raid5.c 179.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/module.h>
51
#include <linux/async.h>
52
#include <linux/seq_file.h>
53
#include <linux/cpu.h>
54
#include <linux/slab.h>
55
#include <linux/ratelimit.h>
56
#include "md.h"
57
#include "raid5.h"
58
#include "raid0.h"
59
#include "bitmap.h"
60

L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
70
#define BYPASS_THRESHOLD	1
71
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
72 73
#define HASH_MASK		(NR_HASH - 1)

74
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 76 77 78
{
	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
	return &conf->stripe_hashtbl[hash];
}
L
Linus Torvalds 已提交
79 80 81 82 83 84 85

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
86
 * This function is used to determine the 'next' bio in the list, given the sector
L
Linus Torvalds 已提交
87 88
 * of the current stripe+device
 */
89 90 91 92 93 94 95 96
static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
{
	int sectors = bio->bi_size >> 9;
	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
		return bio->bi_next;
	else
		return NULL;
}
L
Linus Torvalds 已提交
97

98
/*
99 100
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101
 */
102
static inline int raid5_bi_processed_stripes(struct bio *bio)
103
{
104 105
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return (atomic_read(segments) >> 16) & 0xffff;
106 107
}

108
static inline int raid5_dec_bi_active_stripes(struct bio *bio)
109
{
110 111
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return atomic_sub_return(1, segments) & 0xffff;
112 113
}

114
static inline void raid5_inc_bi_active_stripes(struct bio *bio)
115
{
116 117
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_inc(segments);
118 119
}

120 121
static inline void raid5_set_bi_processed_stripes(struct bio *bio,
	unsigned int cnt)
122
{
123 124
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	int old, new;
125

126 127 128 129
	do {
		old = atomic_read(segments);
		new = (old & 0xffff) | (cnt << 16);
	} while (atomic_cmpxchg(segments, old, new) != old);
130 131
}

132
static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
133
{
134 135
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_set(segments, cnt);
136 137
}

138 139 140
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
141 142 143 144
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
145 146 147 148 149
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
150 151 152 153 154
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
155

156 157 158 159 160
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
161 162
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
163
{
164
	int slot = *count;
165

166
	if (sh->ddf_layout)
167
		(*count)++;
168
	if (idx == sh->pd_idx)
169
		return syndrome_disks;
170
	if (idx == sh->qd_idx)
171
		return syndrome_disks + 1;
172
	if (!sh->ddf_layout)
173
		(*count)++;
174 175 176
	return slot;
}

177 178 179 180 181 182 183 184
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
185
		bio_endio(bi, 0);
186 187 188 189
		bi = return_bi;
	}
}

190
static void print_raid5_conf (struct r5conf *conf);
L
Linus Torvalds 已提交
191

192 193 194 195 196 197 198
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

199
static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
200
{
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
	BUG_ON(!list_empty(&sh->lru));
	BUG_ON(atomic_read(&conf->active_stripes)==0);
	if (test_bit(STRIPE_HANDLE, &sh->state)) {
		if (test_bit(STRIPE_DELAYED, &sh->state) &&
		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			list_add_tail(&sh->lru, &conf->delayed_list);
		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
			   sh->bm_seq - conf->seq_write > 0)
			list_add_tail(&sh->lru, &conf->bitmap_list);
		else {
			clear_bit(STRIPE_DELAYED, &sh->state);
			clear_bit(STRIPE_BIT_DELAY, &sh->state);
			list_add_tail(&sh->lru, &conf->handle_list);
		}
		md_wakeup_thread(conf->mddev->thread);
	} else {
		BUG_ON(stripe_operations_active(sh));
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			if (atomic_dec_return(&conf->preread_active_stripes)
			    < IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		atomic_dec(&conf->active_stripes);
		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
			list_add_tail(&sh->lru, &conf->inactive_list);
			wake_up(&conf->wait_for_stripe);
			if (conf->retry_read_aligned)
				md_wakeup_thread(conf->mddev->thread);
L
Linus Torvalds 已提交
228 229 230
		}
	}
}
231

232 233 234 235 236 237
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
{
	if (atomic_dec_and_test(&sh->count))
		do_release_stripe(conf, sh);
}

L
Linus Torvalds 已提交
238 239
static void release_stripe(struct stripe_head *sh)
{
240
	struct r5conf *conf = sh->raid_conf;
L
Linus Torvalds 已提交
241
	unsigned long flags;
242

243 244 245 246 247 248
	local_irq_save(flags);
	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
		do_release_stripe(conf, sh);
		spin_unlock(&conf->device_lock);
	}
	local_irq_restore(flags);
L
Linus Torvalds 已提交
249 250
}

251
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
252
{
253 254
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
255

256
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
257 258
}

259
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
260
{
261
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
262

263 264
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
265

266
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
267 268 269 270
}


/* find an idle stripe, make sure it is unhashed, and return it. */
271
static struct stripe_head *get_free_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

287
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
288 289 290
{
	struct page *p;
	int i;
291
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
292

293
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
294 295 296 297
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
298
		put_page(p);
L
Linus Torvalds 已提交
299 300 301
	}
}

302
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
303 304
{
	int i;
305
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
306

307
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
308 309 310 311 312 313 314 315 316 317
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

318
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
319
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
320
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
321

322
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
323
{
324
	struct r5conf *conf = sh->raid_conf;
325
	int i;
L
Linus Torvalds 已提交
326

327 328
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
329
	BUG_ON(stripe_operations_active(sh));
330

331
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
332 333 334
		(unsigned long long)sh->sector);

	remove_hash(sh);
335

336
	sh->generation = conf->generation - previous;
337
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
338
	sh->sector = sector;
339
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
340 341
	sh->state = 0;

342 343

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
344 345
		struct r5dev *dev = &sh->dev[i];

346
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
347
		    test_bit(R5_LOCKED, &dev->flags)) {
348
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
349
			       (unsigned long long)sh->sector, i, dev->toread,
350
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
351
			       test_bit(R5_LOCKED, &dev->flags));
352
			WARN_ON(1);
L
Linus Torvalds 已提交
353 354
		}
		dev->flags = 0;
355
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
356 357 358 359
	}
	insert_hash(conf, sh);
}

360
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
361
					 short generation)
L
Linus Torvalds 已提交
362 363
{
	struct stripe_head *sh;
364
	struct hlist_node *hn;
L
Linus Torvalds 已提交
365

366
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
367
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
368
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
369
			return sh;
370
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
371 372 373
	return NULL;
}

374 375 376 377 378 379 380 381 382 383 384 385 386
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
387
static int calc_degraded(struct r5conf *conf)
388
{
389
	int degraded, degraded2;
390 391 392 393 394
	int i;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
395
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
414 415
	if (conf->raid_disks == conf->previous_raid_disks)
		return degraded;
416
	rcu_read_lock();
417
	degraded2 = 0;
418
	for (i = 0; i < conf->raid_disks; i++) {
419
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
420
		if (!rdev || test_bit(Faulty, &rdev->flags))
421
			degraded2++;
422 423 424 425 426 427 428 429 430
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
431
				degraded2++;
432 433
	}
	rcu_read_unlock();
434 435 436 437 438 439 440 441 442 443 444 445 446
	if (degraded2 > degraded)
		return degraded2;
	return degraded;
}

static int has_failed(struct r5conf *conf)
{
	int degraded;

	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	degraded = calc_degraded(conf);
447 448 449 450 451
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

452
static struct stripe_head *
453
get_active_stripe(struct r5conf *conf, sector_t sector,
454
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
455 456 457
{
	struct stripe_head *sh;

458
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
459 460 461 462

	spin_lock_irq(&conf->device_lock);

	do {
463
		wait_event_lock_irq(conf->wait_for_stripe,
464
				    conf->quiesce == 0 || noquiesce,
465
				    conf->device_lock, /* nothing */);
466
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
467 468 469 470 471 472 473 474 475
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
476 477
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
478 479
						     || !conf->inactive_blocked),
						    conf->device_lock,
480
						    );
L
Linus Torvalds 已提交
481 482
				conf->inactive_blocked = 0;
			} else
483
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
484 485
		} else {
			if (atomic_read(&sh->count)) {
486
				BUG_ON(!list_empty(&sh->lru)
487 488
				    && !test_bit(STRIPE_EXPANDING, &sh->state)
				    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
L
Linus Torvalds 已提交
489 490 491
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
492 493
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
494 495
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
496 497 498 499 500 501 502 503 504 505 506
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/* Determine if 'data_offset' or 'new_data_offset' should be used
 * in this stripe_head.
 */
static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
{
	sector_t progress = conf->reshape_progress;
	/* Need a memory barrier to make sure we see the value
	 * of conf->generation, or ->data_offset that was set before
	 * reshape_progress was updated.
	 */
	smp_rmb();
	if (progress == MaxSector)
		return 0;
	if (sh->generation == conf->generation - 1)
		return 0;
	/* We are in a reshape, and this is a new-generation stripe,
	 * so use new_data_offset.
	 */
	return 1;
}

528 529 530 531
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
532

533
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
534
{
535
	struct r5conf *conf = sh->raid_conf;
536 537 538 539 540 541
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
542
		int replace_only = 0;
543 544
		struct bio *bi, *rbi;
		struct md_rdev *rdev, *rrdev = NULL;
T
Tejun Heo 已提交
545 546 547 548 549
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
550
			if (test_bit(R5_Discard, &sh->dev[i].flags))
S
Shaohua Li 已提交
551
				rw |= REQ_DISCARD;
T
Tejun Heo 已提交
552
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
553
			rw = READ;
554 555 556 557 558
		else if (test_and_clear_bit(R5_WantReplace,
					    &sh->dev[i].flags)) {
			rw = WRITE;
			replace_only = 1;
		} else
559
			continue;
S
Shaohua Li 已提交
560 561
		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
			rw |= REQ_SYNC;
562 563

		bi = &sh->dev[i].req;
564
		rbi = &sh->dev[i].rreq; /* For writing to replacement */
565 566

		bi->bi_rw = rw;
567 568
		rbi->bi_rw = rw;
		if (rw & WRITE) {
569
			bi->bi_end_io = raid5_end_write_request;
570 571
			rbi->bi_end_io = raid5_end_write_request;
		} else
572 573 574
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
575
		rrdev = rcu_dereference(conf->disks[i].replacement);
576 577 578 579 580 581
		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev) {
			rdev = rrdev;
			rrdev = NULL;
		}
582 583 584
		if (rw & WRITE) {
			if (replace_only)
				rdev = NULL;
585 586 587
			if (rdev == rrdev)
				/* We raced and saw duplicates */
				rrdev = NULL;
588
		} else {
589
			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
590 591 592
				rdev = rrdev;
			rrdev = NULL;
		}
593

594 595 596 597
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
598 599 600 601
		if (rrdev && test_bit(Faulty, &rrdev->flags))
			rrdev = NULL;
		if (rrdev)
			atomic_inc(&rrdev->nr_pending);
602 603
		rcu_read_unlock();

604
		/* We have already checked bad blocks for reads.  Now
605 606
		 * need to check for writes.  We never accept write errors
		 * on the replacement, so we don't to check rrdev.
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
		 */
		while ((rw & WRITE) && rdev &&
		       test_bit(WriteErrorSeen, &rdev->flags)) {
			sector_t first_bad;
			int bad_sectors;
			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					      &first_bad, &bad_sectors);
			if (!bad)
				break;

			if (bad < 0) {
				set_bit(BlockedBadBlocks, &rdev->flags);
				if (!conf->mddev->external &&
				    conf->mddev->flags) {
					/* It is very unlikely, but we might
					 * still need to write out the
					 * bad block log - better give it
					 * a chance*/
					md_check_recovery(conf->mddev);
				}
627 628 629 630 631 632
				/*
				 * Because md_wait_for_blocked_rdev
				 * will dec nr_pending, we must
				 * increment it first.
				 */
				atomic_inc(&rdev->nr_pending);
633 634 635 636 637 638 639 640
				md_wait_for_blocked_rdev(rdev, conf->mddev);
			} else {
				/* Acknowledged bad block - skip the write */
				rdev_dec_pending(rdev, conf->mddev);
				rdev = NULL;
			}
		}

641
		if (rdev) {
642 643
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
644 645
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
646 647
			set_bit(STRIPE_IO_STARTED, &sh->state);

648 649
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
650
				__func__, (unsigned long long)sh->sector,
651 652
				bi->bi_rw, i);
			atomic_inc(&sh->count);
653 654 655 656 657 658
			if (use_new_offset(conf, sh))
				bi->bi_sector = (sh->sector
						 + rdev->new_data_offset);
			else
				bi->bi_sector = (sh->sector
						 + rdev->data_offset);
659 660 661
			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
				bi->bi_rw |= REQ_FLUSH;

662 663 664 665 666 667
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_idx = 0;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
668 669
			if (rrdev)
				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
670
			generic_make_request(bi);
671 672
		}
		if (rrdev) {
673 674
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
675 676 677 678 679 680 681 682 683 684
				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);

			set_bit(STRIPE_IO_STARTED, &sh->state);

			rbi->bi_bdev = rrdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on "
				 "replacement disc %d\n",
				__func__, (unsigned long long)sh->sector,
				rbi->bi_rw, i);
			atomic_inc(&sh->count);
685 686 687 688 689 690
			if (use_new_offset(conf, sh))
				rbi->bi_sector = (sh->sector
						  + rrdev->new_data_offset);
			else
				rbi->bi_sector = (sh->sector
						  + rrdev->data_offset);
691 692 693 694 695 696 697 698 699
			rbi->bi_flags = 1 << BIO_UPTODATE;
			rbi->bi_idx = 0;
			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			rbi->bi_io_vec[0].bv_offset = 0;
			rbi->bi_size = STRIPE_SIZE;
			rbi->bi_next = NULL;
			generic_make_request(rbi);
		}
		if (!rdev && !rrdev) {
700
			if (rw & WRITE)
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
718
	struct async_submit_ctl submit;
D
Dan Williams 已提交
719
	enum async_tx_flags flags = 0;
720 721 722 723 724

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
725

D
Dan Williams 已提交
726 727 728 729
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

730
	bio_for_each_segment(bvl, bio, i) {
731
		int len = bvl->bv_len;
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
747 748
			b_offset += bvl->bv_offset;
			bio_page = bvl->bv_page;
749 750
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
751
						  b_offset, clen, &submit);
752 753
			else
				tx = async_memcpy(bio_page, page, b_offset,
754
						  page_offset, clen, &submit);
755
		}
756 757 758
		/* chain the operations */
		submit.depend_tx = tx;

759 760 761 762 763 764 765 766 767 768 769 770
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
771
	int i;
772

773
	pr_debug("%s: stripe %llu\n", __func__,
774 775 776 777 778 779 780
		(unsigned long long)sh->sector);

	/* clear completed biofills */
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
781 782
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
783
		 * !STRIPE_BIOFILL_RUN
784 785
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
786 787 788 789 790 791 792 793
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
794
				if (!raid5_dec_bi_active_stripes(rbi)) {
795 796 797 798 799 800 801
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
802
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
803 804 805

	return_io(return_bi);

806
	set_bit(STRIPE_HANDLE, &sh->state);
807 808 809 810 811 812
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
813
	struct async_submit_ctl submit;
814 815
	int i;

816
	pr_debug("%s: stripe %llu\n", __func__,
817 818 819 820 821 822
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
S
Shaohua Li 已提交
823
			spin_lock_irq(&sh->stripe_lock);
824 825
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
S
Shaohua Li 已提交
826
			spin_unlock_irq(&sh->stripe_lock);
827 828 829 830 831 832 833 834 835 836
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
837 838
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
839 840
}

841
static void mark_target_uptodate(struct stripe_head *sh, int target)
842
{
843
	struct r5dev *tgt;
844

845 846
	if (target < 0)
		return;
847

848
	tgt = &sh->dev[target];
849 850 851
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
852 853
}

854
static void ops_complete_compute(void *stripe_head_ref)
855 856 857
{
	struct stripe_head *sh = stripe_head_ref;

858
	pr_debug("%s: stripe %llu\n", __func__,
859 860
		(unsigned long long)sh->sector);

861
	/* mark the computed target(s) as uptodate */
862
	mark_target_uptodate(sh, sh->ops.target);
863
	mark_target_uptodate(sh, sh->ops.target2);
864

865 866 867
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
868 869 870 871
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

872 873 874 875 876 877 878 879 880
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
881 882
{
	int disks = sh->disks;
883
	struct page **xor_srcs = percpu->scribble;
884 885 886 887 888
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
889
	struct async_submit_ctl submit;
890 891 892
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
893
		__func__, (unsigned long long)sh->sector, target);
894 895 896 897 898 899 900 901
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
902
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
903
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
904
	if (unlikely(count == 1))
905
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
906
	else
907
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
908 909 910 911

	return tx;
}

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
930
		srcs[i] = NULL;
931 932 933 934 935 936 937 938 939 940

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

941
	return syndrome_disks;
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
962
	else
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
979 980
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
981 982 983 984 985 986 987 988 989 990 991
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
992 993
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
994 995 996
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
997 998 999 1000

	return tx;
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

1022
	/* we need to open-code set_syndrome_sources to handle the
1023 1024 1025
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
1026
		blocks[i] = NULL;
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
1053 1054 1055
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1056
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
1076 1077 1078 1079
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
1080 1081 1082 1083
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
1084 1085 1086
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
1087 1088 1089 1090
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
1105 1106 1107 1108
	}
}


1109 1110 1111 1112
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1113
	pr_debug("%s: stripe %llu\n", __func__,
1114 1115 1116 1117
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
1118 1119
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
1120 1121
{
	int disks = sh->disks;
1122
	struct page **xor_srcs = percpu->scribble;
1123
	int count = 0, pd_idx = sh->pd_idx, i;
1124
	struct async_submit_ctl submit;
1125 1126 1127 1128

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

1129
	pr_debug("%s: stripe %llu\n", __func__,
1130 1131 1132 1133 1134
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
1135
		if (test_bit(R5_Wantdrain, &dev->flags))
1136 1137 1138
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1139
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1140
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1141
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1142 1143 1144 1145 1146

	return tx;
}

static struct dma_async_tx_descriptor *
1147
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1148 1149
{
	int disks = sh->disks;
1150
	int i;
1151

1152
	pr_debug("%s: stripe %llu\n", __func__,
1153 1154 1155 1156 1157 1158
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1159
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1160 1161
			struct bio *wbi;

S
Shaohua Li 已提交
1162
			spin_lock_irq(&sh->stripe_lock);
1163 1164 1165 1166
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
S
Shaohua Li 已提交
1167
			spin_unlock_irq(&sh->stripe_lock);
1168 1169 1170

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1171 1172
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1173 1174
				if (wbi->bi_rw & REQ_SYNC)
					set_bit(R5_SyncIO, &dev->flags);
1175
				if (wbi->bi_rw & REQ_DISCARD)
S
Shaohua Li 已提交
1176
					set_bit(R5_Discard, &dev->flags);
1177
				else
S
Shaohua Li 已提交
1178 1179
					tx = async_copy_data(1, wbi, dev->page,
						dev->sector, tx);
1180 1181 1182 1183 1184 1185 1186 1187
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1188
static void ops_complete_reconstruct(void *stripe_head_ref)
1189 1190
{
	struct stripe_head *sh = stripe_head_ref;
1191 1192 1193 1194
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
1195
	bool fua = false, sync = false, discard = false;
1196

1197
	pr_debug("%s: stripe %llu\n", __func__,
1198 1199
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1200
	for (i = disks; i--; ) {
T
Tejun Heo 已提交
1201
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
S
Shaohua Li 已提交
1202
		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1203
		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
S
Shaohua Li 已提交
1204
	}
T
Tejun Heo 已提交
1205

1206 1207
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1208

T
Tejun Heo 已提交
1209
		if (dev->written || i == pd_idx || i == qd_idx) {
1210 1211
			if (!discard)
				set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1212 1213
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1214 1215
			if (sync)
				set_bit(R5_SyncIO, &dev->flags);
T
Tejun Heo 已提交
1216
		}
1217 1218
	}

1219 1220 1221 1222 1223 1224 1225 1226
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1227 1228 1229 1230 1231 1232

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1233 1234
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1235 1236
{
	int disks = sh->disks;
1237
	struct page **xor_srcs = percpu->scribble;
1238
	struct async_submit_ctl submit;
1239 1240
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1241
	int prexor = 0;
1242 1243
	unsigned long flags;

1244
	pr_debug("%s: stripe %llu\n", __func__,
1245 1246
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	for (i = 0; i < sh->disks; i++) {
		if (pd_idx == i)
			continue;
		if (!test_bit(R5_Discard, &sh->dev[i].flags))
			break;
	}
	if (i >= sh->disks) {
		atomic_inc(&sh->count);
		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
		ops_complete_reconstruct(sh);
		return;
	}
1259 1260 1261
	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1262 1263
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1284
	flags = ASYNC_TX_ACK |
1285 1286 1287 1288
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1289
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1290
			  to_addr_conv(sh, percpu));
1291 1292 1293 1294
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1295 1296
}

1297 1298 1299 1300 1301 1302
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
S
Shaohua Li 已提交
1303
	int count, i;
1304 1305 1306

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

S
Shaohua Li 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	for (i = 0; i < sh->disks; i++) {
		if (sh->pd_idx == i || sh->qd_idx == i)
			continue;
		if (!test_bit(R5_Discard, &sh->dev[i].flags))
			break;
	}
	if (i >= sh->disks) {
		atomic_inc(&sh->count);
		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
		ops_complete_reconstruct(sh);
		return;
	}

1321 1322 1323 1324 1325 1326 1327
	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1328 1329 1330 1331 1332 1333
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1334
	pr_debug("%s: stripe %llu\n", __func__,
1335 1336
		(unsigned long long)sh->sector);

1337
	sh->check_state = check_state_check_result;
1338 1339 1340 1341
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1342
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1343 1344
{
	int disks = sh->disks;
1345 1346 1347
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1348
	struct page **xor_srcs = percpu->scribble;
1349
	struct dma_async_tx_descriptor *tx;
1350
	struct async_submit_ctl submit;
1351 1352
	int count;
	int i;
1353

1354
	pr_debug("%s: stripe %llu\n", __func__,
1355 1356
		(unsigned long long)sh->sector);

1357 1358 1359
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1360
	for (i = disks; i--; ) {
1361 1362 1363
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1364 1365
	}

1366 1367
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1368
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1369
			   &sh->ops.zero_sum_result, &submit);
1370 1371

	atomic_inc(&sh->count);
1372 1373
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1374 1375
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1388 1389

	atomic_inc(&sh->count);
1390 1391 1392 1393
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1394 1395
}

1396
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1397 1398 1399
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1400
	struct r5conf *conf = sh->raid_conf;
1401
	int level = conf->level;
1402 1403
	struct raid5_percpu *percpu;
	unsigned long cpu;
1404

1405 1406
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1407
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1408 1409 1410 1411
		ops_run_biofill(sh);
		overlap_clear++;
	}

1412
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1423 1424
			async_tx_ack(tx);
	}
1425

1426
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1427
		tx = ops_run_prexor(sh, percpu, tx);
1428

1429
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1430
		tx = ops_run_biodrain(sh, tx);
1431 1432 1433
		overlap_clear++;
	}

1434 1435 1436 1437 1438 1439
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1440

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1451 1452 1453 1454 1455 1456 1457

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1458
	put_cpu();
1459 1460
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1491
static int grow_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1492 1493
{
	struct stripe_head *sh;
N
Namhyung Kim 已提交
1494
	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1495 1496
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1497

1498
	sh->raid_conf = conf;
1499 1500 1501
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1502

S
Shaohua Li 已提交
1503 1504
	spin_lock_init(&sh->stripe_lock);

1505 1506
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

1518
static int grow_stripes(struct r5conf *conf, int num)
1519
{
1520
	struct kmem_cache *sc;
1521
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1522

1523 1524 1525 1526 1527 1528 1529 1530
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1531 1532
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1533
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1534
			       0, 0, NULL);
L
Linus Torvalds 已提交
1535 1536 1537
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1538
	conf->pool_size = devs;
1539
	while (num--)
1540
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1541 1542 1543
			return 1;
	return 0;
}
1544

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1567
static int resize_stripes(struct r5conf *conf, int newsize)
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1595
	unsigned long cpu;
1596
	int err;
1597
	struct kmem_cache *sc;
1598 1599 1600 1601 1602
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1603 1604 1605
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1606

1607 1608 1609
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1610
			       0, 0, NULL);
1611 1612 1613 1614
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
N
Namhyung Kim 已提交
1615
		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1616 1617 1618 1619
		if (!nsh)
			break;

		nsh->raid_conf = conf;
1620 1621 1622
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
N
NeilBrown 已提交
1645
				    );
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1660
	 * conf->disks and the scribble region
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1690 1691 1692 1693
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1694

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1711

1712
static int drop_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
1713 1714 1715
{
	struct stripe_head *sh;

1716 1717 1718 1719 1720
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1721
	BUG_ON(atomic_read(&sh->count));
1722
	shrink_buffers(sh);
1723 1724 1725 1726 1727
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

1728
static void shrink_stripes(struct r5conf *conf)
1729 1730 1731 1732
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1733 1734
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1735 1736 1737
	conf->slab_cache = NULL;
}

1738
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1739
{
1740
	struct stripe_head *sh = bi->bi_private;
1741
	struct r5conf *conf = sh->raid_conf;
1742
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1743
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1744
	char b[BDEVNAME_SIZE];
1745
	struct md_rdev *rdev = NULL;
1746
	sector_t s;
L
Linus Torvalds 已提交
1747 1748 1749 1750 1751

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1752 1753
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1754 1755 1756
		uptodate);
	if (i == disks) {
		BUG();
1757
		return;
L
Linus Torvalds 已提交
1758
	}
1759
	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1760 1761 1762 1763 1764
		/* If replacement finished while this request was outstanding,
		 * 'replacement' might be NULL already.
		 * In that case it moved down to 'rdev'.
		 * rdev is not removed until all requests are finished.
		 */
1765
		rdev = conf->disks[i].replacement;
1766
	if (!rdev)
1767
		rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1768

1769 1770 1771 1772
	if (use_new_offset(conf, sh))
		s = sh->sector + rdev->new_data_offset;
	else
		s = sh->sector + rdev->data_offset;
L
Linus Torvalds 已提交
1773 1774
	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1775
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1776 1777 1778 1779
			/* Note that this cannot happen on a
			 * replacement device.  We just fail those on
			 * any error
			 */
1780 1781 1782 1783 1784
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
1785
				(unsigned long long)s,
1786
				bdevname(rdev->bdev, b));
1787
			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1788 1789
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1790 1791 1792
		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);

1793 1794
		if (atomic_read(&rdev->read_errors))
			atomic_set(&rdev->read_errors, 0);
L
Linus Torvalds 已提交
1795
	} else {
1796
		const char *bdn = bdevname(rdev->bdev, b);
1797
		int retry = 0;
1798
		int set_bad = 0;
1799

L
Linus Torvalds 已提交
1800
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1801
		atomic_inc(&rdev->read_errors);
1802 1803 1804 1805 1806 1807
		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error on replacement device "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1808
				(unsigned long long)s,
1809
				bdn);
1810 1811
		else if (conf->mddev->degraded >= conf->max_degraded) {
			set_bad = 1;
1812 1813 1814 1815 1816
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1817
				(unsigned long long)s,
1818
				bdn);
1819
		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1820
			/* Oh, no!!! */
1821
			set_bad = 1;
1822 1823 1824 1825 1826
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
1827
				(unsigned long long)s,
1828
				bdn);
1829
		} else if (atomic_read(&rdev->read_errors)
1830
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1831
			printk(KERN_WARNING
1832
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1833
			       mdname(conf->mddev), bdn);
1834 1835 1836
		else
			retry = 1;
		if (retry)
1837 1838 1839 1840 1841
			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
				set_bit(R5_ReadError, &sh->dev[i].flags);
				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
			} else
				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1842
		else {
1843 1844
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1845 1846 1847 1848 1849
			if (!(set_bad
			      && test_bit(In_sync, &rdev->flags)
			      && rdev_set_badblocks(
				      rdev, sh->sector, STRIPE_SECTORS, 0)))
				md_error(conf->mddev, rdev);
1850
		}
L
Linus Torvalds 已提交
1851
	}
1852
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1858
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1859
{
1860
	struct stripe_head *sh = bi->bi_private;
1861
	struct r5conf *conf = sh->raid_conf;
1862
	int disks = sh->disks, i;
1863
	struct md_rdev *uninitialized_var(rdev);
L
Linus Torvalds 已提交
1864
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1865 1866
	sector_t first_bad;
	int bad_sectors;
1867
	int replacement = 0;
L
Linus Torvalds 已提交
1868

1869 1870 1871
	for (i = 0 ; i < disks; i++) {
		if (bi == &sh->dev[i].req) {
			rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
1872
			break;
1873 1874 1875
		}
		if (bi == &sh->dev[i].rreq) {
			rdev = conf->disks[i].replacement;
1876 1877 1878 1879 1880 1881 1882 1883
			if (rdev)
				replacement = 1;
			else
				/* rdev was removed and 'replacement'
				 * replaced it.  rdev is not removed
				 * until all requests are finished.
				 */
				rdev = conf->disks[i].rdev;
1884 1885 1886
			break;
		}
	}
1887
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1888 1889 1890 1891
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1892
		return;
L
Linus Torvalds 已提交
1893 1894
	}

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	if (replacement) {
		if (!uptodate)
			md_error(conf->mddev, rdev);
		else if (is_badblock(rdev, sh->sector,
				     STRIPE_SECTORS,
				     &first_bad, &bad_sectors))
			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
	} else {
		if (!uptodate) {
			set_bit(WriteErrorSeen, &rdev->flags);
			set_bit(R5_WriteError, &sh->dev[i].flags);
1906 1907 1908
			if (!test_and_set_bit(WantReplacement, &rdev->flags))
				set_bit(MD_RECOVERY_NEEDED,
					&rdev->mddev->recovery);
1909 1910 1911 1912 1913 1914
		} else if (is_badblock(rdev, sh->sector,
				       STRIPE_SECTORS,
				       &first_bad, &bad_sectors))
			set_bit(R5_MadeGood, &sh->dev[i].flags);
	}
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
1915

1916 1917
	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
L
Linus Torvalds 已提交
1918
	set_bit(STRIPE_HANDLE, &sh->state);
1919
	release_stripe(sh);
L
Linus Torvalds 已提交
1920 1921
}

1922
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1923
	
1924
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1925 1926 1927 1928 1929 1930 1931 1932
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->req.bi_private = sh;
1933
	dev->vec.bv_page = dev->page;
L
Linus Torvalds 已提交
1934

1935 1936 1937 1938 1939 1940 1941
	bio_init(&dev->rreq);
	dev->rreq.bi_io_vec = &dev->rvec;
	dev->rreq.bi_vcnt++;
	dev->rreq.bi_max_vecs++;
	dev->rreq.bi_private = sh;
	dev->rvec.bv_page = dev->page;

L
Linus Torvalds 已提交
1942
	dev->flags = 0;
1943
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1944 1945
}

1946
static void error(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
1947 1948
{
	char b[BDEVNAME_SIZE];
1949
	struct r5conf *conf = mddev->private;
1950
	unsigned long flags;
1951
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1952

1953 1954 1955 1956 1957 1958
	spin_lock_irqsave(&conf->device_lock, flags);
	clear_bit(In_sync, &rdev->flags);
	mddev->degraded = calc_degraded(conf);
	spin_unlock_irqrestore(&conf->device_lock, flags);
	set_bit(MD_RECOVERY_INTR, &mddev->recovery);

1959
	set_bit(Blocked, &rdev->flags);
1960 1961 1962 1963 1964 1965 1966 1967 1968
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
1969
}
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1975
static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1976 1977
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1978
{
N
NeilBrown 已提交
1979
	sector_t stripe, stripe2;
1980
	sector_t chunk_number;
L
Linus Torvalds 已提交
1981
	unsigned int chunk_offset;
1982
	int pd_idx, qd_idx;
1983
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1984
	sector_t new_sector;
1985 1986
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1987 1988
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1989 1990 1991
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
2004 2005
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
2006
	stripe2 = stripe;
L
Linus Torvalds 已提交
2007 2008 2009
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
2010
	pd_idx = qd_idx = -1;
2011 2012
	switch(conf->level) {
	case 4:
2013
		pd_idx = data_disks;
2014 2015
		break;
	case 5:
2016
		switch (algorithm) {
L
Linus Torvalds 已提交
2017
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2018
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2019
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
2020 2021 2022
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2023
			pd_idx = sector_div(stripe2, raid_disks);
2024
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
2025 2026 2027
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2028
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2029
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2030 2031
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2032
			pd_idx = sector_div(stripe2, raid_disks);
2033
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2034
			break;
2035 2036 2037 2038 2039 2040 2041
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
2042
		default:
2043
			BUG();
2044 2045 2046 2047
		}
		break;
	case 6:

2048
		switch (algorithm) {
2049
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2050
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2051 2052
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2053
				(*dd_idx)++;	/* Q D D D P */
2054 2055
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2056 2057 2058
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2059
			pd_idx = sector_div(stripe2, raid_disks);
2060 2061
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2062
				(*dd_idx)++;	/* Q D D D P */
2063 2064
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2065 2066 2067
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2068
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2069 2070
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2071 2072
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2073
			pd_idx = sector_div(stripe2, raid_disks);
2074 2075
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2076
			break;
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
2092
			pd_idx = sector_div(stripe2, raid_disks);
2093 2094 2095 2096 2097 2098
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2099
			ddf_layout = 1;
2100 2101 2102 2103 2104 2105 2106
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
2107 2108
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2109 2110 2111 2112 2113 2114
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2115
			ddf_layout = 1;
2116 2117 2118 2119
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
2120
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2121 2122
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2123
			ddf_layout = 1;
2124 2125 2126 2127
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
2128
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2129 2130 2131 2132 2133 2134
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
2135
			pd_idx = sector_div(stripe2, raid_disks-1);
2136 2137 2138 2139 2140 2141
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
2142
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2143 2144 2145 2146 2147
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
2148
			pd_idx = sector_div(stripe2, raid_disks-1);
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

2159
		default:
2160
			BUG();
2161 2162
		}
		break;
L
Linus Torvalds 已提交
2163 2164
	}

2165 2166 2167
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
2168
		sh->ddf_layout = ddf_layout;
2169
	}
L
Linus Torvalds 已提交
2170 2171 2172 2173 2174 2175 2176 2177
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


2178
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2179
{
2180
	struct r5conf *conf = sh->raid_conf;
2181 2182
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2183
	sector_t new_sector = sh->sector, check;
2184 2185
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2186 2187
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
2188 2189
	sector_t stripe;
	int chunk_offset;
2190 2191
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
2192
	sector_t r_sector;
2193
	struct stripe_head sh2;
L
Linus Torvalds 已提交
2194

2195

L
Linus Torvalds 已提交
2196 2197 2198
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

2199 2200 2201 2202 2203
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
2204
		switch (algorithm) {
L
Linus Torvalds 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
2216 2217 2218 2219 2220
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
2221
		default:
2222
			BUG();
2223 2224 2225
		}
		break;
	case 6:
2226
		if (i == sh->qd_idx)
2227
			return 0; /* It is the Q disk */
2228
		switch (algorithm) {
2229 2230
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
2231 2232 2233 2234
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2249 2250 2251 2252 2253 2254
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2255
			/* Like left_symmetric, but P is before Q */
2256 2257
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2258 2259 2260 2261 2262 2263
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2279
		default:
2280
			BUG();
2281 2282
		}
		break;
L
Linus Torvalds 已提交
2283 2284 2285
	}

	chunk_number = stripe * data_disks + i;
2286
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2287

2288
	check = raid5_compute_sector(conf, r_sector,
2289
				     previous, &dummy1, &sh2);
2290 2291
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2292 2293
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2294 2295 2296 2297 2298 2299
		return 0;
	}
	return r_sector;
}


2300
static void
2301
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2302
			 int rcw, int expand)
2303 2304
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2305
	struct r5conf *conf = sh->raid_conf;
2306
	int level = conf->level;
2307 2308 2309 2310 2311 2312 2313

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2314 2315 2316 2317
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2318

2319
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2320 2321 2322 2323 2324 2325

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2326
				set_bit(R5_Wantdrain, &dev->flags);
2327 2328
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2329
				s->locked++;
2330 2331
			}
		}
2332
		if (s->locked + conf->max_degraded == disks)
2333
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2334
				atomic_inc(&conf->pending_full_writes);
2335
	} else {
2336
		BUG_ON(level == 6);
2337 2338 2339
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2340
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2341 2342
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2343
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2344 2345 2346 2347 2348 2349 2350 2351

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2352 2353
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2354 2355
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2356
				s->locked++;
2357 2358 2359 2360
			}
		}
	}

2361
	/* keep the parity disk(s) locked while asynchronous operations
2362 2363 2364 2365
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2366
	s->locked++;
2367

2368 2369 2370 2371 2372 2373 2374 2375 2376
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2377
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2378
		__func__, (unsigned long long)sh->sector,
2379
		s->locked, s->ops_request);
2380
}
2381

L
Linus Torvalds 已提交
2382 2383
/*
 * Each stripe/dev can have one or more bion attached.
2384
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2385 2386 2387 2388 2389
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
2390
	struct r5conf *conf = sh->raid_conf;
2391
	int firstwrite=0;
L
Linus Torvalds 已提交
2392

2393
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2394 2395 2396
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405
	/*
	 * If several bio share a stripe. The bio bi_phys_segments acts as a
	 * reference count to avoid race. The reference count should already be
	 * increased before this function is called (for example, in
	 * make_request()), so other bio sharing this stripe will not free the
	 * stripe. If a stripe is owned by one stripe, the stripe lock will
	 * protect it.
	 */
	spin_lock_irq(&sh->stripe_lock);
2406
	if (forwrite) {
L
Linus Torvalds 已提交
2407
		bip = &sh->dev[dd_idx].towrite;
2408
		if (*bip == NULL)
2409 2410
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2420
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2421 2422 2423
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2424
	raid5_inc_bi_active_stripes(bi);
2425

L
Linus Torvalds 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
2439 2440 2441 2442

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
		(unsigned long long)(*bip)->bi_sector,
		(unsigned long long)sh->sector, dd_idx);
2443
	spin_unlock_irq(&sh->stripe_lock);
2444 2445 2446 2447 2448 2449 2450

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
L
Linus Torvalds 已提交
2451 2452 2453 2454
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
S
Shaohua Li 已提交
2455
	spin_unlock_irq(&sh->stripe_lock);
L
Linus Torvalds 已提交
2456 2457 2458
	return 0;
}

2459
static void end_reshape(struct r5conf *conf);
2460

2461
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2462
			    struct stripe_head *sh)
2463
{
2464
	int sectors_per_chunk =
2465
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2466
	int dd_idx;
2467
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2468
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2469

2470 2471
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2472
			     *sectors_per_chunk + chunk_offset,
2473
			     previous,
2474
			     &dd_idx, sh);
2475 2476
}

2477
static void
2478
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2479 2480 2481 2482 2483 2484 2485 2486 2487
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2488
			struct md_rdev *rdev;
2489 2490 2491
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
2492 2493 2494
				atomic_inc(&rdev->nr_pending);
			else
				rdev = NULL;
2495
			rcu_read_unlock();
2496 2497 2498 2499 2500 2501 2502 2503
			if (rdev) {
				if (!rdev_set_badblocks(
					    rdev,
					    sh->sector,
					    STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
2504
		}
S
Shaohua Li 已提交
2505
		spin_lock_irq(&sh->stripe_lock);
2506 2507 2508
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
S
Shaohua Li 已提交
2509
		spin_unlock_irq(&sh->stripe_lock);
2510
		if (bi)
2511 2512 2513 2514 2515 2516 2517 2518 2519
			bitmap_end = 1;

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2520
			if (!raid5_dec_bi_active_stripes(bi)) {
2521 2522 2523 2524 2525 2526
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
2527 2528 2529 2530
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
				STRIPE_SECTORS, 0, 0);
		bitmap_end = 0;
2531 2532 2533 2534 2535 2536 2537 2538
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2539
			if (!raid5_dec_bi_active_stripes(bi)) {
2540 2541 2542 2543 2544 2545 2546
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2547 2548 2549 2550 2551 2552
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2553
			spin_lock_irq(&sh->stripe_lock);
2554 2555
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
2556
			spin_unlock_irq(&sh->stripe_lock);
2557 2558 2559 2560 2561 2562 2563
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2564
				if (!raid5_dec_bi_active_stripes(bi)) {
2565 2566 2567 2568 2569 2570 2571 2572 2573
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
2574 2575 2576 2577
		/* If we were in the middle of a write the parity block might
		 * still be locked - so just clear all R5_LOCKED flags
		 */
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2578 2579
	}

2580 2581 2582
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2583 2584
}

2585
static void
2586
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2587 2588 2589 2590 2591 2592 2593
		   struct stripe_head_state *s)
{
	int abort = 0;
	int i;

	clear_bit(STRIPE_SYNCING, &sh->state);
	s->syncing = 0;
2594
	s->replacing = 0;
2595
	/* There is nothing more to do for sync/check/repair.
2596 2597 2598
	 * Don't even need to abort as that is handled elsewhere
	 * if needed, and not always wanted e.g. if there is a known
	 * bad block here.
2599
	 * For recover/replace we need to record a bad block on all
2600 2601
	 * non-sync devices, or abort the recovery
	 */
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
		/* During recovery devices cannot be removed, so
		 * locking and refcounting of rdevs is not needed
		 */
		for (i = 0; i < conf->raid_disks; i++) {
			struct md_rdev *rdev = conf->disks[i].rdev;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
			rdev = conf->disks[i].replacement;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
		}
		if (abort)
			conf->recovery_disabled =
				conf->mddev->recovery_disabled;
2625
	}
2626
	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2627 2628
}

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
static int want_replace(struct stripe_head *sh, int disk_idx)
{
	struct md_rdev *rdev;
	int rv = 0;
	/* Doing recovery so rcu locking not required */
	rdev = sh->raid_conf->disks[disk_idx].replacement;
	if (rdev
	    && !test_bit(Faulty, &rdev->flags)
	    && !test_bit(In_sync, &rdev->flags)
	    && (rdev->recovery_offset <= sh->sector
		|| rdev->mddev->recovery_cp <= sh->sector))
		rv = 1;

	return rv;
}

2645
/* fetch_block - checks the given member device to see if its data needs
2646 2647 2648
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
2649
 * 0 to tell the loop in handle_stripe_fill to continue
2650
 */
2651 2652
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
2653
{
2654
	struct r5dev *dev = &sh->dev[disk_idx];
2655 2656
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
2657

2658
	/* is the data in this block needed, and can we get it? */
2659 2660 2661 2662 2663
	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
2664
	     (s->replacing && want_replace(sh, disk_idx)) ||
2665 2666
	     (s->failed >= 1 && fdev[0]->toread) ||
	     (s->failed >= 2 && fdev[1]->toread) ||
2667 2668 2669
	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2670 2671 2672 2673 2674 2675
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
2676 2677
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
2678 2679
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2680
			 */
2681 2682 2683 2684 2685 2686 2687 2688
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
2689 2690 2691 2692 2693 2694
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2708
			}
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2728 2729
		}
	}
2730 2731 2732 2733 2734

	return 0;
}

/**
2735
 * handle_stripe_fill - read or compute data to satisfy pending requests.
2736
 */
2737 2738 2739
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
2750
			if (fetch_block(sh, s, i, disks))
2751
				break;
2752 2753 2754 2755
	set_bit(STRIPE_HANDLE, &sh->state);
}


2756
/* handle_stripe_clean_event
2757 2758 2759 2760
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2761
static void handle_stripe_clean_event(struct r5conf *conf,
2762 2763 2764 2765 2766 2767 2768 2769 2770
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
2771 2772
			    (test_bit(R5_UPTODATE, &dev->flags) ||
			     test_and_clear_bit(R5_Discard, &dev->flags))) {
2773 2774
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
2775
				pr_debug("Return write for disc %d\n", i);
2776 2777 2778 2779 2780
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2781
					if (!raid5_dec_bi_active_stripes(wbi)) {
2782 2783 2784 2785 2786 2787
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
2788 2789
				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
						STRIPE_SECTORS,
2790
					 !test_bit(STRIPE_DEGRADED, &sh->state),
2791
						0);
2792 2793
			}
		}
2794 2795 2796 2797

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2798 2799
}

2800
static void handle_stripe_dirtying(struct r5conf *conf,
2801 2802 2803
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
2804 2805
{
	int rmw = 0, rcw = 0, i;
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	sector_t recovery_cp = conf->mddev->recovery_cp;

	/* RAID6 requires 'rcw' in current implementation.
	 * Otherwise, check whether resync is now happening or should start.
	 * If yes, then the array is dirty (after unclean shutdown or
	 * initial creation), so parity in some stripes might be inconsistent.
	 * In this case, we need to always do reconstruct-write, to ensure
	 * that in case of drive failure or read-error correction, we
	 * generate correct data from the parity.
	 */
	if (conf->max_degraded == 2 ||
	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
		/* Calculate the real rcw later - for now make it
2819 2820 2821
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
2822 2823 2824
		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
			 conf->max_degraded, (unsigned long long)recovery_cp,
			 (unsigned long long)sh->sector);
2825
	} else for (i = disks; i--; ) {
2826 2827 2828 2829
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2830 2831
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2832 2833 2834 2835 2836 2837 2838 2839
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2840 2841 2842
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2843 2844 2845 2846
			else
				rcw += 2*disks;
		}
	}
2847
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2848 2849 2850 2851 2852 2853 2854 2855
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2856 2857
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2858 2859 2860
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2861
					pr_debug("Read_old block "
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2872
	if (rcw <= rmw && rcw > 0) {
2873
		/* want reconstruct write, but need to get some data */
2874
		rcw = 0;
2875 2876 2877
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2878
			    i != sh->pd_idx && i != sh->qd_idx &&
2879
			    !test_bit(R5_LOCKED, &dev->flags) &&
2880
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2881 2882 2883 2884
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
				if (!test_bit(R5_Insync, &dev->flags))
					continue; /* it's a failed drive */
2885 2886
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2887
					pr_debug("Read_old block "
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2898
	}
2899 2900 2901
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2902 2903
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2904 2905
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2906 2907 2908
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2909 2910 2911
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2912
		schedule_reconstruction(sh, s, rcw == 0, 0);
2913 2914
}

2915
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2916 2917
				struct stripe_head_state *s, int disks)
{
2918
	struct r5dev *dev = NULL;
2919

2920
	set_bit(STRIPE_HANDLE, &sh->state);
2921

2922 2923 2924
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2925 2926
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2927 2928
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2929 2930
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2931
			break;
2932
		}
2933
		dev = &sh->dev[s->failed_num[0]];
2934 2935 2936 2937 2938 2939 2940 2941 2942
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2943

2944 2945 2946 2947 2948
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2949
		s->locked++;
2950
		set_bit(R5_Wantwrite, &dev->flags);
2951

2952 2953
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2970
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2982
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2983 2984 2985 2986
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2987
				sh->ops.target2 = -1;
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2999 3000 3001 3002
	}
}


3003
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3004
				  struct stripe_head_state *s,
3005
				  int disks)
3006 3007
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
3008
	int qd_idx = sh->qd_idx;
3009
	struct r5dev *dev;
3010 3011 3012 3013

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
3014

3015 3016 3017 3018 3019 3020
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

3021 3022 3023
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
3024
		if (s->failed == s->q_failed) {
3025
			/* The only possible failed device holds Q, so it
3026 3027 3028
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
3029
			sh->check_state = check_state_run;
3030
		}
3031
		if (!s->q_failed && s->failed < 2) {
3032
			/* Q is not failed, and we didn't use it to generate
3033 3034
			 * anything, so it makes sense to check it
			 */
3035 3036 3037 3038
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
3039 3040
		}

3041 3042
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
3043

3044 3045 3046 3047
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
3048
		}
3049 3050 3051 3052 3053 3054 3055
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
3056 3057
		}

3058 3059 3060 3061 3062
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
3063

3064 3065 3066
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
3067 3068

		/* now write out any block on a failed drive,
3069
		 * or P or Q if they were recomputed
3070
		 */
3071
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3072
		if (s->failed == 2) {
3073
			dev = &sh->dev[s->failed_num[1]];
3074 3075 3076 3077 3078
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
3079
			dev = &sh->dev[s->failed_num[0]];
3080 3081 3082 3083
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3084
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3085 3086 3087 3088 3089
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3090
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3091 3092 3093 3094 3095 3096 3097 3098
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3163 3164 3165
	}
}

3166
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3167 3168 3169 3170 3171 3172
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
3173
	struct dma_async_tx_descriptor *tx = NULL;
3174 3175
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
3176
		if (i != sh->pd_idx && i != sh->qd_idx) {
3177
			int dd_idx, j;
3178
			struct stripe_head *sh2;
3179
			struct async_submit_ctl submit;
3180

3181
			sector_t bn = compute_blocknr(sh, i, 1);
3182 3183
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
3184
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
3197 3198

			/* place all the copies on one channel */
3199
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3200
			tx = async_memcpy(sh2->dev[dd_idx].page,
3201
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3202
					  &submit);
3203

3204 3205 3206 3207
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
3208
				    j != sh2->qd_idx &&
3209 3210 3211 3212 3213 3214 3215
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
3216

3217
		}
3218 3219 3220 3221 3222
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
3223
}
L
Linus Torvalds 已提交
3224 3225 3226 3227

/*
 * handle_stripe - do things to a stripe.
 *
3228 3229
 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
 * state of various bits to see what needs to be done.
L
Linus Torvalds 已提交
3230
 * Possible results:
3231 3232
 *    return some read requests which now have data
 *    return some write requests which are safely on storage
L
Linus Torvalds 已提交
3233 3234 3235 3236 3237
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 */
3238

3239
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
3240
{
3241
	struct r5conf *conf = sh->raid_conf;
3242
	int disks = sh->disks;
3243 3244
	struct r5dev *dev;
	int i;
3245
	int do_recovery = 0;
L
Linus Torvalds 已提交
3246

3247 3248 3249 3250 3251 3252
	memset(s, 0, sizeof(*s));

	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
3253

3254
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3255
	rcu_read_lock();
3256
	for (i=disks; i--; ) {
3257
		struct md_rdev *rdev;
3258 3259 3260
		sector_t first_bad;
		int bad_sectors;
		int is_bad = 0;
3261

3262
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3263

3264
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3265 3266
			 i, dev->flags,
			 dev->toread, dev->towrite, dev->written);
3267 3268 3269 3270 3271 3272 3273 3274
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3275

3276
		/* now count some things */
3277 3278 3279 3280
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
3281
		if (test_bit(R5_Wantcompute, &dev->flags)) {
3282 3283
			s->compute++;
			BUG_ON(s->compute > 2);
3284
		}
L
Linus Torvalds 已提交
3285

3286
		if (test_bit(R5_Wantfill, &dev->flags))
3287
			s->to_fill++;
3288
		else if (dev->toread)
3289
			s->to_read++;
3290
		if (dev->towrite) {
3291
			s->to_write++;
3292
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3293
				s->non_overwrite++;
3294
		}
3295
		if (dev->written)
3296
			s->written++;
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
		/* Prefer to use the replacement for reads, but only
		 * if it is recovered enough and has no bad blocks.
		 */
		rdev = rcu_dereference(conf->disks[i].replacement);
		if (rdev && !test_bit(Faulty, &rdev->flags) &&
		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
				 &first_bad, &bad_sectors))
			set_bit(R5_ReadRepl, &dev->flags);
		else {
3307 3308
			if (rdev)
				set_bit(R5_NeedReplace, &dev->flags);
3309 3310 3311
			rdev = rcu_dereference(conf->disks[i].rdev);
			clear_bit(R5_ReadRepl, &dev->flags);
		}
3312 3313
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
		if (rdev) {
			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					     &first_bad, &bad_sectors);
			if (s->blocked_rdev == NULL
			    && (test_bit(Blocked, &rdev->flags)
				|| is_bad < 0)) {
				if (is_bad < 0)
					set_bit(BlockedBadBlocks,
						&rdev->flags);
				s->blocked_rdev = rdev;
				atomic_inc(&rdev->nr_pending);
			}
3326
		}
3327 3328 3329
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
3330 3331
		else if (is_bad) {
			/* also not in-sync */
3332 3333
			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
			    test_bit(R5_UPTODATE, &dev->flags)) {
3334 3335 3336 3337 3338 3339 3340
				/* treat as in-sync, but with a read error
				 * which we can now try to correct
				 */
				set_bit(R5_Insync, &dev->flags);
				set_bit(R5_ReadError, &dev->flags);
			}
		} else if (test_bit(In_sync, &rdev->flags))
3341
			set_bit(R5_Insync, &dev->flags);
3342
		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3343
			/* in sync if before recovery_offset */
3344 3345 3346 3347 3348 3349 3350 3351 3352
			set_bit(R5_Insync, &dev->flags);
		else if (test_bit(R5_UPTODATE, &dev->flags) &&
			 test_bit(R5_Expanded, &dev->flags))
			/* If we've reshaped into here, we assume it is Insync.
			 * We will shortly update recovery_offset to make
			 * it official.
			 */
			set_bit(R5_Insync, &dev->flags);

A
Adam Kwolek 已提交
3353
		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3354 3355 3356 3357 3358 3359 3360
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 == rdev)
				clear_bit(R5_Insync, &dev->flags);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3361
				s->handle_bad_blocks = 1;
3362
				atomic_inc(&rdev2->nr_pending);
3363 3364 3365
			} else
				clear_bit(R5_WriteError, &dev->flags);
		}
A
Adam Kwolek 已提交
3366
		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3367 3368 3369 3370 3371
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3372
				s->handle_bad_blocks = 1;
3373
				atomic_inc(&rdev2->nr_pending);
3374 3375 3376
			} else
				clear_bit(R5_MadeGood, &dev->flags);
		}
3377 3378 3379 3380 3381 3382 3383 3384 3385
		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].replacement);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
				s->handle_bad_blocks = 1;
				atomic_inc(&rdev2->nr_pending);
			} else
				clear_bit(R5_MadeGoodRepl, &dev->flags);
		}
3386
		if (!test_bit(R5_Insync, &dev->flags)) {
3387 3388 3389
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3390
		}
3391 3392 3393
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3394 3395 3396
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
3397 3398
			if (rdev && !test_bit(Faulty, &rdev->flags))
				do_recovery = 1;
3399
		}
L
Linus Torvalds 已提交
3400
	}
3401 3402 3403 3404
	if (test_bit(STRIPE_SYNCING, &sh->state)) {
		/* If there is a failed device being replaced,
		 *     we must be recovering.
		 * else if we are after recovery_cp, we must be syncing
3405
		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3406 3407 3408 3409 3410
		 * else we can only be replacing
		 * sync and recovery both need to read all devices, and so
		 * use the same flag.
		 */
		if (do_recovery ||
3411 3412
		    sh->sector >= conf->mddev->recovery_cp ||
		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3413 3414 3415 3416
			s->syncing = 1;
		else
			s->replacing = 1;
	}
L
Linus Torvalds 已提交
3417
	rcu_read_unlock();
3418 3419 3420 3421 3422
}

static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
3423
	struct r5conf *conf = sh->raid_conf;
3424
	int i;
3425 3426
	int prexor;
	int disks = sh->disks;
3427
	struct r5dev *pdev, *qdev;
3428 3429

	clear_bit(STRIPE_HANDLE, &sh->state);
3430
	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
		set_bit(STRIPE_SYNCING, &sh->state);
		clear_bit(STRIPE_INSYNC, &sh->state);
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
3448

3449
	analyse_stripe(sh, &s);
3450

3451 3452 3453 3454 3455
	if (s.handle_bad_blocks) {
		set_bit(STRIPE_HANDLE, &sh->state);
		goto finish;
	}

3456 3457
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
3458
		    s.replacing || s.to_write || s.written) {
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
3479 3480 3481 3482 3483
	if (s.failed > conf->max_degraded) {
		sh->check_state = 0;
		sh->reconstruct_state = 0;
		if (s.to_read+s.to_write+s.written)
			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3484
		if (s.syncing + s.replacing)
3485 3486
			handle_failed_sync(conf, sh, &s);
	}
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
3503 3504
			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
				 test_bit(R5_Discard, &pdev->flags))))) &&
3505 3506
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
3507 3508
			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
				 test_bit(R5_Discard, &qdev->flags))))))
3509 3510 3511 3512 3513 3514 3515 3516
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
3517 3518 3519
	    || (s.syncing && (s.uptodate + s.compute < disks))
	    || s.replacing
	    || s.expanding)
3520 3521
		handle_stripe_fill(sh, &s, disks);

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
3535 3536
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3537
		BUG_ON(sh->qd_idx >= 0 &&
3538 3539
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
3582

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
	if (s.replacing && s.locked == 0
	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
		/* Write out to replacement devices where possible */
		for (i = 0; i < conf->raid_disks; i++)
			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
				set_bit(R5_WantReplace, &sh->dev[i].flags);
				set_bit(R5_LOCKED, &sh->dev[i].flags);
				s.locked++;
			}
		set_bit(STRIPE_INSYNC, &sh->state);
	}
	if ((s.syncing || s.replacing) && s.locked == 0 &&
	    test_bit(STRIPE_INSYNC, &sh->state)) {
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}


3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
3653

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
3670

3671
finish:
3672
	/* wait for this device to become unblocked */
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
	if (unlikely(s.blocked_rdev)) {
		if (conf->mddev->external)
			md_wait_for_blocked_rdev(s.blocked_rdev,
						 conf->mddev);
		else
			/* Internal metadata will immediately
			 * be written by raid5d, so we don't
			 * need to wait here.
			 */
			rdev_dec_pending(s.blocked_rdev,
					 conf->mddev);
	}
3685

3686 3687
	if (s.handle_bad_blocks)
		for (i = disks; i--; ) {
3688
			struct md_rdev *rdev;
3689 3690 3691 3692 3693 3694 3695 3696 3697
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
				/* We own a safe reference to the rdev */
				rdev = conf->disks[i].rdev;
				if (!rdev_set_badblocks(rdev, sh->sector,
							STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
3698 3699 3700
			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
				rdev = conf->disks[i].rdev;
				rdev_clear_badblocks(rdev, sh->sector,
3701
						     STRIPE_SECTORS, 0);
3702 3703
				rdev_dec_pending(rdev, conf->mddev);
			}
3704 3705
			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
				rdev = conf->disks[i].replacement;
3706 3707 3708
				if (!rdev)
					/* rdev have been moved down */
					rdev = conf->disks[i].rdev;
3709
				rdev_clear_badblocks(rdev, sh->sector,
3710
						     STRIPE_SECTORS, 0);
3711 3712
				rdev_dec_pending(rdev, conf->mddev);
			}
3713 3714
		}

3715 3716 3717
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3718
	ops_run_io(sh, &s);
3719

3720
	if (s.dec_preread_active) {
3721
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3722
		 * is waiting on a flush, it won't continue until the writes
3723 3724 3725 3726 3727 3728 3729 3730
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

3731
	return_io(s.return_bi);
3732

3733
	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3734 3735
}

3736
static void raid5_activate_delayed(struct r5conf *conf)
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3747
			list_add_tail(&sh->lru, &conf->hold_list);
3748
		}
N
NeilBrown 已提交
3749
	}
3750 3751
}

3752
static void activate_bit_delay(struct r5conf *conf)
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

3766
int md_raid5_congested(struct mddev *mddev, int bits)
3767
{
3768
	struct r5conf *conf = mddev->private;
3769 3770 3771 3772

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3773

3774 3775 3776 3777 3778 3779 3780 3781 3782
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3783 3784 3785 3786
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
3787
	struct mddev *mddev = data;
N
NeilBrown 已提交
3788 3789 3790 3791

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3792

3793 3794 3795
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3796 3797 3798
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3799
{
3800
	struct mddev *mddev = q->queuedata;
3801
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3802
	int max;
3803
	unsigned int chunk_sectors = mddev->chunk_sectors;
3804
	unsigned int bio_sectors = bvm->bi_size >> 9;
3805

3806
	if ((bvm->bi_rw & 1) == WRITE)
3807 3808
		return biovec->bv_len; /* always allow writes to be mergeable */

3809 3810
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3811 3812 3813 3814 3815 3816 3817 3818
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3819

3820
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3821 3822
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3823
	unsigned int chunk_sectors = mddev->chunk_sectors;
3824 3825
	unsigned int bio_sectors = bio->bi_size >> 9;

3826 3827
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3828 3829 3830 3831
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3832 3833 3834 3835
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
3836
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


3850
static struct bio *remove_bio_from_retry(struct r5conf *conf)
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3861
		conf->retry_read_aligned_list = bi->bi_next;
3862
		bi->bi_next = NULL;
3863 3864 3865 3866
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3867
		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3868 3869 3870 3871 3872 3873
	}

	return bi;
}


3874 3875 3876 3877 3878 3879
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3880
static void raid5_align_endio(struct bio *bi, int error)
3881 3882
{
	struct bio* raid_bi  = bi->bi_private;
3883
	struct mddev *mddev;
3884
	struct r5conf *conf;
3885
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3886
	struct md_rdev *rdev;
3887

3888
	bio_put(bi);
3889 3890 3891

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3892 3893
	mddev = rdev->mddev;
	conf = mddev->private;
3894 3895 3896 3897

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3898
		bio_endio(raid_bi, 0);
3899 3900
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3901
		return;
3902 3903 3904
	}


3905
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3906 3907

	add_bio_to_retry(raid_bi, conf);
3908 3909
}

3910 3911
static int bio_fits_rdev(struct bio *bi)
{
3912
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3913

3914
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3915 3916
		return 0;
	blk_recount_segments(q, bi);
3917
	if (bi->bi_phys_segments > queue_max_segments(q))
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3930
static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3931
{
3932
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
3933
	int dd_idx;
3934
	struct bio* align_bi;
3935
	struct md_rdev *rdev;
3936
	sector_t end_sector;
3937 3938

	if (!in_chunk_boundary(mddev, raid_bio)) {
3939
		pr_debug("chunk_aligned_read : non aligned\n");
3940 3941 3942
		return 0;
	}
	/*
3943
	 * use bio_clone_mddev to make a copy of the bio
3944
	 */
3945
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3957 3958
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3959
						    &dd_idx, NULL);
3960

3961
	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3962
	rcu_read_lock();
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
	if (!rdev || test_bit(Faulty, &rdev->flags) ||
	    rdev->recovery_offset < end_sector) {
		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
		if (rdev &&
		    (test_bit(Faulty, &rdev->flags) ||
		    !(test_bit(In_sync, &rdev->flags) ||
		      rdev->recovery_offset >= end_sector)))
			rdev = NULL;
	}
	if (rdev) {
3974 3975 3976
		sector_t first_bad;
		int bad_sectors;

3977 3978
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3979 3980 3981 3982
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);

3983 3984 3985 3986
		if (!bio_fits_rdev(align_bi) ||
		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
				&first_bad, &bad_sectors)) {
			/* too big in some way, or has a known bad block */
3987 3988 3989 3990 3991
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3992 3993 3994
		/* No reshape active, so we can trust rdev->data_offset */
		align_bi->bi_sector += rdev->data_offset;

3995 3996 3997 3998 3999 4000 4001
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

4002 4003 4004 4005
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
4006
		bio_put(align_bi);
4007 4008 4009 4010
		return 0;
	}
}

4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
4021
static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
4063

4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
struct raid5_plug_cb {
	struct blk_plug_cb	cb;
	struct list_head	list;
};

static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
{
	struct raid5_plug_cb *cb = container_of(
		blk_cb, struct raid5_plug_cb, cb);
	struct stripe_head *sh;
	struct mddev *mddev = cb->cb.data;
	struct r5conf *conf = mddev->private;

	if (cb->list.next && !list_empty(&cb->list)) {
		spin_lock_irq(&conf->device_lock);
		while (!list_empty(&cb->list)) {
			sh = list_first_entry(&cb->list, struct stripe_head, lru);
			list_del_init(&sh->lru);
			/*
			 * avoid race release_stripe_plug() sees
			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
			 * is still in our list
			 */
			smp_mb__before_clear_bit();
			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
			__release_stripe(conf, sh);
		}
		spin_unlock_irq(&conf->device_lock);
	}
	kfree(cb);
}

static void release_stripe_plug(struct mddev *mddev,
				struct stripe_head *sh)
{
	struct blk_plug_cb *blk_cb = blk_check_plugged(
		raid5_unplug, mddev,
		sizeof(struct raid5_plug_cb));
	struct raid5_plug_cb *cb;

	if (!blk_cb) {
		release_stripe(sh);
		return;
	}

	cb = container_of(blk_cb, struct raid5_plug_cb, cb);

	if (cb->list.next == NULL)
		INIT_LIST_HEAD(&cb->list);

	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
		list_add_tail(&sh->lru, &cb->list);
	else
		release_stripe(sh);
}

S
Shaohua Li 已提交
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
static void make_discard_request(struct mddev *mddev, struct bio *bi)
{
	struct r5conf *conf = mddev->private;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
	int remaining;
	int stripe_sectors;

	if (mddev->reshape_position != MaxSector)
		/* Skip discard while reshape is happening */
		return;

	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);

	bi->bi_next = NULL;
	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */

	stripe_sectors = conf->chunk_sectors *
		(conf->raid_disks - conf->max_degraded);
	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
					       stripe_sectors);
	sector_div(last_sector, stripe_sectors);

	logical_sector *= conf->chunk_sectors;
	last_sector *= conf->chunk_sectors;

	for (; logical_sector < last_sector;
	     logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
		int d;
	again:
		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
		prepare_to_wait(&conf->wait_for_overlap, &w,
				TASK_UNINTERRUPTIBLE);
		spin_lock_irq(&sh->stripe_lock);
		for (d = 0; d < conf->raid_disks; d++) {
			if (d == sh->pd_idx || d == sh->qd_idx)
				continue;
			if (sh->dev[d].towrite || sh->dev[d].toread) {
				set_bit(R5_Overlap, &sh->dev[d].flags);
				spin_unlock_irq(&sh->stripe_lock);
				release_stripe(sh);
				schedule();
				goto again;
			}
		}
		finish_wait(&conf->wait_for_overlap, &w);
		for (d = 0; d < conf->raid_disks; d++) {
			if (d == sh->pd_idx || d == sh->qd_idx)
				continue;
			sh->dev[d].towrite = bi;
			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
			raid5_inc_bi_active_stripes(bi);
		}
		spin_unlock_irq(&sh->stripe_lock);
		if (conf->mddev->bitmap) {
			for (d = 0;
			     d < conf->raid_disks - conf->max_degraded;
			     d++)
				bitmap_startwrite(mddev->bitmap,
						  sh->sector,
						  STRIPE_SECTORS,
						  0);
			sh->bm_seq = conf->seq_flush + 1;
			set_bit(STRIPE_BIT_DELAY, &sh->state);
		}

		set_bit(STRIPE_HANDLE, &sh->state);
		clear_bit(STRIPE_DELAYED, &sh->state);
		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			atomic_inc(&conf->preread_active_stripes);
		release_stripe_plug(mddev, sh);
	}

	remaining = raid5_dec_bi_active_stripes(bi);
	if (remaining == 0) {
		md_write_end(mddev);
		bio_endio(bi, 0);
	}
}

4202
static void make_request(struct mddev *mddev, struct bio * bi)
L
Linus Torvalds 已提交
4203
{
4204
	struct r5conf *conf = mddev->private;
4205
	int dd_idx;
L
Linus Torvalds 已提交
4206 4207 4208
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
4209
	const int rw = bio_data_dir(bi);
4210
	int remaining;
L
Linus Torvalds 已提交
4211

T
Tejun Heo 已提交
4212 4213
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
4214
		return;
4215 4216
	}

4217
	md_write_start(mddev, bi);
4218

4219
	if (rw == READ &&
4220
	     mddev->reshape_position == MaxSector &&
4221
	     chunk_aligned_read(mddev,bi))
4222
		return;
4223

S
Shaohua Li 已提交
4224 4225 4226 4227 4228
	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
		make_discard_request(mddev, bi);
		return;
	}

L
Linus Torvalds 已提交
4229 4230 4231 4232
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4233

L
Linus Torvalds 已提交
4234 4235
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
4236
		int previous;
4237

4238
	retry:
4239
		previous = 0;
4240
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4241
		if (unlikely(conf->reshape_progress != MaxSector)) {
4242
			/* spinlock is needed as reshape_progress may be
4243 4244
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
4245
			 * Of course reshape_progress could change after
4246 4247 4248 4249
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
4250
			spin_lock_irq(&conf->device_lock);
4251
			if (mddev->reshape_backwards
4252 4253
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
4254 4255
				previous = 1;
			} else {
4256
				if (mddev->reshape_backwards
4257 4258
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
4259 4260 4261 4262 4263
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
4264 4265
			spin_unlock_irq(&conf->device_lock);
		}
4266

4267 4268
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
4269
						  &dd_idx, NULL);
4270
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
4271 4272 4273
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

4274
		sh = get_active_stripe(conf, new_sector, previous,
4275
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
4276
		if (sh) {
4277
			if (unlikely(previous)) {
4278
				/* expansion might have moved on while waiting for a
4279 4280 4281 4282 4283 4284
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4285 4286 4287
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4288
				if (mddev->reshape_backwards
4289 4290
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4291 4292 4293 4294 4295
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4296
					schedule();
4297 4298 4299
					goto retry;
				}
			}
4300

4301
			if (rw == WRITE &&
4302
			    logical_sector >= mddev->suspend_lo &&
4303 4304
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4315 4316
				goto retry;
			}
4317 4318

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4319
			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4320 4321
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4322 4323
				 * and wait a while
				 */
N
NeilBrown 已提交
4324
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
4325 4326 4327 4328 4329
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4330 4331
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
4332
			if ((bi->bi_rw & REQ_NOIDLE) &&
4333 4334
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
4335
			release_stripe_plug(mddev, sh);
L
Linus Torvalds 已提交
4336 4337 4338 4339 4340 4341 4342
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
	}
4343

4344
	remaining = raid5_dec_bi_active_stripes(bi);
4345
	if (remaining == 0) {
L
Linus Torvalds 已提交
4346

4347
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4348
			md_write_end(mddev);
4349

4350
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4351 4352 4353
	}
}

4354
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
D
Dan Williams 已提交
4355

4356
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4357
{
4358 4359 4360 4361 4362 4363 4364 4365 4366
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4367
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4368
	struct stripe_head *sh;
4369
	sector_t first_sector, last_sector;
4370 4371 4372
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4373 4374
	int i;
	int dd_idx;
4375
	sector_t writepos, readpos, safepos;
4376
	sector_t stripe_addr;
4377
	int reshape_sectors;
4378
	struct list_head stripes;
4379

4380 4381
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
4382
		if (mddev->reshape_backwards &&
4383 4384 4385
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4386
		} else if (!mddev->reshape_backwards &&
4387 4388
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4389
		sector_div(sector_nr, new_data_disks);
4390
		if (sector_nr) {
4391 4392
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4393 4394 4395
			*skipped = 1;
			return sector_nr;
		}
4396 4397
	}

4398 4399 4400 4401
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4402 4403
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4404
	else
4405
		reshape_sectors = mddev->chunk_sectors;
4406

4407 4408 4409 4410 4411
	/* We update the metadata at least every 10 seconds, or when
	 * the data about to be copied would over-write the source of
	 * the data at the front of the range.  i.e. one new_stripe
	 * along from reshape_progress new_maps to after where
	 * reshape_safe old_maps to
4412
	 */
4413
	writepos = conf->reshape_progress;
4414
	sector_div(writepos, new_data_disks);
4415 4416
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4417
	safepos = conf->reshape_safe;
4418
	sector_div(safepos, data_disks);
4419
	if (mddev->reshape_backwards) {
4420
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4421
		readpos += reshape_sectors;
4422
		safepos += reshape_sectors;
4423
	} else {
4424
		writepos += reshape_sectors;
4425 4426
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4427
	}
4428

4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
	/* Having calculated the 'writepos' possibly use it
	 * to set 'stripe_addr' which is where we will write to.
	 */
	if (mddev->reshape_backwards) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
		       != sector_nr);
	} else {
		BUG_ON(writepos != sector_nr + reshape_sectors);
		stripe_addr = sector_nr;
	}

4444 4445 4446 4447
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
4448 4449 4450 4451
	 * If there is a min_offset_diff, these are adjusted either by
	 * increasing the safepos/readpos if diff is negative, or
	 * increasing writepos if diff is positive.
	 * If 'readpos' is then behind 'writepos', there is no way that we can
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4464 4465 4466 4467 4468 4469
	if (conf->min_offset_diff < 0) {
		safepos += -conf->min_offset_diff;
		readpos += -conf->min_offset_diff;
	} else
		writepos += conf->min_offset_diff;

4470
	if ((mddev->reshape_backwards
4471 4472 4473
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4474 4475 4476
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4477
		mddev->reshape_position = conf->reshape_progress;
4478
		mddev->curr_resync_completed = sector_nr;
4479
		conf->reshape_checkpoint = jiffies;
4480
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4481
		md_wakeup_thread(mddev->thread);
4482
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4483 4484
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4485
		conf->reshape_safe = mddev->reshape_position;
4486 4487
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4488
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4489 4490
	}

4491
	INIT_LIST_HEAD(&stripes);
4492
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4493
		int j;
4494
		int skipped_disk = 0;
4495
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4496 4497 4498 4499 4500 4501 4502 4503 4504
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4505
			if (conf->level == 6 &&
4506
			    j == sh->qd_idx)
4507
				continue;
4508
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4509
			if (s < raid5_size(mddev, 0, 0)) {
4510
				skipped_disk = 1;
4511 4512 4513 4514 4515 4516
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4517
		if (!skipped_disk) {
4518 4519 4520
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4521
		list_add(&sh->lru, &stripes);
4522 4523
	}
	spin_lock_irq(&conf->device_lock);
4524
	if (mddev->reshape_backwards)
4525
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4526
	else
4527
		conf->reshape_progress += reshape_sectors * new_data_disks;
4528 4529 4530 4531 4532 4533 4534
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4535
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4536
				     1, &dd_idx, NULL);
4537
	last_sector =
4538
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4539
					    * new_data_disks - 1),
4540
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4541 4542
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4543
	while (first_sector <= last_sector) {
4544
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4545 4546 4547 4548 4549
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4550 4551 4552 4553 4554 4555 4556 4557
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4558 4559 4560
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4561
	sector_nr += reshape_sectors;
4562 4563
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4564 4565 4566
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4567
		mddev->reshape_position = conf->reshape_progress;
4568
		mddev->curr_resync_completed = sector_nr;
4569
		conf->reshape_checkpoint = jiffies;
4570 4571 4572 4573 4574 4575
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4576
		conf->reshape_safe = mddev->reshape_position;
4577 4578
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4579
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4580
	}
4581
	return reshape_sectors;
4582 4583 4584
}

/* FIXME go_faster isn't used */
4585
static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4586
{
4587
	struct r5conf *conf = mddev->private;
4588
	struct stripe_head *sh;
A
Andre Noll 已提交
4589
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
4590
	sector_t sync_blocks;
4591 4592
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4593

4594
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4595
		/* just being told to finish up .. nothing much to do */
4596

4597 4598 4599 4600
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4601 4602 4603 4604

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4605
		else /* completed sync */
4606 4607 4608
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4609 4610
		return 0;
	}
4611

4612 4613 4614
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4615 4616
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4617

4618 4619 4620 4621 4622 4623
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4624
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4625 4626 4627
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4628
	if (mddev->degraded >= conf->max_degraded &&
4629
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4630
		sector_t rv = mddev->dev_sectors - sector_nr;
4631
		*skipped = 1;
L
Linus Torvalds 已提交
4632 4633
		return rv;
	}
4634
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4635
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4636 4637 4638 4639 4640 4641
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4642

N
NeilBrown 已提交
4643 4644
	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4645
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4646
	if (sh == NULL) {
4647
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4648
		/* make sure we don't swamp the stripe cache if someone else
4649
		 * is trying to get access
L
Linus Torvalds 已提交
4650
		 */
4651
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4652
	}
4653 4654 4655 4656
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4657
	for (i = 0; i < conf->raid_disks; i++)
4658 4659 4660 4661 4662
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

4663
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
L
Linus Torvalds 已提交
4664

4665
	handle_stripe(sh);
L
Linus Torvalds 已提交
4666 4667 4668 4669 4670
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4671
static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4684
	int dd_idx;
4685 4686 4687 4688 4689 4690
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4691
	sector = raid5_compute_sector(conf, logical_sector,
4692
				      0, &dd_idx, NULL);
4693 4694 4695
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4696 4697 4698
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4699

4700
		if (scnt < raid5_bi_processed_stripes(raid_bio))
4701 4702 4703
			/* already done this stripe */
			continue;

4704
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4705 4706 4707

		if (!sh) {
			/* failed to get a stripe - must wait */
4708
			raid5_set_bi_processed_stripes(raid_bio, scnt);
4709 4710 4711 4712
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4713 4714
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4715
			raid5_set_bi_processed_stripes(raid_bio, scnt);
4716 4717 4718 4719
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4720
		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4721
		handle_stripe(sh);
4722 4723 4724
		release_stripe(sh);
		handled++;
	}
4725
	remaining = raid5_dec_bi_active_stripes(raid_bio);
4726 4727
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4728 4729 4730 4731 4732
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}

4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
#define MAX_STRIPE_BATCH 8
static int handle_active_stripes(struct r5conf *conf)
{
	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
	int i, batch_size = 0;

	while (batch_size < MAX_STRIPE_BATCH &&
			(sh = __get_priority_stripe(conf)) != NULL)
		batch[batch_size++] = sh;

	if (batch_size == 0)
		return batch_size;
	spin_unlock_irq(&conf->device_lock);

	for (i = 0; i < batch_size; i++)
		handle_stripe(batch[i]);

	cond_resched();

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < batch_size; i++)
		__release_stripe(conf, batch[i]);
	return batch_size;
}
4757

L
Linus Torvalds 已提交
4758 4759 4760 4761 4762 4763 4764
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
S
Shaohua Li 已提交
4765
static void raid5d(struct md_thread *thread)
L
Linus Torvalds 已提交
4766
{
S
Shaohua Li 已提交
4767
	struct mddev *mddev = thread->mddev;
4768
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
4769
	int handled;
4770
	struct blk_plug plug;
L
Linus Torvalds 已提交
4771

4772
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4773 4774 4775

	md_check_recovery(mddev);

4776
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4777 4778 4779
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4780
		struct bio *bio;
4781
		int batch_size;
L
Linus Torvalds 已提交
4782

4783
		if (
4784 4785 4786
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
4787
			spin_unlock_irq(&conf->device_lock);
4788
			bitmap_unplug(mddev->bitmap);
4789
			spin_lock_irq(&conf->device_lock);
4790
			conf->seq_write = conf->seq_flush;
4791 4792
			activate_bit_delay(conf);
		}
4793
		raid5_activate_delayed(conf);
4794

4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4805 4806
		batch_size = handle_active_stripes(conf);
		if (!batch_size)
L
Linus Torvalds 已提交
4807
			break;
4808
		handled += batch_size;
L
Linus Torvalds 已提交
4809

4810 4811
		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
			spin_unlock_irq(&conf->device_lock);
4812
			md_check_recovery(mddev);
4813 4814
			spin_lock_irq(&conf->device_lock);
		}
L
Linus Torvalds 已提交
4815
	}
4816
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4817 4818 4819

	spin_unlock_irq(&conf->device_lock);

4820
	async_tx_issue_pending_all();
4821
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4822

4823
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4824 4825
}

4826
static ssize_t
4827
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4828
{
4829
	struct r5conf *conf = mddev->private;
4830 4831 4832 4833
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4834 4835
}

4836
int
4837
raid5_set_cache_size(struct mddev *mddev, int size)
4838
{
4839
	struct r5conf *conf = mddev->private;
4840 4841
	int err;

4842
	if (size <= 16 || size > 32768)
4843
		return -EINVAL;
4844
	while (size < conf->max_nr_stripes) {
4845 4846 4847 4848 4849
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4850 4851 4852
	err = md_allow_write(mddev);
	if (err)
		return err;
4853
	while (size > conf->max_nr_stripes) {
4854 4855 4856 4857
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4858 4859 4860 4861 4862
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
4863
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4864
{
4865
	struct r5conf *conf = mddev->private;
4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4879 4880
	return len;
}
4881

4882 4883 4884 4885
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4886

4887
static ssize_t
4888
raid5_show_preread_threshold(struct mddev *mddev, char *page)
4889
{
4890
	struct r5conf *conf = mddev->private;
4891 4892 4893 4894 4895 4896 4897
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
4898
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4899
{
4900
	struct r5conf *conf = mddev->private;
4901
	unsigned long new;
4902 4903 4904 4905 4906
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4907
	if (strict_strtoul(page, 10, &new))
4908
		return -EINVAL;
4909
	if (new > conf->max_nr_stripes)
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4921
static ssize_t
4922
stripe_cache_active_show(struct mddev *mddev, char *page)
4923
{
4924
	struct r5conf *conf = mddev->private;
4925 4926 4927 4928
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4929 4930
}

4931 4932
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4933

4934
static struct attribute *raid5_attrs[] =  {
4935 4936
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4937
	&raid5_preread_bypass_threshold.attr,
4938 4939
	NULL,
};
4940 4941 4942
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4943 4944
};

4945
static sector_t
4946
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4947
{
4948
	struct r5conf *conf = mddev->private;
4949 4950 4951

	if (!sectors)
		sectors = mddev->dev_sectors;
4952
	if (!raid_disks)
4953
		/* size is defined by the smallest of previous and new size */
4954
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4955

4956
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4957
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4958 4959 4960
	return sectors * (raid_disks - conf->max_degraded);
}

4961
static void raid5_free_percpu(struct r5conf *conf)
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4973
		kfree(percpu->scribble);
4974 4975 4976 4977 4978 4979 4980 4981 4982
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4983
static void free_conf(struct r5conf *conf)
4984 4985
{
	shrink_stripes(conf);
4986
	raid5_free_percpu(conf);
4987 4988 4989 4990 4991
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4992 4993 4994 4995
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
4996
	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4997 4998 4999 5000 5001 5002
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5003
		if (conf->level == 6 && !percpu->spare_page)
5004
			percpu->spare_page = alloc_page(GFP_KERNEL);
5005 5006 5007 5008 5009 5010 5011
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
5012 5013
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
5014
			return notifier_from_errno(-ENOMEM);
5015 5016 5017 5018 5019
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
5020
		kfree(percpu->scribble);
5021
		percpu->spare_page = NULL;
5022
		percpu->scribble = NULL;
5023 5024 5025 5026 5027 5028 5029 5030
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

5031
static int raid5_alloc_percpu(struct r5conf *conf)
5032 5033 5034
{
	unsigned long cpu;
	struct page *spare_page;
5035
	struct raid5_percpu __percpu *allcpus;
5036
	void *scribble;
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
5047 5048 5049 5050 5051 5052 5053 5054
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
5055
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5056
		if (!scribble) {
5057 5058 5059
			err = -ENOMEM;
			break;
		}
5060
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

5073
static struct r5conf *setup_conf(struct mddev *mddev)
L
Linus Torvalds 已提交
5074
{
5075
	struct r5conf *conf;
5076
	int raid_disk, memory, max_disks;
5077
	struct md_rdev *rdev;
L
Linus Torvalds 已提交
5078
	struct disk_info *disk;
5079
	char pers_name[6];
L
Linus Torvalds 已提交
5080

N
NeilBrown 已提交
5081 5082 5083
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
5084
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
5085 5086
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
5087
	}
N
NeilBrown 已提交
5088 5089 5090 5091
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
5092
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
5093 5094
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
5095
	}
N
NeilBrown 已提交
5096
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5097
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
5098 5099
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
5100 5101
	}

5102 5103 5104
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
5105 5106
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
5107
		return ERR_PTR(-EINVAL);
5108 5109
	}

5110
	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
N
NeilBrown 已提交
5111
	if (conf == NULL)
L
Linus Torvalds 已提交
5112
		goto abort;
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
5125
	conf->recovery_disabled = mddev->recovery_disabled - 1;
N
NeilBrown 已提交
5126 5127 5128 5129 5130

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
5131
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5132 5133
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
5134

5135
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5136 5137 5138
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
5139

L
Linus Torvalds 已提交
5140 5141
	conf->mddev = mddev;

5142
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
5143 5144
		goto abort;

5145 5146 5147 5148
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

5149
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
5150

N
NeilBrown 已提交
5151
	rdev_for_each(rdev, mddev) {
L
Linus Torvalds 已提交
5152
		raid_disk = rdev->raid_disk;
5153
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
5154 5155 5156 5157
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

5158 5159 5160 5161 5162 5163 5164 5165 5166
		if (test_bit(Replacement, &rdev->flags)) {
			if (disk->replacement)
				goto abort;
			disk->replacement = rdev;
		} else {
			if (disk->rdev)
				goto abort;
			disk->rdev = rdev;
		}
L
Linus Torvalds 已提交
5167

5168
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
5169
			char b[BDEVNAME_SIZE];
5170 5171 5172
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
5173
		} else if (rdev->saved_raid_disk != raid_disk)
5174 5175
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
5176 5177
	}

5178
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
5179
	conf->level = mddev->new_level;
5180 5181 5182 5183
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
5184
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
5185
	conf->max_nr_stripes = NR_STRIPES;
5186
	conf->reshape_progress = mddev->reshape_position;
5187
	if (conf->reshape_progress != MaxSector) {
5188
		conf->prev_chunk_sectors = mddev->chunk_sectors;
5189 5190
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
5191

N
NeilBrown 已提交
5192
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5193
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
5194 5195
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
5196 5197
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
5198 5199
		goto abort;
	} else
5200 5201
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
5202

5203 5204
	sprintf(pers_name, "raid%d", mddev->new_level);
	conf->thread = md_register_thread(raid5d, mddev, pers_name);
N
NeilBrown 已提交
5205 5206
	if (!conf->thread) {
		printk(KERN_ERR
5207
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
5208
		       mdname(mddev));
5209 5210
		goto abort;
	}
N
NeilBrown 已提交
5211 5212 5213 5214 5215

	return conf;

 abort:
	if (conf) {
5216
		free_conf(conf);
N
NeilBrown 已提交
5217 5218 5219 5220 5221
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

5249
static int run(struct mddev *mddev)
N
NeilBrown 已提交
5250
{
5251
	struct r5conf *conf;
5252
	int working_disks = 0;
5253
	int dirty_parity_disks = 0;
5254
	struct md_rdev *rdev;
5255
	sector_t reshape_offset = 0;
5256
	int i;
5257 5258
	long long min_offset_diff = 0;
	int first = 1;
N
NeilBrown 已提交
5259

5260
	if (mddev->recovery_cp != MaxSector)
5261
		printk(KERN_NOTICE "md/raid:%s: not clean"
5262 5263
		       " -- starting background reconstruction\n",
		       mdname(mddev));
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280

	rdev_for_each(rdev, mddev) {
		long long diff;
		if (rdev->raid_disk < 0)
			continue;
		diff = (rdev->new_data_offset - rdev->data_offset);
		if (first) {
			min_offset_diff = diff;
			first = 0;
		} else if (mddev->reshape_backwards &&
			 diff < min_offset_diff)
			min_offset_diff = diff;
		else if (!mddev->reshape_backwards &&
			 diff > min_offset_diff)
			min_offset_diff = diff;
	}

N
NeilBrown 已提交
5281 5282
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
		 * Difficulties arise if the stripe we would write to
		 * next is at or after the stripe we would read from next.
		 * For a reshape that changes the number of devices, this
		 * is only possible for a very short time, and mdadm makes
		 * sure that time appears to have past before assembling
		 * the array.  So we fail if that time hasn't passed.
		 * For a reshape that keeps the number of devices the same
		 * mdadm must be monitoring the reshape can keeping the
		 * critical areas read-only and backed up.  It will start
		 * the array in read-only mode, so we check for that.
N
NeilBrown 已提交
5293 5294 5295
		 */
		sector_t here_new, here_old;
		int old_disks;
5296
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
5297

5298
		if (mddev->new_level != mddev->level) {
5299
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
5310
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
5311
			       (mddev->raid_disks - max_degraded))) {
5312 5313
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
5314 5315
			return -EINVAL;
		}
5316
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
5317 5318
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
5319
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
5320 5321 5322
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
5323
		if (mddev->delta_disks == 0) {
5324 5325 5326 5327 5328 5329
			if ((here_new * mddev->new_chunk_sectors !=
			     here_old * mddev->chunk_sectors)) {
				printk(KERN_ERR "md/raid:%s: reshape position is"
				       " confused - aborting\n", mdname(mddev));
				return -EINVAL;
			}
5330
			/* We cannot be sure it is safe to start an in-place
5331
			 * reshape.  It is only safe if user-space is monitoring
5332 5333 5334 5335 5336
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
5337 5338 5339 5340 5341 5342 5343
			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
				/* not really in-place - so OK */;
			else if (mddev->ro == 0) {
				printk(KERN_ERR "md/raid:%s: in-place reshape "
				       "must be started in read-only mode "
				       "- aborting\n",
5344
				       mdname(mddev));
5345 5346
				return -EINVAL;
			}
5347
		} else if (mddev->reshape_backwards
5348
		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5349 5350
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
5351
		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
N
NeilBrown 已提交
5352
			/* Reading from the same stripe as writing to - bad */
5353 5354 5355
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
5356 5357
			return -EINVAL;
		}
5358 5359
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
5360 5361 5362 5363
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
5364
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
5365
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
5366
	}
N
NeilBrown 已提交
5367

5368 5369 5370 5371 5372
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
5373 5374 5375
	if (IS_ERR(conf))
		return PTR_ERR(conf);

5376
	conf->min_offset_diff = min_offset_diff;
N
NeilBrown 已提交
5377 5378 5379 5380
	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
	     i++) {
		rdev = conf->disks[i].rdev;
		if (!rdev && conf->disks[i].replacement) {
			/* The replacement is all we have yet */
			rdev = conf->disks[i].replacement;
			conf->disks[i].replacement = NULL;
			clear_bit(Replacement, &rdev->flags);
			conf->disks[i].rdev = rdev;
		}
		if (!rdev)
5392
			continue;
5393 5394 5395 5396 5397 5398 5399
		if (conf->disks[i].replacement &&
		    conf->reshape_progress != MaxSector) {
			/* replacements and reshape simply do not mix. */
			printk(KERN_ERR "md: cannot handle concurrent "
			       "replacement and reshape.\n");
			goto abort;
		}
5400
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5401
			working_disks++;
5402 5403
			continue;
		}
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5432

5433 5434 5435
	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5436
	mddev->degraded = calc_degraded(conf);
N
NeilBrown 已提交
5437

5438
	if (has_failed(conf)) {
5439
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5440
			" (%d/%d failed)\n",
5441
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5442 5443 5444
		goto abort;
	}

N
NeilBrown 已提交
5445
	/* device size must be a multiple of chunk size */
5446
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5447 5448
	mddev->resync_max_sectors = mddev->dev_sectors;

5449
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5450
	    mddev->recovery_cp != MaxSector) {
5451 5452
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5453 5454
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5455 5456 5457
			       mdname(mddev));
		else {
			printk(KERN_ERR
5458
			       "md/raid:%s: cannot start dirty degraded array.\n",
5459 5460 5461
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5462 5463 5464
	}

	if (mddev->degraded == 0)
5465 5466
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5467 5468
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5469
	else
5470 5471 5472 5473 5474
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5475 5476 5477

	print_raid5_conf(conf);

5478 5479
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5480 5481 5482 5483 5484 5485
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5486
							"reshape");
5487 5488
	}

L
Linus Torvalds 已提交
5489 5490

	/* Ok, everything is just fine now */
5491 5492
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
5493 5494
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5495
		printk(KERN_WARNING
5496
		       "raid5: failed to create sysfs attributes for %s\n",
5497
		       mdname(mddev));
5498
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5499

5500
	if (mddev->queue) {
5501
		int chunk_size;
S
Shaohua Li 已提交
5502
		bool discard_supported = true;
5503 5504 5505 5506 5507 5508 5509 5510 5511
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
5512

5513
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5514

N
NeilBrown 已提交
5515 5516
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5517

5518 5519 5520 5521
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
S
Shaohua Li 已提交
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
		/*
		 * We can only discard a whole stripe. It doesn't make sense to
		 * discard data disk but write parity disk
		 */
		stripe = stripe * PAGE_SIZE;
		mddev->queue->limits.discard_alignment = stripe;
		mddev->queue->limits.discard_granularity = stripe;
		/*
		 * unaligned part of discard request will be ignored, so can't
		 * guarantee discard_zerors_data
		 */
		mddev->queue->limits.discard_zeroes_data = 0;
5534

5535
		rdev_for_each(rdev, mddev) {
5536 5537
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
5538 5539
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->new_data_offset << 9);
S
Shaohua Li 已提交
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
			/*
			 * discard_zeroes_data is required, otherwise data
			 * could be lost. Consider a scenario: discard a stripe
			 * (the stripe could be inconsistent if
			 * discard_zeroes_data is 0); write one disk of the
			 * stripe (the stripe could be inconsistent again
			 * depending on which disks are used to calculate
			 * parity); the disk is broken; The stripe data of this
			 * disk is lost.
			 */
			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
			    !bdev_get_queue(rdev->bdev)->
						limits.discard_zeroes_data)
				discard_supported = false;
5554
		}
S
Shaohua Li 已提交
5555 5556 5557 5558 5559 5560 5561 5562 5563

		if (discard_supported &&
		   mddev->queue->limits.max_discard_sectors >= stripe &&
		   mddev->queue->limits.discard_granularity >= stripe)
			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
						mddev->queue);
		else
			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
						mddev->queue);
5564
	}
5565

L
Linus Torvalds 已提交
5566 5567
	return 0;
abort:
5568
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5569 5570
	print_raid5_conf(conf);
	free_conf(conf);
L
Linus Torvalds 已提交
5571
	mddev->private = NULL;
5572
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5573 5574 5575
	return -EIO;
}

5576
static int stop(struct mddev *mddev)
L
Linus Torvalds 已提交
5577
{
5578
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5579

5580
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
5581 5582
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
5583
	free_conf(conf);
5584 5585
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5586 5587 5588
	return 0;
}

5589
static void status(struct seq_file *seq, struct mddev *mddev)
L
Linus Torvalds 已提交
5590
{
5591
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5592 5593
	int i;

5594 5595
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5596
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5597 5598 5599
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5600
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5601 5602 5603
	seq_printf (seq, "]");
}

5604
static void print_raid5_conf (struct r5conf *conf)
L
Linus Torvalds 已提交
5605 5606 5607 5608
{
	int i;
	struct disk_info *tmp;

5609
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5610 5611 5612 5613
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5614 5615 5616
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5617 5618 5619 5620 5621

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5622 5623 5624
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5625 5626 5627
	}
}

5628
static int raid5_spare_active(struct mddev *mddev)
L
Linus Torvalds 已提交
5629 5630
{
	int i;
5631
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5632
	struct disk_info *tmp;
5633 5634
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
5635 5636 5637

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
		if (tmp->replacement
		    && tmp->replacement->recovery_offset == MaxSector
		    && !test_bit(Faulty, &tmp->replacement->flags)
		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
			/* Replacement has just become active. */
			if (!tmp->rdev
			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
				count++;
			if (tmp->rdev) {
				/* Replaced device not technically faulty,
				 * but we need to be sure it gets removed
				 * and never re-added.
				 */
				set_bit(Faulty, &tmp->rdev->flags);
				sysfs_notify_dirent_safe(
					tmp->rdev->sysfs_state);
			}
			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
		} else if (tmp->rdev
5657
		    && tmp->rdev->recovery_offset == MaxSector
5658
		    && !test_bit(Faulty, &tmp->rdev->flags)
5659
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5660
			count++;
5661
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
5662 5663
		}
	}
5664
	spin_lock_irqsave(&conf->device_lock, flags);
5665
	mddev->degraded = calc_degraded(conf);
5666
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5667
	print_raid5_conf(conf);
5668
	return count;
L
Linus Torvalds 已提交
5669 5670
}

5671
static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5672
{
5673
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5674
	int err = 0;
5675
	int number = rdev->raid_disk;
5676
	struct md_rdev **rdevp;
L
Linus Torvalds 已提交
5677 5678 5679
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
	if (rdev == p->rdev)
		rdevp = &p->rdev;
	else if (rdev == p->replacement)
		rdevp = &p->replacement;
	else
		return 0;

	if (number >= conf->raid_disks &&
	    conf->reshape_progress == MaxSector)
		clear_bit(In_sync, &rdev->flags);

	if (test_bit(In_sync, &rdev->flags) ||
	    atomic_read(&rdev->nr_pending)) {
		err = -EBUSY;
		goto abort;
	}
	/* Only remove non-faulty devices if recovery
	 * isn't possible.
	 */
	if (!test_bit(Faulty, &rdev->flags) &&
	    mddev->recovery_disabled != conf->recovery_disabled &&
	    !has_failed(conf) &&
5702
	    (!p->replacement || p->replacement == rdev) &&
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
	    number < conf->raid_disks) {
		err = -EBUSY;
		goto abort;
	}
	*rdevp = NULL;
	synchronize_rcu();
	if (atomic_read(&rdev->nr_pending)) {
		/* lost the race, try later */
		err = -EBUSY;
		*rdevp = rdev;
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
	} else if (p->replacement) {
		/* We must have just cleared 'rdev' */
		p->rdev = p->replacement;
		clear_bit(Replacement, &p->replacement->flags);
		smp_mb(); /* Make sure other CPUs may see both as identical
			   * but will never see neither - if they are careful
			   */
		p->replacement = NULL;
		clear_bit(WantReplacement, &rdev->flags);
	} else
		/* We might have just removed the Replacement as faulty-
		 * clear the bit just in case
		 */
		clear_bit(WantReplacement, &rdev->flags);
L
Linus Torvalds 已提交
5727 5728 5729 5730 5731 5732
abort:

	print_raid5_conf(conf);
	return err;
}

5733
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
5734
{
5735
	struct r5conf *conf = mddev->private;
5736
	int err = -EEXIST;
L
Linus Torvalds 已提交
5737 5738
	int disk;
	struct disk_info *p;
5739 5740
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5741

5742 5743 5744
	if (mddev->recovery_disabled == conf->recovery_disabled)
		return -EBUSY;

N
NeilBrown 已提交
5745
	if (rdev->saved_raid_disk < 0 && has_failed(conf))
L
Linus Torvalds 已提交
5746
		/* no point adding a device */
5747
		return -EINVAL;
L
Linus Torvalds 已提交
5748

5749 5750
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5751 5752

	/*
5753 5754
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5755
	 */
5756
	if (rdev->saved_raid_disk >= 0 &&
5757
	    rdev->saved_raid_disk >= first &&
5758
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5759 5760 5761
		first = rdev->saved_raid_disk;

	for (disk = first; disk <= last; disk++) {
5762 5763
		p = conf->disks + disk;
		if (p->rdev == NULL) {
5764
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5765
			rdev->raid_disk = disk;
5766
			err = 0;
5767 5768
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5769
			rcu_assign_pointer(p->rdev, rdev);
5770
			goto out;
L
Linus Torvalds 已提交
5771
		}
5772 5773 5774
	}
	for (disk = first; disk <= last; disk++) {
		p = conf->disks + disk;
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
		if (test_bit(WantReplacement, &p->rdev->flags) &&
		    p->replacement == NULL) {
			clear_bit(In_sync, &rdev->flags);
			set_bit(Replacement, &rdev->flags);
			rdev->raid_disk = disk;
			err = 0;
			conf->fullsync = 1;
			rcu_assign_pointer(p->replacement, rdev);
			break;
		}
	}
5786
out:
L
Linus Torvalds 已提交
5787
	print_raid5_conf(conf);
5788
	return err;
L
Linus Torvalds 已提交
5789 5790
}

5791
static int raid5_resize(struct mddev *mddev, sector_t sectors)
L
Linus Torvalds 已提交
5792 5793 5794 5795 5796 5797 5798 5799
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5800
	sector_t newsize;
5801
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5802 5803 5804
	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
	if (mddev->external_size &&
	    mddev->array_sectors > newsize)
D
Dan Williams 已提交
5805
		return -EINVAL;
5806 5807 5808 5809 5810 5811
	if (mddev->bitmap) {
		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
		if (ret)
			return ret;
	}
	md_set_array_sectors(mddev, newsize);
5812
	set_capacity(mddev->gendisk, mddev->array_sectors);
5813
	revalidate_disk(mddev->gendisk);
5814 5815
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
5816
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5817 5818
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5819
	mddev->dev_sectors = sectors;
5820
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5821 5822 5823
	return 0;
}

5824
static int check_stripe_cache(struct mddev *mddev)
5825 5826 5827 5828 5829 5830 5831 5832 5833
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
5834
	struct r5conf *conf = mddev->private;
5835 5836 5837 5838
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5839 5840
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5841 5842 5843 5844 5845 5846 5847
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5848
static int check_reshape(struct mddev *mddev)
5849
{
5850
	struct r5conf *conf = mddev->private;
5851

5852 5853
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5854
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5855
		return 0; /* nothing to do */
5856
	if (has_failed(conf))
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5870

5871
	if (!check_stripe_cache(mddev))
5872 5873
		return -ENOSPC;

5874
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5875 5876
}

5877
static int raid5_start_reshape(struct mddev *mddev)
5878
{
5879
	struct r5conf *conf = mddev->private;
5880
	struct md_rdev *rdev;
5881
	int spares = 0;
5882
	unsigned long flags;
5883

5884
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5885 5886
		return -EBUSY;

5887 5888 5889
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5890 5891 5892
	if (has_failed(conf))
		return -EINVAL;

5893
	rdev_for_each(rdev, mddev) {
5894 5895
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5896
			spares++;
5897
	}
5898

5899
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5900 5901 5902 5903 5904
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5905 5906 5907 5908 5909 5910
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5911
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5912 5913 5914 5915
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5916
	atomic_set(&conf->reshape_stripes, 0);
5917 5918
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5919
	conf->raid_disks += mddev->delta_disks;
5920 5921
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5922 5923
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5924 5925 5926 5927 5928
	conf->generation++;
	/* Code that selects data_offset needs to see the generation update
	 * if reshape_progress has been set - so a memory barrier needed.
	 */
	smp_mb();
5929
	if (mddev->reshape_backwards)
5930 5931 5932 5933
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5934 5935 5936 5937
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5938 5939 5940 5941
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5942
	 */
5943
	if (mddev->delta_disks >= 0) {
N
NeilBrown 已提交
5944
		rdev_for_each(rdev, mddev)
5945 5946 5947 5948
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
5949
					    >= conf->previous_raid_disks)
5950
						set_bit(In_sync, &rdev->flags);
5951
					else
5952
						rdev->recovery_offset = 0;
5953 5954

					if (sysfs_link_rdev(mddev, rdev))
5955
						/* Failure here is OK */;
5956
				}
5957 5958 5959 5960 5961
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
			}
5962

5963 5964 5965 5966
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
5967
		spin_lock_irqsave(&conf->device_lock, flags);
5968
		mddev->degraded = calc_degraded(conf);
5969 5970
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5971
	mddev->raid_disks = conf->raid_disks;
5972
	mddev->reshape_position = conf->reshape_progress;
5973
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5974

5975 5976 5977 5978 5979
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5980
						"reshape");
5981 5982 5983 5984
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5985 5986 5987
		rdev_for_each(rdev, mddev)
			rdev->new_data_offset = rdev->data_offset;
		smp_wmb();
5988
		conf->reshape_progress = MaxSector;
5989
		mddev->reshape_position = MaxSector;
5990 5991 5992
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5993
	conf->reshape_checkpoint = jiffies;
5994 5995 5996 5997 5998
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5999 6000 6001
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
6002
static void end_reshape(struct r5conf *conf)
6003 6004
{

6005
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6006
		struct md_rdev *rdev;
6007 6008

		spin_lock_irq(&conf->device_lock);
6009
		conf->previous_raid_disks = conf->raid_disks;
6010 6011 6012
		rdev_for_each(rdev, conf->mddev)
			rdev->data_offset = rdev->new_data_offset;
		smp_wmb();
6013
		conf->reshape_progress = MaxSector;
6014
		spin_unlock_irq(&conf->device_lock);
6015
		wake_up(&conf->wait_for_overlap);
6016 6017 6018 6019

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
6020
		if (conf->mddev->queue) {
6021
			int data_disks = conf->raid_disks - conf->max_degraded;
6022
			int stripe = data_disks * ((conf->chunk_sectors << 9)
6023
						   / PAGE_SIZE);
6024 6025 6026
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
6027 6028 6029
	}
}

6030 6031 6032
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
6033
static void raid5_finish_reshape(struct mddev *mddev)
6034
{
6035
	struct r5conf *conf = mddev->private;
6036 6037 6038

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

6039 6040 6041
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
6042
			revalidate_disk(mddev->gendisk);
6043 6044
		} else {
			int d;
6045 6046 6047
			spin_lock_irq(&conf->device_lock);
			mddev->degraded = calc_degraded(conf);
			spin_unlock_irq(&conf->device_lock);
6048 6049
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
6050
			     d++) {
6051
				struct md_rdev *rdev = conf->disks[d].rdev;
6052 6053 6054 6055 6056
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
				rdev = conf->disks[d].replacement;
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
6057
			}
6058
		}
6059
		mddev->layout = conf->algorithm;
6060
		mddev->chunk_sectors = conf->chunk_sectors;
6061 6062
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
6063
		mddev->reshape_backwards = 0;
6064 6065 6066
	}
}

6067
static void raid5_quiesce(struct mddev *mddev, int state)
6068
{
6069
	struct r5conf *conf = mddev->private;
6070 6071

	switch(state) {
6072 6073 6074 6075
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

6076 6077
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
6078 6079 6080 6081
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
6082
		wait_event_lock_irq(conf->wait_for_stripe,
6083 6084
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
6085
				    conf->device_lock, /* nothing */);
6086
		conf->quiesce = 1;
6087
		spin_unlock_irq(&conf->device_lock);
6088 6089
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
6090 6091 6092 6093 6094 6095
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
6096
		wake_up(&conf->wait_for_overlap);
6097 6098 6099 6100
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
6101

6102

6103
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6104
{
6105
	struct r0conf *raid0_conf = mddev->private;
6106
	sector_t sectors;
6107

D
Dan Williams 已提交
6108
	/* for raid0 takeover only one zone is supported */
6109
	if (raid0_conf->nr_strip_zones > 1) {
6110 6111
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
6112 6113 6114
		return ERR_PTR(-EINVAL);
	}

6115 6116
	sectors = raid0_conf->strip_zone[0].zone_end;
	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6117
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
6118
	mddev->new_level = level;
6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


6130
static void *raid5_takeover_raid1(struct mddev *mddev)
6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6152
	mddev->new_chunk_sectors = chunksect;
6153 6154 6155 6156

	return setup_conf(mddev);
}

6157
static void *raid5_takeover_raid6(struct mddev *mddev)
6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

6190

6191
static int raid5_check_reshape(struct mddev *mddev)
6192
{
6193 6194 6195 6196
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
6197
	 */
6198
	struct r5conf *conf = mddev->private;
6199
	int new_chunk = mddev->new_chunk_sectors;
6200

6201
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6202 6203
		return -EINVAL;
	if (new_chunk > 0) {
6204
		if (!is_power_of_2(new_chunk))
6205
			return -EINVAL;
6206
		if (new_chunk < (PAGE_SIZE>>9))
6207
			return -EINVAL;
6208
		if (mddev->array_sectors & (new_chunk-1))
6209 6210 6211 6212 6213 6214
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

6215
	if (mddev->raid_disks == 2) {
6216 6217 6218 6219
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
6220 6221
		}
		if (new_chunk > 0) {
6222 6223
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
6224 6225 6226
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
6227
	}
6228
	return check_reshape(mddev);
6229 6230
}

6231
static int raid6_check_reshape(struct mddev *mddev)
6232
{
6233
	int new_chunk = mddev->new_chunk_sectors;
6234

6235
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6236
		return -EINVAL;
6237
	if (new_chunk > 0) {
6238
		if (!is_power_of_2(new_chunk))
6239
			return -EINVAL;
6240
		if (new_chunk < (PAGE_SIZE >> 9))
6241
			return -EINVAL;
6242
		if (mddev->array_sectors & (new_chunk-1))
6243 6244
			/* not factor of array size */
			return -EINVAL;
6245
	}
6246 6247

	/* They look valid */
6248
	return check_reshape(mddev);
6249 6250
}

6251
static void *raid5_takeover(struct mddev *mddev)
6252 6253
{
	/* raid5 can take over:
D
Dan Williams 已提交
6254
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6255 6256 6257 6258
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
6259 6260
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
6261 6262
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
6263 6264 6265 6266 6267
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
6268 6269
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
6270 6271 6272 6273

	return ERR_PTR(-EINVAL);
}

6274
static void *raid4_takeover(struct mddev *mddev)
6275
{
D
Dan Williams 已提交
6276 6277 6278
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
6279
	 */
D
Dan Williams 已提交
6280 6281
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
6282 6283 6284 6285 6286 6287 6288 6289
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
6290

6291
static struct md_personality raid5_personality;
6292

6293
static void *raid6_takeover(struct mddev *mddev)
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


6340
static struct md_personality raid6_personality =
6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6355
	.size		= raid5_size,
6356
	.check_reshape	= raid6_check_reshape,
6357
	.start_reshape  = raid5_start_reshape,
6358
	.finish_reshape = raid5_finish_reshape,
6359
	.quiesce	= raid5_quiesce,
6360
	.takeover	= raid6_takeover,
6361
};
6362
static struct md_personality raid5_personality =
L
Linus Torvalds 已提交
6363 6364
{
	.name		= "raid5",
6365
	.level		= 5,
L
Linus Torvalds 已提交
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6377
	.size		= raid5_size,
6378 6379
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6380
	.finish_reshape = raid5_finish_reshape,
6381
	.quiesce	= raid5_quiesce,
6382
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
6383 6384
};

6385
static struct md_personality raid4_personality =
L
Linus Torvalds 已提交
6386
{
6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6400
	.size		= raid5_size,
6401 6402
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6403
	.finish_reshape = raid5_finish_reshape,
6404
	.quiesce	= raid5_quiesce,
6405
	.takeover	= raid4_takeover,
6406 6407 6408 6409
};

static int __init raid5_init(void)
{
6410
	register_md_personality(&raid6_personality);
6411 6412 6413
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
6414 6415
}

6416
static void raid5_exit(void)
L
Linus Torvalds 已提交
6417
{
6418
	unregister_md_personality(&raid6_personality);
6419 6420
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
6421 6422 6423 6424 6425
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
6426
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
6427
MODULE_ALIAS("md-personality-4"); /* RAID5 */
6428 6429
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
6430 6431
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
6432 6433 6434 6435 6436 6437 6438
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");