raid5.c 145.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/seq_file.h>
51
#include "md.h"
52
#include "raid5.h"
53
#include "bitmap.h"
54

L
Linus Torvalds 已提交
55 56 57 58 59 60 61 62 63
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
64
#define BYPASS_THRESHOLD	1
65
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
66 67
#define HASH_MASK		(NR_HASH - 1)

68
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

90
#ifdef DEBUG
L
Linus Torvalds 已提交
91 92 93 94
#define inline
#define __inline__
#endif

95 96
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

97
/*
98 99
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
100 101 102
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
103
	return bio->bi_phys_segments & 0xffff;
104 105 106 107
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
108
	return (bio->bi_phys_segments >> 16) & 0xffff;
109 110 111 112 113 114 115 116 117 118 119 120 121
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
122
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
123 124 125 126 127
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
128
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
129 130
}

131 132 133
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
134 135 136 137
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
138 139 140 141 142
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
143 144 145 146 147
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
148

149 150 151 152 153
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
154 155
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
156 157
{
	int slot;
158

159
	if (idx == sh->pd_idx)
160
		return syndrome_disks;
161
	if (idx == sh->qd_idx)
162
		return syndrome_disks + 1;
163 164 165 166
	slot = (*count)++;
	return slot;
}

167 168 169 170 171 172 173 174
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
175
		bio_endio(bi, 0);
176 177 178 179
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
180 181
static void print_raid5_conf (raid5_conf_t *conf);

182 183 184 185 186 187 188
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

189
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
190 191
{
	if (atomic_dec_and_test(&sh->count)) {
192 193
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
194
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
195
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
196
				list_add_tail(&sh->lru, &conf->delayed_list);
197 198
				blk_plug_device(conf->mddev->queue);
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
199
				   sh->bm_seq - conf->seq_write > 0) {
200
				list_add_tail(&sh->lru, &conf->bitmap_list);
201 202
				blk_plug_device(conf->mddev->queue);
			} else {
203
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
204
				list_add_tail(&sh->lru, &conf->handle_list);
205
			}
L
Linus Torvalds 已提交
206 207
			md_wakeup_thread(conf->mddev->thread);
		} else {
208
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
209 210 211 212 213 214
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
215 216
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
217
				wake_up(&conf->wait_for_stripe);
218 219
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
220
			}
L
Linus Torvalds 已提交
221 222 223
		}
	}
}
224

L
Linus Torvalds 已提交
225 226 227 228
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
229

L
Linus Torvalds 已提交
230 231 232 233 234
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

235
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
236
{
237 238
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
239

240
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
241 242
}

243
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
244
{
245
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
246

247 248
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
249 250

	CHECK_DEVLOCK();
251
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

static void shrink_buffers(struct stripe_head *sh, int num)
{
	struct page *p;
	int i;

	for (i=0; i<num ; i++) {
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
283
		put_page(p);
L
Linus Torvalds 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	}
}

static int grow_buffers(struct stripe_head *sh, int num)
{
	int i;

	for (i=0; i<num; i++) {
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

302
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
303 304
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
305

306
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
307 308
{
	raid5_conf_t *conf = sh->raid_conf;
309
	int i;
L
Linus Torvalds 已提交
310

311 312
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
313
	BUG_ON(stripe_operations_active(sh));
314

L
Linus Torvalds 已提交
315
	CHECK_DEVLOCK();
316
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
317 318 319
		(unsigned long long)sh->sector);

	remove_hash(sh);
320

321
	sh->generation = conf->generation - previous;
322
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
323
	sh->sector = sector;
324
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
325 326
	sh->state = 0;

327 328

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
329 330
		struct r5dev *dev = &sh->dev[i];

331
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
332
		    test_bit(R5_LOCKED, &dev->flags)) {
333
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
334
			       (unsigned long long)sh->sector, i, dev->toread,
335
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
336 337 338 339
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
340
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
341 342 343 344
	}
	insert_hash(conf, sh);
}

345 346
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
347 348
{
	struct stripe_head *sh;
349
	struct hlist_node *hn;
L
Linus Torvalds 已提交
350 351

	CHECK_DEVLOCK();
352
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
355
			return sh;
356
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
357 358 359 360
	return NULL;
}

static void unplug_slaves(mddev_t *mddev);
361
static void raid5_unplug_device(struct request_queue *q);
L
Linus Torvalds 已提交
362

363 364 365
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
		  int previous, int noblock)
L
Linus Torvalds 已提交
366 367 368
{
	struct stripe_head *sh;

369
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
370 371 372 373

	spin_lock_irq(&conf->device_lock);

	do {
374 375 376
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
377
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
378 379 380 381 382 383 384 385 386
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
387 388
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
389 390
						     || !conf->inactive_blocked),
						    conf->device_lock,
391
						    raid5_unplug_device(conf->mddev->queue)
L
Linus Torvalds 已提交
392 393 394
					);
				conf->inactive_blocked = 0;
			} else
395
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
396 397
		} else {
			if (atomic_read(&sh->count)) {
398
			  BUG_ON(!list_empty(&sh->lru));
L
Linus Torvalds 已提交
399 400 401
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
402 403
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
404 405
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
406 407 408 409 410 411 412 413 414 415 416
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

417 418 419 420
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
421

422
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
			rw = WRITE;
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
457
			if (s->syncing || s->expanding || s->expanded)
458 459
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
460 461
			set_bit(STRIPE_IO_STARTED, &sh->state);

462 463
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
464
				__func__, (unsigned long long)sh->sector,
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
					b_offset, clen,
528
					ASYNC_TX_DEP_ACK,
529 530 531 532
					tx, NULL, NULL);
			else
				tx = async_memcpy(bio_page, page, b_offset,
					page_offset, clen,
533
					ASYNC_TX_DEP_ACK,
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
					tx, NULL, NULL);
		}
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
549
	int i;
550

551
	pr_debug("%s: stripe %llu\n", __func__,
552 553 554
		(unsigned long long)sh->sector);

	/* clear completed biofills */
555
	spin_lock_irq(&conf->device_lock);
556 557 558 559
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
560 561
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
562
		 * !STRIPE_BIOFILL_RUN
563 564
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
565 566 567 568 569 570 571 572
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
573
				if (!raid5_dec_bi_phys_segments(rbi)) {
574 575 576 577 578 579 580
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
581 582
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
583 584 585

	return_io(return_bi);

586
	set_bit(STRIPE_HANDLE, &sh->state);
587 588 589 590 591 592 593 594 595
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
	int i;

596
	pr_debug("%s: stripe %llu\n", __func__,
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
		ops_complete_biofill, sh);
}

static void ops_complete_compute5(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];

627
	pr_debug("%s: stripe %llu\n", __func__,
628 629 630 631 632
		(unsigned long long)sh->sector);

	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
633 634 635
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
636 637 638 639
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

640
static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
641 642 643 644 645 646 647 648 649 650 651 652
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
653
		__func__, (unsigned long long)sh->sector, target);
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
			0, NULL, ops_complete_compute5, sh);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
			ASYNC_TX_XOR_ZERO_DST, NULL,
			ops_complete_compute5, sh);

	return tx;
}

static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

677
	pr_debug("%s: stripe %llu\n", __func__,
678 679 680 681 682 683 684 685 686 687 688 689 690 691
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];
	int count = 0, pd_idx = sh->pd_idx, i;

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

692
	pr_debug("%s: stripe %llu\n", __func__,
693 694 695 696 697
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
698
		if (test_bit(R5_Wantdrain, &dev->flags))
699 700 701 702 703 704 705 706 707 708 709
			xor_srcs[count++] = dev->page;
	}

	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
		ops_complete_prexor, sh);

	return tx;
}

static struct dma_async_tx_descriptor *
710
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
711 712
{
	int disks = sh->disks;
713
	int i;
714

715
	pr_debug("%s: stripe %llu\n", __func__,
716 717 718 719 720 721
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

722
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

static void ops_complete_postxor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	int disks = sh->disks, i, pd_idx = sh->pd_idx;

749
	pr_debug("%s: stripe %llu\n", __func__,
750 751 752 753 754 755 756 757
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (dev->written || i == pd_idx)
			set_bit(R5_UPTODATE, &dev->flags);
	}

758 759 760 761 762 763 764 765
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
766 767 768 769 770 771

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
772
ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
773 774 775 776 777 778 779
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];

	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
780
	int prexor = 0;
781 782
	unsigned long flags;

783
	pr_debug("%s: stripe %llu\n", __func__,
784 785 786 787 788
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
789 790
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

	if (unlikely(count == 1)) {
		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
819
			flags, tx, ops_complete_postxor, sh);
820 821
	} else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
822
			flags, tx, ops_complete_postxor, sh);
823 824 825 826 827 828
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

829
	pr_debug("%s: stripe %llu\n", __func__,
830 831
		(unsigned long long)sh->sector);

832
	sh->check_state = check_state_check_result;
833 834 835 836 837 838 839 840 841 842 843 844 845 846
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void ops_run_check(struct stripe_head *sh)
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];
	struct dma_async_tx_descriptor *tx;

	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

847
	pr_debug("%s: stripe %llu\n", __func__,
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (i != pd_idx)
			xor_srcs[count++] = dev->page;
	}

	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);

	atomic_inc(&sh->count);
	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
		ops_complete_check, sh);
}

864
static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
865 866 867 868
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;

869
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
870 871 872 873
		ops_run_biofill(sh);
		overlap_clear++;
	}

874 875 876 877 878 879
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
		tx = ops_run_compute5(sh);
		/* terminate the chain if postxor is not set to be run */
		if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
			async_tx_ack(tx);
	}
880

881
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
882 883
		tx = ops_run_prexor(sh, tx);

884
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
885
		tx = ops_run_biodrain(sh, tx);
886 887 888
		overlap_clear++;
	}

889
	if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
890
		ops_run_postxor(sh, tx);
891

892
	if (test_bit(STRIPE_OP_CHECK, &ops_request))
893 894 895 896 897 898 899 900 901 902
		ops_run_check(sh);

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
}

903
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
904 905
{
	struct stripe_head *sh;
906 907 908 909 910 911 912 913 914 915 916 917
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);

	if (grow_buffers(sh, conf->raid_disks)) {
		shrink_buffers(sh, conf->raid_disks);
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
918
	sh->disks = conf->raid_disks;
919 920 921 922 923 924 925 926 927 928
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
929
	struct kmem_cache *sc;
L
Linus Torvalds 已提交
930 931
	int devs = conf->raid_disks;

932 933 934 935
	sprintf(conf->cache_name[0],
		"raid%d-%s", conf->level, mdname(conf->mddev));
	sprintf(conf->cache_name[1],
		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
936 937
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
938
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
939
			       0, 0, NULL);
L
Linus Torvalds 已提交
940 941 942
	if (!sc)
		return 1;
	conf->slab_cache = sc;
943
	conf->pool_size = devs;
944
	while (num--)
945
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
946 947 948
			return 1;
	return 0;
}
949 950

#ifdef CONFIG_MD_RAID5_RESHAPE
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
979
	int err;
980
	struct kmem_cache *sc;
981 982 983 984 985
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

986 987 988
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
989

990 991 992
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
993
			       0, 0, NULL);
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1028
				    unplug_slaves(conf->mddev)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
	 * conf->disks.
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
1075
#endif
L
Linus Torvalds 已提交
1076

1077
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1078 1079 1080
{
	struct stripe_head *sh;

1081 1082 1083 1084 1085
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1086
	BUG_ON(atomic_read(&sh->count));
1087
	shrink_buffers(sh, conf->pool_size);
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1098 1099
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1100 1101 1102
	conf->slab_cache = NULL;
}

1103
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1104
{
1105
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1106
	raid5_conf_t *conf = sh->raid_conf;
1107
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1108
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1109 1110
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1111 1112 1113 1114 1115 1116


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1117 1118
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1119 1120 1121
		uptodate);
	if (i == disks) {
		BUG();
1122
		return;
L
Linus Torvalds 已提交
1123 1124 1125 1126
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1127
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1128
			rdev = conf->disks[i].rdev;
1129 1130 1131 1132 1133 1134
			printk_rl(KERN_INFO "raid5:%s: read error corrected"
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1135 1136 1137
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1138 1139
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1140
	} else {
1141
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1142
		int retry = 0;
1143 1144
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1145
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1146
		atomic_inc(&rdev->read_errors);
1147
		if (conf->mddev->degraded)
1148 1149 1150 1151 1152 1153 1154
			printk_rl(KERN_WARNING
				  "raid5:%s: read error not correctable "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1155
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1156
			/* Oh, no!!! */
1157 1158 1159 1160 1161 1162 1163
			printk_rl(KERN_WARNING
				  "raid5:%s: read error NOT corrected!! "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1164
		else if (atomic_read(&rdev->read_errors)
1165
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1166
			printk(KERN_WARNING
1167 1168
			       "raid5:%s: Too many read errors, failing device %s.\n",
			       mdname(conf->mddev), bdn);
1169 1170 1171 1172 1173
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1174 1175
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1176
			md_error(conf->mddev, rdev);
1177
		}
L
Linus Torvalds 已提交
1178 1179 1180 1181 1182 1183 1184
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1185
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1186
{
1187
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1188
	raid5_conf_t *conf = sh->raid_conf;
1189
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1190 1191 1192 1193 1194 1195
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1196
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1197 1198 1199 1200
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1201
		return;
L
Linus Torvalds 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1211
	release_stripe(sh);
L
Linus Torvalds 已提交
1212 1213 1214
}


1215
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1216
	
1217
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1233
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1234 1235 1236 1237 1238 1239
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1240
	pr_debug("raid5: error called\n");
L
Linus Torvalds 已提交
1241

1242
	if (!test_bit(Faulty, &rdev->flags)) {
1243
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1244 1245 1246
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1247
			mddev->degraded++;
1248
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1249 1250 1251
			/*
			 * if recovery was running, make sure it aborts.
			 */
1252
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1253
		}
1254
		set_bit(Faulty, &rdev->flags);
1255 1256 1257 1258
		printk(KERN_ALERT
		       "raid5: Disk failure on %s, disabling device.\n"
		       "raid5: Operation continuing on %d devices.\n",
		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1259
	}
1260
}
L
Linus Torvalds 已提交
1261 1262 1263 1264 1265

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1266
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1267 1268
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1269 1270 1271 1272
{
	long stripe;
	unsigned long chunk_number;
	unsigned int chunk_offset;
1273
	int pd_idx, qd_idx;
1274
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1275
	sector_t new_sector;
1276 1277
	int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
					 : (conf->chunk_size >> 9);
1278 1279 1280
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;
	BUG_ON(r_sector != chunk_number);

	/*
	 * Compute the stripe number
	 */
	stripe = chunk_number / data_disks;

	/*
	 * Compute the data disk and parity disk indexes inside the stripe
	 */
	*dd_idx = chunk_number % data_disks;

	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1304
	pd_idx = qd_idx = ~0;
1305 1306
	switch(conf->level) {
	case 4:
1307
		pd_idx = data_disks;
1308 1309 1310
		break;
	case 5:
		switch (conf->algorithm) {
L
Linus Torvalds 已提交
1311
		case ALGORITHM_LEFT_ASYMMETRIC:
1312 1313
			pd_idx = data_disks - stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1314 1315 1316
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1317 1318
			pd_idx = stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1319 1320 1321
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1322 1323
			pd_idx = data_disks - stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1324 1325
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1326 1327
			pd_idx = stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1328
			break;
1329 1330 1331 1332 1333 1334 1335
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1336
		default:
N
NeilBrown 已提交
1337
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
L
Linus Torvalds 已提交
1338
				conf->algorithm);
1339
			BUG();
1340 1341 1342 1343 1344 1345
		}
		break;
	case 6:

		switch (conf->algorithm) {
		case ALGORITHM_LEFT_ASYMMETRIC:
1346 1347 1348
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1349
				(*dd_idx)++;	/* Q D D D P */
1350 1351
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1352 1353 1354
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1355 1356 1357
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1358
				(*dd_idx)++;	/* Q D D D P */
1359 1360
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1361 1362 1363
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1364 1365 1366
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1367 1368
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1369 1370 1371
			pd_idx = stripe % raid_disks;
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1372
			break;
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1395
			ddf_layout = 1;
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1410
			ddf_layout = 1;
1411 1412 1413 1414 1415 1416 1417
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1418
			ddf_layout = 1;
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
			pd_idx = data_disks - stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
			pd_idx = data_disks - stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;


1455
		default:
1456 1457
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
			       conf->algorithm);
1458
			BUG();
1459 1460
		}
		break;
L
Linus Torvalds 已提交
1461 1462
	}

1463 1464 1465
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1466
		sh->ddf_layout = ddf_layout;
1467
	}
L
Linus Torvalds 已提交
1468 1469 1470 1471 1472 1473 1474 1475
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1476
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1477 1478
{
	raid5_conf_t *conf = sh->raid_conf;
1479 1480
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1481
	sector_t new_sector = sh->sector, check;
1482 1483
	int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
					 : (conf->chunk_size >> 9);
L
Linus Torvalds 已提交
1484 1485
	sector_t stripe;
	int chunk_offset;
1486
	int chunk_number, dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1487
	sector_t r_sector;
1488
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1489

1490

L
Linus Torvalds 已提交
1491 1492 1493 1494
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;
	BUG_ON(new_sector != stripe);

1495 1496 1497 1498 1499 1500
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
		switch (conf->algorithm) {
L
Linus Torvalds 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1512 1513 1514 1515 1516
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1517
		default:
N
NeilBrown 已提交
1518
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1519
			       conf->algorithm);
1520
			BUG();
1521 1522 1523
		}
		break;
	case 6:
1524
		if (i == sh->qd_idx)
1525 1526 1527 1528
			return 0; /* It is the Q disk */
		switch (conf->algorithm) {
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1529 1530 1531 1532
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
			else if (i > sh->pd_idx)
				i -= 2; /* D D Q P D */
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
1572
		default:
1573 1574
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
			       conf->algorithm);
1575
			BUG();
1576 1577
		}
		break;
L
Linus Torvalds 已提交
1578 1579 1580 1581 1582
	}

	chunk_number = stripe * data_disks + i;
	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;

1583
	check = raid5_compute_sector(conf, r_sector,
1584
				     previous, &dummy1, &sh2);
1585 1586
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
N
NeilBrown 已提交
1587
		printk(KERN_ERR "compute_blocknr: map not correct\n");
L
Linus Torvalds 已提交
1588 1589 1590 1591 1592 1593 1594 1595
		return 0;
	}
	return r_sector;
}



/*
1596 1597 1598 1599 1600
 * Copy data between a page in the stripe cache, and one or more bion
 * The page could align with the middle of the bio, or there could be
 * several bion, each with several bio_vecs, which cover part of the page
 * Multiple bion are linked together on bi_next.  There may be extras
 * at the end of this list.  We ignore them.
L
Linus Torvalds 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
 */
static void copy_data(int frombio, struct bio *bio,
		     struct page *page,
		     sector_t sector)
{
	char *pa = page_address(page);
	struct bio_vec *bvl;
	int i;
	int page_offset;

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio,i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else clen = len;
1629

L
Linus Torvalds 已提交
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		if (clen > 0) {
			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
			if (frombio)
				memcpy(pa+page_offset, ba+b_offset, clen);
			else
				memcpy(ba+b_offset, pa+page_offset, clen);
			__bio_kunmap_atomic(ba, KM_USER0);
		}
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}
}

D
Dan Williams 已提交
1644 1645 1646 1647 1648
#define check_xor()	do {						  \
				if (count == MAX_XOR_BLOCKS) {		  \
				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
				count = 0;				  \
			   }						  \
L
Linus Torvalds 已提交
1649 1650
			} while(0)

1651 1652
static void compute_parity6(struct stripe_head *sh, int method)
{
1653
	raid5_conf_t *conf = sh->raid_conf;
1654
	int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1655
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1656 1657
	struct bio *chosen;
	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1658
	void *ptrs[syndrome_disks+2];
1659

1660 1661 1662
	pd_idx = sh->pd_idx;
	qd_idx = sh->qd_idx;
	d0_idx = raid6_d0(sh);
1663

1664
	pr_debug("compute_parity, stripe %llu, method %d\n",
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
		(unsigned long long)sh->sector, method);

	switch(method) {
	case READ_MODIFY_WRITE:
		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
	case RECONSTRUCT_WRITE:
		for (i= disks; i-- ;)
			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
				chosen = sh->dev[i].towrite;
				sh->dev[i].towrite = NULL;

				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
					wake_up(&conf->wait_for_overlap);

E
Eric Sesterhenn 已提交
1679
				BUG_ON(sh->dev[i].written);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
				sh->dev[i].written = chosen;
			}
		break;
	case CHECK_PARITY:
		BUG();		/* Not implemented yet */
	}

	for (i = disks; i--;)
		if (sh->dev[i].written) {
			sector_t sector = sh->dev[i].sector;
			struct bio *wbi = sh->dev[i].written;
			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
				copy_data(1, wbi, sh->dev[i].page, sector);
				wbi = r5_next_bio(wbi, sector);
			}

			set_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(R5_UPTODATE, &sh->dev[i].flags);
		}

1700
	/* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1701 1702 1703 1704

	for (i = 0; i < disks; i++)
		ptrs[i] = (void *)raid6_empty_zero_page;

1705 1706 1707
	count = 0;
	i = d0_idx;
	do {
1708 1709
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

1710
		ptrs[slot] = page_address(sh->dev[i].page);
1711
		if (slot < syndrome_disks &&
1712 1713 1714 1715 1716
		    !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
			printk(KERN_ERR "block %d/%d not uptodate "
			       "on parity calc\n", i, count);
			BUG();
		}
1717

1718 1719
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
1720
	BUG_ON(count != syndrome_disks);
1721

1722
	raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741

	switch(method) {
	case RECONSTRUCT_WRITE:
		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
		break;
	case UPDATE_PARITY:
		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
		break;
	}
}


/* Compute one missing block */
static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
{
1742
	int i, count, disks = sh->disks;
D
Dan Williams 已提交
1743
	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1744
	int qd_idx = sh->qd_idx;
1745

1746
	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1747 1748 1749 1750 1751 1752
		(unsigned long long)sh->sector, dd_idx);

	if ( dd_idx == qd_idx ) {
		/* We're actually computing the Q drive */
		compute_parity6(sh, UPDATE_PARITY);
	} else {
D
Dan Williams 已提交
1753 1754 1755
		dest = page_address(sh->dev[dd_idx].page);
		if (!nozero) memset(dest, 0, STRIPE_SIZE);
		count = 0;
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
		for (i = disks ; i--; ) {
			if (i == dd_idx || i == qd_idx)
				continue;
			p = page_address(sh->dev[i].page);
			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
				ptr[count++] = p;
			else
				printk("compute_block() %d, stripe %llu, %d"
				       " not present\n", dd_idx,
				       (unsigned long long)sh->sector, i);

			check_xor();
		}
D
Dan Williams 已提交
1769 1770
		if (count)
			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1771 1772 1773 1774 1775 1776 1777 1778
		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
	}
}

/* Compute two missing blocks */
static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
{
1779
	int i, count, disks = sh->disks;
1780
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1781 1782 1783
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1784
	void *ptrs[syndrome_disks+2];
1785

1786 1787
	for (i = 0; i < disks ; i++)
		ptrs[i] = (void *)raid6_empty_zero_page;
1788 1789 1790
	count = 0;
	i = d0_idx;
	do {
1791 1792
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

1793
		ptrs[slot] = page_address(sh->dev[i].page);
1794

1795 1796 1797 1798 1799 1800
		if (i == dd_idx1)
			faila = slot;
		if (i == dd_idx2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
1801
	BUG_ON(count != syndrome_disks);
1802 1803 1804 1805

	BUG_ON(faila == failb);
	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }

1806
	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1807 1808
		 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
		 faila, failb);
1809

1810
	if (failb == syndrome_disks+1) {
1811
		/* Q disk is one of the missing disks */
1812
		if (faila == syndrome_disks) {
1813 1814 1815 1816 1817
			/* Missing P+Q, just recompute */
			compute_parity6(sh, UPDATE_PARITY);
			return;
		} else {
			/* We're missing D+Q; recompute D from P */
1818 1819 1820
			compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
					     dd_idx2 : dd_idx1),
					0);
1821 1822 1823 1824 1825
			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
			return;
		}
	}

1826
	/* We're missing D+P or D+D; */
1827
	if (failb == syndrome_disks) {
1828
		/* We're missing D+P. */
1829
		raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1830 1831
	} else {
		/* We're missing D+D. */
1832 1833
		raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
				  ptrs);
1834
	}
1835 1836 1837 1838

	/* Both the above update both missing blocks */
	set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
	set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1839 1840
}

1841
static void
1842
schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1843
			 int rcw, int expand)
1844 1845 1846 1847 1848 1849 1850 1851 1852
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
1853 1854 1855 1856
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
1857

1858
		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1859 1860 1861 1862 1863 1864

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
1865
				set_bit(R5_Wantdrain, &dev->flags);
1866 1867
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
1868
				s->locked++;
1869 1870
			}
		}
1871
		if (s->locked + 1 == disks)
1872 1873
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
				atomic_inc(&sh->raid_conf->pending_full_writes);
1874 1875 1876 1877
	} else {
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

1878
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1879 1880 1881
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1882 1883 1884 1885 1886 1887 1888 1889

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
1890 1891
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
1892 1893
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
1894
				s->locked++;
1895 1896 1897 1898 1899 1900 1901 1902 1903
			}
		}
	}

	/* keep the parity disk locked while asynchronous operations
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1904
	s->locked++;
1905

1906
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1907
		__func__, (unsigned long long)sh->sector,
1908
		s->locked, s->ops_request);
1909
}
1910

L
Linus Torvalds 已提交
1911 1912
/*
 * Each stripe/dev can have one or more bion attached.
1913
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
1914 1915 1916 1917 1918 1919
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
1920
	int firstwrite=0;
L
Linus Torvalds 已提交
1921

1922
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
1923 1924 1925 1926 1927 1928
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
1929
	if (forwrite) {
L
Linus Torvalds 已提交
1930
		bip = &sh->dev[dd_idx].towrite;
1931 1932 1933
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

1943
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
1944 1945 1946
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
1947
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
1948 1949 1950
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

1951
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
1952 1953 1954
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

1955 1956 1957
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
1958
		sh->bm_seq = conf->seq_flush+1;
1959 1960 1961
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

1984 1985
static void end_reshape(raid5_conf_t *conf);

1986 1987 1988 1989 1990 1991 1992
static int page_is_zero(struct page *p)
{
	char *a = page_address(p);
	return ((*(u32*)a) == 0 &&
		memcmp(a, a+4, STRIPE_SIZE-4)==0);
}

1993 1994
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
1995
{
1996 1997 1998
	int sectors_per_chunk =
		previous ? (conf->prev_chunk >> 9)
			 : (conf->chunk_size >> 9);
1999
	int dd_idx;
2000
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2001
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2002

2003 2004
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2005
			     *sectors_per_chunk + chunk_offset,
2006
			     previous,
2007
			     &dd_idx, sh);
2008 2009
}

2010
static void
2011
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2045
			if (!raid5_dec_bi_phys_segments(bi)) {
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2060
			if (!raid5_dec_bi_phys_segments(bi)) {
2061 2062 2063 2064 2065 2066 2067
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2068 2069 2070 2071 2072 2073
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2084
				if (!raid5_dec_bi_phys_segments(bi)) {
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2097 2098 2099
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2100 2101
}

2102 2103 2104 2105 2106
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2107
 */
2108 2109
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2110 2111 2112 2113 2114 2115
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2116 2117 2118 2119 2120 2121 2122 2123
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2124 2125
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2126 2127
		 */
		if ((s->uptodate == disks - 1) &&
2128
		    (s->failed && disk_idx == s->failed_num)) {
2129 2130
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid5_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2141
			return 1; /* uptodate + compute == disks */
2142
		} else if (test_bit(R5_Insync, &dev->flags)) {
2143 2144 2145 2146 2147 2148 2149 2150
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2151
	return 0;
2152 2153
}

2154 2155 2156 2157
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2158 2159 2160
			struct stripe_head_state *s, int disks)
{
	int i;
2161 2162 2163 2164 2165

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2166
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2167
	    !sh->reconstruct_state)
2168
		for (i = disks; i--; )
2169
			if (fetch_block5(sh, s, i, disks))
2170
				break;
2171 2172 2173
	set_bit(STRIPE_HANDLE, &sh->state);
}

2174
static void handle_stripe_fill6(struct stripe_head *sh,
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (!test_bit(R5_LOCKED, &dev->flags) &&
		    !test_bit(R5_UPTODATE, &dev->flags) &&
		    (dev->toread || (dev->towrite &&
		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
		     s->syncing || s->expanding ||
		     (s->failed >= 1 &&
		      (sh->dev[r6s->failed_num[0]].toread ||
		       s->to_write)) ||
		     (s->failed >= 2 &&
		      (sh->dev[r6s->failed_num[1]].toread ||
		       s->to_write)))) {
			/* we would like to get this block, possibly
			 * by computing it, but we might not be able to
			 */
2195 2196 2197
			if ((s->uptodate == disks - 1) &&
			    (s->failed && (i == r6s->failed_num[0] ||
					   i == r6s->failed_num[1]))) {
2198
				pr_debug("Computing stripe %llu block %d\n",
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
				       (unsigned long long)sh->sector, i);
				compute_block_1(sh, i, 0);
				s->uptodate++;
			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
				/* Computing 2-failure is *very* expensive; only
				 * do it if failed >= 2
				 */
				int other;
				for (other = disks; other--; ) {
					if (other == i)
						continue;
					if (!test_bit(R5_UPTODATE,
					      &sh->dev[other].flags))
						break;
				}
				BUG_ON(other < 0);
2215
				pr_debug("Computing stripe %llu blocks %d,%d\n",
2216 2217 2218 2219 2220 2221 2222 2223
				       (unsigned long long)sh->sector,
				       i, other);
				compute_block_2(sh, i, other);
				s->uptodate += 2;
			} else if (test_bit(R5_Insync, &dev->flags)) {
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
2224
				pr_debug("Reading block %d (sync=%d)\n",
2225 2226 2227 2228 2229 2230 2231 2232
					i, s->syncing);
			}
		}
	}
	set_bit(STRIPE_HANDLE, &sh->state);
}


2233
/* handle_stripe_clean_event
2234 2235 2236 2237
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2238
static void handle_stripe_clean_event(raid5_conf_t *conf,
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2252
				pr_debug("Return write for disc %d\n", i);
2253 2254 2255 2256 2257 2258
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2259
					if (!raid5_dec_bi_phys_segments(wbi)) {
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2277 2278 2279 2280

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2281 2282
}

2283
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2284 2285 2286 2287 2288 2289 2290 2291
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2292 2293
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2294 2295 2296 2297 2298 2299 2300 2301
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2302 2303 2304
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2305 2306 2307 2308
			else
				rcw += 2*disks;
		}
	}
2309
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2310 2311 2312 2313 2314 2315 2316 2317
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2318 2319
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2320 2321 2322
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2323
					pr_debug("Read_old block "
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2341 2342
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2343 2344 2345
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2346
					pr_debug("Read_old block "
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2360 2361 2362 2363 2364 2365 2366
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
	 * subsequent call wants to start a write request.  raid5_run_ops only
	 * handles the case where compute block and postxor are requested
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2367 2368 2369
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2370
		schedule_reconstruction5(sh, s, rcw == 0, 0);
2371 2372
}

2373
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2374 2375 2376 2377
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2378
	int qd_idx = sh->qd_idx;
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags)
		    && i != pd_idx && i != qd_idx
		    && (!test_bit(R5_LOCKED, &dev->flags)
			    ) &&
		    !test_bit(R5_UPTODATE, &dev->flags)) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
			else {
2389
				pr_debug("raid6: must_compute: "
2390 2391 2392 2393 2394
					"disk %d flags=%#lx\n", i, dev->flags);
				must_compute++;
			}
		}
	}
2395
	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	       (unsigned long long)sh->sector, rcw, must_compute);
	set_bit(STRIPE_HANDLE, &sh->state);

	if (rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags)
			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
			    && !test_bit(R5_LOCKED, &dev->flags) &&
			    !test_bit(R5_UPTODATE, &dev->flags) &&
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2410
					pr_debug("Read_old stripe %llu "
2411 2412 2413 2414 2415 2416
						"block %d for Reconstruct\n",
					     (unsigned long long)sh->sector, i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
2417
					pr_debug("Request delayed stripe %llu "
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
						"block %d for Reconstruct\n",
					     (unsigned long long)sh->sector, i);
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
	if (s->locked == 0 && rcw == 0 &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
		if (must_compute > 0) {
			/* We have failed blocks and need to compute them */
			switch (s->failed) {
			case 0:
				BUG();
			case 1:
				compute_block_1(sh, r6s->failed_num[0], 0);
				break;
			case 2:
				compute_block_2(sh, r6s->failed_num[0],
						r6s->failed_num[1]);
				break;
			default: /* This request should have been failed? */
				BUG();
			}
		}

2447
		pr_debug("Computing parity for stripe %llu\n",
2448 2449 2450 2451 2452
			(unsigned long long)sh->sector);
		compute_parity6(sh, RECONSTRUCT_WRITE);
		/* now every locked buffer is ready to be written */
		for (i = disks; i--; )
			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2453
				pr_debug("Writing stripe %llu block %d\n",
2454 2455 2456 2457
				       (unsigned long long)sh->sector, i);
				s->locked++;
				set_bit(R5_Wantwrite, &sh->dev[i].flags);
			}
2458 2459 2460
		if (s->locked == disks)
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
				atomic_inc(&conf->pending_full_writes);
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
		set_bit(STRIPE_INSYNC, &sh->state);

		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
			    IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2476
	struct r5dev *dev = NULL;
2477

2478
	set_bit(STRIPE_HANDLE, &sh->state);
2479

2480 2481 2482
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2483 2484
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2485 2486
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2487 2488
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2489
			break;
2490
		}
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2501

2502 2503 2504 2505 2506
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2507
		s->locked++;
2508
		set_bit(R5_Wantwrite, &dev->flags);
2509

2510 2511
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0)
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2540
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s,
				struct r6_state *r6s, struct page *tmp_page,
				int disks)
{
	int update_p = 0, update_q = 0;
	struct r5dev *dev;
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2568
	int qd_idx = sh->qd_idx;
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
	BUG_ON(s->uptodate < disks);
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

	/* If !tmp_page, we cannot do the calculations,
	 * but as we have set STRIPE_HANDLE, we will soon be called
	 * by stripe_handle with a tmp_page - just wait until then.
	 */
	if (tmp_page) {
		if (s->failed == r6s->q_failed) {
			/* The only possible failed device holds 'Q', so it
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
			compute_block_1(sh, pd_idx, 1);
			if (!page_is_zero(sh->dev[pd_idx].page)) {
				compute_block_1(sh, pd_idx, 0);
				update_p = 1;
			}
		}
		if (!r6s->q_failed && s->failed < 2) {
			/* q is not failed, and we didn't use it to generate
			 * anything, so it makes sense to check it
			 */
			memcpy(page_address(tmp_page),
			       page_address(sh->dev[qd_idx].page),
			       STRIPE_SIZE);
			compute_parity6(sh, UPDATE_PARITY);
			if (memcmp(page_address(tmp_page),
				   page_address(sh->dev[qd_idx].page),
				   STRIPE_SIZE) != 0) {
				clear_bit(STRIPE_INSYNC, &sh->state);
				update_q = 1;
			}
		}
		if (update_p || update_q) {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				update_p = update_q = 0;
		}

		/* now write out any block on a failed drive,
		 * or P or Q if they need it
		 */

		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}

		if (update_p) {
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (update_q) {
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2661
	struct dma_async_tx_descriptor *tx = NULL;
2662 2663
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2664
		if (i != sh->pd_idx && i != sh->qd_idx) {
2665
			int dd_idx, j;
2666 2667
			struct stripe_head *sh2;

2668
			sector_t bn = compute_blocknr(sh, i, 1);
2669 2670
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2671
			sh2 = get_active_stripe(conf, s, 0, 1);
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2684 2685 2686 2687 2688 2689

			/* place all the copies on one channel */
			tx = async_memcpy(sh2->dev[dd_idx].page,
				sh->dev[i].page, 0, 0, STRIPE_SIZE,
				ASYNC_TX_DEP_ACK, tx, NULL, NULL);

2690 2691 2692 2693
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2694
				    (!r6s || j != sh2->qd_idx) &&
2695 2696 2697 2698 2699 2700 2701
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2702

2703
		}
2704 2705 2706 2707 2708
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2709
}
L
Linus Torvalds 已提交
2710

2711

L
Linus Torvalds 已提交
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2728

2729
static bool handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
2730 2731
{
	raid5_conf_t *conf = sh->raid_conf;
2732 2733 2734
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
2735
	struct r5dev *dev;
2736
	mdk_rdev_t *blocked_rdev = NULL;
2737
	int prexor;
L
Linus Torvalds 已提交
2738

2739
	memset(&s, 0, sizeof(s));
2740 2741 2742 2743
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
2744 2745 2746 2747 2748

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

2749 2750 2751
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
2752

2753
	/* Now to look around and see what can be done */
2754
	rcu_read_lock();
L
Linus Torvalds 已提交
2755 2756
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2757
		struct r5dev *dev = &sh->dev[i];
L
Linus Torvalds 已提交
2758 2759
		clear_bit(R5_Insync, &dev->flags);

2760 2761 2762 2763 2764 2765 2766
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
2767
		 * ops_complete_biofill is guaranteed to be inactive
2768 2769
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2770
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2771
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2772 2773

		/* now count some things */
2774 2775
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2776
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
2777

2778 2779 2780
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
2781
			s.to_read++;
L
Linus Torvalds 已提交
2782
		if (dev->towrite) {
2783
			s.to_write++;
L
Linus Torvalds 已提交
2784
			if (!test_bit(R5_OVERWRITE, &dev->flags))
2785
				s.non_overwrite++;
L
Linus Torvalds 已提交
2786
		}
2787 2788
		if (dev->written)
			s.written++;
2789
		rdev = rcu_dereference(conf->disks[i].rdev);
2790 2791
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2792 2793 2794
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
2795
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
2796
			/* The ReadError flag will just be confusing now */
2797 2798 2799
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
2800
		if (!rdev || !test_bit(In_sync, &rdev->flags)
2801
		    || test_bit(R5_ReadError, &dev->flags)) {
2802 2803
			s.failed++;
			s.failed_num = i;
L
Linus Torvalds 已提交
2804 2805 2806
		} else
			set_bit(R5_Insync, &dev->flags);
	}
2807
	rcu_read_unlock();
2808

2809
	if (unlikely(blocked_rdev)) {
2810 2811 2812 2813 2814 2815 2816 2817
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
2818 2819
	}

2820 2821 2822 2823
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
2824

2825
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
2826
		" to_write=%d failed=%d failed_num=%d\n",
2827 2828
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
2829 2830 2831
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
2832
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2833
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2834
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
2835 2836
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
2837
		s.syncing = 0;
L
Linus Torvalds 已提交
2838 2839 2840 2841 2842 2843
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
2844 2845 2846 2847 2848
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2849
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
2850 2851 2852 2853 2854

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
2855
	if (s.to_read || s.non_overwrite ||
2856
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2857
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
2858

2859 2860 2861
	/* Now we check to see if any write operations have recently
	 * completed
	 */
2862
	prexor = 0;
2863
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2864
		prexor = 1;
2865 2866
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2867
		sh->reconstruct_state = reconstruct_state_idle;
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
2879 2880
				if (prexor)
					continue;
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
				IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
2900
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2901
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
2902 2903

	/* maybe we need to check and possibly fix the parity for this stripe
2904 2905 2906
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
2907
	 */
2908 2909
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
2910
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2911
	     !test_bit(STRIPE_INSYNC, &sh->state)))
2912
		handle_parity_checks5(conf, sh, &s, disks);
2913

2914
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
2915 2916 2917
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
2918 2919 2920 2921

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
2922 2923 2924 2925
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2926
		) {
2927
		dev = &sh->dev[s.failed_num];
2928 2929 2930 2931
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
2932
			s.locked++;
2933 2934 2935 2936
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
2937
			s.locked++;
2938 2939 2940
		}
	}

2941 2942 2943
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
2944
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
2945
		for (i = conf->raid_disks; i--; ) {
2946
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
2947
			set_bit(R5_LOCKED, &sh->dev[i].flags);
2948
			s.locked++;
D
Dan Williams 已提交
2949
		}
2950 2951 2952
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2953
	    !sh->reconstruct_state) {
2954 2955
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
2956
		stripe_set_idx(sh->sector, conf, 0, sh);
2957
		schedule_reconstruction5(sh, &s, 1, 1);
2958
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2959
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2960
		atomic_dec(&conf->reshape_stripes);
2961 2962 2963 2964
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

2965
	if (s.expanding && s.locked == 0 &&
2966
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2967
		handle_stripe_expansion(conf, sh, NULL);
2968

2969
 unlock:
L
Linus Torvalds 已提交
2970 2971
	spin_unlock(&sh->lock);

2972 2973 2974 2975
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

2976 2977
	if (s.ops_request)
		raid5_run_ops(sh, s.ops_request);
2978

2979
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
2980

2981
	return_io(return_bi);
2982 2983

	return blocked_rdev == NULL;
L
Linus Torvalds 已提交
2984 2985
}

2986
static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
L
Linus Torvalds 已提交
2987
{
2988
	raid5_conf_t *conf = sh->raid_conf;
2989
	int disks = sh->disks;
2990
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
2991
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
2992 2993
	struct stripe_head_state s;
	struct r6_state r6s;
2994
	struct r5dev *dev, *pdev, *qdev;
2995
	mdk_rdev_t *blocked_rdev = NULL;
L
Linus Torvalds 已提交
2996

2997
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2998 2999
		"pd_idx=%d, qd_idx=%d\n",
	       (unsigned long long)sh->sector, sh->state,
N
NeilBrown 已提交
3000
	       atomic_read(&sh->count), pd_idx, qd_idx);
3001
	memset(&s, 0, sizeof(s));
3002

3003 3004 3005 3006
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3007 3008 3009
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3010
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3011 3012

	rcu_read_lock();
3013 3014 3015 3016
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
		clear_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3017

3018
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3019 3020 3021 3022
			i, dev->flags, dev->toread, dev->towrite, dev->written);
		/* maybe we can reply to a read */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
			struct bio *rbi, *rbi2;
3023
			pr_debug("Return read for disc %d\n", i);
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
			spin_lock_irq(&conf->device_lock);
			rbi = dev->toread;
			dev->toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&conf->wait_for_overlap);
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
				copy_data(0, rbi, dev->page, dev->sector);
				rbi2 = r5_next_bio(rbi, dev->sector);
				spin_lock_irq(&conf->device_lock);
3034
				if (!raid5_dec_bi_phys_segments(rbi)) {
3035 3036 3037 3038 3039 3040 3041
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				spin_unlock_irq(&conf->device_lock);
				rbi = rbi2;
			}
		}
L
Linus Torvalds 已提交
3042

3043
		/* now count some things */
3044 3045
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
L
Linus Torvalds 已提交
3046

3047

3048 3049
		if (dev->toread)
			s.to_read++;
3050
		if (dev->towrite) {
3051
			s.to_write++;
3052
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3053
				s.non_overwrite++;
3054
		}
3055 3056
		if (dev->written)
			s.written++;
3057
		rdev = rcu_dereference(conf->disks[i].rdev);
3058 3059
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3060 3061 3062
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3063 3064 3065 3066
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3067
		}
3068 3069
		if (!rdev || !test_bit(In_sync, &rdev->flags)
		    || test_bit(R5_ReadError, &dev->flags)) {
3070 3071 3072
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3073 3074
		} else
			set_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3075 3076
	}
	rcu_read_unlock();
3077 3078

	if (unlikely(blocked_rdev)) {
3079 3080 3081 3082 3083 3084 3085 3086
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3087
	}
3088

3089
	pr_debug("locked=%d uptodate=%d to_read=%d"
3090
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3091 3092 3093 3094
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3095
	 */
3096
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3097
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3098
	if (s.failed > 2 && s.syncing) {
3099 3100
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3101
		s.syncing = 0;
3102 3103 3104 3105 3106 3107 3108
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3109 3110
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3111 3112 3113
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3114 3115 3116

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3117
			     && !test_bit(R5_LOCKED, &pdev->flags)
3118 3119
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3120
			     && !test_bit(R5_LOCKED, &qdev->flags)
3121
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3122
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3123 3124 3125 3126 3127

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3128 3129
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
	    (s.syncing && (s.uptodate < disks)) || s.expanding)
3130
		handle_stripe_fill6(sh, &s, &r6s, disks);
3131 3132

	/* now to consider writing and what else, if anything should be read */
3133
	if (s.to_write)
3134
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3135 3136

	/* maybe we need to check and possibly fix the parity for this stripe
3137 3138
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available
3139
	 */
3140 3141
	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3142

3143
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3144 3145 3146 3147 3148 3149 3150
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3151 3152 3153
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
				}
			}
		}
3169

3170
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3171 3172
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3173
		stripe_set_idx(sh->sector, conf, 0, sh);
3174 3175 3176
		compute_parity6(sh, RECONSTRUCT_WRITE);
		for (i = conf->raid_disks ; i-- ;  ) {
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3177
			s.locked++;
3178 3179 3180
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
		}
		clear_bit(STRIPE_EXPANDING, &sh->state);
3181
	} else if (s.expanded) {
3182 3183 3184 3185 3186 3187
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3188
	if (s.expanding && s.locked == 0 &&
3189
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3190
		handle_stripe_expansion(conf, sh, &r6s);
3191

3192
 unlock:
3193 3194
	spin_unlock(&sh->lock);

3195 3196 3197 3198
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

D
Dan Williams 已提交
3199
	ops_run_io(sh, &s);
3200

D
Dan Williams 已提交
3201
	return_io(return_bi);
3202 3203

	return blocked_rdev == NULL;
3204 3205
}

3206 3207
/* returns true if the stripe was handled */
static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3208 3209
{
	if (sh->raid_conf->level == 6)
3210
		return handle_stripe6(sh, tmp_page);
3211
	else
3212
		return handle_stripe5(sh);
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
}



static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3228
			list_add_tail(&sh->lru, &conf->hold_list);
3229
		}
3230 3231
	} else
		blk_plug_device(conf->mddev->queue);
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	int i;

	rcu_read_lock();
	for (i=0; i<mddev->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3257
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3258 3259 3260 3261

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3262
			blk_unplug(r_queue);
3263 3264 3265 3266 3267 3268 3269 3270

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3271
static void raid5_unplug_device(struct request_queue *q)
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	if (blk_remove_plug(q)) {
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3282
	}
L
Linus Torvalds 已提交
3283 3284 3285 3286 3287 3288 3289
	md_wakeup_thread(mddev->thread);

	spin_unlock_irqrestore(&conf->device_lock, flags);

	unplug_slaves(mddev);
}

3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;
	raid5_conf_t *conf = mddev_to_conf(mddev);

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}

3308 3309 3310
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3311 3312 3313
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3314 3315
{
	mddev_t *mddev = q->queuedata;
3316
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3317 3318
	int max;
	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3319
	unsigned int bio_sectors = bvm->bi_size >> 9;
3320

3321
	if ((bvm->bi_rw & 1) == WRITE)
3322 3323
		return biovec->bv_len; /* always allow writes to be mergeable */

3324 3325
	if (mddev->new_chunk < mddev->chunk_size)
		chunk_sectors = mddev->new_chunk >> 9;
3326 3327 3328 3329 3330 3331 3332 3333
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3334 3335 3336 3337 3338 3339 3340

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
	unsigned int chunk_sectors = mddev->chunk_size >> 9;
	unsigned int bio_sectors = bio->bi_size >> 9;

3341 3342
	if (mddev->new_chunk < mddev->chunk_size)
		chunk_sectors = mddev->new_chunk >> 9;
3343 3344 3345 3346
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3376
		conf->retry_read_aligned_list = bi->bi_next;
3377
		bi->bi_next = NULL;
3378 3379 3380 3381
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3382 3383 3384 3385 3386 3387 3388
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3389 3390 3391 3392 3393 3394
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3395
static void raid5_align_endio(struct bio *bi, int error)
3396 3397
{
	struct bio* raid_bi  = bi->bi_private;
3398 3399 3400 3401 3402
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3403
	bio_put(bi);
3404 3405 3406 3407 3408 3409 3410 3411 3412

	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
	conf = mddev_to_conf(mddev);
	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3413
		bio_endio(raid_bi, 0);
3414 3415
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3416
		return;
3417 3418 3419
	}


3420
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3421 3422

	add_bio_to_retry(raid_bi, conf);
3423 3424
}

3425 3426
static int bio_fits_rdev(struct bio *bi)
{
3427
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3428 3429 3430 3431

	if ((bi->bi_size>>9) > q->max_sectors)
		return 0;
	blk_recount_segments(q, bi);
3432
	if (bi->bi_phys_segments > q->max_phys_segments)
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3445
static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3446 3447 3448
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
3449
	unsigned int dd_idx;
3450 3451 3452 3453
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3454
		pr_debug("chunk_aligned_read : non aligned\n");
3455 3456 3457
		return 0;
	}
	/*
3458
	 * use bio_clone to make a copy of the bio
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3472 3473
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3474
						    &dd_idx, NULL);
3475 3476 3477 3478 3479 3480

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3481 3482 3483 3484 3485
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3486 3487 3488 3489 3490 3491 3492
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3493 3494 3495 3496 3497 3498 3499
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3500 3501 3502 3503
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3504
		bio_put(align_bi);
3505 3506 3507 3508
		return 0;
	}
}

3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3561

3562
static int make_request(struct request_queue *q, struct bio * bi)
L
Linus Torvalds 已提交
3563 3564 3565
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
3566
	int dd_idx;
L
Linus Torvalds 已提交
3567 3568 3569
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3570
	const int rw = bio_data_dir(bi);
T
Tejun Heo 已提交
3571
	int cpu, remaining;
L
Linus Torvalds 已提交
3572

3573
	if (unlikely(bio_barrier(bi))) {
3574
		bio_endio(bi, -EOPNOTSUPP);
3575 3576 3577
		return 0;
	}

3578
	md_write_start(mddev, bi);
3579

T
Tejun Heo 已提交
3580 3581 3582 3583 3584
	cpu = part_stat_lock();
	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
		      bio_sectors(bi));
	part_stat_unlock();
L
Linus Torvalds 已提交
3585

3586
	if (rw == READ &&
3587 3588
	     mddev->reshape_position == MaxSector &&
	     chunk_aligned_read(q,bi))
3589
		return 0;
3590

L
Linus Torvalds 已提交
3591 3592 3593 3594
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3595

L
Linus Torvalds 已提交
3596 3597
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3598
		int disks, data_disks;
3599
		int previous;
3600

3601
	retry:
3602
		previous = 0;
3603
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3604
		if (likely(conf->reshape_progress == MaxSector))
3605 3606
			disks = conf->raid_disks;
		else {
3607
			/* spinlock is needed as reshape_progress may be
3608 3609
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3610
			 * Ofcourse reshape_progress could change after
3611 3612 3613 3614
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3615 3616
			spin_lock_irq(&conf->device_lock);
			disks = conf->raid_disks;
3617 3618 3619
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3620
				disks = conf->previous_raid_disks;
3621 3622
				previous = 1;
			} else {
3623 3624 3625
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3626 3627 3628 3629 3630
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3631 3632
			spin_unlock_irq(&conf->device_lock);
		}
3633 3634
		data_disks = disks - conf->max_degraded;

3635 3636
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3637
						  &dd_idx, NULL);
3638
		pr_debug("raid5: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3639 3640 3641
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3642 3643
		sh = get_active_stripe(conf, new_sector, previous,
				       (bi->bi_rw&RWA_MASK));
L
Linus Torvalds 已提交
3644
		if (sh) {
3645
			if (unlikely(conf->reshape_progress != MaxSector)) {
3646
				/* expansion might have moved on while waiting for a
3647 3648 3649 3650 3651 3652
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3653 3654 3655
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3656 3657 3658
				if ((mddev->delta_disks < 0
				     ? logical_sector >= conf->reshape_progress
				     : logical_sector < conf->reshape_progress)
3659
				    && previous)
3660 3661 3662 3663 3664 3665 3666 3667
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
					goto retry;
				}
			}
3668 3669 3670 3671 3672 3673 3674 3675 3676
			/* FIXME what if we get a false positive because these
			 * are being updated.
			 */
			if (logical_sector >= mddev->suspend_lo &&
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
				schedule();
				goto retry;
			}
3677 3678 3679 3680 3681

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3682 3683 3684 3685 3686 3687 3688 3689
				 * and wait a while
				 */
				raid5_unplug_device(mddev->queue);
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3690 3691
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
L
Linus Torvalds 已提交
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
3702
	remaining = raid5_dec_bi_phys_segments(bi);
3703 3704
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
3705

3706
		if ( rw == WRITE )
L
Linus Torvalds 已提交
3707
			md_write_end(mddev);
3708

3709
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
3710 3711 3712 3713
	}
	return 0;
}

D
Dan Williams 已提交
3714 3715
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

3716
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
3717
{
3718 3719 3720 3721 3722 3723 3724 3725 3726
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
L
Linus Torvalds 已提交
3727 3728
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
3729
	sector_t first_sector, last_sector;
3730 3731 3732
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
3733 3734 3735
	int i;
	int dd_idx;
	sector_t writepos, safepos, gap;
3736
	sector_t stripe_addr;
3737

3738 3739 3740 3741 3742 3743 3744 3745 3746
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
		} else if (mddev->delta_disks > 0 &&
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
3747
		sector_div(sector_nr, new_data_disks);
3748 3749 3750 3751
		if (sector_nr) {
			*skipped = 1;
			return sector_nr;
		}
3752 3753 3754 3755 3756 3757 3758
	}

	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
3759 3760
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
3761
	 */
3762
	writepos = conf->reshape_progress;
3763
	sector_div(writepos, new_data_disks);
3764
	safepos = conf->reshape_safe;
3765
	sector_div(safepos, data_disks);
3766 3767 3768 3769 3770 3771 3772 3773 3774
	if (mddev->delta_disks < 0) {
		writepos -= conf->chunk_size/512;
		safepos += conf->chunk_size/512;
		gap = conf->reshape_safe - conf->reshape_progress;
	} else {
		writepos += conf->chunk_size/512;
		safepos -= conf->chunk_size/512;
		gap = conf->reshape_progress - conf->reshape_safe;
	}
3775

3776 3777 3778
	if ((mddev->delta_disks < 0
	     ? writepos < safepos
	     : writepos > safepos) ||
3779
	    gap > (new_data_disks)*3000*2 /*3Meg*/) {
3780 3781 3782
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
3783
		mddev->reshape_position = conf->reshape_progress;
3784
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3785
		md_wakeup_thread(mddev->thread);
3786
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3787 3788
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
3789
		conf->reshape_safe = mddev->reshape_position;
3790 3791 3792 3793
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
	}

3794 3795 3796 3797
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
3798
			~((sector_t)conf->chunk_size / 512 - 1))
3799 3800 3801 3802 3803 3804
		       - (conf->chunk_size / 512) - stripe_addr
		       != sector_nr);
	} else {
		BUG_ON(writepos != sector_nr + conf->chunk_size / 512);
		stripe_addr = sector_nr;
	}
3805 3806 3807
	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
		int j;
		int skipped = 0;
3808
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
3809 3810 3811 3812 3813 3814 3815 3816 3817
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
3818
			if (conf->level == 6 &&
3819
			    j == sh->qd_idx)
3820
				continue;
3821
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
3822
			if (s < raid5_size(mddev, 0, 0)) {
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
				skipped = 1;
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
		if (!skipped) {
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
		release_stripe(sh);
	}
	spin_lock_irq(&conf->device_lock);
3837 3838 3839 3840
	if (mddev->delta_disks < 0)
		conf->reshape_progress -= i * new_data_disks;
	else
		conf->reshape_progress += i * new_data_disks;
3841 3842 3843 3844 3845 3846 3847
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
3848
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3849
				     1, &dd_idx, NULL);
3850
	last_sector =
3851
		raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
3852
					    *(new_data_disks) - 1),
3853
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
3854 3855
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
3856
	while (first_sector <= last_sector) {
3857
		sh = get_active_stripe(conf, first_sector, 1, 0);
3858 3859 3860 3861 3862
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
3863 3864 3865 3866 3867 3868 3869 3870
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
	sector_nr += conf->chunk_size>>9;
	if (sector_nr >= mddev->resync_max) {
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
3871
		mddev->reshape_position = conf->reshape_progress;
3872 3873 3874 3875 3876 3877
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
3878
		conf->reshape_safe = mddev->reshape_position;
3879 3880 3881
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
	}
3882 3883 3884 3885 3886 3887 3888 3889
	return conf->chunk_size>>9;
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
A
Andre Noll 已提交
3890
	sector_t max_sector = mddev->dev_sectors;
3891
	int sync_blocks;
3892 3893
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
3894

3895
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
3896 3897
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
3898

3899 3900 3901 3902
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
3903 3904 3905 3906

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
3907
		else /* completed sync */
3908 3909 3910
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
3911 3912
		return 0;
	}
3913

3914 3915
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
3916

3917 3918 3919 3920 3921 3922
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

3923
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
3924 3925 3926
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
3927
	if (mddev->degraded >= conf->max_degraded &&
3928
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
3929
		sector_t rv = mddev->dev_sectors - sector_nr;
3930
		*skipped = 1;
L
Linus Torvalds 已提交
3931 3932
		return rv;
	}
3933
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3934
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3935 3936 3937 3938 3939 3940
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
3941

N
NeilBrown 已提交
3942 3943 3944

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

3945
	sh = get_active_stripe(conf, sector_nr, 0, 1);
L
Linus Torvalds 已提交
3946
	if (sh == NULL) {
3947
		sh = get_active_stripe(conf, sector_nr, 0, 0);
L
Linus Torvalds 已提交
3948
		/* make sure we don't swamp the stripe cache if someone else
3949
		 * is trying to get access
L
Linus Torvalds 已提交
3950
		 */
3951
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3952
	}
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
	for (i=0; i<mddev->raid_disks; i++)
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
3964 3965 3966 3967
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

3968 3969 3970
	/* wait for any blocked device to be handled */
	while(unlikely(!handle_stripe(sh, NULL)))
		;
L
Linus Torvalds 已提交
3971 3972 3973 3974 3975
	release_stripe(sh);

	return STRIPE_SECTORS;
}

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
3989
	int dd_idx;
3990 3991 3992 3993 3994 3995
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3996
	sector = raid5_compute_sector(conf, logical_sector,
3997
				      0, &dd_idx, NULL);
3998 3999 4000
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4001 4002 4003
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4004

4005
		if (scnt < raid5_bi_hw_segments(raid_bio))
4006 4007 4008
			/* already done this stripe */
			continue;

4009
		sh = get_active_stripe(conf, sector, 0, 1);
4010 4011 4012

		if (!sh) {
			/* failed to get a stripe - must wait */
4013
			raid5_set_bi_hw_segments(raid_bio, scnt);
4014 4015 4016 4017 4018
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4019 4020
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4021
			raid5_set_bi_hw_segments(raid_bio, scnt);
4022 4023 4024 4025
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4026 4027 4028 4029 4030
		handle_stripe(sh, NULL);
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4031
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4032
	spin_unlock_irq(&conf->device_lock);
4033 4034
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4035 4036 4037 4038 4039 4040 4041
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}



L
Linus Torvalds 已提交
4042 4043 4044 4045 4046 4047 4048
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4049
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4050 4051 4052 4053 4054
{
	struct stripe_head *sh;
	raid5_conf_t *conf = mddev_to_conf(mddev);
	int handled;

4055
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4056 4057 4058 4059 4060 4061

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4062
		struct bio *bio;
L
Linus Torvalds 已提交
4063

4064
		if (conf->seq_flush != conf->seq_write) {
4065
			int seq = conf->seq_flush;
4066
			spin_unlock_irq(&conf->device_lock);
4067
			bitmap_unplug(mddev->bitmap);
4068
			spin_lock_irq(&conf->device_lock);
4069 4070 4071 4072
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4083 4084
		sh = __get_priority_stripe(conf);

4085
		if (!sh)
L
Linus Torvalds 已提交
4086 4087 4088 4089
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4090
		handle_stripe(sh, conf->spare_page);
L
Linus Torvalds 已提交
4091 4092 4093 4094
		release_stripe(sh);

		spin_lock_irq(&conf->device_lock);
	}
4095
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4096 4097 4098

	spin_unlock_irq(&conf->device_lock);

4099
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4100 4101
	unplug_slaves(mddev);

4102
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4103 4104
}

4105
static ssize_t
4106
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4107
{
4108
	raid5_conf_t *conf = mddev_to_conf(mddev);
4109 4110 4111 4112
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4113 4114 4115
}

static ssize_t
4116
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4117
{
4118
	raid5_conf_t *conf = mddev_to_conf(mddev);
4119
	unsigned long new;
4120 4121
	int err;

4122 4123
	if (len >= PAGE_SIZE)
		return -EINVAL;
4124 4125
	if (!conf)
		return -ENODEV;
4126

4127
	if (strict_strtoul(page, 10, &new))
4128 4129 4130 4131 4132 4133 4134 4135 4136
		return -EINVAL;
	if (new <= 16 || new > 32768)
		return -EINVAL;
	while (new < conf->max_nr_stripes) {
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4137 4138 4139
	err = md_allow_write(mddev);
	if (err)
		return err;
4140 4141 4142 4143 4144 4145 4146
	while (new > conf->max_nr_stripes) {
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
	return len;
}
4147

4148 4149 4150 4151
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4152

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
4167
	unsigned long new;
4168 4169 4170 4171 4172
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4173
	if (strict_strtoul(page, 10, &new))
4174
		return -EINVAL;
4175
	if (new > conf->max_nr_stripes)
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4187
static ssize_t
4188
stripe_cache_active_show(mddev_t *mddev, char *page)
4189
{
4190
	raid5_conf_t *conf = mddev_to_conf(mddev);
4191 4192 4193 4194
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4195 4196
}

4197 4198
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4199

4200
static struct attribute *raid5_attrs[] =  {
4201 4202
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4203
	&raid5_preread_bypass_threshold.attr,
4204 4205
	NULL,
};
4206 4207 4208
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4209 4210
};

4211 4212 4213 4214 4215 4216 4217
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);

	if (!sectors)
		sectors = mddev->dev_sectors;
4218 4219 4220 4221 4222 4223 4224
	if (!raid_disks) {
		/* size is defined by the smallest of previous and new size */
		if (conf->raid_disks < conf->previous_raid_disks)
			raid_disks = conf->raid_disks;
		else
			raid_disks = conf->previous_raid_disks;
	}
4225 4226

	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4227
	sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
4228 4229 4230
	return sectors * (raid_disks - conf->max_degraded);
}

N
NeilBrown 已提交
4231
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4232 4233 4234 4235 4236 4237
{
	raid5_conf_t *conf;
	int raid_disk, memory;
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4238 4239 4240
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4241
		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4242 4243
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4244
	}
N
NeilBrown 已提交
4245 4246 4247 4248
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4249
		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
N
NeilBrown 已提交
4250 4251
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4252
	}
N
NeilBrown 已提交
4253 4254 4255 4256
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4257 4258
	}

N
NeilBrown 已提交
4259 4260 4261 4262
	if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
			mddev->new_chunk, mdname(mddev));
		return ERR_PTR(-EINVAL);
4263 4264
	}

N
NeilBrown 已提交
4265 4266
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4267
		goto abort;
N
NeilBrown 已提交
4268 4269 4270 4271 4272

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4273 4274 4275
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;

	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4276 4277 4278
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4279

L
Linus Torvalds 已提交
4280 4281
	conf->mddev = mddev;

4282
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4283 4284
		goto abort;

N
NeilBrown 已提交
4285
	if (mddev->new_level == 6) {
4286 4287 4288 4289
		conf->spare_page = alloc_page(GFP_KERNEL);
		if (!conf->spare_page)
			goto abort;
	}
L
Linus Torvalds 已提交
4290 4291 4292 4293
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
4294
	INIT_LIST_HEAD(&conf->hold_list);
L
Linus Torvalds 已提交
4295
	INIT_LIST_HEAD(&conf->delayed_list);
4296
	INIT_LIST_HEAD(&conf->bitmap_list);
L
Linus Torvalds 已提交
4297 4298 4299
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
4300
	atomic_set(&conf->active_aligned_reads, 0);
4301
	conf->bypass_threshold = BYPASS_THRESHOLD;
L
Linus Torvalds 已提交
4302

4303
	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4304

4305
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4306
		raid_disk = rdev->raid_disk;
4307
		if (raid_disk >= conf->raid_disks
L
Linus Torvalds 已提交
4308 4309 4310 4311 4312 4313
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4314
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4315 4316 4317 4318
			char b[BDEVNAME_SIZE];
			printk(KERN_INFO "raid5: device %s operational as raid"
				" disk %d\n", bdevname(rdev->bdev,b),
				raid_disk);
4319 4320 4321
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4322 4323
	}

N
NeilBrown 已提交
4324 4325
	conf->chunk_size = mddev->new_chunk;
	conf->level = mddev->new_level;
4326 4327 4328 4329
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4330
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4331
	conf->max_nr_stripes = NR_STRIPES;
4332
	conf->reshape_progress = mddev->reshape_position;
4333 4334
	if (conf->reshape_progress != MaxSector)
		conf->prev_chunk = mddev->chunk_size;
L
Linus Torvalds 已提交
4335

N
NeilBrown 已提交
4336 4337 4338 4339 4340 4341 4342 4343 4344
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
			"raid5: couldn't allocate %dkB for buffers\n", memory);
		goto abort;
	} else
		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
			memory, mdname(mddev));
L
Linus Torvalds 已提交
4345

N
NeilBrown 已提交
4346 4347 4348 4349 4350
	conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
	if (!conf->thread) {
		printk(KERN_ERR
		       "raid5: couldn't allocate thread for %s\n",
		       mdname(mddev));
4351 4352
		goto abort;
	}
N
NeilBrown 已提交
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381

	return conf;

 abort:
	if (conf) {
		shrink_stripes(conf);
		safe_put_page(conf->spare_page);
		kfree(conf->disks);
		kfree(conf->stripe_hashtbl);
		kfree(conf);
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
	int working_disks = 0;
	mdk_rdev_t *rdev;

	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4382
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397

		if (mddev->new_level != mddev->level ||
		    mddev->new_layout != mddev->layout ||
		    mddev->new_chunk != mddev->chunk_size) {
			printk(KERN_ERR "raid5: %s: unsupported reshape "
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4398
		if (sector_div(here_new, (mddev->new_chunk>>9)*
N
NeilBrown 已提交
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
			       (mddev->raid_disks - max_degraded))) {
			printk(KERN_ERR "raid5: reshape_position not "
			       "on a stripe boundary\n");
			return -EINVAL;
		}
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
		sector_div(here_old, (mddev->chunk_size>>9)*
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
		if (here_new >= here_old) {
			/* Reading from the same stripe as writing to - bad */
			printk(KERN_ERR "raid5: reshape_position too early for "
			       "auto-recovery - aborting.\n");
			return -EINVAL;
		}
		printk(KERN_INFO "raid5: reshape will continue\n");
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
		BUG_ON(mddev->chunk_size != mddev->new_chunk);
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4423
	}
N
NeilBrown 已提交
4424

4425 4426 4427 4428 4429
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
	list_for_each_entry(rdev, &mddev->disks, same_set)
		if (rdev->raid_disk >= 0 &&
		    test_bit(In_sync, &rdev->flags))
			working_disks++;

	mddev->degraded = conf->raid_disks - working_disks;

4447
	if (mddev->degraded > conf->max_degraded) {
L
Linus Torvalds 已提交
4448 4449
		printk(KERN_ERR "raid5: not enough operational devices for %s"
			" (%d/%d failed)\n",
4450
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
4451 4452 4453
		goto abort;
	}

N
NeilBrown 已提交
4454 4455 4456 4457
	/* device size must be a multiple of chunk size */
	mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
	mddev->resync_max_sectors = mddev->dev_sectors;

4458
	if (mddev->degraded > 0 &&
L
Linus Torvalds 已提交
4459
	    mddev->recovery_cp != MaxSector) {
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
			       "raid5: starting dirty degraded array: %s"
			       "- data corruption possible.\n",
			       mdname(mddev));
		else {
			printk(KERN_ERR
			       "raid5: cannot start dirty degraded array for %s\n",
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
	}

	if (mddev->degraded == 0)
		printk("raid5: raid level %d set %s active with %d out of %d"
			" devices, algorithm %d\n", conf->level, mdname(mddev), 
			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
			conf->algorithm);
	else
		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
			" out of %d devices, algorithm %d\n", conf->level,
			mdname(mddev), mddev->raid_disks - mddev->degraded,
			mddev->raid_disks, conf->algorithm);

	print_raid5_conf(conf);

4486
	if (conf->reshape_progress != MaxSector) {
4487
		printk("...ok start reshape thread\n");
4488
		conf->reshape_safe = conf->reshape_progress;
4489 4490 4491 4492 4493 4494 4495 4496 4497
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
							"%s_reshape");
	}

L
Linus Torvalds 已提交
4498
	/* read-ahead size must cover two whole stripes, which is
4499
	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
L
Linus Torvalds 已提交
4500 4501
	 */
	{
4502 4503
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
4504
			(mddev->chunk_size / PAGE_SIZE);
L
Linus Torvalds 已提交
4505 4506 4507 4508 4509
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
	}

	/* Ok, everything is just fine now */
4510 4511 4512 4513
	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
		printk(KERN_WARNING
		       "raid5: failed to create sysfs attributes for %s\n",
		       mdname(mddev));
4514

N
NeilBrown 已提交
4515 4516
	mddev->queue->queue_lock = &conf->device_lock;

4517
	mddev->queue->unplug_fn = raid5_unplug_device;
4518
	mddev->queue->backing_dev_info.congested_data = mddev;
4519
	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4520

4521
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4522

4523 4524
	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);

L
Linus Torvalds 已提交
4525 4526
	return 0;
abort:
4527
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
4528
	mddev->thread = NULL;
L
Linus Torvalds 已提交
4529
	if (conf) {
N
NeilBrown 已提交
4530
		shrink_stripes(conf);
L
Linus Torvalds 已提交
4531
		print_raid5_conf(conf);
4532
		safe_put_page(conf->spare_page);
4533
		kfree(conf->disks);
4534
		kfree(conf->stripe_hashtbl);
L
Linus Torvalds 已提交
4535 4536 4537 4538 4539 4540 4541 4542 4543
		kfree(conf);
	}
	mddev->private = NULL;
	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
	return -EIO;
}



4544
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
4545 4546 4547 4548 4549 4550
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
	shrink_stripes(conf);
4551
	kfree(conf->stripe_hashtbl);
4552
	mddev->queue->backing_dev_info.congested_fn = NULL;
L
Linus Torvalds 已提交
4553
	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4554
	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4555
	kfree(conf->disks);
4556
	kfree(conf);
L
Linus Torvalds 已提交
4557 4558 4559 4560
	mddev->private = NULL;
	return 0;
}

4561
#ifdef DEBUG
4562
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
4563 4564 4565
{
	int i;

4566 4567 4568 4569 4570
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4571
	for (i = 0; i < sh->disks; i++) {
4572 4573
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
4574
	}
4575
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
4576 4577
}

4578
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
4579 4580
{
	struct stripe_head *sh;
4581
	struct hlist_node *hn;
L
Linus Torvalds 已提交
4582 4583 4584 4585
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
4586
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
4587 4588
			if (sh->raid_conf != conf)
				continue;
4589
			print_sh(seq, sh);
L
Linus Torvalds 已提交
4590 4591 4592 4593 4594 4595
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

4596
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
4597 4598 4599 4600 4601
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	int i;

	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4602
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
4603 4604 4605
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
4606
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
4607
	seq_printf (seq, "]");
4608
#ifdef DEBUG
4609 4610
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

	printk("RAID5 conf printout:\n");
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
4624 4625
	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
		 conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
4626 4627 4628 4629 4630 4631

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
		printk(" disk %d, o:%d, dev:%s\n",
4632
			i, !test_bit(Faulty, &tmp->rdev->flags),
L
Linus Torvalds 已提交
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
			bdevname(tmp->rdev->bdev,b));
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
4646
		    && !test_bit(Faulty, &tmp->rdev->flags)
4647 4648 4649
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4650
			mddev->degraded--;
4651
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
		}
	}
	print_raid5_conf(conf);
	return 0;
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
4668 4669 4670 4671
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

4672
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
4673 4674 4675 4676
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
4677 4678 4679 4680
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
4681 4682
		    mddev->degraded <= conf->max_degraded &&
		    number < conf->raid_disks) {
4683 4684 4685
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
4686
		p->rdev = NULL;
4687
		synchronize_rcu();
L
Linus Torvalds 已提交
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
4703
	int err = -EEXIST;
L
Linus Torvalds 已提交
4704 4705
	int disk;
	struct disk_info *p;
4706 4707
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
4708

4709
	if (mddev->degraded > conf->max_degraded)
L
Linus Torvalds 已提交
4710
		/* no point adding a device */
4711
		return -EINVAL;
L
Linus Torvalds 已提交
4712

4713 4714
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
4715 4716

	/*
4717 4718
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
4719
	 */
4720
	if (rdev->saved_raid_disk >= 0 &&
4721
	    rdev->saved_raid_disk >= first &&
4722 4723 4724
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
4725 4726
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
4727
		if ((p=conf->disks + disk)->rdev == NULL) {
4728
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
4729
			rdev->raid_disk = disk;
4730
			err = 0;
4731 4732
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
4733
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
4734 4735 4736
			break;
		}
	print_raid5_conf(conf);
4737
	return err;
L
Linus Torvalds 已提交
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4750 4751
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
4752 4753 4754
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
4755
	set_capacity(mddev->gendisk, mddev->array_sectors);
4756
	mddev->changed = 1;
A
Andre Noll 已提交
4757 4758
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
4759 4760
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
4761
	mddev->dev_sectors = sectors;
4762
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
4763 4764 4765
	return 0;
}

4766
#ifdef CONFIG_MD_RAID5_RESHAPE
4767
static int raid5_check_reshape(mddev_t *mddev)
4768 4769 4770
{
	raid5_conf_t *conf = mddev_to_conf(mddev);

4771
	if (mddev->delta_disks == 0)
4772
		return 0; /* nothing to do */
4773 4774 4775
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
	if (mddev->degraded > conf->max_degraded)
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
4790 4791 4792 4793 4794 4795 4796 4797 4798

	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
4799 4800
	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4801
		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4802 4803
		       (max(mddev->chunk_size, mddev->new_chunk)
			/ STRIPE_SIZE)*4);
4804 4805 4806
		return -ENOSPC;
	}

4807
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4808 4809 4810 4811 4812 4813 4814 4815
}

static int raid5_start_reshape(mddev_t *mddev)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	mdk_rdev_t *rdev;
	int spares = 0;
	int added_devices = 0;
4816
	unsigned long flags;
4817

4818
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4819 4820
		return -EBUSY;

4821
	list_for_each_entry(rdev, &mddev->disks, same_set)
4822 4823 4824
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
4825

4826
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4827 4828 4829 4830 4831
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
		printk(KERN_ERR "md: %s: array size must be reduced "
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

4843
	atomic_set(&conf->reshape_stripes, 0);
4844 4845
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
4846
	conf->raid_disks += mddev->delta_disks;
4847 4848 4849 4850 4851
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
4852
	conf->generation++;
4853 4854 4855 4856 4857
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
	 */
4858
	list_for_each_entry(rdev, &mddev->disks, same_set)
4859 4860
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
4861
			if (raid5_add_disk(mddev, rdev) == 0) {
4862 4863 4864
				char nm[20];
				set_bit(In_sync, &rdev->flags);
				added_devices++;
4865
				rdev->recovery_offset = 0;
4866
				sprintf(nm, "rd%d", rdev->raid_disk);
4867 4868 4869 4870 4871 4872
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
					printk(KERN_WARNING
					       "raid5: failed to create "
					       " link %s for %s\n",
					       nm, mdname(mddev));
4873 4874 4875 4876
			} else
				break;
		}

4877 4878 4879 4880 4881 4882
	if (mddev->delta_disks > 0) {
		spin_lock_irqsave(&conf->device_lock, flags);
		mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
4883
	mddev->raid_disks = conf->raid_disks;
4884
	mddev->reshape_position = 0;
4885
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4886

4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
						"%s_reshape");
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4897
		conf->reshape_progress = MaxSector;
4898 4899 4900 4901 4902 4903 4904 4905 4906
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}
#endif

4907 4908 4909
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
4910 4911 4912
static void end_reshape(raid5_conf_t *conf)
{

4913 4914 4915
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
4916
		conf->previous_raid_disks = conf->raid_disks;
4917
		conf->reshape_progress = MaxSector;
4918
		spin_unlock_irq(&conf->device_lock);
4919 4920 4921 4922 4923

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
		{
4924 4925 4926
			int data_disks = conf->raid_disks - conf->max_degraded;
			int stripe = data_disks * (conf->chunk_size
						   / PAGE_SIZE);
4927 4928 4929
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
4930 4931 4932
	}
}

4933 4934 4935
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
4936 4937 4938 4939 4940 4941
static void raid5_finish_reshape(mddev_t *mddev)
{
	struct block_device *bdev;

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
			mddev->changed = 1;

			bdev = bdget_disk(mddev->gendisk, 0);
			if (bdev) {
				mutex_lock(&bdev->bd_inode->i_mutex);
				i_size_write(bdev->bd_inode,
					     (loff_t)mddev->array_sectors << 9);
				mutex_unlock(&bdev->bd_inode->i_mutex);
				bdput(bdev);
			}
		} else {
			int d;
			raid5_conf_t *conf = mddev_to_conf(mddev);
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
			     d++)
				raid5_remove_disk(mddev, d);
4968
		}
4969 4970
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
4971 4972 4973
	}
}

4974 4975 4976 4977 4978
static void raid5_quiesce(mddev_t *mddev, int state)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);

	switch(state) {
4979 4980 4981 4982
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

4983 4984 4985 4986
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 1;
		wait_event_lock_irq(conf->wait_for_stripe,
4987 4988
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
4989 4990 4991 4992 4993 4994 4995 4996
				    conf->device_lock, /* nothing */);
		spin_unlock_irq(&conf->device_lock);
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
4997
		wake_up(&conf->wait_for_overlap);
4998 4999 5000 5001
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5002

5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030

static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
	mddev->new_chunk = chunksect << 9;

	return setup_conf(mddev);
}

5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5064

5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
{
	/* Currently the layout and chunk size can only be changed
	 * for a 2-drive raid array, as in that case no data shuffling
	 * is required.
	 * Later we might validate these and set new_* so a reshape
	 * can complete the change.
	 */
	raid5_conf_t *conf = mddev_to_conf(mddev);

	if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
		return -EINVAL;
	if (new_chunk > 0) {
		if (new_chunk & (new_chunk-1))
			/* not a power of 2 */
			return -EINVAL;
		if (new_chunk < PAGE_SIZE)
			return -EINVAL;
		if (mddev->array_sectors & ((new_chunk>>9)-1))
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

	if (mddev->raid_disks != 2)
		return -EINVAL;

	if (new_layout >= 0) {
		conf->algorithm = new_layout;
		mddev->layout = mddev->new_layout = new_layout;
	}
	if (new_chunk > 0) {
		conf->chunk_size = new_chunk;
		mddev->chunk_size = mddev->new_chunk = new_chunk;
	}
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	md_wakeup_thread(mddev->thread);
	return 0;
}

5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
	 *  raid0 - if all devices are the same - make it a raid4 layout
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 *
	 * For now, just do raid1
	 */

	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5119 5120 5121 5122 5123
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5124 5125
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5126 5127 5128 5129 5130

	return ERR_PTR(-EINVAL);
}


5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5195
	.size		= raid5_size,
5196 5197 5198
#ifdef CONFIG_MD_RAID5_RESHAPE
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5199
	.finish_reshape = raid5_finish_reshape,
5200
#endif
5201
	.quiesce	= raid5_quiesce,
5202
	.takeover	= raid6_takeover,
5203
};
5204
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5205 5206
{
	.name		= "raid5",
5207
	.level		= 5,
L
Linus Torvalds 已提交
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5219
	.size		= raid5_size,
5220
#ifdef CONFIG_MD_RAID5_RESHAPE
5221 5222
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5223
	.finish_reshape = raid5_finish_reshape,
5224
#endif
5225
	.quiesce	= raid5_quiesce,
5226
	.takeover	= raid5_takeover,
5227
	.reconfig	= raid5_reconfig,
L
Linus Torvalds 已提交
5228 5229
};

5230
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5231
{
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5245
	.size		= raid5_size,
5246 5247 5248
#ifdef CONFIG_MD_RAID5_RESHAPE
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5249
	.finish_reshape = raid5_finish_reshape,
5250
#endif
5251 5252 5253 5254 5255
	.quiesce	= raid5_quiesce,
};

static int __init raid5_init(void)
{
5256
	register_md_personality(&raid6_personality);
5257 5258 5259
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5260 5261
}

5262
static void raid5_exit(void)
L
Linus Torvalds 已提交
5263
{
5264
	unregister_md_personality(&raid6_personality);
5265 5266
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5267 5268 5269 5270 5271 5272
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5273 5274
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5275 5276
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5277 5278 5279 5280 5281 5282 5283
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");