raid5.c 168.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include <linux/slab.h>
54
#include "md.h"
55
#include "raid5.h"
56
#include "raid0.h"
57
#include "bitmap.h"
58

L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
68
#define BYPASS_THRESHOLD	1
69
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
70 71
#define HASH_MASK		(NR_HASH - 1)

72
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

94
#ifdef DEBUG
L
Linus Torvalds 已提交
95 96 97 98
#define inline
#define __inline__
#endif

99 100
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

101
/*
102 103
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 105 106
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
107
	return bio->bi_phys_segments & 0xffff;
108 109 110 111
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
112
	return (bio->bi_phys_segments >> 16) & 0xffff;
113 114 115 116 117 118 119 120 121 122 123 124 125
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
126
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 128 129 130 131
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
132
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 134
}

135 136 137
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
138 139 140 141
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
142 143 144 145 146
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
147 148 149 150 151
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
152

153 154 155 156 157
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
158 159
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
160
{
161
	int slot = *count;
162

163
	if (sh->ddf_layout)
164
		(*count)++;
165
	if (idx == sh->pd_idx)
166
		return syndrome_disks;
167
	if (idx == sh->qd_idx)
168
		return syndrome_disks + 1;
169
	if (!sh->ddf_layout)
170
		(*count)++;
171 172 173
	return slot;
}

174 175 176 177 178 179 180 181
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
182
		bio_endio(bi, 0);
183 184 185 186
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
187 188
static void print_raid5_conf (raid5_conf_t *conf);

189 190 191 192 193 194 195
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

196
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
197 198
{
	if (atomic_dec_and_test(&sh->count)) {
199 200
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
201
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
202
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
203
				list_add_tail(&sh->lru, &conf->delayed_list);
204
				plugger_set_plug(&conf->plug);
205
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206
				   sh->bm_seq - conf->seq_write > 0) {
207
				list_add_tail(&sh->lru, &conf->bitmap_list);
208
				plugger_set_plug(&conf->plug);
209
			} else {
210
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
211
				list_add_tail(&sh->lru, &conf->handle_list);
212
			}
L
Linus Torvalds 已提交
213 214
			md_wakeup_thread(conf->mddev->thread);
		} else {
215
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
216 217 218 219 220 221
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
222 223
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
224
				wake_up(&conf->wait_for_stripe);
225 226
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
227
			}
L
Linus Torvalds 已提交
228 229 230
		}
	}
}
231

L
Linus Torvalds 已提交
232 233 234 235
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
236

L
Linus Torvalds 已提交
237 238 239 240 241
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

242
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
243
{
244 245
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
246

247
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
248 249
}

250
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
251
{
252
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
253

254 255
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
256 257

	CHECK_DEVLOCK();
258
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

280
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
281 282 283
{
	struct page *p;
	int i;
284
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
285

286
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
287 288 289 290
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
291
		put_page(p);
L
Linus Torvalds 已提交
292 293 294
	}
}

295
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
296 297
{
	int i;
298
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
299

300
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
301 302 303 304 305 306 307 308 309 310
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

311
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 313
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
314

315
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
316 317
{
	raid5_conf_t *conf = sh->raid_conf;
318
	int i;
L
Linus Torvalds 已提交
319

320 321
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322
	BUG_ON(stripe_operations_active(sh));
323

L
Linus Torvalds 已提交
324
	CHECK_DEVLOCK();
325
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
326 327 328
		(unsigned long long)sh->sector);

	remove_hash(sh);
329

330
	sh->generation = conf->generation - previous;
331
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
332
	sh->sector = sector;
333
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
334 335
	sh->state = 0;

336 337

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
338 339
		struct r5dev *dev = &sh->dev[i];

340
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
341
		    test_bit(R5_LOCKED, &dev->flags)) {
342
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
343
			       (unsigned long long)sh->sector, i, dev->toread,
344
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
345 346 347 348
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
349
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
350 351 352 353
	}
	insert_hash(conf, sh);
}

354 355
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
356 357
{
	struct stripe_head *sh;
358
	struct hlist_node *hn;
L
Linus Torvalds 已提交
359 360

	CHECK_DEVLOCK();
361
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
364
			return sh;
365
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
366 367 368
	return NULL;
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
static int has_failed(raid5_conf_t *conf)
{
	int degraded;
	int i;
	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

L
Linus Torvalds 已提交
436 437
static void unplug_slaves(mddev_t *mddev);

438 439
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
440
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
441 442 443
{
	struct stripe_head *sh;

444
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
445 446 447 448

	spin_lock_irq(&conf->device_lock);

	do {
449
		wait_event_lock_irq(conf->wait_for_stripe,
450
				    conf->quiesce == 0 || noquiesce,
451
				    conf->device_lock, /* nothing */);
452
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
453 454 455 456 457 458 459 460 461
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
462 463
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
464 465
						     || !conf->inactive_blocked),
						    conf->device_lock,
466
						    md_raid5_unplug_device(conf)
L
Linus Torvalds 已提交
467 468 469
					);
				conf->inactive_blocked = 0;
			} else
470
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
471 472
		} else {
			if (atomic_read(&sh->count)) {
473 474
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
475 476 477
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
478 479
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
480 481
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
482 483 484 485 486 487 488 489 490 491 492
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

493 494 495 496
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
497

498
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
			rw = WRITE;
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
533
			if (s->syncing || s->expanding || s->expanded)
534 535
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
536 537
			set_bit(STRIPE_IO_STARTED, &sh->state);

538 539
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
540
				__func__, (unsigned long long)sh->sector,
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
577
	struct async_submit_ctl submit;
D
Dan Williams 已提交
578
	enum async_tx_flags flags = 0;
579 580 581 582 583

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
584

D
Dan Williams 已提交
585 586 587 588
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
610
						  b_offset, clen, &submit);
611 612
			else
				tx = async_memcpy(bio_page, page, b_offset,
613
						  page_offset, clen, &submit);
614
		}
615 616 617
		/* chain the operations */
		submit.depend_tx = tx;

618 619 620 621 622 623 624 625 626 627 628 629 630
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
631
	int i;
632

633
	pr_debug("%s: stripe %llu\n", __func__,
634 635 636
		(unsigned long long)sh->sector);

	/* clear completed biofills */
637
	spin_lock_irq(&conf->device_lock);
638 639 640 641
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
642 643
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
644
		 * !STRIPE_BIOFILL_RUN
645 646
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
647 648 649 650 651 652 653 654
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
655
				if (!raid5_dec_bi_phys_segments(rbi)) {
656 657 658 659 660 661 662
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
663 664
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
665 666 667

	return_io(return_bi);

668
	set_bit(STRIPE_HANDLE, &sh->state);
669 670 671 672 673 674 675
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
676
	struct async_submit_ctl submit;
677 678
	int i;

679
	pr_debug("%s: stripe %llu\n", __func__,
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
700 701
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
702 703
}

704
static void mark_target_uptodate(struct stripe_head *sh, int target)
705
{
706
	struct r5dev *tgt;
707

708 709
	if (target < 0)
		return;
710

711
	tgt = &sh->dev[target];
712 713 714
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
715 716
}

717
static void ops_complete_compute(void *stripe_head_ref)
718 719 720
{
	struct stripe_head *sh = stripe_head_ref;

721
	pr_debug("%s: stripe %llu\n", __func__,
722 723
		(unsigned long long)sh->sector);

724
	/* mark the computed target(s) as uptodate */
725
	mark_target_uptodate(sh, sh->ops.target);
726
	mark_target_uptodate(sh, sh->ops.target2);
727

728 729 730
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
731 732 733 734
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

735 736 737 738 739 740 741 742 743
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
744 745
{
	int disks = sh->disks;
746
	struct page **xor_srcs = percpu->scribble;
747 748 749 750 751
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
752
	struct async_submit_ctl submit;
753 754 755
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
756
		__func__, (unsigned long long)sh->sector, target);
757 758 759 760 761 762 763 764
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
765
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
766
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
767
	if (unlikely(count == 1))
768
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
769
	else
770
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
771 772 773 774

	return tx;
}

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
793
		srcs[i] = NULL;
794 795 796 797 798 799 800 801 802 803

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

804
	return syndrome_disks;
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
825
	else
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
842 843
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
844 845 846 847 848 849 850 851 852 853 854
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
855 856
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
857 858 859
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
860 861 862 863

	return tx;
}

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

885
	/* we need to open-code set_syndrome_sources to handle the
886 887 888
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
889
		blocks[i] = NULL;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
916 917 918
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
919
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
939 940 941 942
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
943 944 945 946
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
947 948 949
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
950 951 952 953
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
954 955 956 957 958 959 960 961 962 963 964 965 966 967
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
968 969 970 971
	}
}


972 973 974 975
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

976
	pr_debug("%s: stripe %llu\n", __func__,
977 978 979 980
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
981 982
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
983 984
{
	int disks = sh->disks;
985
	struct page **xor_srcs = percpu->scribble;
986
	int count = 0, pd_idx = sh->pd_idx, i;
987
	struct async_submit_ctl submit;
988 989 990 991

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

992
	pr_debug("%s: stripe %llu\n", __func__,
993 994 995 996 997
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
998
		if (test_bit(R5_Wantdrain, &dev->flags))
999 1000 1001
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1002
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1003
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1004
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1005 1006 1007 1008 1009

	return tx;
}

static struct dma_async_tx_descriptor *
1010
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1011 1012
{
	int disks = sh->disks;
1013
	int i;
1014

1015
	pr_debug("%s: stripe %llu\n", __func__,
1016 1017 1018 1019 1020 1021
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1022
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1044
static void ops_complete_reconstruct(void *stripe_head_ref)
1045 1046
{
	struct stripe_head *sh = stripe_head_ref;
1047 1048 1049 1050
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
1051

1052
	pr_debug("%s: stripe %llu\n", __func__,
1053 1054 1055 1056
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1057 1058

		if (dev->written || i == pd_idx || i == qd_idx)
1059 1060 1061
			set_bit(R5_UPTODATE, &dev->flags);
	}

1062 1063 1064 1065 1066 1067 1068 1069
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1070 1071 1072 1073 1074 1075

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1076 1077
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1078 1079
{
	int disks = sh->disks;
1080
	struct page **xor_srcs = percpu->scribble;
1081
	struct async_submit_ctl submit;
1082 1083
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1084
	int prexor = 0;
1085 1086
	unsigned long flags;

1087
	pr_debug("%s: stripe %llu\n", __func__,
1088 1089 1090 1091 1092
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1093 1094
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1115
	flags = ASYNC_TX_ACK |
1116 1117 1118 1119
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1120
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1121
			  to_addr_conv(sh, percpu));
1122 1123 1124 1125
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1126 1127
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1145 1146 1147 1148 1149 1150
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1151
	pr_debug("%s: stripe %llu\n", __func__,
1152 1153
		(unsigned long long)sh->sector);

1154
	sh->check_state = check_state_check_result;
1155 1156 1157 1158
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1159
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1160 1161
{
	int disks = sh->disks;
1162 1163 1164
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1165
	struct page **xor_srcs = percpu->scribble;
1166
	struct dma_async_tx_descriptor *tx;
1167
	struct async_submit_ctl submit;
1168 1169
	int count;
	int i;
1170

1171
	pr_debug("%s: stripe %llu\n", __func__,
1172 1173
		(unsigned long long)sh->sector);

1174 1175 1176
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1177
	for (i = disks; i--; ) {
1178 1179 1180
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1181 1182
	}

1183 1184
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1185
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1186
			   &sh->ops.zero_sum_result, &submit);
1187 1188

	atomic_inc(&sh->count);
1189 1190
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1191 1192
}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1205 1206

	atomic_inc(&sh->count);
1207 1208 1209 1210
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1211 1212
}

1213
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1214 1215 1216
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1217
	raid5_conf_t *conf = sh->raid_conf;
1218
	int level = conf->level;
1219 1220
	struct raid5_percpu *percpu;
	unsigned long cpu;
1221

1222 1223
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1224
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1225 1226 1227 1228
		ops_run_biofill(sh);
		overlap_clear++;
	}

1229
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1240 1241
			async_tx_ack(tx);
	}
1242

1243
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1244
		tx = ops_run_prexor(sh, percpu, tx);
1245

1246
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1247
		tx = ops_run_biodrain(sh, tx);
1248 1249 1250
		overlap_clear++;
	}

1251 1252 1253 1254 1255 1256
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1268 1269 1270 1271 1272 1273 1274

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1275
	put_cpu();
1276 1277
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1308
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1309 1310
{
	struct stripe_head *sh;
1311 1312 1313
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
1314
	memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1315 1316
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);
1317 1318 1319
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1320

1321 1322
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1336
	struct kmem_cache *sc;
1337
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1338

1339 1340 1341 1342 1343 1344 1345 1346
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1347 1348
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1349
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1350
			       0, 0, NULL);
L
Linus Torvalds 已提交
1351 1352 1353
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1354
	conf->pool_size = devs;
1355
	while (num--)
1356
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1357 1358 1359
			return 1;
	return 0;
}
1360

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1411
	unsigned long cpu;
1412
	int err;
1413
	struct kmem_cache *sc;
1414 1415 1416 1417 1418
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1419 1420 1421
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1422

1423 1424 1425
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1426
			       0, 0, NULL);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);
1439 1440 1441
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1464
				    unplug_slaves(conf->mddev)
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1480
	 * conf->disks and the scribble region
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1510 1511 1512 1513
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1514

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1531

1532
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1533 1534 1535
{
	struct stripe_head *sh;

1536 1537 1538 1539 1540
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1541
	BUG_ON(atomic_read(&sh->count));
1542
	shrink_buffers(sh);
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1553 1554
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1555 1556 1557
	conf->slab_cache = NULL;
}

1558
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1559
{
1560
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1561
	raid5_conf_t *conf = sh->raid_conf;
1562
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1563
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1564 1565
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1566 1567 1568 1569 1570 1571


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1572 1573
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1574 1575 1576
		uptodate);
	if (i == disks) {
		BUG();
1577
		return;
L
Linus Torvalds 已提交
1578 1579 1580 1581
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1582
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1583
			rdev = conf->disks[i].rdev;
1584
			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1585 1586 1587 1588 1589
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1590 1591 1592
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1593 1594
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1595
	} else {
1596
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1597
		int retry = 0;
1598 1599
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1600
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1601
		atomic_inc(&rdev->read_errors);
1602
		if (conf->mddev->degraded >= conf->max_degraded)
1603
			printk_rl(KERN_WARNING
1604
				  "md/raid:%s: read error not correctable "
1605 1606 1607 1608 1609
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1610
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1611
			/* Oh, no!!! */
1612
			printk_rl(KERN_WARNING
1613
				  "md/raid:%s: read error NOT corrected!! "
1614 1615 1616 1617 1618
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1619
		else if (atomic_read(&rdev->read_errors)
1620
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1621
			printk(KERN_WARNING
1622
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1623
			       mdname(conf->mddev), bdn);
1624 1625 1626 1627 1628
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1629 1630
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1631
			md_error(conf->mddev, rdev);
1632
		}
L
Linus Torvalds 已提交
1633 1634 1635 1636 1637 1638 1639
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1640
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1641
{
1642
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1643
	raid5_conf_t *conf = sh->raid_conf;
1644
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649 1650
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1651
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1652 1653 1654 1655
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1656
		return;
L
Linus Torvalds 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1666
	release_stripe(sh);
L
Linus Torvalds 已提交
1667 1668 1669
}


1670
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1671
	
1672
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1688
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1689 1690 1691 1692 1693
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
1694
	raid5_conf_t *conf = mddev->private;
1695
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1696

1697
	if (!test_bit(Faulty, &rdev->flags)) {
1698
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1699 1700 1701
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1702
			mddev->degraded++;
1703
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1704 1705 1706
			/*
			 * if recovery was running, make sure it aborts.
			 */
1707
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1708
		}
1709
		set_bit(Faulty, &rdev->flags);
1710
		printk(KERN_ALERT
1711 1712 1713 1714 1715 1716 1717
		       "md/raid:%s: Disk failure on %s, disabling device.\n"
		       KERN_ALERT
		       "md/raid:%s: Operation continuing on %d devices.\n",
		       mdname(mddev),
		       bdevname(rdev->bdev, b),
		       mdname(mddev),
		       conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1718
	}
1719
}
L
Linus Torvalds 已提交
1720 1721 1722 1723 1724

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1725
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1726 1727
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1728
{
N
NeilBrown 已提交
1729
	sector_t stripe, stripe2;
1730
	sector_t chunk_number;
L
Linus Torvalds 已提交
1731
	unsigned int chunk_offset;
1732
	int pd_idx, qd_idx;
1733
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1734
	sector_t new_sector;
1735 1736
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1737 1738
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1739 1740 1741
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1754 1755
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1756
	stripe2 = stripe;
L
Linus Torvalds 已提交
1757 1758 1759
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1760
	pd_idx = qd_idx = ~0;
1761 1762
	switch(conf->level) {
	case 4:
1763
		pd_idx = data_disks;
1764 1765
		break;
	case 5:
1766
		switch (algorithm) {
L
Linus Torvalds 已提交
1767
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1768
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1769
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1770 1771 1772
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1773
			pd_idx = sector_div(stripe2, raid_disks);
1774
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1775 1776 1777
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1778
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1779
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1780 1781
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1782
			pd_idx = sector_div(stripe2, raid_disks);
1783
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1784
			break;
1785 1786 1787 1788 1789 1790 1791
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1792
		default:
1793
			BUG();
1794 1795 1796 1797
		}
		break;
	case 6:

1798
		switch (algorithm) {
1799
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1800
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1801 1802
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1803
				(*dd_idx)++;	/* Q D D D P */
1804 1805
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1806 1807 1808
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1809
			pd_idx = sector_div(stripe2, raid_disks);
1810 1811
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1812
				(*dd_idx)++;	/* Q D D D P */
1813 1814
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1815 1816 1817
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1818
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1819 1820
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1821 1822
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1823
			pd_idx = sector_div(stripe2, raid_disks);
1824 1825
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1826
			break;
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
1842
			pd_idx = sector_div(stripe2, raid_disks);
1843 1844 1845 1846 1847 1848
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1849
			ddf_layout = 1;
1850 1851 1852 1853 1854 1855 1856
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
1857 1858
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1859 1860 1861 1862 1863 1864
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1865
			ddf_layout = 1;
1866 1867 1868 1869
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
1870
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1871 1872
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1873
			ddf_layout = 1;
1874 1875 1876 1877
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
1878
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1879 1880 1881 1882 1883 1884
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
1885
			pd_idx = sector_div(stripe2, raid_disks-1);
1886 1887 1888 1889 1890 1891
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
1892
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1893 1894 1895 1896 1897
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
1898
			pd_idx = sector_div(stripe2, raid_disks-1);
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

1909
		default:
1910
			BUG();
1911 1912
		}
		break;
L
Linus Torvalds 已提交
1913 1914
	}

1915 1916 1917
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1918
		sh->ddf_layout = ddf_layout;
1919
	}
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924 1925 1926 1927
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1928
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1929 1930
{
	raid5_conf_t *conf = sh->raid_conf;
1931 1932
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1933
	sector_t new_sector = sh->sector, check;
1934 1935
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1936 1937
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1938 1939
	sector_t stripe;
	int chunk_offset;
1940 1941
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1942
	sector_t r_sector;
1943
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1944

1945

L
Linus Torvalds 已提交
1946 1947 1948
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

1949 1950 1951 1952 1953
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1954
		switch (algorithm) {
L
Linus Torvalds 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1966 1967 1968 1969 1970
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1971
		default:
1972
			BUG();
1973 1974 1975
		}
		break;
	case 6:
1976
		if (i == sh->qd_idx)
1977
			return 0; /* It is the Q disk */
1978
		switch (algorithm) {
1979 1980
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1981 1982 1983 1984
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1999 2000 2001 2002 2003 2004
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2005
			/* Like left_symmetric, but P is before Q */
2006 2007
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2008 2009 2010 2011 2012 2013
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2029
		default:
2030
			BUG();
2031 2032
		}
		break;
L
Linus Torvalds 已提交
2033 2034 2035
	}

	chunk_number = stripe * data_disks + i;
2036
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2037

2038
	check = raid5_compute_sector(conf, r_sector,
2039
				     previous, &dummy1, &sh2);
2040 2041
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2042 2043
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2044 2045 2046 2047 2048 2049
		return 0;
	}
	return r_sector;
}


2050
static void
2051
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2052
			 int rcw, int expand)
2053 2054
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2055 2056
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
2057 2058 2059 2060 2061 2062 2063

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2064 2065 2066 2067
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2068

2069
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2070 2071 2072 2073 2074 2075

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2076
				set_bit(R5_Wantdrain, &dev->flags);
2077 2078
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2079
				s->locked++;
2080 2081
			}
		}
2082
		if (s->locked + conf->max_degraded == disks)
2083
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2084
				atomic_inc(&conf->pending_full_writes);
2085
	} else {
2086
		BUG_ON(level == 6);
2087 2088 2089
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2090
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2091 2092
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2093
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2094 2095 2096 2097 2098 2099 2100 2101

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2102 2103
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2104 2105
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2106
				s->locked++;
2107 2108 2109 2110
			}
		}
	}

2111
	/* keep the parity disk(s) locked while asynchronous operations
2112 2113 2114 2115
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2116
	s->locked++;
2117

2118 2119 2120 2121 2122 2123 2124 2125 2126
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2127
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2128
		__func__, (unsigned long long)sh->sector,
2129
		s->locked, s->ops_request);
2130
}
2131

L
Linus Torvalds 已提交
2132 2133
/*
 * Each stripe/dev can have one or more bion attached.
2134
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2135 2136 2137 2138 2139 2140
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2141
	int firstwrite=0;
L
Linus Torvalds 已提交
2142

2143
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2144 2145 2146 2147 2148 2149
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
2150
	if (forwrite) {
L
Linus Torvalds 已提交
2151
		bip = &sh->dev[dd_idx].towrite;
2152 2153 2154
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2164
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2165 2166 2167
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2168
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
2169 2170 2171
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

2172
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
2173 2174 2175
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

2176 2177 2178
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
2179
		sh->bm_seq = conf->seq_flush+1;
2180 2181 2182
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

2205 2206
static void end_reshape(raid5_conf_t *conf);

2207 2208
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2209
{
2210
	int sectors_per_chunk =
2211
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2212
	int dd_idx;
2213
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2214
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2215

2216 2217
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2218
			     *sectors_per_chunk + chunk_offset,
2219
			     previous,
2220
			     &dd_idx, sh);
2221 2222
}

2223
static void
2224
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2258
			if (!raid5_dec_bi_phys_segments(bi)) {
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2273
			if (!raid5_dec_bi_phys_segments(bi)) {
2274 2275 2276 2277 2278 2279 2280
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2281 2282 2283 2284 2285 2286
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2297
				if (!raid5_dec_bi_phys_segments(bi)) {
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2310 2311 2312
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2313 2314
}

2315 2316 2317 2318 2319
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2320
 */
2321 2322
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2323 2324 2325 2326 2327 2328
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2329 2330 2331 2332 2333 2334 2335 2336
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2337 2338
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2339 2340
		 */
		if ((s->uptodate == disks - 1) &&
2341
		    (s->failed && disk_idx == s->failed_num)) {
2342 2343
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2344 2345
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
2346
			sh->ops.target2 = -1;
2347 2348
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
2349
			 * of raid_run_ops which services 'compute' operations
2350 2351 2352 2353 2354
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2355
			return 1; /* uptodate + compute == disks */
2356
		} else if (test_bit(R5_Insync, &dev->flags)) {
2357 2358 2359 2360 2361 2362 2363 2364
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2365
	return 0;
2366 2367
}

2368 2369 2370 2371
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2372 2373 2374
			struct stripe_head_state *s, int disks)
{
	int i;
2375 2376 2377 2378 2379

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2380
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2381
	    !sh->reconstruct_state)
2382
		for (i = disks; i--; )
2383
			if (fetch_block5(sh, s, i, disks))
2384
				break;
2385 2386 2387
	set_bit(STRIPE_HANDLE, &sh->state);
}

2388 2389 2390 2391 2392 2393 2394 2395
/* fetch_block6 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill6 to continue
 */
static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
			 struct r6_state *r6s, int disk_idx, int disks)
2396
{
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
				  &sh->dev[r6s->failed_num[1]] };

	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed >= 1 &&
	      (fdev[0]->toread || s->to_write)) ||
	     (s->failed >= 2 &&
	      (fdev[1]->toread || s->to_write)))) {
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
		    (s->failed && (disk_idx == r6s->failed_num[0] ||
				   disk_idx == r6s->failed_num[1]))) {
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2420
			 */
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2442
			}
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2462 2463
		}
	}
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

	return 0;
}

/**
 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill6(struct stripe_head *sh,
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
			if (fetch_block6(sh, s, r6s, i, disks))
				break;
2486 2487 2488 2489
	set_bit(STRIPE_HANDLE, &sh->state);
}


2490
/* handle_stripe_clean_event
2491 2492 2493 2494
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2495
static void handle_stripe_clean_event(raid5_conf_t *conf,
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2509
				pr_debug("Return write for disc %d\n", i);
2510 2511 2512 2513 2514 2515
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2516
					if (!raid5_dec_bi_phys_segments(wbi)) {
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2534 2535 2536 2537

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2538 2539
}

2540
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2541 2542 2543 2544 2545 2546 2547 2548
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2549 2550
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2551 2552 2553 2554 2555 2556 2557 2558
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2559 2560 2561
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2562 2563 2564 2565
			else
				rcw += 2*disks;
		}
	}
2566
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2567 2568 2569 2570 2571 2572 2573 2574
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2575 2576
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2577 2578 2579
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2580
					pr_debug("Read_old block "
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2598 2599
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2600 2601 2602
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2603
					pr_debug("Read_old block "
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2617 2618
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2619 2620
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2621 2622 2623
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2624 2625 2626
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2627
		schedule_reconstruction(sh, s, rcw == 0, 0);
2628 2629
}

2630
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2631 2632 2633
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
2634
	int rcw = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2635
	int qd_idx = sh->qd_idx;
2636 2637

	set_bit(STRIPE_HANDLE, &sh->state);
2638 2639
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
		/* check if we haven't enough data */
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != pd_idx && i != qd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
			rcw++;
			if (!test_bit(R5_Insync, &dev->flags))
				continue; /* it's a failed drive */

			if (
			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				pr_debug("Read_old stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
			} else {
				pr_debug("Request delayed stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(STRIPE_DELAYED, &sh->state);
				set_bit(STRIPE_HANDLE, &sh->state);
2664 2665 2666 2667 2668 2669
			}
		}
	}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
2670 2671
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    s->locked == 0 && rcw == 0 &&
2672
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2673
		schedule_reconstruction(sh, s, 1, 0);
2674 2675 2676 2677 2678 2679
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2680
	struct r5dev *dev = NULL;
2681

2682
	set_bit(STRIPE_HANDLE, &sh->state);
2683

2684 2685 2686
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2687 2688
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2689 2690
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2691 2692
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2693
			break;
2694
		}
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2705

2706 2707 2708 2709 2710
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2711
		s->locked++;
2712
		set_bit(R5_Wantwrite, &dev->flags);
2713

2714 2715
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2732
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2744
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2745 2746 2747 2748
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2749
				sh->ops.target2 = -1;
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2761 2762 2763 2764 2765
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2766 2767
				  struct stripe_head_state *s,
				  struct r6_state *r6s, int disks)
2768 2769
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2770
	int qd_idx = sh->qd_idx;
2771
	struct r5dev *dev;
2772 2773 2774 2775

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2776

2777 2778 2779 2780 2781 2782
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2783 2784 2785
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2786
		if (s->failed == r6s->q_failed) {
2787
			/* The only possible failed device holds Q, so it
2788 2789 2790
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2791
			sh->check_state = check_state_run;
2792 2793
		}
		if (!r6s->q_failed && s->failed < 2) {
2794
			/* Q is not failed, and we didn't use it to generate
2795 2796
			 * anything, so it makes sense to check it
			 */
2797 2798 2799 2800
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2801 2802
		}

2803 2804
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2805

2806 2807 2808 2809
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2810
		}
2811 2812 2813 2814 2815 2816 2817
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2818 2819
		}

2820 2821 2822 2823 2824
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2825

2826 2827 2828
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2829 2830

		/* now write out any block on a failed drive,
2831
		 * or P or Q if they were recomputed
2832
		 */
2833
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2846
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2847 2848 2849 2850 2851
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2852
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2853 2854 2855 2856 2857 2858 2859 2860
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2936
	struct dma_async_tx_descriptor *tx = NULL;
2937 2938
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2939
		if (i != sh->pd_idx && i != sh->qd_idx) {
2940
			int dd_idx, j;
2941
			struct stripe_head *sh2;
2942
			struct async_submit_ctl submit;
2943

2944
			sector_t bn = compute_blocknr(sh, i, 1);
2945 2946
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2947
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2960 2961

			/* place all the copies on one channel */
2962
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2963
			tx = async_memcpy(sh2->dev[dd_idx].page,
2964
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2965
					  &submit);
2966

2967 2968 2969 2970
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2971
				    (!r6s || j != sh2->qd_idx) &&
2972 2973 2974 2975 2976 2977 2978
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2979

2980
		}
2981 2982 2983 2984 2985
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2986
}
L
Linus Torvalds 已提交
2987

2988

L
Linus Torvalds 已提交
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
3005

3006
static void handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
3007 3008
{
	raid5_conf_t *conf = sh->raid_conf;
3009 3010 3011
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
3012
	struct r5dev *dev;
3013
	mdk_rdev_t *blocked_rdev = NULL;
3014
	int prexor;
3015
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
3016

3017
	memset(&s, 0, sizeof(s));
3018 3019 3020 3021
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
3022 3023 3024 3025 3026

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3027 3028 3029
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
3030

3031
	/* Now to look around and see what can be done */
3032
	rcu_read_lock();
L
Linus Torvalds 已提交
3033 3034
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
3035 3036

		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3037

3038 3039 3040 3041 3042 3043 3044
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
3045
		 * ops_complete_biofill is guaranteed to be inactive
3046 3047
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3048
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3049
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3050 3051

		/* now count some things */
3052 3053
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3054
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
3055

3056 3057 3058
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
3059
			s.to_read++;
L
Linus Torvalds 已提交
3060
		if (dev->towrite) {
3061
			s.to_write++;
L
Linus Torvalds 已提交
3062
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3063
				s.non_overwrite++;
L
Linus Torvalds 已提交
3064
		}
3065 3066
		if (dev->written)
			s.written++;
3067
		rdev = rcu_dereference(conf->disks[i].rdev);
3068 3069
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3070 3071 3072
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* could be in-sync depending on recovery/reshape status */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
N
NeilBrown 已提交
3084
			/* The ReadError flag will just be confusing now */
3085 3086 3087
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
3088 3089 3090
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3091 3092
			s.failed++;
			s.failed_num = i;
3093
		}
L
Linus Torvalds 已提交
3094
	}
3095
	rcu_read_unlock();
3096

3097
	if (unlikely(blocked_rdev)) {
3098 3099 3100 3101 3102 3103 3104 3105
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3106 3107
	}

3108 3109 3110 3111
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
3112

3113
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
3114
		" to_write=%d failed=%d failed_num=%d\n",
3115 3116
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
3117 3118 3119
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
3120
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3121
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3122
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
3123 3124
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3125
		s.syncing = 0;
L
Linus Torvalds 已提交
3126 3127 3128 3129 3130 3131
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
3132 3133 3134 3135 3136
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3137
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
3138 3139 3140 3141 3142

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3143
	if (s.to_read || s.non_overwrite ||
3144
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3145
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
3146

3147 3148 3149
	/* Now we check to see if any write operations have recently
	 * completed
	 */
3150
	prexor = 0;
3151
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3152
		prexor = 1;
3153 3154
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3155
		sh->reconstruct_state = reconstruct_state_idle;
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
3167 3168
				if (prexor)
					continue;
3169 3170 3171 3172 3173
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3174 3175
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3176 3177 3178 3179 3180 3181 3182 3183
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3184
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3185
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
3186 3187

	/* maybe we need to check and possibly fix the parity for this stripe
3188 3189 3190
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
3191
	 */
3192 3193
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
3194
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3195
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3196
		handle_parity_checks5(conf, sh, &s, disks);
3197

3198
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
3199 3200 3201
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
3202 3203 3204 3205

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
3206 3207 3208 3209
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3210
		) {
3211
		dev = &sh->dev[s.failed_num];
3212 3213 3214 3215
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3216
			s.locked++;
3217 3218 3219 3220
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3221
			s.locked++;
3222 3223 3224
		}
	}

3225 3226
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
3227
		struct stripe_head *sh2
3228
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3244
		sh->reconstruct_state = reconstruct_state_idle;
3245
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
3246
		for (i = conf->raid_disks; i--; ) {
3247
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
3248
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3249
			s.locked++;
D
Dan Williams 已提交
3250
		}
3251 3252 3253
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3254
	    !sh->reconstruct_state) {
3255 3256
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
3257
		stripe_set_idx(sh->sector, conf, 0, sh);
3258
		schedule_reconstruction(sh, &s, 1, 1);
3259
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3260
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3261
		atomic_dec(&conf->reshape_stripes);
3262 3263 3264 3265
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3266
	if (s.expanding && s.locked == 0 &&
3267
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3268
		handle_stripe_expansion(conf, sh, NULL);
3269

3270
 unlock:
L
Linus Torvalds 已提交
3271 3272
	spin_unlock(&sh->lock);

3273 3274 3275 3276
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3277
	if (s.ops_request)
3278
		raid_run_ops(sh, s.ops_request);
3279

3280
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
3281

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
		 * is waiting on a barrier, it won't continue until the writes
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}
3292
	return_io(return_bi);
L
Linus Torvalds 已提交
3293 3294
}

3295
static void handle_stripe6(struct stripe_head *sh)
L
Linus Torvalds 已提交
3296
{
3297
	raid5_conf_t *conf = sh->raid_conf;
3298
	int disks = sh->disks;
3299
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
3300
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3301 3302
	struct stripe_head_state s;
	struct r6_state r6s;
3303
	struct r5dev *dev, *pdev, *qdev;
3304
	mdk_rdev_t *blocked_rdev = NULL;
3305
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
3306

3307
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3308
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3309
	       (unsigned long long)sh->sector, sh->state,
3310 3311
	       atomic_read(&sh->count), pd_idx, qd_idx,
	       sh->check_state, sh->reconstruct_state);
3312
	memset(&s, 0, sizeof(s));
3313

3314 3315 3316 3317
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3318 3319 3320
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3321
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3322 3323

	rcu_read_lock();
3324 3325 3326
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3327

3328
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3329
			i, dev->flags, dev->toread, dev->towrite, dev->written);
3330 3331 3332 3333 3334 3335 3336 3337
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3338

3339
		/* now count some things */
3340 3341
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3342 3343 3344 3345
		if (test_bit(R5_Wantcompute, &dev->flags)) {
			s.compute++;
			BUG_ON(s.compute > 2);
		}
L
Linus Torvalds 已提交
3346

3347 3348 3349
		if (test_bit(R5_Wantfill, &dev->flags)) {
			s.to_fill++;
		} else if (dev->toread)
3350
			s.to_read++;
3351
		if (dev->towrite) {
3352
			s.to_write++;
3353
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3354
				s.non_overwrite++;
3355
		}
3356 3357
		if (dev->written)
			s.written++;
3358
		rdev = rcu_dereference(conf->disks[i].rdev);
3359 3360
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3361 3362 3363
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* in sync if before recovery_offset */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
3375 3376 3377
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3378
		}
3379 3380 3381
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3382 3383 3384
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3385
		}
L
Linus Torvalds 已提交
3386 3387
	}
	rcu_read_unlock();
3388 3389

	if (unlikely(blocked_rdev)) {
3390 3391 3392 3393 3394 3395 3396 3397
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3398
	}
3399

3400 3401 3402 3403 3404
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

3405
	pr_debug("locked=%d uptodate=%d to_read=%d"
3406
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3407 3408 3409 3410
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3411
	 */
3412
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3413
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3414
	if (s.failed > 2 && s.syncing) {
3415 3416
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3417
		s.syncing = 0;
3418 3419 3420 3421 3422 3423 3424
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3425 3426
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3427 3428 3429
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3430 3431 3432

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3433
			     && !test_bit(R5_LOCKED, &pdev->flags)
3434 3435
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3436
			     && !test_bit(R5_LOCKED, &qdev->flags)
3437
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3438
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3439 3440 3441 3442 3443

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3444
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3445
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3446
		handle_stripe_fill6(sh, &s, &r6s, disks);
3447

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	if (sh->reconstruct_state == reconstruct_state_drain_result) {

		sh->reconstruct_state = reconstruct_state_idle;
		/* All the 'written' buffers and the parity blocks are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
			    (i == sh->pd_idx || i == qd_idx ||
			     dev->written)) {
				pr_debug("Writing block %d\n", i);
				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
				set_bit(R5_Wantwrite, &dev->flags);
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == qd_idx) &&
				      s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3473 3474
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3475 3476
	}

3477 3478 3479 3480 3481 3482 3483
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3484
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3485 3486

	/* maybe we need to check and possibly fix the parity for this stripe
3487
	 * Any reads will already have been scheduled, so we just see if enough
3488 3489
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
3490
	 */
3491 3492 3493 3494
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3495
		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3496

3497
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3498 3499 3500 3501 3502 3503 3504
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3505 3506 3507
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3508 3509 3510 3511 3512 3513 3514 3515
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3516
					s.locked++;
3517 3518 3519 3520
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3521
					s.locked++;
3522 3523 3524
				}
			}
		}
3525

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
3539
		struct stripe_head *sh2
3540
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3556 3557
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3558
		stripe_set_idx(sh->sector, conf, 0, sh);
3559 3560
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3561 3562 3563 3564 3565 3566
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3567
	if (s.expanding && s.locked == 0 &&
3568
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3569
		handle_stripe_expansion(conf, sh, &r6s);
3570

3571
 unlock:
3572 3573
	spin_unlock(&sh->lock);

3574 3575 3576 3577
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3578 3579 3580
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3581
	ops_run_io(sh, &s);
3582

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594

	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
		 * is waiting on a barrier, it won't continue until the writes
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

D
Dan Williams 已提交
3595
	return_io(return_bi);
3596 3597
}

3598
static void handle_stripe(struct stripe_head *sh)
3599 3600
{
	if (sh->raid_conf->level == 6)
3601
		handle_stripe6(sh);
3602
	else
3603
		handle_stripe5(sh);
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3617
			list_add_tail(&sh->lru, &conf->hold_list);
3618
		}
3619
	} else
3620
		plugger_set_plug(&conf->plug);
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
3639
	raid5_conf_t *conf = mddev->private;
3640
	int i;
3641
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
3642 3643

	rcu_read_lock();
3644
	for (i = 0; i < devs; i++) {
3645 3646
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3647
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3648 3649 3650 3651

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3652
			blk_unplug(r_queue);
3653 3654 3655 3656 3657 3658 3659 3660

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3661
void md_raid5_unplug_device(raid5_conf_t *conf)
3662 3663 3664 3665 3666
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

3667
	if (plugger_remove_plug(&conf->plug)) {
3668 3669
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3670
	}
3671
	md_wakeup_thread(conf->mddev->thread);
L
Linus Torvalds 已提交
3672 3673 3674

	spin_unlock_irqrestore(&conf->device_lock, flags);

3675
	unplug_slaves(conf->mddev);
L
Linus Torvalds 已提交
3676
}
3677
EXPORT_SYMBOL_GPL(md_raid5_unplug_device);
L
Linus Torvalds 已提交
3678

3679 3680 3681
static void raid5_unplug(struct plug_handle *plug)
{
	raid5_conf_t *conf = container_of(plug, raid5_conf_t, plug);
3682
	md_raid5_unplug_device(conf);
3683 3684 3685 3686 3687
}

static void raid5_unplug_queue(struct request_queue *q)
{
	mddev_t *mddev = q->queuedata;
3688
	md_raid5_unplug_device(mddev->private);
L
Linus Torvalds 已提交
3689 3690
}

N
NeilBrown 已提交
3691
int md_raid5_congested(mddev_t *mddev, int bits)
3692
{
3693
	raid5_conf_t *conf = mddev->private;
3694 3695 3696 3697

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3698

3699 3700 3701 3702 3703 3704 3705 3706 3707
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3708 3709 3710 3711 3712 3713 3714 3715 3716
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3717

3718 3719 3720
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3721 3722 3723
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3724 3725
{
	mddev_t *mddev = q->queuedata;
3726
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3727
	int max;
3728
	unsigned int chunk_sectors = mddev->chunk_sectors;
3729
	unsigned int bio_sectors = bvm->bi_size >> 9;
3730

3731
	if ((bvm->bi_rw & 1) == WRITE)
3732 3733
		return biovec->bv_len; /* always allow writes to be mergeable */

3734 3735
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3736 3737 3738 3739 3740 3741 3742 3743
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3744 3745 3746 3747

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3748
	unsigned int chunk_sectors = mddev->chunk_sectors;
3749 3750
	unsigned int bio_sectors = bio->bi_size >> 9;

3751 3752
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3753 3754 3755 3756
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3786
		conf->retry_read_aligned_list = bi->bi_next;
3787
		bi->bi_next = NULL;
3788 3789 3790 3791
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3792 3793 3794 3795 3796 3797 3798
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3799 3800 3801 3802 3803 3804
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3805
static void raid5_align_endio(struct bio *bi, int error)
3806 3807
{
	struct bio* raid_bi  = bi->bi_private;
3808 3809 3810 3811 3812
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3813
	bio_put(bi);
3814 3815 3816

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3817 3818
	mddev = rdev->mddev;
	conf = mddev->private;
3819 3820 3821 3822

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3823
		bio_endio(raid_bi, 0);
3824 3825
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3826
		return;
3827 3828 3829
	}


3830
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3831 3832

	add_bio_to_retry(raid_bi, conf);
3833 3834
}

3835 3836
static int bio_fits_rdev(struct bio *bi)
{
3837
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3838

3839
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3840 3841
		return 0;
	blk_recount_segments(q, bi);
3842
	if (bi->bi_phys_segments > queue_max_segments(q))
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3855
static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3856
{
3857
	raid5_conf_t *conf = mddev->private;
N
NeilBrown 已提交
3858
	int dd_idx;
3859 3860 3861 3862
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3863
		pr_debug("chunk_aligned_read : non aligned\n");
3864 3865 3866
		return 0;
	}
	/*
3867
	 * use bio_clone to make a copy of the bio
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3881 3882
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3883
						    &dd_idx, NULL);
3884 3885 3886 3887 3888 3889

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3890 3891 3892 3893 3894
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3895 3896 3897 3898 3899 3900 3901
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3902 3903 3904 3905 3906 3907 3908
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3909 3910 3911 3912
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3913
		bio_put(align_bi);
3914 3915 3916 3917
		return 0;
	}
}

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3970

3971
static int make_request(mddev_t *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3972
{
3973
	raid5_conf_t *conf = mddev->private;
3974
	int dd_idx;
L
Linus Torvalds 已提交
3975 3976 3977
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3978
	const int rw = bio_data_dir(bi);
3979
	int remaining;
L
Linus Torvalds 已提交
3980

3981
	if (unlikely(bi->bi_rw & REQ_HARDBARRIER)) {
3982 3983 3984 3985 3986 3987 3988
		/* Drain all pending writes.  We only really need
		 * to ensure they have been submitted, but this is
		 * easier.
		 */
		mddev->pers->quiesce(mddev, 1);
		mddev->pers->quiesce(mddev, 0);
		md_barrier_request(mddev, bi);
3989 3990 3991
		return 0;
	}

3992
	md_write_start(mddev, bi);
3993

3994
	if (rw == READ &&
3995
	     mddev->reshape_position == MaxSector &&
3996
	     chunk_aligned_read(mddev,bi))
3997
		return 0;
3998

L
Linus Torvalds 已提交
3999 4000 4001 4002
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4003

L
Linus Torvalds 已提交
4004 4005
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
4006
		int disks, data_disks;
4007
		int previous;
4008

4009
	retry:
4010
		previous = 0;
4011
		disks = conf->raid_disks;
4012
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4013
		if (unlikely(conf->reshape_progress != MaxSector)) {
4014
			/* spinlock is needed as reshape_progress may be
4015 4016
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
4017
			 * Ofcourse reshape_progress could change after
4018 4019 4020 4021
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
4022
			spin_lock_irq(&conf->device_lock);
4023 4024 4025
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
4026
				disks = conf->previous_raid_disks;
4027 4028
				previous = 1;
			} else {
4029 4030 4031
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
4032 4033 4034 4035 4036
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
4037 4038
			spin_unlock_irq(&conf->device_lock);
		}
4039 4040
		data_disks = disks - conf->max_degraded;

4041 4042
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
4043
						  &dd_idx, NULL);
4044
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
4045 4046 4047
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

4048
		sh = get_active_stripe(conf, new_sector, previous,
4049
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
4050
		if (sh) {
4051
			if (unlikely(previous)) {
4052
				/* expansion might have moved on while waiting for a
4053 4054 4055 4056 4057 4058
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4059 4060 4061
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4062 4063 4064
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4065 4066 4067 4068 4069
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4070
					schedule();
4071 4072 4073
					goto retry;
				}
			}
4074

4075 4076
			if (bio_data_dir(bi) == WRITE &&
			    logical_sector >= mddev->suspend_lo &&
4077 4078
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4089 4090
				goto retry;
			}
4091 4092 4093 4094 4095

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4096 4097
				 * and wait a while
				 */
4098
				md_raid5_unplug_device(conf);
L
Linus Torvalds 已提交
4099 4100 4101 4102 4103
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4104 4105
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
4106 4107 4108
			if (mddev->barrier && 
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
4119
	remaining = raid5_dec_bi_phys_segments(bi);
4120 4121
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
4122

4123
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4124
			md_write_end(mddev);
4125

4126
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4127
	}
4128 4129 4130 4131 4132 4133 4134 4135

	if (mddev->barrier) {
		/* We need to wait for the stripes to all be handled.
		 * So: wait for preread_active_stripes to drop to 0.
		 */
		wait_event(mddev->thread->wqueue,
			   atomic_read(&conf->preread_active_stripes) == 0);
	}
L
Linus Torvalds 已提交
4136 4137 4138
	return 0;
}

D
Dan Williams 已提交
4139 4140
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

4141
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4142
{
4143 4144 4145 4146 4147 4148 4149 4150 4151
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4152
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4153
	struct stripe_head *sh;
4154
	sector_t first_sector, last_sector;
4155 4156 4157
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4158 4159
	int i;
	int dd_idx;
4160
	sector_t writepos, readpos, safepos;
4161
	sector_t stripe_addr;
4162
	int reshape_sectors;
4163
	struct list_head stripes;
4164

4165 4166 4167 4168 4169 4170
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4171
		} else if (mddev->delta_disks >= 0 &&
4172 4173
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4174
		sector_div(sector_nr, new_data_disks);
4175
		if (sector_nr) {
4176 4177
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4178 4179 4180
			*skipped = 1;
			return sector_nr;
		}
4181 4182
	}

4183 4184 4185 4186
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4187 4188
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4189
	else
4190
		reshape_sectors = mddev->chunk_sectors;
4191

4192 4193 4194 4195 4196
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
4197 4198
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
4199
	 */
4200
	writepos = conf->reshape_progress;
4201
	sector_div(writepos, new_data_disks);
4202 4203
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4204
	safepos = conf->reshape_safe;
4205
	sector_div(safepos, data_disks);
4206
	if (mddev->delta_disks < 0) {
4207
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4208
		readpos += reshape_sectors;
4209
		safepos += reshape_sectors;
4210
	} else {
4211
		writepos += reshape_sectors;
4212 4213
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4214
	}
4215

4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4233
	if ((mddev->delta_disks < 0
4234 4235 4236
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4237 4238 4239
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4240
		mddev->reshape_position = conf->reshape_progress;
4241
		mddev->curr_resync_completed = mddev->curr_resync;
4242
		conf->reshape_checkpoint = jiffies;
4243
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4244
		md_wakeup_thread(mddev->thread);
4245
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4246 4247
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4248
		conf->reshape_safe = mddev->reshape_position;
4249 4250
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4251
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4252 4253
	}

4254 4255 4256 4257
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4258 4259
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4260 4261
		       != sector_nr);
	} else {
4262
		BUG_ON(writepos != sector_nr + reshape_sectors);
4263 4264
		stripe_addr = sector_nr;
	}
4265
	INIT_LIST_HEAD(&stripes);
4266
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4267
		int j;
4268
		int skipped_disk = 0;
4269
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4270 4271 4272 4273 4274 4275 4276 4277 4278
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4279
			if (conf->level == 6 &&
4280
			    j == sh->qd_idx)
4281
				continue;
4282
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4283
			if (s < raid5_size(mddev, 0, 0)) {
4284
				skipped_disk = 1;
4285 4286 4287 4288 4289 4290
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4291
		if (!skipped_disk) {
4292 4293 4294
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4295
		list_add(&sh->lru, &stripes);
4296 4297
	}
	spin_lock_irq(&conf->device_lock);
4298
	if (mddev->delta_disks < 0)
4299
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4300
	else
4301
		conf->reshape_progress += reshape_sectors * new_data_disks;
4302 4303 4304 4305 4306 4307 4308
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4309
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4310
				     1, &dd_idx, NULL);
4311
	last_sector =
4312
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4313
					    * new_data_disks - 1),
4314
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4315 4316
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4317
	while (first_sector <= last_sector) {
4318
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4319 4320 4321 4322 4323
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4324 4325 4326 4327 4328 4329 4330 4331
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4332 4333 4334
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4335
	sector_nr += reshape_sectors;
4336 4337
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4338 4339 4340
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4341
		mddev->reshape_position = conf->reshape_progress;
4342
		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4343
		conf->reshape_checkpoint = jiffies;
4344 4345 4346 4347 4348 4349
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4350
		conf->reshape_safe = mddev->reshape_position;
4351 4352
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4353
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4354
	}
4355
	return reshape_sectors;
4356 4357 4358 4359 4360
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
4361
	raid5_conf_t *conf = mddev->private;
4362
	struct stripe_head *sh;
A
Andre Noll 已提交
4363
	sector_t max_sector = mddev->dev_sectors;
4364
	int sync_blocks;
4365 4366
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4367

4368
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4369 4370
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
4371

4372 4373 4374 4375
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4376 4377 4378 4379

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4380
		else /* completed sync */
4381 4382 4383
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4384 4385
		return 0;
	}
4386

4387 4388 4389
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4390 4391
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4392

4393 4394 4395 4396 4397 4398
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4399
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4400 4401 4402
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4403
	if (mddev->degraded >= conf->max_degraded &&
4404
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4405
		sector_t rv = mddev->dev_sectors - sector_nr;
4406
		*skipped = 1;
L
Linus Torvalds 已提交
4407 4408
		return rv;
	}
4409
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4410
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4411 4412 4413 4414 4415 4416
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4417

N
NeilBrown 已提交
4418 4419 4420

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4421
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4422
	if (sh == NULL) {
4423
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4424
		/* make sure we don't swamp the stripe cache if someone else
4425
		 * is trying to get access
L
Linus Torvalds 已提交
4426
		 */
4427
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4428
	}
4429 4430 4431 4432
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4433
	for (i = 0; i < conf->raid_disks; i++)
4434 4435 4436 4437 4438 4439
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
4440 4441 4442 4443
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

4444
	handle_stripe(sh);
L
Linus Torvalds 已提交
4445 4446 4447 4448 4449
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4463
	int dd_idx;
4464 4465 4466 4467 4468 4469
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4470
	sector = raid5_compute_sector(conf, logical_sector,
4471
				      0, &dd_idx, NULL);
4472 4473 4474
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4475 4476 4477
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4478

4479
		if (scnt < raid5_bi_hw_segments(raid_bio))
4480 4481 4482
			/* already done this stripe */
			continue;

4483
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4484 4485 4486

		if (!sh) {
			/* failed to get a stripe - must wait */
4487
			raid5_set_bi_hw_segments(raid_bio, scnt);
4488 4489 4490 4491 4492
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4493 4494
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4495
			raid5_set_bi_hw_segments(raid_bio, scnt);
4496 4497 4498 4499
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4500
		handle_stripe(sh);
4501 4502 4503 4504
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4505
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4506
	spin_unlock_irq(&conf->device_lock);
4507 4508
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4509 4510 4511 4512 4513 4514
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4515 4516 4517 4518 4519 4520 4521
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4522
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4523 4524
{
	struct stripe_head *sh;
4525
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4526 4527
	int handled;

4528
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4529 4530 4531 4532 4533 4534

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4535
		struct bio *bio;
L
Linus Torvalds 已提交
4536

4537
		if (conf->seq_flush != conf->seq_write) {
4538
			int seq = conf->seq_flush;
4539
			spin_unlock_irq(&conf->device_lock);
4540
			bitmap_unplug(mddev->bitmap);
4541
			spin_lock_irq(&conf->device_lock);
4542 4543 4544 4545
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4556 4557
		sh = __get_priority_stripe(conf);

4558
		if (!sh)
L
Linus Torvalds 已提交
4559 4560 4561 4562
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4563 4564 4565
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4566 4567 4568

		spin_lock_irq(&conf->device_lock);
	}
4569
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4570 4571 4572

	spin_unlock_irq(&conf->device_lock);

4573
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4574 4575
	unplug_slaves(mddev);

4576
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4577 4578
}

4579
static ssize_t
4580
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4581
{
4582
	raid5_conf_t *conf = mddev->private;
4583 4584 4585 4586
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4587 4588
}

4589 4590
int
raid5_set_cache_size(mddev_t *mddev, int size)
4591
{
4592
	raid5_conf_t *conf = mddev->private;
4593 4594
	int err;

4595
	if (size <= 16 || size > 32768)
4596
		return -EINVAL;
4597
	while (size < conf->max_nr_stripes) {
4598 4599 4600 4601 4602
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4603 4604 4605
	err = md_allow_write(mddev);
	if (err)
		return err;
4606
	while (size > conf->max_nr_stripes) {
4607 4608 4609 4610
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev->private;
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4632 4633
	return len;
}
4634

4635 4636 4637 4638
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4639

4640 4641 4642
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4643
	raid5_conf_t *conf = mddev->private;
4644 4645 4646 4647 4648 4649 4650 4651 4652
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4653
	raid5_conf_t *conf = mddev->private;
4654
	unsigned long new;
4655 4656 4657 4658 4659
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4660
	if (strict_strtoul(page, 10, &new))
4661
		return -EINVAL;
4662
	if (new > conf->max_nr_stripes)
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4674
static ssize_t
4675
stripe_cache_active_show(mddev_t *mddev, char *page)
4676
{
4677
	raid5_conf_t *conf = mddev->private;
4678 4679 4680 4681
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4682 4683
}

4684 4685
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4686

4687
static struct attribute *raid5_attrs[] =  {
4688 4689
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4690
	&raid5_preread_bypass_threshold.attr,
4691 4692
	NULL,
};
4693 4694 4695
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4696 4697
};

4698 4699 4700
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4701
	raid5_conf_t *conf = mddev->private;
4702 4703 4704

	if (!sectors)
		sectors = mddev->dev_sectors;
4705
	if (!raid_disks)
4706
		/* size is defined by the smallest of previous and new size */
4707
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4708

4709
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4710
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4711 4712 4713
	return sectors * (raid_disks - conf->max_degraded);
}

4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4726
		kfree(percpu->scribble);
4727 4728 4729 4730 4731 4732 4733 4734 4735
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4736 4737 4738
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4739
	raid5_free_percpu(conf);
4740 4741 4742 4743 4744
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4756
		if (conf->level == 6 && !percpu->spare_page)
4757
			percpu->spare_page = alloc_page(GFP_KERNEL);
4758 4759 4760 4761 4762 4763 4764
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4765 4766
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4767
			return notifier_from_errno(-ENOMEM);
4768 4769 4770 4771 4772
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4773
		kfree(percpu->scribble);
4774
		percpu->spare_page = NULL;
4775
		percpu->scribble = NULL;
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
4788
	struct raid5_percpu __percpu *allcpus;
4789
	void *scribble;
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4800 4801 4802 4803 4804 4805 4806 4807
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4808
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4809
		if (!scribble) {
4810 4811 4812
			err = -ENOMEM;
			break;
		}
4813
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4826
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4827 4828
{
	raid5_conf_t *conf;
4829
	int raid_disk, memory, max_disks;
L
Linus Torvalds 已提交
4830 4831 4832
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4833 4834 4835
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4836
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4837 4838
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4839
	}
N
NeilBrown 已提交
4840 4841 4842 4843
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4844
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4845 4846
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4847
	}
N
NeilBrown 已提交
4848
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4849
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4850 4851
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4852 4853
	}

4854 4855 4856
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4857 4858
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4859
		return ERR_PTR(-EINVAL);
4860 4861
	}

N
NeilBrown 已提交
4862 4863
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4864
		goto abort;
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
N
NeilBrown 已提交
4877 4878 4879 4880 4881

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4882
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4883 4884
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4885

4886
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4887 4888 4889
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4890

L
Linus Torvalds 已提交
4891 4892
	conf->mddev = mddev;

4893
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4894 4895
		goto abort;

4896 4897 4898 4899
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4900
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4901

4902
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4903
		raid_disk = rdev->raid_disk;
4904
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4905 4906 4907 4908 4909 4910
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4911
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4912
			char b[BDEVNAME_SIZE];
4913 4914 4915
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4916 4917 4918
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4919 4920
	}

4921
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4922
	conf->level = mddev->new_level;
4923 4924 4925 4926
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4927
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4928
	conf->max_nr_stripes = NR_STRIPES;
4929
	conf->reshape_progress = mddev->reshape_position;
4930
	if (conf->reshape_progress != MaxSector) {
4931
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4932 4933
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4934

N
NeilBrown 已提交
4935
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4936
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4937 4938
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4939 4940
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4941 4942
		goto abort;
	} else
4943 4944
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4945

4946
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4947 4948
	if (!conf->thread) {
		printk(KERN_ERR
4949
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4950
		       mdname(mddev));
4951 4952
		goto abort;
	}
N
NeilBrown 已提交
4953 4954 4955 4956 4957

	return conf;

 abort:
	if (conf) {
4958
		free_conf(conf);
N
NeilBrown 已提交
4959 4960 4961 4962 4963
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

N
NeilBrown 已提交
4991 4992 4993
static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4994
	int working_disks = 0;
4995
	int dirty_parity_disks = 0;
N
NeilBrown 已提交
4996
	mdk_rdev_t *rdev;
4997
	sector_t reshape_offset = 0;
N
NeilBrown 已提交
4998

4999
	if (mddev->recovery_cp != MaxSector)
5000
		printk(KERN_NOTICE "md/raid:%s: not clean"
5001 5002
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
5003 5004 5005 5006 5007 5008 5009 5010
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
5011
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
5012

5013
		if (mddev->new_level != mddev->level) {
5014
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
5025
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
5026
			       (mddev->raid_disks - max_degraded))) {
5027 5028
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
5029 5030
			return -EINVAL;
		}
5031
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
5032 5033
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
5034
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
5035 5036 5037
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
5049 5050 5051
				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
				       " in read-only mode - aborting\n",
				       mdname(mddev));
5052 5053 5054 5055 5056 5057 5058
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
5059
			/* Reading from the same stripe as writing to - bad */
5060 5061 5062
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
5063 5064
			return -EINVAL;
		}
5065 5066
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
5067 5068 5069 5070
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
5071
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
5072
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
5073
	}
N
NeilBrown 已提交
5074

5075 5076 5077 5078 5079
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5090 5091 5092
	list_for_each_entry(rdev, &mddev->disks, same_set) {
		if (rdev->raid_disk < 0)
			continue;
5093
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5094
			working_disks++;
5095 5096
			continue;
		}
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5125

5126 5127
	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
			   - working_disks);
N
NeilBrown 已提交
5128

5129
	if (has_failed(conf)) {
5130
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5131
			" (%d/%d failed)\n",
5132
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5133 5134 5135
		goto abort;
	}

N
NeilBrown 已提交
5136
	/* device size must be a multiple of chunk size */
5137
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5138 5139
	mddev->resync_max_sectors = mddev->dev_sectors;

5140
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5141
	    mddev->recovery_cp != MaxSector) {
5142 5143
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5144 5145
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5146 5147 5148
			       mdname(mddev));
		else {
			printk(KERN_ERR
5149
			       "md/raid:%s: cannot start dirty degraded array.\n",
5150 5151 5152
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5153 5154 5155
	}

	if (mddev->degraded == 0)
5156 5157
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5158 5159
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5160
	else
5161 5162 5163 5164 5165
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5166 5167 5168

	print_raid5_conf(conf);

5169 5170
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5171 5172 5173 5174 5175 5176
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5177
							"reshape");
5178 5179
	}

L
Linus Torvalds 已提交
5180 5181

	/* Ok, everything is just fine now */
5182 5183
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
5184 5185
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5186
		printk(KERN_WARNING
5187
		       "raid5: failed to create sysfs attributes for %s\n",
5188
		       mdname(mddev));
5189
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5190

5191
	plugger_init(&conf->plug, raid5_unplug);
5192
	mddev->plug = &conf->plug;
5193
	if (mddev->queue) {
5194
		int chunk_size;
5195 5196 5197 5198 5199 5200 5201 5202 5203
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
5204

5205
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5206

N
NeilBrown 已提交
5207 5208
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5209 5210
		mddev->queue->queue_lock = &conf->device_lock;
		mddev->queue->unplug_fn = raid5_unplug_queue;
5211

5212 5213 5214 5215
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
5216

5217 5218 5219 5220
		list_for_each_entry(rdev, &mddev->disks, same_set)
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
	}
5221

L
Linus Torvalds 已提交
5222 5223
	return 0;
abort:
5224
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
5225
	mddev->thread = NULL;
L
Linus Torvalds 已提交
5226 5227
	if (conf) {
		print_raid5_conf(conf);
5228
		free_conf(conf);
L
Linus Torvalds 已提交
5229 5230
	}
	mddev->private = NULL;
5231
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5232 5233 5234
	return -EIO;
}

5235
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
5236
{
5237
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5238 5239 5240

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
N
NeilBrown 已提交
5241 5242
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
5243
	plugger_flush(&conf->plug); /* the unplug fn references 'conf'*/
5244
	free_conf(conf);
5245 5246
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5247 5248 5249
	return 0;
}

5250
#ifdef DEBUG
5251
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
5252 5253 5254
{
	int i;

5255 5256 5257 5258 5259
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5260
	for (i = 0; i < sh->disks; i++) {
5261 5262
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
5263
	}
5264
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
5265 5266
}

5267
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
5268 5269
{
	struct stripe_head *sh;
5270
	struct hlist_node *hn;
L
Linus Torvalds 已提交
5271 5272 5273 5274
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
5275
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
5276 5277
			if (sh->raid_conf != conf)
				continue;
5278
			print_sh(seq, sh);
L
Linus Torvalds 已提交
5279 5280 5281 5282 5283 5284
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

5285
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
5286
{
5287
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5288 5289
	int i;

5290 5291
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5292
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5293 5294 5295
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5296
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5297
	seq_printf (seq, "]");
5298
#ifdef DEBUG
5299 5300
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
5301 5302 5303 5304 5305 5306 5307 5308
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

5309
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5310 5311 5312 5313
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5314 5315 5316
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5317 5318 5319 5320 5321

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5322 5323 5324
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5325 5326 5327 5328 5329 5330 5331 5332
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;
5333 5334
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
5335 5336 5337 5338

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
5339
		    && tmp->rdev->recovery_offset == MaxSector
5340
		    && !test_bit(Faulty, &tmp->rdev->flags)
5341
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5342
			count++;
5343
			sysfs_notify_dirent(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
5344 5345
		}
	}
5346 5347 5348
	spin_lock_irqsave(&conf->device_lock, flags);
	mddev->degraded -= count;
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5349
	print_raid5_conf(conf);
5350
	return count;
L
Linus Torvalds 已提交
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
5363 5364 5365 5366
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

5367
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
5368 5369 5370 5371
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
5372 5373 5374 5375
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
5376
		    !has_failed(conf) &&
5377
		    number < conf->raid_disks) {
5378 5379 5380
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
5381
		p->rdev = NULL;
5382
		synchronize_rcu();
L
Linus Torvalds 已提交
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
5398
	int err = -EEXIST;
L
Linus Torvalds 已提交
5399 5400
	int disk;
	struct disk_info *p;
5401 5402
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5403

5404
	if (has_failed(conf))
L
Linus Torvalds 已提交
5405
		/* no point adding a device */
5406
		return -EINVAL;
L
Linus Torvalds 已提交
5407

5408 5409
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5410 5411

	/*
5412 5413
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5414
	 */
5415
	if (rdev->saved_raid_disk >= 0 &&
5416
	    rdev->saved_raid_disk >= first &&
5417 5418 5419
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5420 5421
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5422
		if ((p=conf->disks + disk)->rdev == NULL) {
5423
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5424
			rdev->raid_disk = disk;
5425
			err = 0;
5426 5427
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5428
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5429 5430 5431
			break;
		}
	print_raid5_conf(conf);
5432
	return err;
L
Linus Torvalds 已提交
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5444
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5445 5446
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5447 5448 5449
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5450
	set_capacity(mddev->gendisk, mddev->array_sectors);
5451
	revalidate_disk(mddev->gendisk);
A
Andre Noll 已提交
5452 5453
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5454 5455
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5456
	mddev->dev_sectors = sectors;
5457
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5458 5459 5460
	return 0;
}

5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5476 5477
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5478 5479 5480 5481 5482 5483 5484
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5485
static int check_reshape(mddev_t *mddev)
5486
{
5487
	raid5_conf_t *conf = mddev->private;
5488

5489 5490
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5491
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5492
		return 0; /* nothing to do */
5493 5494 5495
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5496
	if (has_failed(conf))
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5510

5511
	if (!check_stripe_cache(mddev))
5512 5513
		return -ENOSPC;

5514
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5515 5516 5517 5518
}

static int raid5_start_reshape(mddev_t *mddev)
{
5519
	raid5_conf_t *conf = mddev->private;
5520 5521 5522
	mdk_rdev_t *rdev;
	int spares = 0;
	int added_devices = 0;
5523
	unsigned long flags;
5524

5525
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5526 5527
		return -EBUSY;

5528 5529 5530
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5531
	list_for_each_entry(rdev, &mddev->disks, same_set)
5532 5533 5534
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
5535

5536
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5537 5538 5539 5540 5541
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5542 5543 5544 5545 5546 5547
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5548
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5549 5550 5551 5552
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5553
	atomic_set(&conf->reshape_stripes, 0);
5554 5555
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5556
	conf->raid_disks += mddev->delta_disks;
5557 5558
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5559 5560
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5561 5562 5563 5564 5565
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5566
	conf->generation++;
5567 5568 5569 5570
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5571 5572 5573 5574
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5575
	 */
5576 5577
	if (mddev->delta_disks >= 0)
	    list_for_each_entry(rdev, &mddev->disks, same_set)
5578 5579
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
5580
			if (raid5_add_disk(mddev, rdev) == 0) {
5581
				char nm[20];
5582
				if (rdev->raid_disk >= conf->previous_raid_disks) {
5583
					set_bit(In_sync, &rdev->flags);
5584 5585
					added_devices++;
				} else
5586
					rdev->recovery_offset = 0;
5587
				sprintf(nm, "rd%d", rdev->raid_disk);
5588 5589
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
N
NeilBrown 已提交
5590
					/* Failure here is OK */;
5591 5592 5593 5594
			} else
				break;
		}

5595
	/* When a reshape changes the number of devices, ->degraded
5596
	 * is measured against the larger of the pre and post number of
5597
	 * devices.*/
5598 5599
	if (mddev->delta_disks > 0) {
		spin_lock_irqsave(&conf->device_lock, flags);
5600
		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5601 5602 5603
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5604
	mddev->raid_disks = conf->raid_disks;
5605
	mddev->reshape_position = conf->reshape_progress;
5606
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5607

5608 5609 5610 5611 5612
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5613
						"reshape");
5614 5615 5616 5617
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5618
		conf->reshape_progress = MaxSector;
5619 5620 5621
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5622
	conf->reshape_checkpoint = jiffies;
5623 5624 5625 5626 5627
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5628 5629 5630
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5631 5632 5633
static void end_reshape(raid5_conf_t *conf)
{

5634 5635 5636
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5637
		conf->previous_raid_disks = conf->raid_disks;
5638
		conf->reshape_progress = MaxSector;
5639
		spin_unlock_irq(&conf->device_lock);
5640
		wake_up(&conf->wait_for_overlap);
5641 5642 5643 5644

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5645
		if (conf->mddev->queue) {
5646
			int data_disks = conf->raid_disks - conf->max_degraded;
5647
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5648
						   / PAGE_SIZE);
5649 5650 5651
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5652 5653 5654
	}
}

5655 5656 5657
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5658 5659
static void raid5_finish_reshape(mddev_t *mddev)
{
5660
	raid5_conf_t *conf = mddev->private;
5661 5662 5663

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5664 5665 5666
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5667
			revalidate_disk(mddev->gendisk);
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5678 5679 5680 5681 5682 5683 5684 5685 5686
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
					char nm[20];
					sprintf(nm, "rd%d", rdev->raid_disk);
					sysfs_remove_link(&mddev->kobj, nm);
					rdev->raid_disk = -1;
				}
			}
5687
		}
5688
		mddev->layout = conf->algorithm;
5689
		mddev->chunk_sectors = conf->chunk_sectors;
5690 5691
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5692 5693 5694
	}
}

5695 5696
static void raid5_quiesce(mddev_t *mddev, int state)
{
5697
	raid5_conf_t *conf = mddev->private;
5698 5699

	switch(state) {
5700 5701 5702 5703
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5704 5705
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5706 5707 5708 5709
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5710
		wait_event_lock_irq(conf->wait_for_stripe,
5711 5712
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5713
				    conf->device_lock, /* nothing */);
5714
		conf->quiesce = 1;
5715
		spin_unlock_irq(&conf->device_lock);
5716 5717
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5718 5719 5720 5721 5722 5723
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5724
		wake_up(&conf->wait_for_overlap);
5725 5726 5727 5728
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5729

5730

D
Dan Williams 已提交
5731
static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5732
{
D
Dan Williams 已提交
5733
	struct raid0_private_data *raid0_priv = mddev->private;
5734

D
Dan Williams 已提交
5735 5736
	/* for raid0 takeover only one zone is supported */
	if (raid0_priv->nr_strip_zones > 1) {
5737 5738
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5739 5740 5741 5742
		return ERR_PTR(-EINVAL);
	}

	mddev->new_level = level;
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5776
	mddev->new_chunk_sectors = chunksect;
5777 5778 5779 5780

	return setup_conf(mddev);
}

5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5814

5815
static int raid5_check_reshape(mddev_t *mddev)
5816
{
5817 5818 5819 5820
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5821
	 */
5822
	raid5_conf_t *conf = mddev->private;
5823
	int new_chunk = mddev->new_chunk_sectors;
5824

5825
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5826 5827
		return -EINVAL;
	if (new_chunk > 0) {
5828
		if (!is_power_of_2(new_chunk))
5829
			return -EINVAL;
5830
		if (new_chunk < (PAGE_SIZE>>9))
5831
			return -EINVAL;
5832
		if (mddev->array_sectors & (new_chunk-1))
5833 5834 5835 5836 5837 5838
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5839
	if (mddev->raid_disks == 2) {
5840 5841 5842 5843
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5844 5845
		}
		if (new_chunk > 0) {
5846 5847
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5848 5849 5850
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5851
	}
5852
	return check_reshape(mddev);
5853 5854
}

5855
static int raid6_check_reshape(mddev_t *mddev)
5856
{
5857
	int new_chunk = mddev->new_chunk_sectors;
5858

5859
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5860
		return -EINVAL;
5861
	if (new_chunk > 0) {
5862
		if (!is_power_of_2(new_chunk))
5863
			return -EINVAL;
5864
		if (new_chunk < (PAGE_SIZE >> 9))
5865
			return -EINVAL;
5866
		if (mddev->array_sectors & (new_chunk-1))
5867 5868
			/* not factor of array size */
			return -EINVAL;
5869
	}
5870 5871

	/* They look valid */
5872
	return check_reshape(mddev);
5873 5874
}

5875 5876 5877
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
D
Dan Williams 已提交
5878
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5879 5880 5881 5882
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5883 5884
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5885 5886
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5887 5888 5889 5890 5891
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5892 5893
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5894 5895 5896 5897

	return ERR_PTR(-EINVAL);
}

5898 5899
static void *raid4_takeover(mddev_t *mddev)
{
D
Dan Williams 已提交
5900 5901 5902
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5903
	 */
D
Dan Williams 已提交
5904 5905
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5906 5907 5908 5909 5910 5911 5912 5913
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5914

5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5979
	.size		= raid5_size,
5980
	.check_reshape	= raid6_check_reshape,
5981
	.start_reshape  = raid5_start_reshape,
5982
	.finish_reshape = raid5_finish_reshape,
5983
	.quiesce	= raid5_quiesce,
5984
	.takeover	= raid6_takeover,
5985
};
5986
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5987 5988
{
	.name		= "raid5",
5989
	.level		= 5,
L
Linus Torvalds 已提交
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6001
	.size		= raid5_size,
6002 6003
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6004
	.finish_reshape = raid5_finish_reshape,
6005
	.quiesce	= raid5_quiesce,
6006
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
6007 6008
};

6009
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
6010
{
6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6024
	.size		= raid5_size,
6025 6026
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6027
	.finish_reshape = raid5_finish_reshape,
6028
	.quiesce	= raid5_quiesce,
6029
	.takeover	= raid4_takeover,
6030 6031 6032 6033
};

static int __init raid5_init(void)
{
6034
	register_md_personality(&raid6_personality);
6035 6036 6037
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
6038 6039
}

6040
static void raid5_exit(void)
L
Linus Torvalds 已提交
6041
{
6042
	unregister_md_personality(&raid6_personality);
6043 6044
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
6045 6046 6047 6048 6049
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
6050
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
6051
MODULE_ALIAS("md-personality-4"); /* RAID5 */
6052 6053
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
6054 6055
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
6056 6057 6058 6059 6060 6061 6062
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");