev->raid_disk = disk;
4683
			err = 0;
4684 4685
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
4686
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
4687 4688 4689
			break;
		}
	print_raid5_conf(conf);
4690
	return err;
L
Linus Torvalds 已提交
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4703 4704
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
4705 4706 4707
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
4708
	set_capacity(mddev->gendisk, mddev->array_sectors);
4709
	mddev->changed = 1;
A
Andre Noll 已提交
4710 4711
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
4712 4713
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
4714
	mddev->dev_sectors = sectors;
4715
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
4716 4717 4718
	return 0;
}

4719
#ifdef CONFIG_MD_RAID5_RESHAPE
4720
static int raid5_check_reshape(mddev_t *mddev)
4721 4722 4723 4724
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	int err;

4725 4726 4727 4728
	if (mddev->delta_disks < 0 ||
	    mddev->new_level != mddev->level)
		return -EINVAL; /* Cannot shrink array or change level yet */
	if (mddev->delta_disks == 0)
4729
		return 0; /* nothing to do */
4730 4731 4732
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
4733 4734 4735 4736 4737 4738 4739 4740 4741

	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
4742 4743
	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4744 4745 4746 4747 4748
		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
		       (mddev->chunk_size / STRIPE_SIZE)*4);
		return -ENOSPC;
	}

4749 4750 4751 4752
	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
	if (err)
		return err;

4753 4754
	if (mddev->degraded > conf->max_degraded)
		return -EINVAL;
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
	/* looks like we might be able to manage this */
	return 0;
}

static int raid5_start_reshape(mddev_t *mddev)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	mdk_rdev_t *rdev;
	int spares = 0;
	int added_devices = 0;
4765
	unsigned long flags;
4766

4767
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4768 4769
		return -EBUSY;

4770
	list_for_each_entry(rdev, &mddev->disks, same_set)
4771 4772 4773
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
4774

4775
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4776 4777 4778 4779 4780
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

4781
	atomic_set(&conf->reshape_stripes, 0);
4782 4783
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
4784
	conf->raid_disks += mddev->delta_disks;
4785
	conf->expand_progress = 0;
4786
	conf->expand_lo = 0;
4787 4788 4789 4790 4791
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
	 */
4792
	list_for_each_entry(rdev, &mddev->disks, same_set)
4793 4794
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
4795
			if (raid5_add_disk(mddev, rdev) == 0) {
4796 4797 4798
				char nm[20];
				set_bit(In_sync, &rdev->flags);
				added_devices++;
4799
				rdev->recovery_offset = 0;
4800
				sprintf(nm, "rd%d", rdev->raid_disk);
4801 4802 4803 4804 4805 4806
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
					printk(KERN_WARNING
					       "raid5: failed to create "
					       " link %s for %s\n",
					       nm, mdname(mddev));
4807 4808 4809 4810
			} else
				break;
		}

4811
	spin_lock_irqsave(&conf->device_lock, flags);
4812
	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4813
	spin_unlock_irqrestore(&conf->device_lock, flags);
4814
	mddev->raid_disks = conf->raid_disks;
4815
	mddev->reshape_position = 0;
4816
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4817

4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
						"%s_reshape");
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
		conf->expand_progress = MaxSector;
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}
#endif

static void end_reshape(raid5_conf_t *conf)
{
	struct block_device *bdev;

4842
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4843 4844
		mddev_t *mddev = conf->mddev;

D
Dan Williams 已提交
4845
		md_set_array_sectors_lock(mddev, raid5_size(mddev, 0,
4846
						       conf->raid_disks));
4847 4848 4849
		set_capacity(mddev->gendisk, mddev->array_sectors);
		mddev->changed = 1;
		conf->previous_raid_disks = conf->raid_disks;
4850 4851 4852 4853

		bdev = bdget_disk(conf->mddev->gendisk, 0);
		if (bdev) {
			mutex_lock(&bdev->bd_inode->i_mutex);
4854 4855
			i_size_write(bdev->bd_inode,
				     (loff_t)conf->mddev->array_sectors << 9);
4856 4857 4858 4859 4860 4861 4862
			mutex_unlock(&bdev->bd_inode->i_mutex);
			bdput(bdev);
		}
		spin_lock_irq(&conf->device_lock);
		conf->expand_progress = MaxSector;
		spin_unlock_irq(&conf->device_lock);
		conf->mddev->reshape_position = MaxSector;
4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
		{
			int data_disks = conf->previous_raid_disks - conf->max_degraded;
			int stripe = data_disks *
				(conf->mddev->chunk_size / PAGE_SIZE);
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
4874 4875 4876
	}
}

4877 4878 4879 4880 4881
static void raid5_quiesce(mddev_t *mddev, int state)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);

	switch(state) {
4882 4883 4884 4885
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

4886 4887 4888 4889
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 1;
		wait_event_lock_irq(conf->wait_for_stripe,
4890 4891
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
4892 4893 4894 4895 4896 4897 4898 4899
				    conf->device_lock, /* nothing */);
		spin_unlock_irq(&conf->device_lock);
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
4900
		wake_up(&conf->wait_for_overlap);
4901 4902 4903 4904
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
4905

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933

static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
	mddev->new_chunk = chunksect << 9;

	return setup_conf(mddev);
}

4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

4967

4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
{
	/* Currently the layout and chunk size can only be changed
	 * for a 2-drive raid array, as in that case no data shuffling
	 * is required.
	 * Later we might validate these and set new_* so a reshape
	 * can complete the change.
	 */
	raid5_conf_t *conf = mddev_to_conf(mddev);

	if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
		return -EINVAL;
	if (new_chunk > 0) {
		if (new_chunk & (new_chunk-1))
			/* not a power of 2 */
			return -EINVAL;
		if (new_chunk < PAGE_SIZE)
			return -EINVAL;
		if (mddev->array_sectors & ((new_chunk>>9)-1))
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

	if (mddev->raid_disks != 2)
		return -EINVAL;

	if (new_layout >= 0) {
		conf->algorithm = new_layout;
		mddev->layout = mddev->new_layout = new_layout;
	}
	if (new_chunk > 0) {
		conf->chunk_size = new_chunk;
		mddev->chunk_size = mddev->new_chunk = new_chunk;
	}
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	md_wakeup_thread(mddev->thread);
	return 0;
}

5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
	 *  raid0 - if all devices are the same - make it a raid4 layout
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 *
	 * For now, just do raid1
	 */

	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5022 5023 5024 5025 5026
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5027 5028
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5029 5030 5031 5032 5033

	return ERR_PTR(-EINVAL);
}


5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5098
	.size		= raid5_size,
5099 5100 5101 5102
#ifdef CONFIG_MD_RAID5_RESHAPE
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
#endif
5103
	.quiesce	= raid5_quiesce,
5104
	.takeover	= raid6_takeover,
5105
};
5106
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5107 5108
{
	.name		= "raid5",
5109
	.level		= 5,
L
Linus Torvalds 已提交
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5121
	.size		= raid5_size,
5122
#ifdef CONFIG_MD_RAID5_RESHAPE
5123 5124
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5125
#endif
5126
	.quiesce	= raid5_quiesce,
5127
	.takeover	= raid5_takeover,
5128
	.reconfig	= raid5_reconfig,
L
Linus Torvalds 已提交
5129 5130
};

5131
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5132
{
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5146
	.size		= raid5_size,
5147 5148 5149 5150
#ifdef CONFIG_MD_RAID5_RESHAPE
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
#endif
5151 5152 5153 5154 5155
	.quiesce	= raid5_quiesce,
};

static int __init raid5_init(void)
{
5156 5157 5158 5159 5160 5161
	int e;

	e = raid6_select_algo();
	if ( e )
		return e;
	register_md_personality(&raid6_personality);
5162 5163 5164
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5165 5166
}

5167
static void raid5_exit(void)
L
Linus Torvalds 已提交
5168
{
5169
	unregister_md_personality(&raid6_personality);
5170 5171
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5172 5173 5174 5175 5176 5177
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5178 5179
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5180 5181
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5182 5183 5184 5185 5186 5187 5188
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");