raid5.c 162.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include <linux/slab.h>
54
#include "md.h"
55
#include "raid5.h"
56
#include "raid0.h"
57
#include "bitmap.h"
58

L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
68
#define BYPASS_THRESHOLD	1
69
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
70 71
#define HASH_MASK		(NR_HASH - 1)

72
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

94
#ifdef DEBUG
L
Linus Torvalds 已提交
95 96 97 98
#define inline
#define __inline__
#endif

99 100
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

101
/*
102 103
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 105 106
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
107
	return bio->bi_phys_segments & 0xffff;
108 109 110 111
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
112
	return (bio->bi_phys_segments >> 16) & 0xffff;
113 114 115 116 117 118 119 120 121 122 123 124 125
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
126
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 128 129 130 131
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
132
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
133 134
}

135 136 137
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
138 139 140 141
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
142 143 144 145 146
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
147 148 149 150 151
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
152

153 154 155 156 157
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
158 159
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
160
{
161
	int slot = *count;
162

163
	if (sh->ddf_layout)
164
		(*count)++;
165
	if (idx == sh->pd_idx)
166
		return syndrome_disks;
167
	if (idx == sh->qd_idx)
168
		return syndrome_disks + 1;
169
	if (!sh->ddf_layout)
170
		(*count)++;
171 172 173
	return slot;
}

174 175 176 177 178 179 180 181
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
182
		bio_endio(bi, 0);
183 184 185 186
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
187 188
static void print_raid5_conf (raid5_conf_t *conf);

189 190 191 192 193 194 195
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

196
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
197 198
{
	if (atomic_dec_and_test(&sh->count)) {
199 200
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
201
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
N
NeilBrown 已提交
202
			if (test_bit(STRIPE_DELAYED, &sh->state))
L
Linus Torvalds 已提交
203
				list_add_tail(&sh->lru, &conf->delayed_list);
N
NeilBrown 已提交
204 205
			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
				   sh->bm_seq - conf->seq_write > 0)
206
				list_add_tail(&sh->lru, &conf->bitmap_list);
N
NeilBrown 已提交
207
			else {
208
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
209
				list_add_tail(&sh->lru, &conf->handle_list);
210
			}
L
Linus Torvalds 已提交
211 212
			md_wakeup_thread(conf->mddev->thread);
		} else {
213
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
214 215 216 217 218 219
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
220 221
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
222
				wake_up(&conf->wait_for_stripe);
223 224
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
225
			}
L
Linus Torvalds 已提交
226 227 228
		}
	}
}
229

L
Linus Torvalds 已提交
230 231 232 233
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
234

L
Linus Torvalds 已提交
235 236 237 238 239
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

240
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
241
{
242 243
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
244

245
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
246 247
}

248
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
249
{
250
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
251

252 253
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
254 255

	CHECK_DEVLOCK();
256
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

278
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
279 280 281
{
	struct page *p;
	int i;
282
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
283

284
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
285 286 287 288
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
289
		put_page(p);
L
Linus Torvalds 已提交
290 291 292
	}
}

293
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
294 295
{
	int i;
296
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
297

298
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
299 300 301 302 303 304 305 306 307 308
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

309
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 311
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
312

313
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
314 315
{
	raid5_conf_t *conf = sh->raid_conf;
316
	int i;
L
Linus Torvalds 已提交
317

318 319
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320
	BUG_ON(stripe_operations_active(sh));
321

L
Linus Torvalds 已提交
322
	CHECK_DEVLOCK();
323
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
324 325 326
		(unsigned long long)sh->sector);

	remove_hash(sh);
327

328
	sh->generation = conf->generation - previous;
329
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
330
	sh->sector = sector;
331
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
332 333
	sh->state = 0;

334 335

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
336 337
		struct r5dev *dev = &sh->dev[i];

338
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
339
		    test_bit(R5_LOCKED, &dev->flags)) {
340
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
341
			       (unsigned long long)sh->sector, i, dev->toread,
342
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
343 344 345 346
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
347
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
348 349 350 351
	}
	insert_hash(conf, sh);
}

352 353
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
354 355
{
	struct stripe_head *sh;
356
	struct hlist_node *hn;
L
Linus Torvalds 已提交
357 358

	CHECK_DEVLOCK();
359
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
362
			return sh;
363
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
364 365 366
	return NULL;
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
static int has_failed(raid5_conf_t *conf)
{
	int degraded;
	int i;
	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

434 435
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
436
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
437 438 439
{
	struct stripe_head *sh;

440
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
441 442 443 444

	spin_lock_irq(&conf->device_lock);

	do {
445
		wait_event_lock_irq(conf->wait_for_stripe,
446
				    conf->quiesce == 0 || noquiesce,
447
				    conf->device_lock, /* nothing */);
448
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
449 450 451 452 453 454 455 456 457
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
458 459
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
460 461
						     || !conf->inactive_blocked),
						    conf->device_lock,
462
						    );
L
Linus Torvalds 已提交
463 464
				conf->inactive_blocked = 0;
			} else
465
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
466 467
		} else {
			if (atomic_read(&sh->count)) {
468 469
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
470 471 472
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
473 474
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
475 476
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
477 478 479 480 481 482 483 484 485 486 487
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

488 489 490 491
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
492

493
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 495 496 497 498 499 500 501 502 503
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
T
Tejun Heo 已提交
504 505 506 507 508 509
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510 511 512 513 514 515 516
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
517
		if (rw & WRITE)
518 519 520 521 522 523 524 525 526 527 528 529 530
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
531
			if (s->syncing || s->expanding || s->expanded)
532 533
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
534 535
			set_bit(STRIPE_IO_STARTED, &sh->state);

536 537
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538
				__func__, (unsigned long long)sh->sector,
539 540 541 542 543 544 545 546 547 548 549 550
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
551
			if ((rw & WRITE) &&
552 553 554 555 556
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
557
			if (rw & WRITE)
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
575
	struct async_submit_ctl submit;
D
Dan Williams 已提交
576
	enum async_tx_flags flags = 0;
577 578 579 580 581

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
582

D
Dan Williams 已提交
583 584 585 586
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

587
	bio_for_each_segment(bvl, bio, i) {
588
		int len = bvl->bv_len;
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
604 605
			b_offset += bvl->bv_offset;
			bio_page = bvl->bv_page;
606 607
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
608
						  b_offset, clen, &submit);
609 610
			else
				tx = async_memcpy(bio_page, page, b_offset,
611
						  page_offset, clen, &submit);
612
		}
613 614 615
		/* chain the operations */
		submit.depend_tx = tx;

616 617 618 619 620 621 622 623 624 625 626 627 628
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
629
	int i;
630

631
	pr_debug("%s: stripe %llu\n", __func__,
632 633 634
		(unsigned long long)sh->sector);

	/* clear completed biofills */
635
	spin_lock_irq(&conf->device_lock);
636 637 638 639
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
640 641
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
642
		 * !STRIPE_BIOFILL_RUN
643 644
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645 646 647 648 649 650 651 652
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
653
				if (!raid5_dec_bi_phys_segments(rbi)) {
654 655 656 657 658 659 660
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
661 662
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
663 664 665

	return_io(return_bi);

666
	set_bit(STRIPE_HANDLE, &sh->state);
667 668 669 670 671 672 673
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
674
	struct async_submit_ctl submit;
675 676
	int i;

677
	pr_debug("%s: stripe %llu\n", __func__,
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
698 699
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
700 701
}

702
static void mark_target_uptodate(struct stripe_head *sh, int target)
703
{
704
	struct r5dev *tgt;
705

706 707
	if (target < 0)
		return;
708

709
	tgt = &sh->dev[target];
710 711 712
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
713 714
}

715
static void ops_complete_compute(void *stripe_head_ref)
716 717 718
{
	struct stripe_head *sh = stripe_head_ref;

719
	pr_debug("%s: stripe %llu\n", __func__,
720 721
		(unsigned long long)sh->sector);

722
	/* mark the computed target(s) as uptodate */
723
	mark_target_uptodate(sh, sh->ops.target);
724
	mark_target_uptodate(sh, sh->ops.target2);
725

726 727 728
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
729 730 731 732
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

733 734 735 736 737 738 739 740 741
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
742 743
{
	int disks = sh->disks;
744
	struct page **xor_srcs = percpu->scribble;
745 746 747 748 749
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
750
	struct async_submit_ctl submit;
751 752 753
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
754
		__func__, (unsigned long long)sh->sector, target);
755 756 757 758 759 760 761 762
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
763
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
765
	if (unlikely(count == 1))
766
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767
	else
768
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
769 770 771 772

	return tx;
}

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
791
		srcs[i] = NULL;
792 793 794 795 796 797 798 799 800 801

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

802
	return syndrome_disks;
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
823
	else
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
840 841
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
842 843 844 845 846 847 848 849 850 851 852
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
853 854
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
855 856 857
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
858 859 860 861

	return tx;
}

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

883
	/* we need to open-code set_syndrome_sources to handle the
884 885 886
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
887
		blocks[i] = NULL;
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
914 915 916
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
917
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
937 938 939 940
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
941 942 943 944
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
945 946 947
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
948 949 950 951
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
952 953 954 955 956 957 958 959 960 961 962 963 964 965
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
966 967 968 969
	}
}


970 971 972 973
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

974
	pr_debug("%s: stripe %llu\n", __func__,
975 976 977 978
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
979 980
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
981 982
{
	int disks = sh->disks;
983
	struct page **xor_srcs = percpu->scribble;
984
	int count = 0, pd_idx = sh->pd_idx, i;
985
	struct async_submit_ctl submit;
986 987 988 989

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

990
	pr_debug("%s: stripe %llu\n", __func__,
991 992 993 994 995
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
996
		if (test_bit(R5_Wantdrain, &dev->flags))
997 998 999
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1000
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1003 1004 1005 1006 1007

	return tx;
}

static struct dma_async_tx_descriptor *
1008
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1009 1010
{
	int disks = sh->disks;
1011
	int i;
1012

1013
	pr_debug("%s: stripe %llu\n", __func__,
1014 1015 1016 1017 1018 1019
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1020
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021 1022
			struct bio *wbi;

1023
			spin_lock_irq(&sh->raid_conf->device_lock);
1024 1025 1026 1027
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
1028
			spin_unlock_irq(&sh->raid_conf->device_lock);
1029 1030 1031

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1032 1033
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1044
static void ops_complete_reconstruct(void *stripe_head_ref)
1045 1046
{
	struct stripe_head *sh = stripe_head_ref;
1047 1048 1049 1050
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
T
Tejun Heo 已提交
1051
	bool fua = false;
1052

1053
	pr_debug("%s: stripe %llu\n", __func__,
1054 1055
		(unsigned long long)sh->sector);

T
Tejun Heo 已提交
1056 1057 1058
	for (i = disks; i--; )
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);

1059 1060
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1061

T
Tejun Heo 已提交
1062
		if (dev->written || i == pd_idx || i == qd_idx) {
1063
			set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1064 1065 1066
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
		}
1067 1068
	}

1069 1070 1071 1072 1073 1074 1075 1076
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1077 1078 1079 1080 1081 1082

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1083 1084
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1085 1086
{
	int disks = sh->disks;
1087
	struct page **xor_srcs = percpu->scribble;
1088
	struct async_submit_ctl submit;
1089 1090
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1091
	int prexor = 0;
1092 1093
	unsigned long flags;

1094
	pr_debug("%s: stripe %llu\n", __func__,
1095 1096 1097 1098 1099
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1100 1101
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1122
	flags = ASYNC_TX_ACK |
1123 1124 1125 1126
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1127
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1128
			  to_addr_conv(sh, percpu));
1129 1130 1131 1132
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1133 1134
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1152 1153 1154 1155 1156 1157
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1158
	pr_debug("%s: stripe %llu\n", __func__,
1159 1160
		(unsigned long long)sh->sector);

1161
	sh->check_state = check_state_check_result;
1162 1163 1164 1165
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1166
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1167 1168
{
	int disks = sh->disks;
1169 1170 1171
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1172
	struct page **xor_srcs = percpu->scribble;
1173
	struct dma_async_tx_descriptor *tx;
1174
	struct async_submit_ctl submit;
1175 1176
	int count;
	int i;
1177

1178
	pr_debug("%s: stripe %llu\n", __func__,
1179 1180
		(unsigned long long)sh->sector);

1181 1182 1183
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1184
	for (i = disks; i--; ) {
1185 1186 1187
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1188 1189
	}

1190 1191
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1192
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1193
			   &sh->ops.zero_sum_result, &submit);
1194 1195

	atomic_inc(&sh->count);
1196 1197
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1198 1199
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1212 1213

	atomic_inc(&sh->count);
1214 1215 1216 1217
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1218 1219
}

1220
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1221 1222 1223
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1224
	raid5_conf_t *conf = sh->raid_conf;
1225
	int level = conf->level;
1226 1227
	struct raid5_percpu *percpu;
	unsigned long cpu;
1228

1229 1230
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1231
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1232 1233 1234 1235
		ops_run_biofill(sh);
		overlap_clear++;
	}

1236
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1247 1248
			async_tx_ack(tx);
	}
1249

1250
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1251
		tx = ops_run_prexor(sh, percpu, tx);
1252

1253
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1254
		tx = ops_run_biodrain(sh, tx);
1255 1256 1257
		overlap_clear++;
	}

1258 1259 1260 1261 1262 1263
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1264

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1275 1276 1277 1278 1279 1280 1281

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1282
	put_cpu();
1283 1284
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1315
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1316 1317
{
	struct stripe_head *sh;
N
Namhyung Kim 已提交
1318
	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1319 1320
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1321

1322
	sh->raid_conf = conf;
1323 1324 1325
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1326

1327 1328
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1342
	struct kmem_cache *sc;
1343
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1344

1345 1346 1347 1348 1349 1350 1351 1352
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1353 1354
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1355
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1356
			       0, 0, NULL);
L
Linus Torvalds 已提交
1357 1358 1359
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1360
	conf->pool_size = devs;
1361
	while (num--)
1362
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1363 1364 1365
			return 1;
	return 0;
}
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1417
	unsigned long cpu;
1418
	int err;
1419
	struct kmem_cache *sc;
1420 1421 1422 1423 1424
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1425 1426 1427
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1428

1429 1430 1431
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1432
			       0, 0, NULL);
1433 1434 1435 1436
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
N
Namhyung Kim 已提交
1437
		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1438 1439 1440 1441
		if (!nsh)
			break;

		nsh->raid_conf = conf;
1442 1443 1444
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
N
NeilBrown 已提交
1467
				    );
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1482
	 * conf->disks and the scribble region
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1512 1513 1514 1515
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1516

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1533

1534
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1535 1536 1537
{
	struct stripe_head *sh;

1538 1539 1540 1541 1542
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1543
	BUG_ON(atomic_read(&sh->count));
1544
	shrink_buffers(sh);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1555 1556
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1557 1558 1559
	conf->slab_cache = NULL;
}

1560
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1561
{
1562
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1563
	raid5_conf_t *conf = sh->raid_conf;
1564
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1565
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1566 1567
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1568 1569 1570 1571 1572 1573


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1574 1575
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1576 1577 1578
		uptodate);
	if (i == disks) {
		BUG();
1579
		return;
L
Linus Torvalds 已提交
1580 1581 1582 1583
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1584
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1585
			rdev = conf->disks[i].rdev;
1586
			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1587 1588 1589 1590 1591
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1592 1593 1594
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1595 1596
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1597
	} else {
1598
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1599
		int retry = 0;
1600 1601
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1602
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1603
		atomic_inc(&rdev->read_errors);
1604
		if (conf->mddev->degraded >= conf->max_degraded)
1605
			printk_rl(KERN_WARNING
1606
				  "md/raid:%s: read error not correctable "
1607 1608 1609 1610 1611
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1612
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1613
			/* Oh, no!!! */
1614
			printk_rl(KERN_WARNING
1615
				  "md/raid:%s: read error NOT corrected!! "
1616 1617 1618 1619 1620
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1621
		else if (atomic_read(&rdev->read_errors)
1622
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1623
			printk(KERN_WARNING
1624
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1625
			       mdname(conf->mddev), bdn);
1626 1627 1628 1629 1630
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1631 1632
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1633
			md_error(conf->mddev, rdev);
1634
		}
L
Linus Torvalds 已提交
1635 1636 1637 1638 1639 1640 1641
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1642
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1643
{
1644
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1645
	raid5_conf_t *conf = sh->raid_conf;
1646
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1647 1648 1649 1650 1651 1652
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1653
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1654 1655 1656 1657
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1658
		return;
L
Linus Torvalds 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1668
	release_stripe(sh);
L
Linus Torvalds 已提交
1669 1670 1671
}


1672
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1673
	
1674
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1690
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1691 1692 1693 1694 1695
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
1696
	raid5_conf_t *conf = mddev->private;
1697
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1698

1699 1700 1701 1702 1703 1704 1705 1706 1707
	if (test_and_clear_bit(In_sync, &rdev->flags)) {
		unsigned long flags;
		spin_lock_irqsave(&conf->device_lock, flags);
		mddev->degraded++;
		spin_unlock_irqrestore(&conf->device_lock, flags);
		/*
		 * if recovery was running, make sure it aborts.
		 */
		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1708
	}
1709 1710 1711 1712 1713 1714 1715 1716 1717
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
1718
}
L
Linus Torvalds 已提交
1719 1720 1721 1722 1723

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1724
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1725 1726
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1727
{
N
NeilBrown 已提交
1728
	sector_t stripe, stripe2;
1729
	sector_t chunk_number;
L
Linus Torvalds 已提交
1730
	unsigned int chunk_offset;
1731
	int pd_idx, qd_idx;
1732
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1733
	sector_t new_sector;
1734 1735
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1736 1737
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1738 1739 1740
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1753 1754
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1755
	stripe2 = stripe;
L
Linus Torvalds 已提交
1756 1757 1758
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1759
	pd_idx = qd_idx = ~0;
1760 1761
	switch(conf->level) {
	case 4:
1762
		pd_idx = data_disks;
1763 1764
		break;
	case 5:
1765
		switch (algorithm) {
L
Linus Torvalds 已提交
1766
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1767
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1768
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1769 1770 1771
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1772
			pd_idx = sector_div(stripe2, raid_disks);
1773
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1774 1775 1776
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1777
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1778
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1779 1780
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1781
			pd_idx = sector_div(stripe2, raid_disks);
1782
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1783
			break;
1784 1785 1786 1787 1788 1789 1790
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1791
		default:
1792
			BUG();
1793 1794 1795 1796
		}
		break;
	case 6:

1797
		switch (algorithm) {
1798
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1799
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1800 1801
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1802
				(*dd_idx)++;	/* Q D D D P */
1803 1804
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1805 1806 1807
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1808
			pd_idx = sector_div(stripe2, raid_disks);
1809 1810
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1811
				(*dd_idx)++;	/* Q D D D P */
1812 1813
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1814 1815 1816
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1817
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1818 1819
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1820 1821
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1822
			pd_idx = sector_div(stripe2, raid_disks);
1823 1824
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1825
			break;
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
1841
			pd_idx = sector_div(stripe2, raid_disks);
1842 1843 1844 1845 1846 1847
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1848
			ddf_layout = 1;
1849 1850 1851 1852 1853 1854 1855
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
1856 1857
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1858 1859 1860 1861 1862 1863
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1864
			ddf_layout = 1;
1865 1866 1867 1868
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
1869
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1870 1871
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1872
			ddf_layout = 1;
1873 1874 1875 1876
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
1877
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1878 1879 1880 1881 1882 1883
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
1884
			pd_idx = sector_div(stripe2, raid_disks-1);
1885 1886 1887 1888 1889 1890
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
1891
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1892 1893 1894 1895 1896
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
1897
			pd_idx = sector_div(stripe2, raid_disks-1);
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

1908
		default:
1909
			BUG();
1910 1911
		}
		break;
L
Linus Torvalds 已提交
1912 1913
	}

1914 1915 1916
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1917
		sh->ddf_layout = ddf_layout;
1918
	}
L
Linus Torvalds 已提交
1919 1920 1921 1922 1923 1924 1925 1926
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1927
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1928 1929
{
	raid5_conf_t *conf = sh->raid_conf;
1930 1931
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1932
	sector_t new_sector = sh->sector, check;
1933 1934
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1935 1936
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1937 1938
	sector_t stripe;
	int chunk_offset;
1939 1940
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1941
	sector_t r_sector;
1942
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1943

1944

L
Linus Torvalds 已提交
1945 1946 1947
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

1948 1949 1950 1951 1952
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1953
		switch (algorithm) {
L
Linus Torvalds 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1965 1966 1967 1968 1969
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1970
		default:
1971
			BUG();
1972 1973 1974
		}
		break;
	case 6:
1975
		if (i == sh->qd_idx)
1976
			return 0; /* It is the Q disk */
1977
		switch (algorithm) {
1978 1979
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1980 1981 1982 1983
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1998 1999 2000 2001 2002 2003
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2004
			/* Like left_symmetric, but P is before Q */
2005 2006
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2007 2008 2009 2010 2011 2012
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2028
		default:
2029
			BUG();
2030 2031
		}
		break;
L
Linus Torvalds 已提交
2032 2033 2034
	}

	chunk_number = stripe * data_disks + i;
2035
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2036

2037
	check = raid5_compute_sector(conf, r_sector,
2038
				     previous, &dummy1, &sh2);
2039 2040
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2041 2042
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2043 2044 2045 2046 2047 2048
		return 0;
	}
	return r_sector;
}


2049
static void
2050
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2051
			 int rcw, int expand)
2052 2053
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2054 2055
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
2056 2057 2058 2059 2060 2061 2062

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2063 2064 2065 2066
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2067

2068
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2069 2070 2071 2072 2073 2074

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2075
				set_bit(R5_Wantdrain, &dev->flags);
2076 2077
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2078
				s->locked++;
2079 2080
			}
		}
2081
		if (s->locked + conf->max_degraded == disks)
2082
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2083
				atomic_inc(&conf->pending_full_writes);
2084
	} else {
2085
		BUG_ON(level == 6);
2086 2087 2088
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2089
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2090 2091
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2092
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2093 2094 2095 2096 2097 2098 2099 2100

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2101 2102
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2103 2104
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2105
				s->locked++;
2106 2107 2108 2109
			}
		}
	}

2110
	/* keep the parity disk(s) locked while asynchronous operations
2111 2112 2113 2114
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2115
	s->locked++;
2116

2117 2118 2119 2120 2121 2122 2123 2124 2125
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2126
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2127
		__func__, (unsigned long long)sh->sector,
2128
		s->locked, s->ops_request);
2129
}
2130

L
Linus Torvalds 已提交
2131 2132
/*
 * Each stripe/dev can have one or more bion attached.
2133
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2134 2135 2136 2137 2138 2139
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2140
	int firstwrite=0;
L
Linus Torvalds 已提交
2141

2142
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2143 2144 2145 2146 2147
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock_irq(&conf->device_lock);
2148
	if (forwrite) {
L
Linus Torvalds 已提交
2149
		bip = &sh->dev[dd_idx].towrite;
2150 2151 2152
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2162
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2163 2164 2165
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2166
	bi->bi_phys_segments++;
2167

L
Linus Torvalds 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	spin_unlock_irq(&conf->device_lock);

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
		(unsigned long long)(*bip)->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
L
Linus Torvalds 已提交
2193 2194 2195 2196 2197 2198 2199 2200
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	return 0;
}

2201 2202
static void end_reshape(raid5_conf_t *conf);

2203 2204
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2205
{
2206
	int sectors_per_chunk =
2207
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2208
	int dd_idx;
2209
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2210
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2211

2212 2213
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2214
			     *sectors_per_chunk + chunk_offset,
2215
			     previous,
2216
			     &dd_idx, sh);
2217 2218
}

2219
static void
2220
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2254
			if (!raid5_dec_bi_phys_segments(bi)) {
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2269
			if (!raid5_dec_bi_phys_segments(bi)) {
2270 2271 2272 2273 2274 2275 2276
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2277 2278 2279 2280 2281 2282
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2293
				if (!raid5_dec_bi_phys_segments(bi)) {
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2306 2307 2308
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2309 2310
}

2311
/* fetch_block - checks the given member device to see if its data needs
2312 2313 2314
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
2315
 * 0 to tell the loop in handle_stripe_fill to continue
2316
 */
2317 2318
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
2319
{
2320
	struct r5dev *dev = &sh->dev[disk_idx];
2321 2322
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
2323

2324
	/* is the data in this block needed, and can we get it? */
2325 2326 2327 2328 2329
	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
2330 2331
	     (s->failed >= 1 && fdev[0]->toread) ||
	     (s->failed >= 2 && fdev[1]->toread) ||
2332 2333 2334
	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2335 2336 2337 2338 2339 2340
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
2341 2342
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
2343 2344
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2345
			 */
2346 2347 2348 2349 2350 2351 2352 2353
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
2354 2355 2356 2357 2358 2359
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2373
			}
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2393 2394
		}
	}
2395 2396 2397 2398 2399

	return 0;
}

/**
2400
 * handle_stripe_fill - read or compute data to satisfy pending requests.
2401
 */
2402 2403 2404
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
2415
			if (fetch_block(sh, s, i, disks))
2416
				break;
2417 2418 2419 2420
	set_bit(STRIPE_HANDLE, &sh->state);
}


2421
/* handle_stripe_clean_event
2422 2423 2424 2425
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2426
static void handle_stripe_clean_event(raid5_conf_t *conf,
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2440
				pr_debug("Return write for disc %d\n", i);
2441 2442 2443 2444 2445 2446
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2447
					if (!raid5_dec_bi_phys_segments(wbi)) {
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2465 2466 2467 2468

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2469 2470
}

2471
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2472 2473 2474 2475 2476 2477 2478 2479
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2480 2481
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2482 2483 2484 2485 2486 2487 2488 2489
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2490 2491 2492
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2493 2494 2495 2496
			else
				rcw += 2*disks;
		}
	}
2497
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2498 2499 2500 2501 2502 2503 2504 2505
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2506 2507
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2508 2509 2510
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2511
					pr_debug("Read_old block "
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2529 2530
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2531 2532 2533
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2534
					pr_debug("Read_old block "
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2548 2549
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2550 2551
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2552 2553 2554
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2555 2556 2557
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2558
		schedule_reconstruction(sh, s, rcw == 0, 0);
2559 2560
}

2561
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2562
		struct stripe_head *sh,	struct stripe_head_state *s,
2563
		int disks)
2564
{
2565
	int rcw = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2566
	int qd_idx = sh->qd_idx;
2567 2568

	set_bit(STRIPE_HANDLE, &sh->state);
2569 2570
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
		/* check if we haven't enough data */
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != pd_idx && i != qd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
			rcw++;
			if (!test_bit(R5_Insync, &dev->flags))
				continue; /* it's a failed drive */

			if (
			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				pr_debug("Read_old stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
			} else {
				pr_debug("Request delayed stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(STRIPE_DELAYED, &sh->state);
				set_bit(STRIPE_HANDLE, &sh->state);
2595 2596 2597 2598 2599 2600
			}
		}
	}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
2601 2602
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    s->locked == 0 && rcw == 0 &&
2603
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2604
		schedule_reconstruction(sh, s, 1, 0);
2605 2606 2607 2608 2609 2610
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2611
	struct r5dev *dev = NULL;
2612

2613
	set_bit(STRIPE_HANDLE, &sh->state);
2614

2615 2616 2617
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2618 2619
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2620 2621
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2622 2623
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2624
			break;
2625
		}
2626
		dev = &sh->dev[s->failed_num[0]];
2627 2628 2629 2630 2631 2632 2633 2634 2635
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2636

2637 2638 2639 2640 2641
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2642
		s->locked++;
2643
		set_bit(R5_Wantwrite, &dev->flags);
2644

2645 2646
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2663
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2675
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2676 2677 2678 2679
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2680
				sh->ops.target2 = -1;
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2692 2693 2694 2695 2696
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2697
				  struct stripe_head_state *s,
2698
				  int disks)
2699 2700
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2701
	int qd_idx = sh->qd_idx;
2702
	struct r5dev *dev;
2703 2704 2705 2706

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2707

2708 2709 2710 2711 2712 2713
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2714 2715 2716
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2717
		if (s->failed == s->q_failed) {
2718
			/* The only possible failed device holds Q, so it
2719 2720 2721
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2722
			sh->check_state = check_state_run;
2723
		}
2724
		if (!s->q_failed && s->failed < 2) {
2725
			/* Q is not failed, and we didn't use it to generate
2726 2727
			 * anything, so it makes sense to check it
			 */
2728 2729 2730 2731
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2732 2733
		}

2734 2735
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2736

2737 2738 2739 2740
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2741
		}
2742 2743 2744 2745 2746 2747 2748
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2749 2750
		}

2751 2752 2753 2754 2755
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2756

2757 2758 2759
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2760 2761

		/* now write out any block on a failed drive,
2762
		 * or P or Q if they were recomputed
2763
		 */
2764
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2765
		if (s->failed == 2) {
2766
			dev = &sh->dev[s->failed_num[1]];
2767 2768 2769 2770 2771
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
2772
			dev = &sh->dev[s->failed_num[0]];
2773 2774 2775 2776
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2777
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2778 2779 2780 2781 2782
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2783
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2784 2785 2786 2787 2788 2789 2790 2791
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2856 2857 2858
	}
}

2859
static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2860 2861 2862 2863 2864 2865
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2866
	struct dma_async_tx_descriptor *tx = NULL;
2867 2868
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2869
		if (i != sh->pd_idx && i != sh->qd_idx) {
2870
			int dd_idx, j;
2871
			struct stripe_head *sh2;
2872
			struct async_submit_ctl submit;
2873

2874
			sector_t bn = compute_blocknr(sh, i, 1);
2875 2876
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2877
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2890 2891

			/* place all the copies on one channel */
2892
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2893
			tx = async_memcpy(sh2->dev[dd_idx].page,
2894
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2895
					  &submit);
2896

2897 2898 2899 2900
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2901
				    j != sh2->qd_idx &&
2902 2903 2904 2905 2906 2907 2908
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2909

2910
		}
2911 2912 2913 2914 2915
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2916
}
L
Linus Torvalds 已提交
2917

2918

L
Linus Torvalds 已提交
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2935

2936
static int handle_stripe5(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
2937 2938
{
	raid5_conf_t *conf = sh->raid_conf;
2939
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
2940
	struct r5dev *dev;
2941
	int prexor;
L
Linus Torvalds 已提交
2942

2943
	/* Now to look around and see what can be done */
2944
	rcu_read_lock();
2945
	spin_lock_irq(&conf->device_lock);
L
Linus Torvalds 已提交
2946 2947
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2948 2949

		dev = &sh->dev[i];
L
Linus Torvalds 已提交
2950

2951 2952 2953 2954 2955 2956 2957
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
2958
		 * ops_complete_biofill is guaranteed to be inactive
2959 2960
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2961
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2962
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2963 2964

		/* now count some things */
2965 2966 2967 2968 2969 2970
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
		if (test_bit(R5_Wantcompute, &dev->flags))
			s->compute++;
L
Linus Torvalds 已提交
2971

2972
		if (test_bit(R5_Wantfill, &dev->flags))
2973
			s->to_fill++;
2974
		else if (dev->toread)
2975
			s->to_read++;
L
Linus Torvalds 已提交
2976
		if (dev->towrite) {
2977
			s->to_write++;
L
Linus Torvalds 已提交
2978
			if (!test_bit(R5_OVERWRITE, &dev->flags))
2979
				s->non_overwrite++;
L
Linus Torvalds 已提交
2980
		}
2981
		if (dev->written)
2982
			s->written++;
2983
		rdev = rcu_dereference(conf->disks[i].rdev);
2984
		if (s->blocked_rdev == NULL &&
2985
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2986
			s->blocked_rdev = rdev;
2987 2988
			atomic_inc(&rdev->nr_pending);
		}
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* could be in-sync depending on recovery/reshape status */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
N
NeilBrown 已提交
3000
			/* The ReadError flag will just be confusing now */
3001 3002 3003
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
3004 3005 3006
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3007 3008
			s->failed++;
			s->failed_num[0] = i;
3009
		}
L
Linus Torvalds 已提交
3010
	}
3011
	spin_unlock_irq(&conf->device_lock);
3012
	rcu_read_unlock();
3013

3014 3015 3016
	if (unlikely(s->blocked_rdev)) {
		if (s->syncing || s->expanding || s->expanded ||
		    s->to_write || s->written) {
3017
			set_bit(STRIPE_HANDLE, &sh->state);
3018
			return 1;
3019 3020
		}
		/* There is nothing for the blocked_rdev to block */
3021 3022
		rdev_dec_pending(s->blocked_rdev, conf->mddev);
		s->blocked_rdev = NULL;
3023 3024
	}

3025 3026
	if (s->to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s->ops_request);
3027 3028
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
3029

3030
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
3031
		" to_write=%d failed=%d failed_num=%d\n",
3032 3033
		s->locked, s->uptodate, s->to_read, s->to_write,
		s->failed, s->failed_num[0]);
L
Linus Torvalds 已提交
3034 3035 3036
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
3037 3038 3039
	if (s->failed > 1 && s->to_read+s->to_write+s->written)
		handle_failed_stripe(conf, sh, s, disks, &s->return_bi);
	if (s->failed > 1 && s->syncing) {
L
Linus Torvalds 已提交
3040 3041
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3042
		s->syncing = 0;
L
Linus Torvalds 已提交
3043 3044 3045 3046 3047 3048
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
3049 3050 3051 3052 3053 3054
	if (s->written &&
	    ((test_bit(R5_Insync, &dev->flags) &&
	      !test_bit(R5_LOCKED, &dev->flags) &&
	      test_bit(R5_UPTODATE, &dev->flags)) ||
	     (s->failed == 1 && s->failed_num[0] == sh->pd_idx)))
		handle_stripe_clean_event(conf, sh, disks, &s->return_bi);
L
Linus Torvalds 已提交
3055 3056 3057 3058 3059

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3060 3061
	if (s->to_read || s->non_overwrite ||
	    (s->syncing && (s->uptodate + s->compute < disks)) || s->expanding)
3062
		handle_stripe_fill(sh, s, disks);
L
Linus Torvalds 已提交
3063

3064 3065 3066
	/* Now we check to see if any write operations have recently
	 * completed
	 */
3067
	prexor = 0;
3068
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3069
		prexor = 1;
3070 3071
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3072
		sh->reconstruct_state = reconstruct_state_idle;
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
3084 3085
				if (prexor)
					continue;
3086
				if (!test_bit(R5_Insync, &dev->flags) ||
3087
				    (i == sh->pd_idx && s->failed == 0))
3088 3089 3090
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3091
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3092
			s->dec_preread_active = 1;
3093 3094 3095 3096 3097 3098 3099 3100
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3101 3102
	if (s->to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying5(conf, sh, s, disks);
L
Linus Torvalds 已提交
3103 3104

	/* maybe we need to check and possibly fix the parity for this stripe
3105 3106 3107
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
3108
	 */
3109
	if (sh->check_state ||
3110
	    (s->syncing && s->locked == 0 &&
3111
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3112
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3113
		handle_parity_checks5(conf, sh, s, disks);
3114
	return 0;
L
Linus Torvalds 已提交
3115 3116
}

3117
static int handle_stripe6(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
3118
{
3119
	raid5_conf_t *conf = sh->raid_conf;
3120
	int disks = sh->disks;
N
NeilBrown 已提交
3121
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3122
	struct r5dev *dev, *pdev, *qdev;
L
Linus Torvalds 已提交
3123

3124
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3125 3126

	rcu_read_lock();
3127
	spin_lock_irq(&conf->device_lock);
3128 3129 3130
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3131

3132
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3133
			i, dev->flags, dev->toread, dev->towrite, dev->written);
3134 3135 3136 3137 3138 3139 3140 3141
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3142

3143
		/* now count some things */
3144 3145 3146 3147
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
3148
		if (test_bit(R5_Wantcompute, &dev->flags)) {
3149 3150
			s->compute++;
			BUG_ON(s->compute > 2);
3151
		}
L
Linus Torvalds 已提交
3152

3153
		if (test_bit(R5_Wantfill, &dev->flags)) {
3154
			s->to_fill++;
3155
		} else if (dev->toread)
3156
			s->to_read++;
3157
		if (dev->towrite) {
3158
			s->to_write++;
3159
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3160
				s->non_overwrite++;
3161
		}
3162
		if (dev->written)
3163
			s->written++;
3164
		rdev = rcu_dereference(conf->disks[i].rdev);
3165
		if (s->blocked_rdev == NULL &&
3166
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3167
			s->blocked_rdev = rdev;
3168 3169
			atomic_inc(&rdev->nr_pending);
		}
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* in sync if before recovery_offset */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
3181 3182 3183
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3184
		}
3185 3186 3187
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3188 3189 3190
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
3191
		}
L
Linus Torvalds 已提交
3192
	}
3193
	spin_unlock_irq(&conf->device_lock);
L
Linus Torvalds 已提交
3194
	rcu_read_unlock();
3195

3196 3197 3198
	if (unlikely(s->blocked_rdev)) {
		if (s->syncing || s->expanding || s->expanded ||
		    s->to_write || s->written) {
3199
			set_bit(STRIPE_HANDLE, &sh->state);
3200
			return 1;
3201 3202
		}
		/* There is nothing for the blocked_rdev to block */
3203 3204
		rdev_dec_pending(s->blocked_rdev, conf->mddev);
		s->blocked_rdev = NULL;
3205
	}
3206

3207 3208
	if (s->to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s->ops_request);
3209 3210 3211
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

3212
	pr_debug("locked=%d uptodate=%d to_read=%d"
3213
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3214 3215
	       s->locked, s->uptodate, s->to_read, s->to_write, s->failed,
	       s->failed_num[0], s->failed_num[1]);
3216 3217
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3218
	 */
3219 3220 3221
	if (s->failed > 2 && s->to_read+s->to_write+s->written)
		handle_failed_stripe(conf, sh, s, disks, &s->return_bi);
	if (s->failed > 2 && s->syncing) {
3222 3223
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3224
		s->syncing = 0;
3225 3226 3227 3228 3229 3230 3231
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3232 3233
	s->p_failed = (s->failed >= 1 && s->failed_num[0] == pd_idx)
		|| (s->failed >= 2 && s->failed_num[1] == pd_idx);
N
NeilBrown 已提交
3234
	qdev = &sh->dev[qd_idx];
3235 3236
	s->q_failed = (s->failed >= 1 && s->failed_num[0] == qd_idx)
		|| (s->failed >= 2 && s->failed_num[1] == qd_idx);
3237

3238 3239
	if (s->written &&
	    (s->p_failed || ((test_bit(R5_Insync, &pdev->flags)
3240
			     && !test_bit(R5_LOCKED, &pdev->flags)
3241
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3242
	    (s->q_failed || ((test_bit(R5_Insync, &qdev->flags)
3243
			     && !test_bit(R5_LOCKED, &qdev->flags)
3244
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3245
		handle_stripe_clean_event(conf, sh, disks, &s->return_bi);
3246 3247 3248 3249 3250

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3251 3252
	if (s->to_read || s->non_overwrite || (s->to_write && s->failed) ||
	    (s->syncing && (s->uptodate + s->compute < disks)) || s->expanding)
3253
		handle_stripe_fill(sh, s, disks);
3254

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	if (sh->reconstruct_state == reconstruct_state_drain_result) {

		sh->reconstruct_state = reconstruct_state_idle;
		/* All the 'written' buffers and the parity blocks are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
			    (i == sh->pd_idx || i == qd_idx ||
			     dev->written)) {
				pr_debug("Writing block %d\n", i);
				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
				set_bit(R5_Wantwrite, &dev->flags);
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == qd_idx) &&
3276
				      s->failed == 0))
3277 3278 3279
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3280
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3281
			s->dec_preread_active = 1;
3282 3283
	}

3284 3285 3286 3287 3288 3289
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3290 3291
	if (s->to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying6(conf, sh, s, disks);
3292 3293

	/* maybe we need to check and possibly fix the parity for this stripe
3294
	 * Any reads will already have been scheduled, so we just see if enough
3295 3296
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
3297
	 */
3298
	if (sh->check_state ||
3299
	    (s->syncing && s->locked == 0 &&
3300 3301
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3302
		handle_parity_checks6(conf, sh, s, disks);
3303
	return 0;
3304 3305 3306 3307 3308
}

static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
3309 3310
	int done;
	int i;
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	raid5_conf_t *conf = sh->raid_conf;

	clear_bit(STRIPE_HANDLE, &sh->state);
	if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
		set_bit(STRIPE_SYNCING, &sh->state);
		clear_bit(STRIPE_INSYNC, &sh->state);
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
	memset(&s, 0, sizeof(s));

	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3337 3338
	s.failed_num[0] = -1;
	s.failed_num[1] = -1;
3339 3340

	if (conf->level == 6)
3341
		done = handle_stripe6(sh, &s);
3342
	else
3343 3344 3345 3346
		done = handle_stripe5(sh, &s);

	if (done)
		goto finish;
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378


	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}


3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
3406

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
3423

3424
finish:
3425
	/* wait for this device to become unblocked */
3426 3427
	if (unlikely(s.blocked_rdev))
		md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3428

3429 3430 3431
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3432
	ops_run_io(sh, &s);
3433

3434

3435
	if (s.dec_preread_active) {
3436
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3437
		 * is waiting on a flush, it won't continue until the writes
3438 3439 3440 3441 3442 3443 3444 3445
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

3446
	return_io(s.return_bi);
3447

3448
	clear_bit(STRIPE_ACTIVE, &sh->state);
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3462
			list_add_tail(&sh->lru, &conf->hold_list);
3463
		}
N
NeilBrown 已提交
3464
	}
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

N
NeilBrown 已提交
3481
int md_raid5_congested(mddev_t *mddev, int bits)
3482
{
3483
	raid5_conf_t *conf = mddev->private;
3484 3485 3486 3487

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3488

3489 3490 3491 3492 3493 3494 3495 3496 3497
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3498 3499 3500 3501 3502 3503 3504 3505 3506
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3507

3508 3509 3510
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3511 3512 3513
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3514 3515
{
	mddev_t *mddev = q->queuedata;
3516
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3517
	int max;
3518
	unsigned int chunk_sectors = mddev->chunk_sectors;
3519
	unsigned int bio_sectors = bvm->bi_size >> 9;
3520

3521
	if ((bvm->bi_rw & 1) == WRITE)
3522 3523
		return biovec->bv_len; /* always allow writes to be mergeable */

3524 3525
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3526 3527 3528 3529 3530 3531 3532 3533
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3534 3535 3536 3537

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3538
	unsigned int chunk_sectors = mddev->chunk_sectors;
3539 3540
	unsigned int bio_sectors = bio->bi_size >> 9;

3541 3542
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3543 3544 3545 3546
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3576
		conf->retry_read_aligned_list = bi->bi_next;
3577
		bi->bi_next = NULL;
3578 3579 3580 3581
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3582 3583 3584 3585 3586 3587 3588
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3589 3590 3591 3592 3593 3594
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3595
static void raid5_align_endio(struct bio *bi, int error)
3596 3597
{
	struct bio* raid_bi  = bi->bi_private;
3598 3599 3600 3601 3602
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3603
	bio_put(bi);
3604 3605 3606

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3607 3608
	mddev = rdev->mddev;
	conf = mddev->private;
3609 3610 3611 3612

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3613
		bio_endio(raid_bi, 0);
3614 3615
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3616
		return;
3617 3618 3619
	}


3620
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3621 3622

	add_bio_to_retry(raid_bi, conf);
3623 3624
}

3625 3626
static int bio_fits_rdev(struct bio *bi)
{
3627
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3628

3629
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3630 3631
		return 0;
	blk_recount_segments(q, bi);
3632
	if (bi->bi_phys_segments > queue_max_segments(q))
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3645
static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3646
{
3647
	raid5_conf_t *conf = mddev->private;
N
NeilBrown 已提交
3648
	int dd_idx;
3649 3650 3651 3652
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3653
		pr_debug("chunk_aligned_read : non aligned\n");
3654 3655 3656
		return 0;
	}
	/*
3657
	 * use bio_clone_mddev to make a copy of the bio
3658
	 */
3659
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3671 3672
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3673
						    &dd_idx, NULL);
3674 3675 3676 3677 3678 3679

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3680 3681 3682 3683 3684
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3685 3686 3687 3688 3689 3690 3691
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3692 3693 3694 3695 3696 3697 3698
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3699 3700 3701 3702
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3703
		bio_put(align_bi);
3704 3705 3706 3707
		return 0;
	}
}

3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3760

3761
static int make_request(mddev_t *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3762
{
3763
	raid5_conf_t *conf = mddev->private;
3764
	int dd_idx;
L
Linus Torvalds 已提交
3765 3766 3767
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3768
	const int rw = bio_data_dir(bi);
3769
	int remaining;
3770
	int plugged;
L
Linus Torvalds 已提交
3771

T
Tejun Heo 已提交
3772 3773
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
3774 3775 3776
		return 0;
	}

3777
	md_write_start(mddev, bi);
3778

3779
	if (rw == READ &&
3780
	     mddev->reshape_position == MaxSector &&
3781
	     chunk_aligned_read(mddev,bi))
3782
		return 0;
3783

L
Linus Torvalds 已提交
3784 3785 3786 3787
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3788

3789
	plugged = mddev_check_plugged(mddev);
L
Linus Torvalds 已提交
3790 3791
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3792
		int disks, data_disks;
3793
		int previous;
3794

3795
	retry:
3796
		previous = 0;
3797
		disks = conf->raid_disks;
3798
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3799
		if (unlikely(conf->reshape_progress != MaxSector)) {
3800
			/* spinlock is needed as reshape_progress may be
3801 3802
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3803
			 * Of course reshape_progress could change after
3804 3805 3806 3807
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3808
			spin_lock_irq(&conf->device_lock);
3809 3810 3811
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3812
				disks = conf->previous_raid_disks;
3813 3814
				previous = 1;
			} else {
3815 3816 3817
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3818 3819 3820 3821 3822
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3823 3824
			spin_unlock_irq(&conf->device_lock);
		}
3825 3826
		data_disks = disks - conf->max_degraded;

3827 3828
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3829
						  &dd_idx, NULL);
3830
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3831 3832 3833
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3834
		sh = get_active_stripe(conf, new_sector, previous,
3835
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
3836
		if (sh) {
3837
			if (unlikely(previous)) {
3838
				/* expansion might have moved on while waiting for a
3839 3840 3841 3842 3843 3844
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3845 3846 3847
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3848 3849 3850
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
3851 3852 3853 3854 3855
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
3856
					schedule();
3857 3858 3859
					goto retry;
				}
			}
3860

3861
			if (rw == WRITE &&
3862
			    logical_sector >= mddev->suspend_lo &&
3863 3864
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
3875 3876
				goto retry;
			}
3877 3878

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3879
			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
3880 3881
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3882 3883
				 * and wait a while
				 */
N
NeilBrown 已提交
3884
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
3885 3886 3887 3888 3889
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3890 3891
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
T
Tejun Heo 已提交
3892
			if ((bi->bi_rw & REQ_SYNC) &&
3893 3894
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
3895 3896 3897 3898 3899 3900 3901 3902 3903
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
3904 3905 3906
	if (!plugged)
		md_wakeup_thread(mddev->thread);

L
Linus Torvalds 已提交
3907
	spin_lock_irq(&conf->device_lock);
3908
	remaining = raid5_dec_bi_phys_segments(bi);
3909 3910
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
3911

3912
		if ( rw == WRITE )
L
Linus Torvalds 已提交
3913
			md_write_end(mddev);
3914

3915
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
3916
	}
3917

L
Linus Torvalds 已提交
3918 3919 3920
	return 0;
}

D
Dan Williams 已提交
3921 3922
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

3923
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
3924
{
3925 3926 3927 3928 3929 3930 3931 3932 3933
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
3934
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
3935
	struct stripe_head *sh;
3936
	sector_t first_sector, last_sector;
3937 3938 3939
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
3940 3941
	int i;
	int dd_idx;
3942
	sector_t writepos, readpos, safepos;
3943
	sector_t stripe_addr;
3944
	int reshape_sectors;
3945
	struct list_head stripes;
3946

3947 3948 3949 3950 3951 3952
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
3953
		} else if (mddev->delta_disks >= 0 &&
3954 3955
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
3956
		sector_div(sector_nr, new_data_disks);
3957
		if (sector_nr) {
3958 3959
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3960 3961 3962
			*skipped = 1;
			return sector_nr;
		}
3963 3964
	}

3965 3966 3967 3968
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
3969 3970
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
3971
	else
3972
		reshape_sectors = mddev->chunk_sectors;
3973

3974 3975 3976 3977 3978
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
3979 3980
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
3981
	 */
3982
	writepos = conf->reshape_progress;
3983
	sector_div(writepos, new_data_disks);
3984 3985
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
3986
	safepos = conf->reshape_safe;
3987
	sector_div(safepos, data_disks);
3988
	if (mddev->delta_disks < 0) {
3989
		writepos -= min_t(sector_t, reshape_sectors, writepos);
3990
		readpos += reshape_sectors;
3991
		safepos += reshape_sectors;
3992
	} else {
3993
		writepos += reshape_sectors;
3994 3995
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
3996
	}
3997

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4015
	if ((mddev->delta_disks < 0
4016 4017 4018
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4019 4020 4021
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4022
		mddev->reshape_position = conf->reshape_progress;
4023
		mddev->curr_resync_completed = sector_nr;
4024
		conf->reshape_checkpoint = jiffies;
4025
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4026
		md_wakeup_thread(mddev->thread);
4027
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4028 4029
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4030
		conf->reshape_safe = mddev->reshape_position;
4031 4032
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4033
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4034 4035
	}

4036 4037 4038 4039
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4040 4041
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4042 4043
		       != sector_nr);
	} else {
4044
		BUG_ON(writepos != sector_nr + reshape_sectors);
4045 4046
		stripe_addr = sector_nr;
	}
4047
	INIT_LIST_HEAD(&stripes);
4048
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4049
		int j;
4050
		int skipped_disk = 0;
4051
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4052 4053 4054 4055 4056 4057 4058 4059 4060
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4061
			if (conf->level == 6 &&
4062
			    j == sh->qd_idx)
4063
				continue;
4064
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4065
			if (s < raid5_size(mddev, 0, 0)) {
4066
				skipped_disk = 1;
4067 4068 4069 4070 4071 4072
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4073
		if (!skipped_disk) {
4074 4075 4076
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4077
		list_add(&sh->lru, &stripes);
4078 4079
	}
	spin_lock_irq(&conf->device_lock);
4080
	if (mddev->delta_disks < 0)
4081
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4082
	else
4083
		conf->reshape_progress += reshape_sectors * new_data_disks;
4084 4085 4086 4087 4088 4089 4090
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4091
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4092
				     1, &dd_idx, NULL);
4093
	last_sector =
4094
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4095
					    * new_data_disks - 1),
4096
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4097 4098
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4099
	while (first_sector <= last_sector) {
4100
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4101 4102 4103 4104 4105
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4106 4107 4108 4109 4110 4111 4112 4113
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4114 4115 4116
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4117
	sector_nr += reshape_sectors;
4118 4119
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4120 4121 4122
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4123
		mddev->reshape_position = conf->reshape_progress;
4124
		mddev->curr_resync_completed = sector_nr;
4125
		conf->reshape_checkpoint = jiffies;
4126 4127 4128 4129 4130 4131
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4132
		conf->reshape_safe = mddev->reshape_position;
4133 4134
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4135
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4136
	}
4137
	return reshape_sectors;
4138 4139 4140 4141 4142
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
4143
	raid5_conf_t *conf = mddev->private;
4144
	struct stripe_head *sh;
A
Andre Noll 已提交
4145
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
4146
	sector_t sync_blocks;
4147 4148
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4149

4150
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4151
		/* just being told to finish up .. nothing much to do */
4152

4153 4154 4155 4156
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4157 4158 4159 4160

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4161
		else /* completed sync */
4162 4163 4164
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4165 4166
		return 0;
	}
4167

4168 4169 4170
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4171 4172
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4173

4174 4175 4176 4177 4178 4179
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4180
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4181 4182 4183
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4184
	if (mddev->degraded >= conf->max_degraded &&
4185
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4186
		sector_t rv = mddev->dev_sectors - sector_nr;
4187
		*skipped = 1;
L
Linus Torvalds 已提交
4188 4189
		return rv;
	}
4190
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4191
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4192 4193 4194 4195 4196 4197
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4198

N
NeilBrown 已提交
4199 4200 4201

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4202
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4203
	if (sh == NULL) {
4204
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4205
		/* make sure we don't swamp the stripe cache if someone else
4206
		 * is trying to get access
L
Linus Torvalds 已提交
4207
		 */
4208
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4209
	}
4210 4211 4212 4213
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4214
	for (i = 0; i < conf->raid_disks; i++)
4215 4216 4217 4218 4219
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

4220
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
L
Linus Torvalds 已提交
4221

4222
	handle_stripe(sh);
L
Linus Torvalds 已提交
4223 4224 4225 4226 4227
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4241
	int dd_idx;
4242 4243 4244 4245 4246 4247
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4248
	sector = raid5_compute_sector(conf, logical_sector,
4249
				      0, &dd_idx, NULL);
4250 4251 4252
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4253 4254 4255
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4256

4257
		if (scnt < raid5_bi_hw_segments(raid_bio))
4258 4259 4260
			/* already done this stripe */
			continue;

4261
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4262 4263 4264

		if (!sh) {
			/* failed to get a stripe - must wait */
4265
			raid5_set_bi_hw_segments(raid_bio, scnt);
4266 4267 4268 4269 4270
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4271 4272
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4273
			raid5_set_bi_hw_segments(raid_bio, scnt);
4274 4275 4276 4277
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4278
		handle_stripe(sh);
4279 4280 4281 4282
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4283
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4284
	spin_unlock_irq(&conf->device_lock);
4285 4286
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4287 4288 4289 4290 4291 4292
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4293 4294 4295 4296 4297 4298 4299
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4300
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4301 4302
{
	struct stripe_head *sh;
4303
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4304
	int handled;
4305
	struct blk_plug plug;
L
Linus Torvalds 已提交
4306

4307
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4308 4309 4310

	md_check_recovery(mddev);

4311
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4312 4313 4314
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4315
		struct bio *bio;
L
Linus Torvalds 已提交
4316

4317 4318 4319 4320
		if (atomic_read(&mddev->plug_cnt) == 0 &&
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
4321
			spin_unlock_irq(&conf->device_lock);
4322
			bitmap_unplug(mddev->bitmap);
4323
			spin_lock_irq(&conf->device_lock);
4324
			conf->seq_write = conf->seq_flush;
4325 4326
			activate_bit_delay(conf);
		}
4327 4328
		if (atomic_read(&mddev->plug_cnt) == 0)
			raid5_activate_delayed(conf);
4329

4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4340 4341
		sh = __get_priority_stripe(conf);

4342
		if (!sh)
L
Linus Torvalds 已提交
4343 4344 4345 4346
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4347 4348 4349
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4350 4351 4352

		spin_lock_irq(&conf->device_lock);
	}
4353
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4354 4355 4356

	spin_unlock_irq(&conf->device_lock);

4357
	async_tx_issue_pending_all();
4358
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4359

4360
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4361 4362
}

4363
static ssize_t
4364
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4365
{
4366
	raid5_conf_t *conf = mddev->private;
4367 4368 4369 4370
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4371 4372
}

4373 4374
int
raid5_set_cache_size(mddev_t *mddev, int size)
4375
{
4376
	raid5_conf_t *conf = mddev->private;
4377 4378
	int err;

4379
	if (size <= 16 || size > 32768)
4380
		return -EINVAL;
4381
	while (size < conf->max_nr_stripes) {
4382 4383 4384 4385 4386
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4387 4388 4389
	err = md_allow_write(mddev);
	if (err)
		return err;
4390
	while (size > conf->max_nr_stripes) {
4391 4392 4393 4394
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev->private;
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4416 4417
	return len;
}
4418

4419 4420 4421 4422
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4423

4424 4425 4426
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4427
	raid5_conf_t *conf = mddev->private;
4428 4429 4430 4431 4432 4433 4434 4435 4436
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4437
	raid5_conf_t *conf = mddev->private;
4438
	unsigned long new;
4439 4440 4441 4442 4443
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4444
	if (strict_strtoul(page, 10, &new))
4445
		return -EINVAL;
4446
	if (new > conf->max_nr_stripes)
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4458
static ssize_t
4459
stripe_cache_active_show(mddev_t *mddev, char *page)
4460
{
4461
	raid5_conf_t *conf = mddev->private;
4462 4463 4464 4465
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4466 4467
}

4468 4469
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4470

4471
static struct attribute *raid5_attrs[] =  {
4472 4473
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4474
	&raid5_preread_bypass_threshold.attr,
4475 4476
	NULL,
};
4477 4478 4479
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4480 4481
};

4482 4483 4484
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4485
	raid5_conf_t *conf = mddev->private;
4486 4487 4488

	if (!sectors)
		sectors = mddev->dev_sectors;
4489
	if (!raid_disks)
4490
		/* size is defined by the smallest of previous and new size */
4491
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4492

4493
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4494
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4495 4496 4497
	return sectors * (raid_disks - conf->max_degraded);
}

4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4510
		kfree(percpu->scribble);
4511 4512 4513 4514 4515 4516 4517 4518 4519
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4520 4521 4522
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4523
	raid5_free_percpu(conf);
4524 4525 4526 4527 4528
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4540
		if (conf->level == 6 && !percpu->spare_page)
4541
			percpu->spare_page = alloc_page(GFP_KERNEL);
4542 4543 4544 4545 4546 4547 4548
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4549 4550
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4551
			return notifier_from_errno(-ENOMEM);
4552 4553 4554 4555 4556
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4557
		kfree(percpu->scribble);
4558
		percpu->spare_page = NULL;
4559
		percpu->scribble = NULL;
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
4572
	struct raid5_percpu __percpu *allcpus;
4573
	void *scribble;
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4584 4585 4586 4587 4588 4589 4590 4591
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4592
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4593
		if (!scribble) {
4594 4595 4596
			err = -ENOMEM;
			break;
		}
4597
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4610
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4611 4612
{
	raid5_conf_t *conf;
4613
	int raid_disk, memory, max_disks;
L
Linus Torvalds 已提交
4614 4615 4616
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4617 4618 4619
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4620
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4621 4622
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4623
	}
N
NeilBrown 已提交
4624 4625 4626 4627
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4628
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4629 4630
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4631
	}
N
NeilBrown 已提交
4632
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4633
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4634 4635
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4636 4637
	}

4638 4639 4640
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4641 4642
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4643
		return ERR_PTR(-EINVAL);
4644 4645
	}

N
NeilBrown 已提交
4646 4647
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4648
		goto abort;
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
N
NeilBrown 已提交
4661 4662 4663 4664 4665

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4666
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4667 4668
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4669

4670
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4671 4672 4673
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4674

L
Linus Torvalds 已提交
4675 4676
	conf->mddev = mddev;

4677
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4678 4679
		goto abort;

4680 4681 4682 4683
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4684
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4685

4686
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4687
		raid_disk = rdev->raid_disk;
4688
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4689 4690 4691 4692 4693 4694
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4695
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4696
			char b[BDEVNAME_SIZE];
4697 4698 4699
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
4700
		} else if (rdev->saved_raid_disk != raid_disk)
4701 4702
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4703 4704
	}

4705
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4706
	conf->level = mddev->new_level;
4707 4708 4709 4710
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4711
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4712
	conf->max_nr_stripes = NR_STRIPES;
4713
	conf->reshape_progress = mddev->reshape_position;
4714
	if (conf->reshape_progress != MaxSector) {
4715
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4716 4717
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4718

N
NeilBrown 已提交
4719
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4720
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4721 4722
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4723 4724
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4725 4726
		goto abort;
	} else
4727 4728
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4729

4730
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4731 4732
	if (!conf->thread) {
		printk(KERN_ERR
4733
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4734
		       mdname(mddev));
4735 4736
		goto abort;
	}
N
NeilBrown 已提交
4737 4738 4739 4740 4741

	return conf;

 abort:
	if (conf) {
4742
		free_conf(conf);
N
NeilBrown 已提交
4743 4744 4745 4746 4747
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

N
NeilBrown 已提交
4775 4776 4777
static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4778
	int working_disks = 0;
4779
	int dirty_parity_disks = 0;
N
NeilBrown 已提交
4780
	mdk_rdev_t *rdev;
4781
	sector_t reshape_offset = 0;
N
NeilBrown 已提交
4782

4783
	if (mddev->recovery_cp != MaxSector)
4784
		printk(KERN_NOTICE "md/raid:%s: not clean"
4785 4786
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4787 4788 4789 4790 4791 4792 4793 4794
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4795
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4796

4797
		if (mddev->new_level != mddev->level) {
4798
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4809
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4810
			       (mddev->raid_disks - max_degraded))) {
4811 4812
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
4813 4814
			return -EINVAL;
		}
4815
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
4816 4817
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4818
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4819 4820 4821
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
4833 4834 4835
				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
				       " in read-only mode - aborting\n",
				       mdname(mddev));
4836 4837 4838 4839 4840 4841 4842
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
4843
			/* Reading from the same stripe as writing to - bad */
4844 4845 4846
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
4847 4848
			return -EINVAL;
		}
4849 4850
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
4851 4852 4853 4854
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
4855
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
4856
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4857
	}
N
NeilBrown 已提交
4858

4859 4860 4861 4862 4863
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
4874 4875 4876
	list_for_each_entry(rdev, &mddev->disks, same_set) {
		if (rdev->raid_disk < 0)
			continue;
4877
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
4878
			working_disks++;
4879 4880
			continue;
		}
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
4909

4910 4911
	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
			   - working_disks);
N
NeilBrown 已提交
4912

4913
	if (has_failed(conf)) {
4914
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
4915
			" (%d/%d failed)\n",
4916
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
4917 4918 4919
		goto abort;
	}

N
NeilBrown 已提交
4920
	/* device size must be a multiple of chunk size */
4921
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
4922 4923
	mddev->resync_max_sectors = mddev->dev_sectors;

4924
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
4925
	    mddev->recovery_cp != MaxSector) {
4926 4927
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
4928 4929
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
4930 4931 4932
			       mdname(mddev));
		else {
			printk(KERN_ERR
4933
			       "md/raid:%s: cannot start dirty degraded array.\n",
4934 4935 4936
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
4937 4938 4939
	}

	if (mddev->degraded == 0)
4940 4941
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
4942 4943
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
4944
	else
4945 4946 4947 4948 4949
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
4950 4951 4952

	print_raid5_conf(conf);

4953 4954
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
4955 4956 4957 4958 4959 4960
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4961
							"reshape");
4962 4963
	}

L
Linus Torvalds 已提交
4964 4965

	/* Ok, everything is just fine now */
4966 4967
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
4968 4969
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4970
		printk(KERN_WARNING
4971
		       "raid5: failed to create sysfs attributes for %s\n",
4972
		       mdname(mddev));
4973
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4974

4975
	if (mddev->queue) {
4976
		int chunk_size;
4977 4978 4979 4980 4981 4982 4983 4984 4985
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
4986

4987
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4988

N
NeilBrown 已提交
4989 4990
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4991

4992 4993 4994 4995
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
4996

4997 4998 4999 5000
		list_for_each_entry(rdev, &mddev->disks, same_set)
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
	}
5001

L
Linus Torvalds 已提交
5002 5003
	return 0;
abort:
5004
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
5005
	mddev->thread = NULL;
L
Linus Torvalds 已提交
5006 5007
	if (conf) {
		print_raid5_conf(conf);
5008
		free_conf(conf);
L
Linus Torvalds 已提交
5009 5010
	}
	mddev->private = NULL;
5011
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5012 5013 5014
	return -EIO;
}

5015
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
5016
{
5017
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5018 5019 5020

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
N
NeilBrown 已提交
5021 5022
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
5023
	free_conf(conf);
5024 5025
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5026 5027 5028
	return 0;
}

5029
#ifdef DEBUG
5030
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
5031 5032 5033
{
	int i;

5034 5035 5036 5037 5038
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5039
	for (i = 0; i < sh->disks; i++) {
5040 5041
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
5042
	}
5043
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
5044 5045
}

5046
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
5047 5048
{
	struct stripe_head *sh;
5049
	struct hlist_node *hn;
L
Linus Torvalds 已提交
5050 5051 5052 5053
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
5054
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
5055 5056
			if (sh->raid_conf != conf)
				continue;
5057
			print_sh(seq, sh);
L
Linus Torvalds 已提交
5058 5059 5060 5061 5062 5063
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

5064
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
5065
{
5066
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5067 5068
	int i;

5069 5070
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5071
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5072 5073 5074
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5075
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5076
	seq_printf (seq, "]");
5077
#ifdef DEBUG
5078 5079
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
5080 5081 5082 5083 5084 5085 5086 5087
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

5088
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5089 5090 5091 5092
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5093 5094 5095
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5096 5097 5098 5099 5100

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5101 5102 5103
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5104 5105 5106 5107 5108 5109 5110 5111
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;
5112 5113
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
5114 5115 5116 5117

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
5118
		    && tmp->rdev->recovery_offset == MaxSector
5119
		    && !test_bit(Faulty, &tmp->rdev->flags)
5120
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5121
			count++;
5122
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
5123 5124
		}
	}
5125 5126 5127
	spin_lock_irqsave(&conf->device_lock, flags);
	mddev->degraded -= count;
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5128
	print_raid5_conf(conf);
5129
	return count;
L
Linus Torvalds 已提交
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
5142 5143 5144 5145
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

5146
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
5147 5148 5149 5150
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
5151 5152 5153 5154
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
5155
		    !has_failed(conf) &&
5156
		    number < conf->raid_disks) {
5157 5158 5159
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
5160
		p->rdev = NULL;
5161
		synchronize_rcu();
L
Linus Torvalds 已提交
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
5177
	int err = -EEXIST;
L
Linus Torvalds 已提交
5178 5179
	int disk;
	struct disk_info *p;
5180 5181
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5182

5183
	if (has_failed(conf))
L
Linus Torvalds 已提交
5184
		/* no point adding a device */
5185
		return -EINVAL;
L
Linus Torvalds 已提交
5186

5187 5188
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5189 5190

	/*
5191 5192
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5193
	 */
5194
	if (rdev->saved_raid_disk >= 0 &&
5195
	    rdev->saved_raid_disk >= first &&
5196 5197 5198
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5199 5200
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5201
		if ((p=conf->disks + disk)->rdev == NULL) {
5202
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5203
			rdev->raid_disk = disk;
5204
			err = 0;
5205 5206
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5207
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5208 5209 5210
			break;
		}
	print_raid5_conf(conf);
5211
	return err;
L
Linus Torvalds 已提交
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5223
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5224 5225
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5226 5227 5228
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5229
	set_capacity(mddev->gendisk, mddev->array_sectors);
5230
	revalidate_disk(mddev->gendisk);
5231 5232
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
5233
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5234 5235
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5236
	mddev->dev_sectors = sectors;
5237
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5238 5239 5240
	return 0;
}

5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5256 5257
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5258 5259 5260 5261 5262 5263 5264
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5265
static int check_reshape(mddev_t *mddev)
5266
{
5267
	raid5_conf_t *conf = mddev->private;
5268

5269 5270
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5271
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5272
		return 0; /* nothing to do */
5273 5274 5275
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5276
	if (has_failed(conf))
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5290

5291
	if (!check_stripe_cache(mddev))
5292 5293
		return -ENOSPC;

5294
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5295 5296 5297 5298
}

static int raid5_start_reshape(mddev_t *mddev)
{
5299
	raid5_conf_t *conf = mddev->private;
5300 5301
	mdk_rdev_t *rdev;
	int spares = 0;
5302
	unsigned long flags;
5303

5304
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5305 5306
		return -EBUSY;

5307 5308 5309
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5310
	list_for_each_entry(rdev, &mddev->disks, same_set)
5311 5312
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5313
			spares++;
5314

5315
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5316 5317 5318 5319 5320
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5321 5322 5323 5324 5325 5326
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5327
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5328 5329 5330 5331
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5332
	atomic_set(&conf->reshape_stripes, 0);
5333 5334
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5335
	conf->raid_disks += mddev->delta_disks;
5336 5337
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5338 5339
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5340 5341 5342 5343 5344
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5345
	conf->generation++;
5346 5347 5348 5349
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5350 5351 5352 5353
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5354
	 */
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
	if (mddev->delta_disks >= 0) {
		int added_devices = 0;
		list_for_each_entry(rdev, &mddev->disks, same_set)
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					char nm[20];
					if (rdev->raid_disk
					    >= conf->previous_raid_disks) {
						set_bit(In_sync, &rdev->flags);
						added_devices++;
					} else
						rdev->recovery_offset = 0;
					sprintf(nm, "rd%d", rdev->raid_disk);
					if (sysfs_create_link(&mddev->kobj,
							      &rdev->kobj, nm))
						/* Failure here is OK */;
5372
				}
5373 5374 5375 5376 5377 5378
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
				added_devices++;
			}
5379

5380 5381 5382 5383
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
5384
		spin_lock_irqsave(&conf->device_lock, flags);
5385
		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5386 5387 5388
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5389
	mddev->raid_disks = conf->raid_disks;
5390
	mddev->reshape_position = conf->reshape_progress;
5391
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5392

5393 5394 5395 5396 5397
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5398
						"reshape");
5399 5400 5401 5402
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5403
		conf->reshape_progress = MaxSector;
5404 5405 5406
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5407
	conf->reshape_checkpoint = jiffies;
5408 5409 5410 5411 5412
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5413 5414 5415
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5416 5417 5418
static void end_reshape(raid5_conf_t *conf)
{

5419 5420 5421
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5422
		conf->previous_raid_disks = conf->raid_disks;
5423
		conf->reshape_progress = MaxSector;
5424
		spin_unlock_irq(&conf->device_lock);
5425
		wake_up(&conf->wait_for_overlap);
5426 5427 5428 5429

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5430
		if (conf->mddev->queue) {
5431
			int data_disks = conf->raid_disks - conf->max_degraded;
5432
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5433
						   / PAGE_SIZE);
5434 5435 5436
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5437 5438 5439
	}
}

5440 5441 5442
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5443 5444
static void raid5_finish_reshape(mddev_t *mddev)
{
5445
	raid5_conf_t *conf = mddev->private;
5446 5447 5448

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5449 5450 5451
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5452
			revalidate_disk(mddev->gendisk);
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5463 5464 5465 5466 5467 5468 5469 5470 5471
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
					char nm[20];
					sprintf(nm, "rd%d", rdev->raid_disk);
					sysfs_remove_link(&mddev->kobj, nm);
					rdev->raid_disk = -1;
				}
			}
5472
		}
5473
		mddev->layout = conf->algorithm;
5474
		mddev->chunk_sectors = conf->chunk_sectors;
5475 5476
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5477 5478 5479
	}
}

5480 5481
static void raid5_quiesce(mddev_t *mddev, int state)
{
5482
	raid5_conf_t *conf = mddev->private;
5483 5484

	switch(state) {
5485 5486 5487 5488
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5489 5490
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5491 5492 5493 5494
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5495
		wait_event_lock_irq(conf->wait_for_stripe,
5496 5497
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5498
				    conf->device_lock, /* nothing */);
5499
		conf->quiesce = 1;
5500
		spin_unlock_irq(&conf->device_lock);
5501 5502
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5503 5504 5505 5506 5507 5508
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5509
		wake_up(&conf->wait_for_overlap);
5510 5511 5512 5513
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5514

5515

D
Dan Williams 已提交
5516
static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5517
{
D
Dan Williams 已提交
5518
	struct raid0_private_data *raid0_priv = mddev->private;
5519
	sector_t sectors;
5520

D
Dan Williams 已提交
5521 5522
	/* for raid0 takeover only one zone is supported */
	if (raid0_priv->nr_strip_zones > 1) {
5523 5524
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5525 5526 5527
		return ERR_PTR(-EINVAL);
	}

5528 5529 5530
	sectors = raid0_priv->strip_zone[0].zone_end;
	sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
5531
	mddev->new_level = level;
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5565
	mddev->new_chunk_sectors = chunksect;
5566 5567 5568 5569

	return setup_conf(mddev);
}

5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5603

5604
static int raid5_check_reshape(mddev_t *mddev)
5605
{
5606 5607 5608 5609
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5610
	 */
5611
	raid5_conf_t *conf = mddev->private;
5612
	int new_chunk = mddev->new_chunk_sectors;
5613

5614
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5615 5616
		return -EINVAL;
	if (new_chunk > 0) {
5617
		if (!is_power_of_2(new_chunk))
5618
			return -EINVAL;
5619
		if (new_chunk < (PAGE_SIZE>>9))
5620
			return -EINVAL;
5621
		if (mddev->array_sectors & (new_chunk-1))
5622 5623 5624 5625 5626 5627
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5628
	if (mddev->raid_disks == 2) {
5629 5630 5631 5632
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5633 5634
		}
		if (new_chunk > 0) {
5635 5636
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5637 5638 5639
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5640
	}
5641
	return check_reshape(mddev);
5642 5643
}

5644
static int raid6_check_reshape(mddev_t *mddev)
5645
{
5646
	int new_chunk = mddev->new_chunk_sectors;
5647

5648
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5649
		return -EINVAL;
5650
	if (new_chunk > 0) {
5651
		if (!is_power_of_2(new_chunk))
5652
			return -EINVAL;
5653
		if (new_chunk < (PAGE_SIZE >> 9))
5654
			return -EINVAL;
5655
		if (mddev->array_sectors & (new_chunk-1))
5656 5657
			/* not factor of array size */
			return -EINVAL;
5658
	}
5659 5660

	/* They look valid */
5661
	return check_reshape(mddev);
5662 5663
}

5664 5665 5666
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
D
Dan Williams 已提交
5667
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5668 5669 5670 5671
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5672 5673
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5674 5675
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5676 5677 5678 5679 5680
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5681 5682
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5683 5684 5685 5686

	return ERR_PTR(-EINVAL);
}

5687 5688
static void *raid4_takeover(mddev_t *mddev)
{
D
Dan Williams 已提交
5689 5690 5691
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5692
	 */
D
Dan Williams 已提交
5693 5694
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5695 5696 5697 5698 5699 5700 5701 5702
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5703

5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5768
	.size		= raid5_size,
5769
	.check_reshape	= raid6_check_reshape,
5770
	.start_reshape  = raid5_start_reshape,
5771
	.finish_reshape = raid5_finish_reshape,
5772
	.quiesce	= raid5_quiesce,
5773
	.takeover	= raid6_takeover,
5774
};
5775
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5776 5777
{
	.name		= "raid5",
5778
	.level		= 5,
L
Linus Torvalds 已提交
5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5790
	.size		= raid5_size,
5791 5792
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5793
	.finish_reshape = raid5_finish_reshape,
5794
	.quiesce	= raid5_quiesce,
5795
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5796 5797
};

5798
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5799
{
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5813
	.size		= raid5_size,
5814 5815
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5816
	.finish_reshape = raid5_finish_reshape,
5817
	.quiesce	= raid5_quiesce,
5818
	.takeover	= raid4_takeover,
5819 5820 5821 5822
};

static int __init raid5_init(void)
{
5823
	register_md_personality(&raid6_personality);
5824 5825 5826
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5827 5828
}

5829
static void raid5_exit(void)
L
Linus Torvalds 已提交
5830
{
5831
	unregister_md_personality(&raid6_personality);
5832 5833
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5834 5835 5836 5837 5838
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
5839
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
5840
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5841 5842
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5843 5844
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5845 5846 5847 5848 5849 5850 5851
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");