raid5.c 168.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include <linux/slab.h>
54
#include "md.h"
55
#include "raid5.h"
56
#include "raid0.h"
57
#include "bitmap.h"
58

L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
68
#define BYPASS_THRESHOLD	1
69
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
70 71
#define HASH_MASK		(NR_HASH - 1)

72
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

94
#ifdef DEBUG
L
Linus Torvalds 已提交
95 96 97 98
#define inline
#define __inline__
#endif

99 100
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

101
/*
102 103
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 105 106
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
107
	return bio->bi_phys_segments & 0xffff;
108 109 110 111
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
112
	return (bio->bi_phys_segments >> 16) & 0xffff;
113 114 115 116 117 118 119 120 121 122 123 124 125
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
126
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 128 129 130 131
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
132
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 134
}

135 136 137
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
138 139 140 141
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
142 143 144 145 146
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
147 148 149 150 151
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
152

153 154 155 156 157
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
158 159
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
160
{
161
	int slot = *count;
162

163
	if (sh->ddf_layout)
164
		(*count)++;
165
	if (idx == sh->pd_idx)
166
		return syndrome_disks;
167
	if (idx == sh->qd_idx)
168
		return syndrome_disks + 1;
169
	if (!sh->ddf_layout)
170
		(*count)++;
171 172 173
	return slot;
}

174 175 176 177 178 179 180 181
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
182
		bio_endio(bi, 0);
183 184 185 186
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
187 188
static void print_raid5_conf (raid5_conf_t *conf);

189 190 191 192 193 194 195
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

196
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
197 198
{
	if (atomic_dec_and_test(&sh->count)) {
199 200
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
201
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
202
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
203
				list_add_tail(&sh->lru, &conf->delayed_list);
204
				plugger_set_plug(&conf->plug);
205
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206
				   sh->bm_seq - conf->seq_write > 0) {
207
				list_add_tail(&sh->lru, &conf->bitmap_list);
208
				plugger_set_plug(&conf->plug);
209
			} else {
210
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
211
				list_add_tail(&sh->lru, &conf->handle_list);
212
			}
L
Linus Torvalds 已提交
213 214
			md_wakeup_thread(conf->mddev->thread);
		} else {
215
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
216 217 218 219 220 221
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
222 223
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
224
				wake_up(&conf->wait_for_stripe);
225 226
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
227
			}
L
Linus Torvalds 已提交
228 229 230
		}
	}
}
231

L
Linus Torvalds 已提交
232 233 234 235
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
236

L
Linus Torvalds 已提交
237 238 239 240 241
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

242
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
243
{
244 245
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
246

247
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
248 249
}

250
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
251
{
252
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
253

254 255
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
256 257

	CHECK_DEVLOCK();
258
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

280
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
281 282 283
{
	struct page *p;
	int i;
284
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
285

286
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
287 288 289 290
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
291
		put_page(p);
L
Linus Torvalds 已提交
292 293 294
	}
}

295
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
296 297
{
	int i;
298
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
299

300
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
301 302 303 304 305 306 307 308 309 310
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

311
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 313
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
314

315
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
316 317
{
	raid5_conf_t *conf = sh->raid_conf;
318
	int i;
L
Linus Torvalds 已提交
319

320 321
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322
	BUG_ON(stripe_operations_active(sh));
323

L
Linus Torvalds 已提交
324
	CHECK_DEVLOCK();
325
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
326 327 328
		(unsigned long long)sh->sector);

	remove_hash(sh);
329

330
	sh->generation = conf->generation - previous;
331
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
332
	sh->sector = sector;
333
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
334 335
	sh->state = 0;

336 337

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
338 339
		struct r5dev *dev = &sh->dev[i];

340
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
341
		    test_bit(R5_LOCKED, &dev->flags)) {
342
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
343
			       (unsigned long long)sh->sector, i, dev->toread,
344
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
345 346 347 348
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
349
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
350 351 352 353
	}
	insert_hash(conf, sh);
}

354 355
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
356 357
{
	struct stripe_head *sh;
358
	struct hlist_node *hn;
L
Linus Torvalds 已提交
359 360

	CHECK_DEVLOCK();
361
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
364
			return sh;
365
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
366 367 368
	return NULL;
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
static int has_failed(raid5_conf_t *conf)
{
	int degraded;
	int i;
	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

L
Linus Torvalds 已提交
436 437
static void unplug_slaves(mddev_t *mddev);

438 439
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
440
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
441 442 443
{
	struct stripe_head *sh;

444
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
445 446 447 448

	spin_lock_irq(&conf->device_lock);

	do {
449
		wait_event_lock_irq(conf->wait_for_stripe,
450
				    conf->quiesce == 0 || noquiesce,
451
				    conf->device_lock, /* nothing */);
452
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
453 454 455 456 457 458 459 460 461
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
462 463
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
464 465
						     || !conf->inactive_blocked),
						    conf->device_lock,
466
						    md_raid5_unplug_device(conf)
L
Linus Torvalds 已提交
467 468 469
					);
				conf->inactive_blocked = 0;
			} else
470
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
471 472
		} else {
			if (atomic_read(&sh->count)) {
473 474
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
475 476 477
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
478 479
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
480 481
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
482 483 484 485 486 487 488 489 490 491 492
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

493 494 495 496
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
497

498
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
499 500 501 502 503 504 505 506 507 508
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
T
Tejun Heo 已提交
509 510 511 512 513 514
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
536
			if (s->syncing || s->expanding || s->expanded)
537 538
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
539 540
			set_bit(STRIPE_IO_STARTED, &sh->state);

541 542
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
543
				__func__, (unsigned long long)sh->sector,
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
580
	struct async_submit_ctl submit;
D
Dan Williams 已提交
581
	enum async_tx_flags flags = 0;
582 583 584 585 586

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
587

D
Dan Williams 已提交
588 589 590 591
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
613
						  b_offset, clen, &submit);
614 615
			else
				tx = async_memcpy(bio_page, page, b_offset,
616
						  page_offset, clen, &submit);
617
		}
618 619 620
		/* chain the operations */
		submit.depend_tx = tx;

621 622 623 624 625 626 627 628 629 630 631 632 633
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
634
	int i;
635

636
	pr_debug("%s: stripe %llu\n", __func__,
637 638 639
		(unsigned long long)sh->sector);

	/* clear completed biofills */
640
	spin_lock_irq(&conf->device_lock);
641 642 643 644
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
645 646
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
647
		 * !STRIPE_BIOFILL_RUN
648 649
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
650 651 652 653 654 655 656 657
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
658
				if (!raid5_dec_bi_phys_segments(rbi)) {
659 660 661 662 663 664 665
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
666 667
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
668 669 670

	return_io(return_bi);

671
	set_bit(STRIPE_HANDLE, &sh->state);
672 673 674 675 676 677 678
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
679
	struct async_submit_ctl submit;
680 681
	int i;

682
	pr_debug("%s: stripe %llu\n", __func__,
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
703 704
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
705 706
}

707
static void mark_target_uptodate(struct stripe_head *sh, int target)
708
{
709
	struct r5dev *tgt;
710

711 712
	if (target < 0)
		return;
713

714
	tgt = &sh->dev[target];
715 716 717
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
718 719
}

720
static void ops_complete_compute(void *stripe_head_ref)
721 722 723
{
	struct stripe_head *sh = stripe_head_ref;

724
	pr_debug("%s: stripe %llu\n", __func__,
725 726
		(unsigned long long)sh->sector);

727
	/* mark the computed target(s) as uptodate */
728
	mark_target_uptodate(sh, sh->ops.target);
729
	mark_target_uptodate(sh, sh->ops.target2);
730

731 732 733
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
734 735 736 737
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

738 739 740 741 742 743 744 745 746
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
747 748
{
	int disks = sh->disks;
749
	struct page **xor_srcs = percpu->scribble;
750 751 752 753 754
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
755
	struct async_submit_ctl submit;
756 757 758
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
759
		__func__, (unsigned long long)sh->sector, target);
760 761 762 763 764 765 766 767
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
768
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
769
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
770
	if (unlikely(count == 1))
771
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
772
	else
773
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
774 775 776 777

	return tx;
}

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
796
		srcs[i] = NULL;
797 798 799 800 801 802 803 804 805 806

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

807
	return syndrome_disks;
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
828
	else
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
845 846
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
847 848 849 850 851 852 853 854 855 856 857
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
858 859
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
860 861 862
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
863 864 865 866

	return tx;
}

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

888
	/* we need to open-code set_syndrome_sources to handle the
889 890 891
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
892
		blocks[i] = NULL;
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
919 920 921
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
922
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
942 943 944 945
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
946 947 948 949
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
950 951 952
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
953 954 955 956
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
957 958 959 960 961 962 963 964 965 966 967 968 969 970
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
971 972 973 974
	}
}


975 976 977 978
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

979
	pr_debug("%s: stripe %llu\n", __func__,
980 981 982 983
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
984 985
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
986 987
{
	int disks = sh->disks;
988
	struct page **xor_srcs = percpu->scribble;
989
	int count = 0, pd_idx = sh->pd_idx, i;
990
	struct async_submit_ctl submit;
991 992 993 994

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

995
	pr_debug("%s: stripe %llu\n", __func__,
996 997 998 999 1000
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
1001
		if (test_bit(R5_Wantdrain, &dev->flags))
1002 1003 1004
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1005
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1006
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1007
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1008 1009 1010 1011 1012

	return tx;
}

static struct dma_async_tx_descriptor *
1013
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1014 1015
{
	int disks = sh->disks;
1016
	int i;
1017

1018
	pr_debug("%s: stripe %llu\n", __func__,
1019 1020 1021 1022 1023 1024
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1025
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1037 1038
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1049
static void ops_complete_reconstruct(void *stripe_head_ref)
1050 1051
{
	struct stripe_head *sh = stripe_head_ref;
1052 1053 1054 1055
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
T
Tejun Heo 已提交
1056
	bool fua = false;
1057

1058
	pr_debug("%s: stripe %llu\n", __func__,
1059 1060
		(unsigned long long)sh->sector);

T
Tejun Heo 已提交
1061 1062 1063
	for (i = disks; i--; )
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);

1064 1065
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1066

T
Tejun Heo 已提交
1067
		if (dev->written || i == pd_idx || i == qd_idx) {
1068
			set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1069 1070 1071
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
		}
1072 1073
	}

1074 1075 1076 1077 1078 1079 1080 1081
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1082 1083 1084 1085 1086 1087

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1088 1089
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1090 1091
{
	int disks = sh->disks;
1092
	struct page **xor_srcs = percpu->scribble;
1093
	struct async_submit_ctl submit;
1094 1095
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1096
	int prexor = 0;
1097 1098
	unsigned long flags;

1099
	pr_debug("%s: stripe %llu\n", __func__,
1100 1101 1102 1103 1104
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1105 1106
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1127
	flags = ASYNC_TX_ACK |
1128 1129 1130 1131
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1132
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1133
			  to_addr_conv(sh, percpu));
1134 1135 1136 1137
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1138 1139
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1157 1158 1159 1160 1161 1162
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1163
	pr_debug("%s: stripe %llu\n", __func__,
1164 1165
		(unsigned long long)sh->sector);

1166
	sh->check_state = check_state_check_result;
1167 1168 1169 1170
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1171
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1172 1173
{
	int disks = sh->disks;
1174 1175 1176
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1177
	struct page **xor_srcs = percpu->scribble;
1178
	struct dma_async_tx_descriptor *tx;
1179
	struct async_submit_ctl submit;
1180 1181
	int count;
	int i;
1182

1183
	pr_debug("%s: stripe %llu\n", __func__,
1184 1185
		(unsigned long long)sh->sector);

1186 1187 1188
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1189
	for (i = disks; i--; ) {
1190 1191 1192
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1193 1194
	}

1195 1196
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1197
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1198
			   &sh->ops.zero_sum_result, &submit);
1199 1200

	atomic_inc(&sh->count);
1201 1202
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1203 1204
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1217 1218

	atomic_inc(&sh->count);
1219 1220 1221 1222
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1223 1224
}

1225
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1226 1227 1228
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1229
	raid5_conf_t *conf = sh->raid_conf;
1230
	int level = conf->level;
1231 1232
	struct raid5_percpu *percpu;
	unsigned long cpu;
1233

1234 1235
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1236
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1237 1238 1239 1240
		ops_run_biofill(sh);
		overlap_clear++;
	}

1241
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1252 1253
			async_tx_ack(tx);
	}
1254

1255
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1256
		tx = ops_run_prexor(sh, percpu, tx);
1257

1258
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1259
		tx = ops_run_biodrain(sh, tx);
1260 1261 1262
		overlap_clear++;
	}

1263 1264 1265 1266 1267 1268
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1269

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1280 1281 1282 1283 1284 1285 1286

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1287
	put_cpu();
1288 1289
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1320
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1321 1322
{
	struct stripe_head *sh;
1323 1324 1325
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
1326
	memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1327 1328
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);
1329 1330 1331
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1332

1333 1334
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1348
	struct kmem_cache *sc;
1349
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1350

1351 1352 1353 1354 1355 1356 1357 1358
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1359 1360
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1361
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1362
			       0, 0, NULL);
L
Linus Torvalds 已提交
1363 1364 1365
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1366
	conf->pool_size = devs;
1367
	while (num--)
1368
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1369 1370 1371
			return 1;
	return 0;
}
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1423
	unsigned long cpu;
1424
	int err;
1425
	struct kmem_cache *sc;
1426 1427 1428 1429 1430
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1431 1432 1433
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1434

1435 1436 1437
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1438
			       0, 0, NULL);
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);
1451 1452 1453
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1476
				    unplug_slaves(conf->mddev)
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1492
	 * conf->disks and the scribble region
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1522 1523 1524 1525
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1526

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1543

1544
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1545 1546 1547
{
	struct stripe_head *sh;

1548 1549 1550 1551 1552
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1553
	BUG_ON(atomic_read(&sh->count));
1554
	shrink_buffers(sh);
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1565 1566
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1567 1568 1569
	conf->slab_cache = NULL;
}

1570
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1571
{
1572
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1573
	raid5_conf_t *conf = sh->raid_conf;
1574
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1575
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1576 1577
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1578 1579 1580 1581 1582 1583


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1584 1585
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1586 1587 1588
		uptodate);
	if (i == disks) {
		BUG();
1589
		return;
L
Linus Torvalds 已提交
1590 1591 1592 1593
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1594
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1595
			rdev = conf->disks[i].rdev;
1596
			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1597 1598 1599 1600 1601
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1602 1603 1604
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1605 1606
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1607
	} else {
1608
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1609
		int retry = 0;
1610 1611
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1612
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1613
		atomic_inc(&rdev->read_errors);
1614
		if (conf->mddev->degraded >= conf->max_degraded)
1615
			printk_rl(KERN_WARNING
1616
				  "md/raid:%s: read error not correctable "
1617 1618 1619 1620 1621
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1622
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1623
			/* Oh, no!!! */
1624
			printk_rl(KERN_WARNING
1625
				  "md/raid:%s: read error NOT corrected!! "
1626 1627 1628 1629 1630
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1631
		else if (atomic_read(&rdev->read_errors)
1632
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1633
			printk(KERN_WARNING
1634
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1635
			       mdname(conf->mddev), bdn);
1636 1637 1638 1639 1640
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1641 1642
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1643
			md_error(conf->mddev, rdev);
1644
		}
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649 1650 1651
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1652
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1653
{
1654
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1655
	raid5_conf_t *conf = sh->raid_conf;
1656
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1657 1658 1659 1660 1661 1662
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1663
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1664 1665 1666 1667
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1668
		return;
L
Linus Torvalds 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1678
	release_stripe(sh);
L
Linus Torvalds 已提交
1679 1680 1681
}


1682
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1683
	
1684
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1700
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1701 1702 1703 1704 1705
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
1706
	raid5_conf_t *conf = mddev->private;
1707
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1708

1709
	if (!test_bit(Faulty, &rdev->flags)) {
1710
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711 1712 1713
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1714
			mddev->degraded++;
1715
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1716 1717 1718
			/*
			 * if recovery was running, make sure it aborts.
			 */
1719
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1720
		}
1721
		set_bit(Faulty, &rdev->flags);
1722
		printk(KERN_ALERT
1723 1724 1725 1726 1727 1728 1729
		       "md/raid:%s: Disk failure on %s, disabling device.\n"
		       KERN_ALERT
		       "md/raid:%s: Operation continuing on %d devices.\n",
		       mdname(mddev),
		       bdevname(rdev->bdev, b),
		       mdname(mddev),
		       conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1730
	}
1731
}
L
Linus Torvalds 已提交
1732 1733 1734 1735 1736

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1737
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1738 1739
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1740
{
N
NeilBrown 已提交
1741
	sector_t stripe, stripe2;
1742
	sector_t chunk_number;
L
Linus Torvalds 已提交
1743
	unsigned int chunk_offset;
1744
	int pd_idx, qd_idx;
1745
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1746
	sector_t new_sector;
1747 1748
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1749 1750
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1751 1752 1753
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1766 1767
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1768
	stripe2 = stripe;
L
Linus Torvalds 已提交
1769 1770 1771
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1772
	pd_idx = qd_idx = ~0;
1773 1774
	switch(conf->level) {
	case 4:
1775
		pd_idx = data_disks;
1776 1777
		break;
	case 5:
1778
		switch (algorithm) {
L
Linus Torvalds 已提交
1779
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1780
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1781
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1782 1783 1784
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1785
			pd_idx = sector_div(stripe2, raid_disks);
1786
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1787 1788 1789
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1790
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1791
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1792 1793
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1794
			pd_idx = sector_div(stripe2, raid_disks);
1795
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1796
			break;
1797 1798 1799 1800 1801 1802 1803
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1804
		default:
1805
			BUG();
1806 1807 1808 1809
		}
		break;
	case 6:

1810
		switch (algorithm) {
1811
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1812
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1813 1814
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1815
				(*dd_idx)++;	/* Q D D D P */
1816 1817
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1818 1819 1820
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1821
			pd_idx = sector_div(stripe2, raid_disks);
1822 1823
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1824
				(*dd_idx)++;	/* Q D D D P */
1825 1826
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1827 1828 1829
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1830
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1831 1832
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1833 1834
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1835
			pd_idx = sector_div(stripe2, raid_disks);
1836 1837
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1838
			break;
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
1854
			pd_idx = sector_div(stripe2, raid_disks);
1855 1856 1857 1858 1859 1860
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1861
			ddf_layout = 1;
1862 1863 1864 1865 1866 1867 1868
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
1869 1870
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1871 1872 1873 1874 1875 1876
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1877
			ddf_layout = 1;
1878 1879 1880 1881
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
1882
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1883 1884
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1885
			ddf_layout = 1;
1886 1887 1888 1889
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
1890
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1891 1892 1893 1894 1895 1896
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
1897
			pd_idx = sector_div(stripe2, raid_disks-1);
1898 1899 1900 1901 1902 1903
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
1904
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1905 1906 1907 1908 1909
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
1910
			pd_idx = sector_div(stripe2, raid_disks-1);
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

1921
		default:
1922
			BUG();
1923 1924
		}
		break;
L
Linus Torvalds 已提交
1925 1926
	}

1927 1928 1929
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1930
		sh->ddf_layout = ddf_layout;
1931
	}
L
Linus Torvalds 已提交
1932 1933 1934 1935 1936 1937 1938 1939
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1940
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1941 1942
{
	raid5_conf_t *conf = sh->raid_conf;
1943 1944
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1945
	sector_t new_sector = sh->sector, check;
1946 1947
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1948 1949
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1950 1951
	sector_t stripe;
	int chunk_offset;
1952 1953
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1954
	sector_t r_sector;
1955
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1956

1957

L
Linus Torvalds 已提交
1958 1959 1960
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

1961 1962 1963 1964 1965
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1966
		switch (algorithm) {
L
Linus Torvalds 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1978 1979 1980 1981 1982
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1983
		default:
1984
			BUG();
1985 1986 1987
		}
		break;
	case 6:
1988
		if (i == sh->qd_idx)
1989
			return 0; /* It is the Q disk */
1990
		switch (algorithm) {
1991 1992
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1993 1994 1995 1996
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2011 2012 2013 2014 2015 2016
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2017
			/* Like left_symmetric, but P is before Q */
2018 2019
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2020 2021 2022 2023 2024 2025
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2041
		default:
2042
			BUG();
2043 2044
		}
		break;
L
Linus Torvalds 已提交
2045 2046 2047
	}

	chunk_number = stripe * data_disks + i;
2048
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2049

2050
	check = raid5_compute_sector(conf, r_sector,
2051
				     previous, &dummy1, &sh2);
2052 2053
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2054 2055
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2056 2057 2058 2059 2060 2061
		return 0;
	}
	return r_sector;
}


2062
static void
2063
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2064
			 int rcw, int expand)
2065 2066
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2067 2068
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
2069 2070 2071 2072 2073 2074 2075

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2076 2077 2078 2079
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2080

2081
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2082 2083 2084 2085 2086 2087

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2088
				set_bit(R5_Wantdrain, &dev->flags);
2089 2090
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2091
				s->locked++;
2092 2093
			}
		}
2094
		if (s->locked + conf->max_degraded == disks)
2095
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2096
				atomic_inc(&conf->pending_full_writes);
2097
	} else {
2098
		BUG_ON(level == 6);
2099 2100 2101
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2102
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2103 2104
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2105
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2106 2107 2108 2109 2110 2111 2112 2113

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2114 2115
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2116 2117
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2118
				s->locked++;
2119 2120 2121 2122
			}
		}
	}

2123
	/* keep the parity disk(s) locked while asynchronous operations
2124 2125 2126 2127
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2128
	s->locked++;
2129

2130 2131 2132 2133 2134 2135 2136 2137 2138
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2139
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2140
		__func__, (unsigned long long)sh->sector,
2141
		s->locked, s->ops_request);
2142
}
2143

L
Linus Torvalds 已提交
2144 2145
/*
 * Each stripe/dev can have one or more bion attached.
2146
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2147 2148 2149 2150 2151 2152
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2153
	int firstwrite=0;
L
Linus Torvalds 已提交
2154

2155
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2156 2157 2158 2159 2160 2161
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
2162
	if (forwrite) {
L
Linus Torvalds 已提交
2163
		bip = &sh->dev[dd_idx].towrite;
2164 2165 2166
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2176
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2177 2178 2179
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2180
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
2181 2182 2183
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

2184
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
2185 2186 2187
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

2188 2189 2190
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
2191
		sh->bm_seq = conf->seq_flush+1;
2192 2193 2194
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

2217 2218
static void end_reshape(raid5_conf_t *conf);

2219 2220
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2221
{
2222
	int sectors_per_chunk =
2223
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2224
	int dd_idx;
2225
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2226
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2227

2228 2229
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2230
			     *sectors_per_chunk + chunk_offset,
2231
			     previous,
2232
			     &dd_idx, sh);
2233 2234
}

2235
static void
2236
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2270
			if (!raid5_dec_bi_phys_segments(bi)) {
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2285
			if (!raid5_dec_bi_phys_segments(bi)) {
2286 2287 2288 2289 2290 2291 2292
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2293 2294 2295 2296 2297 2298
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2309
				if (!raid5_dec_bi_phys_segments(bi)) {
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2322 2323 2324
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2325 2326
}

2327 2328 2329 2330 2331
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2332
 */
2333 2334
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2335 2336 2337 2338 2339 2340
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2341 2342 2343 2344 2345 2346 2347 2348
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2349 2350
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2351 2352
		 */
		if ((s->uptodate == disks - 1) &&
2353
		    (s->failed && disk_idx == s->failed_num)) {
2354 2355
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2356 2357
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
2358
			sh->ops.target2 = -1;
2359 2360
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
2361
			 * of raid_run_ops which services 'compute' operations
2362 2363 2364 2365 2366
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2367
			return 1; /* uptodate + compute == disks */
2368
		} else if (test_bit(R5_Insync, &dev->flags)) {
2369 2370 2371 2372 2373 2374 2375 2376
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2377
	return 0;
2378 2379
}

2380 2381 2382 2383
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2384 2385 2386
			struct stripe_head_state *s, int disks)
{
	int i;
2387 2388 2389 2390 2391

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2392
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2393
	    !sh->reconstruct_state)
2394
		for (i = disks; i--; )
2395
			if (fetch_block5(sh, s, i, disks))
2396
				break;
2397 2398 2399
	set_bit(STRIPE_HANDLE, &sh->state);
}

2400 2401 2402 2403 2404 2405 2406 2407
/* fetch_block6 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill6 to continue
 */
static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
			 struct r6_state *r6s, int disk_idx, int disks)
2408
{
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
				  &sh->dev[r6s->failed_num[1]] };

	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed >= 1 &&
	      (fdev[0]->toread || s->to_write)) ||
	     (s->failed >= 2 &&
	      (fdev[1]->toread || s->to_write)))) {
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
		    (s->failed && (disk_idx == r6s->failed_num[0] ||
				   disk_idx == r6s->failed_num[1]))) {
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2432
			 */
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2454
			}
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2474 2475
		}
	}
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497

	return 0;
}

/**
 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill6(struct stripe_head *sh,
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
			if (fetch_block6(sh, s, r6s, i, disks))
				break;
2498 2499 2500 2501
	set_bit(STRIPE_HANDLE, &sh->state);
}


2502
/* handle_stripe_clean_event
2503 2504 2505 2506
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2507
static void handle_stripe_clean_event(raid5_conf_t *conf,
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2521
				pr_debug("Return write for disc %d\n", i);
2522 2523 2524 2525 2526 2527
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2528
					if (!raid5_dec_bi_phys_segments(wbi)) {
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2546 2547 2548 2549

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2550 2551
}

2552
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2553 2554 2555 2556 2557 2558 2559 2560
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2561 2562
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2563 2564 2565 2566 2567 2568 2569 2570
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2571 2572 2573
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2574 2575 2576 2577
			else
				rcw += 2*disks;
		}
	}
2578
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2579 2580 2581 2582 2583 2584 2585 2586
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2587 2588
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2589 2590 2591
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2592
					pr_debug("Read_old block "
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2610 2611
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2612 2613 2614
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2615
					pr_debug("Read_old block "
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2629 2630
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2631 2632
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2633 2634 2635
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2636 2637 2638
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2639
		schedule_reconstruction(sh, s, rcw == 0, 0);
2640 2641
}

2642
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2643 2644 2645
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
2646
	int rcw = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2647
	int qd_idx = sh->qd_idx;
2648 2649

	set_bit(STRIPE_HANDLE, &sh->state);
2650 2651
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
		/* check if we haven't enough data */
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != pd_idx && i != qd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
			rcw++;
			if (!test_bit(R5_Insync, &dev->flags))
				continue; /* it's a failed drive */

			if (
			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				pr_debug("Read_old stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
			} else {
				pr_debug("Request delayed stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(STRIPE_DELAYED, &sh->state);
				set_bit(STRIPE_HANDLE, &sh->state);
2676 2677 2678 2679 2680 2681
			}
		}
	}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
2682 2683
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    s->locked == 0 && rcw == 0 &&
2684
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2685
		schedule_reconstruction(sh, s, 1, 0);
2686 2687 2688 2689 2690 2691
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2692
	struct r5dev *dev = NULL;
2693

2694
	set_bit(STRIPE_HANDLE, &sh->state);
2695

2696 2697 2698
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2699 2700
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2701 2702
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2703 2704
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2705
			break;
2706
		}
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2717

2718 2719 2720 2721 2722
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2723
		s->locked++;
2724
		set_bit(R5_Wantwrite, &dev->flags);
2725

2726 2727
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2744
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2756
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2757 2758 2759 2760
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2761
				sh->ops.target2 = -1;
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2773 2774 2775 2776 2777
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2778 2779
				  struct stripe_head_state *s,
				  struct r6_state *r6s, int disks)
2780 2781
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2782
	int qd_idx = sh->qd_idx;
2783
	struct r5dev *dev;
2784 2785 2786 2787

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2788

2789 2790 2791 2792 2793 2794
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2795 2796 2797
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2798
		if (s->failed == r6s->q_failed) {
2799
			/* The only possible failed device holds Q, so it
2800 2801 2802
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2803
			sh->check_state = check_state_run;
2804 2805
		}
		if (!r6s->q_failed && s->failed < 2) {
2806
			/* Q is not failed, and we didn't use it to generate
2807 2808
			 * anything, so it makes sense to check it
			 */
2809 2810 2811 2812
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2813 2814
		}

2815 2816
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2817

2818 2819 2820 2821
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2822
		}
2823 2824 2825 2826 2827 2828 2829
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2830 2831
		}

2832 2833 2834 2835 2836
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2837

2838 2839 2840
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2841 2842

		/* now write out any block on a failed drive,
2843
		 * or P or Q if they were recomputed
2844
		 */
2845
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2858
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2859 2860 2861 2862 2863
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2864
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2865 2866 2867 2868 2869 2870 2871 2872
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2948
	struct dma_async_tx_descriptor *tx = NULL;
2949 2950
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2951
		if (i != sh->pd_idx && i != sh->qd_idx) {
2952
			int dd_idx, j;
2953
			struct stripe_head *sh2;
2954
			struct async_submit_ctl submit;
2955

2956
			sector_t bn = compute_blocknr(sh, i, 1);
2957 2958
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2959
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2972 2973

			/* place all the copies on one channel */
2974
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2975
			tx = async_memcpy(sh2->dev[dd_idx].page,
2976
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2977
					  &submit);
2978

2979 2980 2981 2982
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2983
				    (!r6s || j != sh2->qd_idx) &&
2984 2985 2986 2987 2988 2989 2990
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2991

2992
		}
2993 2994 2995 2996 2997
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2998
}
L
Linus Torvalds 已提交
2999

3000

L
Linus Torvalds 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
3017

3018
static void handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
3019 3020
{
	raid5_conf_t *conf = sh->raid_conf;
3021 3022 3023
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
3024
	struct r5dev *dev;
3025
	mdk_rdev_t *blocked_rdev = NULL;
3026
	int prexor;
3027
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
3028

3029
	memset(&s, 0, sizeof(s));
3030 3031 3032 3033
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
3034 3035 3036 3037 3038

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3039 3040 3041
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
3042

3043
	/* Now to look around and see what can be done */
3044
	rcu_read_lock();
L
Linus Torvalds 已提交
3045 3046
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
3047 3048

		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3049

3050 3051 3052 3053 3054 3055 3056
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
3057
		 * ops_complete_biofill is guaranteed to be inactive
3058 3059
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3060
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3061
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3062 3063

		/* now count some things */
3064 3065
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3066
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
3067

3068 3069 3070
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
3071
			s.to_read++;
L
Linus Torvalds 已提交
3072
		if (dev->towrite) {
3073
			s.to_write++;
L
Linus Torvalds 已提交
3074
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3075
				s.non_overwrite++;
L
Linus Torvalds 已提交
3076
		}
3077 3078
		if (dev->written)
			s.written++;
3079
		rdev = rcu_dereference(conf->disks[i].rdev);
3080 3081
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3082 3083 3084
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* could be in-sync depending on recovery/reshape status */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
N
NeilBrown 已提交
3096
			/* The ReadError flag will just be confusing now */
3097 3098 3099
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
3100 3101 3102
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3103 3104
			s.failed++;
			s.failed_num = i;
3105
		}
L
Linus Torvalds 已提交
3106
	}
3107
	rcu_read_unlock();
3108

3109
	if (unlikely(blocked_rdev)) {
3110 3111 3112 3113 3114 3115 3116 3117
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3118 3119
	}

3120 3121 3122 3123
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
3124

3125
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
3126
		" to_write=%d failed=%d failed_num=%d\n",
3127 3128
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
3129 3130 3131
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
3132
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3133
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3134
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
3135 3136
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3137
		s.syncing = 0;
L
Linus Torvalds 已提交
3138 3139 3140 3141 3142 3143
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
3144 3145 3146 3147 3148
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3149
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
3150 3151 3152 3153 3154

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3155
	if (s.to_read || s.non_overwrite ||
3156
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3157
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
3158

3159 3160 3161
	/* Now we check to see if any write operations have recently
	 * completed
	 */
3162
	prexor = 0;
3163
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3164
		prexor = 1;
3165 3166
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3167
		sh->reconstruct_state = reconstruct_state_idle;
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
3179 3180
				if (prexor)
					continue;
3181 3182 3183 3184 3185
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3186 3187
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3188 3189 3190 3191 3192 3193 3194 3195
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3196
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3197
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
3198 3199

	/* maybe we need to check and possibly fix the parity for this stripe
3200 3201 3202
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
3203
	 */
3204 3205
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
3206
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3207
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3208
		handle_parity_checks5(conf, sh, &s, disks);
3209

3210
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
3211 3212 3213
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
3214 3215 3216 3217

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
3218 3219 3220 3221
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3222
		) {
3223
		dev = &sh->dev[s.failed_num];
3224 3225 3226 3227
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3228
			s.locked++;
3229 3230 3231 3232
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3233
			s.locked++;
3234 3235 3236
		}
	}

3237 3238
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
3239
		struct stripe_head *sh2
3240
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3256
		sh->reconstruct_state = reconstruct_state_idle;
3257
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
3258
		for (i = conf->raid_disks; i--; ) {
3259
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
3260
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3261
			s.locked++;
D
Dan Williams 已提交
3262
		}
3263 3264 3265
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3266
	    !sh->reconstruct_state) {
3267 3268
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
3269
		stripe_set_idx(sh->sector, conf, 0, sh);
3270
		schedule_reconstruction(sh, &s, 1, 1);
3271
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3272
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3273
		atomic_dec(&conf->reshape_stripes);
3274 3275 3276 3277
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3278
	if (s.expanding && s.locked == 0 &&
3279
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3280
		handle_stripe_expansion(conf, sh, NULL);
3281

3282
 unlock:
L
Linus Torvalds 已提交
3283 3284
	spin_unlock(&sh->lock);

3285 3286 3287 3288
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3289
	if (s.ops_request)
3290
		raid_run_ops(sh, s.ops_request);
3291

3292
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
3293

3294 3295
	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3296
		 * is waiting on a flush, it won't continue until the writes
3297 3298 3299 3300 3301 3302 3303
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}
3304
	return_io(return_bi);
L
Linus Torvalds 已提交
3305 3306
}

3307
static void handle_stripe6(struct stripe_head *sh)
L
Linus Torvalds 已提交
3308
{
3309
	raid5_conf_t *conf = sh->raid_conf;
3310
	int disks = sh->disks;
3311
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
3312
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3313 3314
	struct stripe_head_state s;
	struct r6_state r6s;
3315
	struct r5dev *dev, *pdev, *qdev;
3316
	mdk_rdev_t *blocked_rdev = NULL;
3317
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
3318

3319
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3320
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3321
	       (unsigned long long)sh->sector, sh->state,
3322 3323
	       atomic_read(&sh->count), pd_idx, qd_idx,
	       sh->check_state, sh->reconstruct_state);
3324
	memset(&s, 0, sizeof(s));
3325

3326 3327 3328 3329
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3330 3331 3332
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3333
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3334 3335

	rcu_read_lock();
3336 3337 3338
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3339

3340
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3341
			i, dev->flags, dev->toread, dev->towrite, dev->written);
3342 3343 3344 3345 3346 3347 3348 3349
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3350

3351
		/* now count some things */
3352 3353
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3354 3355 3356 3357
		if (test_bit(R5_Wantcompute, &dev->flags)) {
			s.compute++;
			BUG_ON(s.compute > 2);
		}
L
Linus Torvalds 已提交
3358

3359 3360 3361
		if (test_bit(R5_Wantfill, &dev->flags)) {
			s.to_fill++;
		} else if (dev->toread)
3362
			s.to_read++;
3363
		if (dev->towrite) {
3364
			s.to_write++;
3365
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3366
				s.non_overwrite++;
3367
		}
3368 3369
		if (dev->written)
			s.written++;
3370
		rdev = rcu_dereference(conf->disks[i].rdev);
3371 3372
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3373 3374 3375
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* in sync if before recovery_offset */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
3387 3388 3389
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3390
		}
3391 3392 3393
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3394 3395 3396
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3397
		}
L
Linus Torvalds 已提交
3398 3399
	}
	rcu_read_unlock();
3400 3401

	if (unlikely(blocked_rdev)) {
3402 3403 3404 3405 3406 3407 3408 3409
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3410
	}
3411

3412 3413 3414 3415 3416
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

3417
	pr_debug("locked=%d uptodate=%d to_read=%d"
3418
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3419 3420 3421 3422
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3423
	 */
3424
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3425
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3426
	if (s.failed > 2 && s.syncing) {
3427 3428
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3429
		s.syncing = 0;
3430 3431 3432 3433 3434 3435 3436
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3437 3438
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3439 3440 3441
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3442 3443 3444

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3445
			     && !test_bit(R5_LOCKED, &pdev->flags)
3446 3447
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3448
			     && !test_bit(R5_LOCKED, &qdev->flags)
3449
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3450
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3451 3452 3453 3454 3455

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3456
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3457
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3458
		handle_stripe_fill6(sh, &s, &r6s, disks);
3459

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	if (sh->reconstruct_state == reconstruct_state_drain_result) {

		sh->reconstruct_state = reconstruct_state_idle;
		/* All the 'written' buffers and the parity blocks are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
			    (i == sh->pd_idx || i == qd_idx ||
			     dev->written)) {
				pr_debug("Writing block %d\n", i);
				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
				set_bit(R5_Wantwrite, &dev->flags);
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == qd_idx) &&
				      s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3485 3486
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3487 3488
	}

3489 3490 3491 3492 3493 3494 3495
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3496
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3497 3498

	/* maybe we need to check and possibly fix the parity for this stripe
3499
	 * Any reads will already have been scheduled, so we just see if enough
3500 3501
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
3502
	 */
3503 3504 3505 3506
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3507
		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3508

3509
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3510 3511 3512 3513 3514 3515 3516
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3517 3518 3519
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3520 3521 3522 3523 3524 3525 3526 3527
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3528
					s.locked++;
3529 3530 3531 3532
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3533
					s.locked++;
3534 3535 3536
				}
			}
		}
3537

3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
3551
		struct stripe_head *sh2
3552
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3568 3569
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3570
		stripe_set_idx(sh->sector, conf, 0, sh);
3571 3572
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3573 3574 3575 3576 3577 3578
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3579
	if (s.expanding && s.locked == 0 &&
3580
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3581
		handle_stripe_expansion(conf, sh, &r6s);
3582

3583
 unlock:
3584 3585
	spin_unlock(&sh->lock);

3586 3587 3588 3589
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3590 3591 3592
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3593
	ops_run_io(sh, &s);
3594

3595 3596 3597

	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3598
		 * is waiting on a flush, it won't continue until the writes
3599 3600 3601 3602 3603 3604 3605 3606
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

D
Dan Williams 已提交
3607
	return_io(return_bi);
3608 3609
}

3610
static void handle_stripe(struct stripe_head *sh)
3611 3612
{
	if (sh->raid_conf->level == 6)
3613
		handle_stripe6(sh);
3614
	else
3615
		handle_stripe5(sh);
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3629
			list_add_tail(&sh->lru, &conf->hold_list);
3630
		}
3631
	} else
3632
		plugger_set_plug(&conf->plug);
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
3651
	raid5_conf_t *conf = mddev->private;
3652
	int i;
3653
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
3654 3655

	rcu_read_lock();
3656
	for (i = 0; i < devs; i++) {
3657 3658
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3659
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3660 3661 3662 3663

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3664
			blk_unplug(r_queue);
3665 3666 3667 3668 3669 3670 3671 3672

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3673
void md_raid5_unplug_device(raid5_conf_t *conf)
3674 3675 3676 3677 3678
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

3679
	if (plugger_remove_plug(&conf->plug)) {
3680 3681
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3682
	}
3683
	md_wakeup_thread(conf->mddev->thread);
L
Linus Torvalds 已提交
3684 3685 3686

	spin_unlock_irqrestore(&conf->device_lock, flags);

3687
	unplug_slaves(conf->mddev);
L
Linus Torvalds 已提交
3688
}
3689
EXPORT_SYMBOL_GPL(md_raid5_unplug_device);
L
Linus Torvalds 已提交
3690

3691 3692 3693
static void raid5_unplug(struct plug_handle *plug)
{
	raid5_conf_t *conf = container_of(plug, raid5_conf_t, plug);
3694
	md_raid5_unplug_device(conf);
3695 3696 3697 3698 3699
}

static void raid5_unplug_queue(struct request_queue *q)
{
	mddev_t *mddev = q->queuedata;
3700
	md_raid5_unplug_device(mddev->private);
L
Linus Torvalds 已提交
3701 3702
}

N
NeilBrown 已提交
3703
int md_raid5_congested(mddev_t *mddev, int bits)
3704
{
3705
	raid5_conf_t *conf = mddev->private;
3706 3707 3708 3709

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3710

3711 3712 3713 3714 3715 3716 3717 3718 3719
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3720 3721 3722 3723 3724 3725 3726 3727 3728
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3729

3730 3731 3732
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3733 3734 3735
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3736 3737
{
	mddev_t *mddev = q->queuedata;
3738
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3739
	int max;
3740
	unsigned int chunk_sectors = mddev->chunk_sectors;
3741
	unsigned int bio_sectors = bvm->bi_size >> 9;
3742

3743
	if ((bvm->bi_rw & 1) == WRITE)
3744 3745
		return biovec->bv_len; /* always allow writes to be mergeable */

3746 3747
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3748 3749 3750 3751 3752 3753 3754 3755
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3756 3757 3758 3759

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3760
	unsigned int chunk_sectors = mddev->chunk_sectors;
3761 3762
	unsigned int bio_sectors = bio->bi_size >> 9;

3763 3764
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3765 3766 3767 3768
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3798
		conf->retry_read_aligned_list = bi->bi_next;
3799
		bi->bi_next = NULL;
3800 3801 3802 3803
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3804 3805 3806 3807 3808 3809 3810
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3811 3812 3813 3814 3815 3816
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3817
static void raid5_align_endio(struct bio *bi, int error)
3818 3819
{
	struct bio* raid_bi  = bi->bi_private;
3820 3821 3822 3823 3824
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3825
	bio_put(bi);
3826 3827 3828

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3829 3830
	mddev = rdev->mddev;
	conf = mddev->private;
3831 3832 3833 3834

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3835
		bio_endio(raid_bi, 0);
3836 3837
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3838
		return;
3839 3840 3841
	}


3842
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3843 3844

	add_bio_to_retry(raid_bi, conf);
3845 3846
}

3847 3848
static int bio_fits_rdev(struct bio *bi)
{
3849
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3850

3851
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3852 3853
		return 0;
	blk_recount_segments(q, bi);
3854
	if (bi->bi_phys_segments > queue_max_segments(q))
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3867
static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3868
{
3869
	raid5_conf_t *conf = mddev->private;
N
NeilBrown 已提交
3870
	int dd_idx;
3871 3872 3873 3874
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3875
		pr_debug("chunk_aligned_read : non aligned\n");
3876 3877 3878
		return 0;
	}
	/*
3879
	 * use bio_clone to make a copy of the bio
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3893 3894
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3895
						    &dd_idx, NULL);
3896 3897 3898 3899 3900 3901

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3902 3903 3904 3905 3906
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3907 3908 3909 3910 3911 3912 3913
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3914 3915 3916 3917 3918 3919 3920
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3921 3922 3923 3924
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3925
		bio_put(align_bi);
3926 3927 3928 3929
		return 0;
	}
}

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3982

3983
static int make_request(mddev_t *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3984
{
3985
	raid5_conf_t *conf = mddev->private;
3986
	int dd_idx;
L
Linus Torvalds 已提交
3987 3988 3989
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3990
	const int rw = bio_data_dir(bi);
3991
	int remaining;
L
Linus Torvalds 已提交
3992

T
Tejun Heo 已提交
3993 3994
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
3995 3996 3997
		return 0;
	}

3998
	md_write_start(mddev, bi);
3999

4000
	if (rw == READ &&
4001
	     mddev->reshape_position == MaxSector &&
4002
	     chunk_aligned_read(mddev,bi))
4003
		return 0;
4004

L
Linus Torvalds 已提交
4005 4006 4007 4008
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4009

L
Linus Torvalds 已提交
4010 4011
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
4012
		int disks, data_disks;
4013
		int previous;
4014

4015
	retry:
4016
		previous = 0;
4017
		disks = conf->raid_disks;
4018
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4019
		if (unlikely(conf->reshape_progress != MaxSector)) {
4020
			/* spinlock is needed as reshape_progress may be
4021 4022
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
4023
			 * Ofcourse reshape_progress could change after
4024 4025 4026 4027
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
4028
			spin_lock_irq(&conf->device_lock);
4029 4030 4031
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
4032
				disks = conf->previous_raid_disks;
4033 4034
				previous = 1;
			} else {
4035 4036 4037
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
4038 4039 4040 4041 4042
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
4043 4044
			spin_unlock_irq(&conf->device_lock);
		}
4045 4046
		data_disks = disks - conf->max_degraded;

4047 4048
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
4049
						  &dd_idx, NULL);
4050
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
4051 4052 4053
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

4054
		sh = get_active_stripe(conf, new_sector, previous,
4055
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
4056
		if (sh) {
4057
			if (unlikely(previous)) {
4058
				/* expansion might have moved on while waiting for a
4059 4060 4061 4062 4063 4064
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4065 4066 4067
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4068 4069 4070
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4071 4072 4073 4074 4075
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4076
					schedule();
4077 4078 4079
					goto retry;
				}
			}
4080

4081 4082
			if (bio_data_dir(bi) == WRITE &&
			    logical_sector >= mddev->suspend_lo &&
4083 4084
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4095 4096
				goto retry;
			}
4097 4098 4099 4100 4101

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4102 4103
				 * and wait a while
				 */
4104
				md_raid5_unplug_device(conf);
L
Linus Torvalds 已提交
4105 4106 4107 4108 4109
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4110 4111
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
T
Tejun Heo 已提交
4112
			if ((bi->bi_rw & REQ_SYNC) &&
4113 4114
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
4125
	remaining = raid5_dec_bi_phys_segments(bi);
4126 4127
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
4128

4129
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4130
			md_write_end(mddev);
4131

4132
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4133
	}
4134

L
Linus Torvalds 已提交
4135 4136 4137
	return 0;
}

D
Dan Williams 已提交
4138 4139
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

4140
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4141
{
4142 4143 4144 4145 4146 4147 4148 4149 4150
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4151
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4152
	struct stripe_head *sh;
4153
	sector_t first_sector, last_sector;
4154 4155 4156
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4157 4158
	int i;
	int dd_idx;
4159
	sector_t writepos, readpos, safepos;
4160
	sector_t stripe_addr;
4161
	int reshape_sectors;
4162
	struct list_head stripes;
4163

4164 4165 4166 4167 4168 4169
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4170
		} else if (mddev->delta_disks >= 0 &&
4171 4172
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4173
		sector_div(sector_nr, new_data_disks);
4174
		if (sector_nr) {
4175 4176
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4177 4178 4179
			*skipped = 1;
			return sector_nr;
		}
4180 4181
	}

4182 4183 4184 4185
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4186 4187
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4188
	else
4189
		reshape_sectors = mddev->chunk_sectors;
4190

4191 4192 4193 4194 4195
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
4196 4197
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
4198
	 */
4199
	writepos = conf->reshape_progress;
4200
	sector_div(writepos, new_data_disks);
4201 4202
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4203
	safepos = conf->reshape_safe;
4204
	sector_div(safepos, data_disks);
4205
	if (mddev->delta_disks < 0) {
4206
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4207
		readpos += reshape_sectors;
4208
		safepos += reshape_sectors;
4209
	} else {
4210
		writepos += reshape_sectors;
4211 4212
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4213
	}
4214

4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4232
	if ((mddev->delta_disks < 0
4233 4234 4235
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4236 4237 4238
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4239
		mddev->reshape_position = conf->reshape_progress;
4240
		mddev->curr_resync_completed = mddev->curr_resync;
4241
		conf->reshape_checkpoint = jiffies;
4242
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4243
		md_wakeup_thread(mddev->thread);
4244
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4245 4246
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4247
		conf->reshape_safe = mddev->reshape_position;
4248 4249
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4250
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4251 4252
	}

4253 4254 4255 4256
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4257 4258
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4259 4260
		       != sector_nr);
	} else {
4261
		BUG_ON(writepos != sector_nr + reshape_sectors);
4262 4263
		stripe_addr = sector_nr;
	}
4264
	INIT_LIST_HEAD(&stripes);
4265
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4266
		int j;
4267
		int skipped_disk = 0;
4268
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4269 4270 4271 4272 4273 4274 4275 4276 4277
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4278
			if (conf->level == 6 &&
4279
			    j == sh->qd_idx)
4280
				continue;
4281
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4282
			if (s < raid5_size(mddev, 0, 0)) {
4283
				skipped_disk = 1;
4284 4285 4286 4287 4288 4289
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4290
		if (!skipped_disk) {
4291 4292 4293
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4294
		list_add(&sh->lru, &stripes);
4295 4296
	}
	spin_lock_irq(&conf->device_lock);
4297
	if (mddev->delta_disks < 0)
4298
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4299
	else
4300
		conf->reshape_progress += reshape_sectors * new_data_disks;
4301 4302 4303 4304 4305 4306 4307
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4308
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4309
				     1, &dd_idx, NULL);
4310
	last_sector =
4311
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4312
					    * new_data_disks - 1),
4313
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4314 4315
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4316
	while (first_sector <= last_sector) {
4317
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4318 4319 4320 4321 4322
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4323 4324 4325 4326 4327 4328 4329 4330
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4331 4332 4333
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4334
	sector_nr += reshape_sectors;
4335 4336
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4337 4338 4339
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4340
		mddev->reshape_position = conf->reshape_progress;
4341
		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4342
		conf->reshape_checkpoint = jiffies;
4343 4344 4345 4346 4347 4348
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4349
		conf->reshape_safe = mddev->reshape_position;
4350 4351
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4352
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4353
	}
4354
	return reshape_sectors;
4355 4356 4357 4358 4359
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
4360
	raid5_conf_t *conf = mddev->private;
4361
	struct stripe_head *sh;
A
Andre Noll 已提交
4362
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
4363
	sector_t sync_blocks;
4364 4365
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4366

4367
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4368 4369
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
4370

4371 4372 4373 4374
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4375 4376 4377 4378

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4379
		else /* completed sync */
4380 4381 4382
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4383 4384
		return 0;
	}
4385

4386 4387 4388
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4389 4390
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4391

4392 4393 4394 4395 4396 4397
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4398
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4399 4400 4401
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4402
	if (mddev->degraded >= conf->max_degraded &&
4403
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4404
		sector_t rv = mddev->dev_sectors - sector_nr;
4405
		*skipped = 1;
L
Linus Torvalds 已提交
4406 4407
		return rv;
	}
4408
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4409
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4410 4411 4412 4413 4414 4415
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4416

N
NeilBrown 已提交
4417 4418 4419

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4420
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4421
	if (sh == NULL) {
4422
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4423
		/* make sure we don't swamp the stripe cache if someone else
4424
		 * is trying to get access
L
Linus Torvalds 已提交
4425
		 */
4426
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4427
	}
4428 4429 4430 4431
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4432
	for (i = 0; i < conf->raid_disks; i++)
4433 4434 4435 4436 4437 4438
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
4439 4440 4441 4442
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

4443
	handle_stripe(sh);
L
Linus Torvalds 已提交
4444 4445 4446 4447 4448
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4462
	int dd_idx;
4463 4464 4465 4466 4467 4468
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4469
	sector = raid5_compute_sector(conf, logical_sector,
4470
				      0, &dd_idx, NULL);
4471 4472 4473
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4474 4475 4476
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4477

4478
		if (scnt < raid5_bi_hw_segments(raid_bio))
4479 4480 4481
			/* already done this stripe */
			continue;

4482
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4483 4484 4485

		if (!sh) {
			/* failed to get a stripe - must wait */
4486
			raid5_set_bi_hw_segments(raid_bio, scnt);
4487 4488 4489 4490 4491
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4492 4493
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4494
			raid5_set_bi_hw_segments(raid_bio, scnt);
4495 4496 4497 4498
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4499
		handle_stripe(sh);
4500 4501 4502 4503
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4504
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4505
	spin_unlock_irq(&conf->device_lock);
4506 4507
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4508 4509 4510 4511 4512 4513
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4514 4515 4516 4517 4518 4519 4520
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4521
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4522 4523
{
	struct stripe_head *sh;
4524
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4525 4526
	int handled;

4527
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4528 4529 4530 4531 4532 4533

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4534
		struct bio *bio;
L
Linus Torvalds 已提交
4535

4536
		if (conf->seq_flush != conf->seq_write) {
4537
			int seq = conf->seq_flush;
4538
			spin_unlock_irq(&conf->device_lock);
4539
			bitmap_unplug(mddev->bitmap);
4540
			spin_lock_irq(&conf->device_lock);
4541 4542 4543 4544
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4555 4556
		sh = __get_priority_stripe(conf);

4557
		if (!sh)
L
Linus Torvalds 已提交
4558 4559 4560 4561
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4562 4563 4564
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4565 4566 4567

		spin_lock_irq(&conf->device_lock);
	}
4568
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4569 4570 4571

	spin_unlock_irq(&conf->device_lock);

4572
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4573 4574
	unplug_slaves(mddev);

4575
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4576 4577
}

4578
static ssize_t
4579
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4580
{
4581
	raid5_conf_t *conf = mddev->private;
4582 4583 4584 4585
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4586 4587
}

4588 4589
int
raid5_set_cache_size(mddev_t *mddev, int size)
4590
{
4591
	raid5_conf_t *conf = mddev->private;
4592 4593
	int err;

4594
	if (size <= 16 || size > 32768)
4595
		return -EINVAL;
4596
	while (size < conf->max_nr_stripes) {
4597 4598 4599 4600 4601
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4602 4603 4604
	err = md_allow_write(mddev);
	if (err)
		return err;
4605
	while (size > conf->max_nr_stripes) {
4606 4607 4608 4609
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev->private;
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4631 4632
	return len;
}
4633

4634 4635 4636 4637
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4638

4639 4640 4641
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4642
	raid5_conf_t *conf = mddev->private;
4643 4644 4645 4646 4647 4648 4649 4650 4651
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4652
	raid5_conf_t *conf = mddev->private;
4653
	unsigned long new;
4654 4655 4656 4657 4658
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4659
	if (strict_strtoul(page, 10, &new))
4660
		return -EINVAL;
4661
	if (new > conf->max_nr_stripes)
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4673
static ssize_t
4674
stripe_cache_active_show(mddev_t *mddev, char *page)
4675
{
4676
	raid5_conf_t *conf = mddev->private;
4677 4678 4679 4680
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4681 4682
}

4683 4684
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4685

4686
static struct attribute *raid5_attrs[] =  {
4687 4688
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4689
	&raid5_preread_bypass_threshold.attr,
4690 4691
	NULL,
};
4692 4693 4694
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4695 4696
};

4697 4698 4699
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4700
	raid5_conf_t *conf = mddev->private;
4701 4702 4703

	if (!sectors)
		sectors = mddev->dev_sectors;
4704
	if (!raid_disks)
4705
		/* size is defined by the smallest of previous and new size */
4706
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4707

4708
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4709
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4710 4711 4712
	return sectors * (raid_disks - conf->max_degraded);
}

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4725
		kfree(percpu->scribble);
4726 4727 4728 4729 4730 4731 4732 4733 4734
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4735 4736 4737
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4738
	raid5_free_percpu(conf);
4739 4740 4741 4742 4743
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4755
		if (conf->level == 6 && !percpu->spare_page)
4756
			percpu->spare_page = alloc_page(GFP_KERNEL);
4757 4758 4759 4760 4761 4762 4763
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4764 4765
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4766
			return notifier_from_errno(-ENOMEM);
4767 4768 4769 4770 4771
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4772
		kfree(percpu->scribble);
4773
		percpu->spare_page = NULL;
4774
		percpu->scribble = NULL;
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
4787
	struct raid5_percpu __percpu *allcpus;
4788
	void *scribble;
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4799 4800 4801 4802 4803 4804 4805 4806
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4807
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4808
		if (!scribble) {
4809 4810 4811
			err = -ENOMEM;
			break;
		}
4812
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4825
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4826 4827
{
	raid5_conf_t *conf;
4828
	int raid_disk, memory, max_disks;
L
Linus Torvalds 已提交
4829 4830 4831
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4832 4833 4834
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4835
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4836 4837
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4838
	}
N
NeilBrown 已提交
4839 4840 4841 4842
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4843
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4844 4845
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4846
	}
N
NeilBrown 已提交
4847
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4848
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4849 4850
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4851 4852
	}

4853 4854 4855
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4856 4857
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4858
		return ERR_PTR(-EINVAL);
4859 4860
	}

N
NeilBrown 已提交
4861 4862
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4863
		goto abort;
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
N
NeilBrown 已提交
4876 4877 4878 4879 4880

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4881
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4882 4883
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4884

4885
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4886 4887 4888
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4889

L
Linus Torvalds 已提交
4890 4891
	conf->mddev = mddev;

4892
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4893 4894
		goto abort;

4895 4896 4897 4898
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4899
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4900

4901
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4902
		raid_disk = rdev->raid_disk;
4903
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4904 4905 4906 4907 4908 4909
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4910
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4911
			char b[BDEVNAME_SIZE];
4912 4913 4914
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4915 4916 4917
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4918 4919
	}

4920
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4921
	conf->level = mddev->new_level;
4922 4923 4924 4925
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4926
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4927
	conf->max_nr_stripes = NR_STRIPES;
4928
	conf->reshape_progress = mddev->reshape_position;
4929
	if (conf->reshape_progress != MaxSector) {
4930
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4931 4932
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4933

N
NeilBrown 已提交
4934
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4935
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4936 4937
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4938 4939
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4940 4941
		goto abort;
	} else
4942 4943
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4944

4945
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4946 4947
	if (!conf->thread) {
		printk(KERN_ERR
4948
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4949
		       mdname(mddev));
4950 4951
		goto abort;
	}
N
NeilBrown 已提交
4952 4953 4954 4955 4956

	return conf;

 abort:
	if (conf) {
4957
		free_conf(conf);
N
NeilBrown 已提交
4958 4959 4960 4961 4962
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

N
NeilBrown 已提交
4990 4991 4992
static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4993
	int working_disks = 0;
4994
	int dirty_parity_disks = 0;
N
NeilBrown 已提交
4995
	mdk_rdev_t *rdev;
4996
	sector_t reshape_offset = 0;
N
NeilBrown 已提交
4997

4998
	if (mddev->recovery_cp != MaxSector)
4999
		printk(KERN_NOTICE "md/raid:%s: not clean"
5000 5001
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
5002 5003 5004 5005 5006 5007 5008 5009
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
5010
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
5011

5012
		if (mddev->new_level != mddev->level) {
5013
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
5024
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
5025
			       (mddev->raid_disks - max_degraded))) {
5026 5027
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
5028 5029
			return -EINVAL;
		}
5030
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
5031 5032
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
5033
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
5034 5035 5036
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
5048 5049 5050
				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
				       " in read-only mode - aborting\n",
				       mdname(mddev));
5051 5052 5053 5054 5055 5056 5057
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
5058
			/* Reading from the same stripe as writing to - bad */
5059 5060 5061
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
5062 5063
			return -EINVAL;
		}
5064 5065
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
5066 5067 5068 5069
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
5070
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
5071
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
5072
	}
N
NeilBrown 已提交
5073

5074 5075 5076 5077 5078
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5089 5090 5091
	list_for_each_entry(rdev, &mddev->disks, same_set) {
		if (rdev->raid_disk < 0)
			continue;
5092
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5093
			working_disks++;
5094 5095
			continue;
		}
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5124

5125 5126
	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
			   - working_disks);
N
NeilBrown 已提交
5127

5128
	if (has_failed(conf)) {
5129
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5130
			" (%d/%d failed)\n",
5131
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5132 5133 5134
		goto abort;
	}

N
NeilBrown 已提交
5135
	/* device size must be a multiple of chunk size */
5136
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5137 5138
	mddev->resync_max_sectors = mddev->dev_sectors;

5139
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5140
	    mddev->recovery_cp != MaxSector) {
5141 5142
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5143 5144
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5145 5146 5147
			       mdname(mddev));
		else {
			printk(KERN_ERR
5148
			       "md/raid:%s: cannot start dirty degraded array.\n",
5149 5150 5151
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5152 5153 5154
	}

	if (mddev->degraded == 0)
5155 5156
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5157 5158
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5159
	else
5160 5161 5162 5163 5164
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5165 5166 5167

	print_raid5_conf(conf);

5168 5169
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5170 5171 5172 5173 5174 5175
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5176
							"reshape");
5177 5178
	}

L
Linus Torvalds 已提交
5179 5180

	/* Ok, everything is just fine now */
5181 5182
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
5183 5184
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5185
		printk(KERN_WARNING
5186
		       "raid5: failed to create sysfs attributes for %s\n",
5187
		       mdname(mddev));
5188
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5189

5190
	plugger_init(&conf->plug, raid5_unplug);
5191
	mddev->plug = &conf->plug;
5192
	if (mddev->queue) {
5193
		int chunk_size;
5194 5195 5196 5197 5198 5199 5200 5201 5202
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
5203

5204
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5205

N
NeilBrown 已提交
5206 5207
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5208 5209
		mddev->queue->queue_lock = &conf->device_lock;
		mddev->queue->unplug_fn = raid5_unplug_queue;
5210

5211 5212 5213 5214
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
5215

5216 5217 5218 5219
		list_for_each_entry(rdev, &mddev->disks, same_set)
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
	}
5220

L
Linus Torvalds 已提交
5221 5222
	return 0;
abort:
5223
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
5224
	mddev->thread = NULL;
L
Linus Torvalds 已提交
5225 5226
	if (conf) {
		print_raid5_conf(conf);
5227
		free_conf(conf);
L
Linus Torvalds 已提交
5228 5229
	}
	mddev->private = NULL;
5230
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5231 5232 5233
	return -EIO;
}

5234
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
5235
{
5236
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5237 5238 5239

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
N
NeilBrown 已提交
5240 5241
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
5242
	plugger_flush(&conf->plug); /* the unplug fn references 'conf'*/
5243
	free_conf(conf);
5244 5245
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5246 5247 5248
	return 0;
}

5249
#ifdef DEBUG
5250
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
5251 5252 5253
{
	int i;

5254 5255 5256 5257 5258
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5259
	for (i = 0; i < sh->disks; i++) {
5260 5261
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
5262
	}
5263
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
5264 5265
}

5266
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
5267 5268
{
	struct stripe_head *sh;
5269
	struct hlist_node *hn;
L
Linus Torvalds 已提交
5270 5271 5272 5273
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
5274
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
5275 5276
			if (sh->raid_conf != conf)
				continue;
5277
			print_sh(seq, sh);
L
Linus Torvalds 已提交
5278 5279 5280 5281 5282 5283
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

5284
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
5285
{
5286
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5287 5288
	int i;

5289 5290
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5291
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5292 5293 5294
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5295
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5296
	seq_printf (seq, "]");
5297
#ifdef DEBUG
5298 5299
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
5300 5301 5302 5303 5304 5305 5306 5307
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

5308
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5309 5310 5311 5312
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5313 5314 5315
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5316 5317 5318 5319 5320

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5321 5322 5323
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5324 5325 5326 5327 5328 5329 5330 5331
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;
5332 5333
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
5334 5335 5336 5337

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
5338
		    && tmp->rdev->recovery_offset == MaxSector
5339
		    && !test_bit(Faulty, &tmp->rdev->flags)
5340
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5341
			count++;
5342
			sysfs_notify_dirent(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
5343 5344
		}
	}
5345 5346 5347
	spin_lock_irqsave(&conf->device_lock, flags);
	mddev->degraded -= count;
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5348
	print_raid5_conf(conf);
5349
	return count;
L
Linus Torvalds 已提交
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
5362 5363 5364 5365
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

5366
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
5367 5368 5369 5370
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
5371 5372 5373 5374
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
5375
		    !has_failed(conf) &&
5376
		    number < conf->raid_disks) {
5377 5378 5379
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
5380
		p->rdev = NULL;
5381
		synchronize_rcu();
L
Linus Torvalds 已提交
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
5397
	int err = -EEXIST;
L
Linus Torvalds 已提交
5398 5399
	int disk;
	struct disk_info *p;
5400 5401
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5402

5403
	if (has_failed(conf))
L
Linus Torvalds 已提交
5404
		/* no point adding a device */
5405
		return -EINVAL;
L
Linus Torvalds 已提交
5406

5407 5408
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5409 5410

	/*
5411 5412
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5413
	 */
5414
	if (rdev->saved_raid_disk >= 0 &&
5415
	    rdev->saved_raid_disk >= first &&
5416 5417 5418
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5419 5420
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5421
		if ((p=conf->disks + disk)->rdev == NULL) {
5422
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5423
			rdev->raid_disk = disk;
5424
			err = 0;
5425 5426
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5427
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5428 5429 5430
			break;
		}
	print_raid5_conf(conf);
5431
	return err;
L
Linus Torvalds 已提交
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5443
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5444 5445
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5446 5447 5448
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5449
	set_capacity(mddev->gendisk, mddev->array_sectors);
5450
	revalidate_disk(mddev->gendisk);
A
Andre Noll 已提交
5451 5452
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5453 5454
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5455
	mddev->dev_sectors = sectors;
5456
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5457 5458 5459
	return 0;
}

5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5475 5476
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5477 5478 5479 5480 5481 5482 5483
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5484
static int check_reshape(mddev_t *mddev)
5485
{
5486
	raid5_conf_t *conf = mddev->private;
5487

5488 5489
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5490
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5491
		return 0; /* nothing to do */
5492 5493 5494
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5495
	if (has_failed(conf))
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5509

5510
	if (!check_stripe_cache(mddev))
5511 5512
		return -ENOSPC;

5513
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5514 5515 5516 5517
}

static int raid5_start_reshape(mddev_t *mddev)
{
5518
	raid5_conf_t *conf = mddev->private;
5519 5520 5521
	mdk_rdev_t *rdev;
	int spares = 0;
	int added_devices = 0;
5522
	unsigned long flags;
5523

5524
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5525 5526
		return -EBUSY;

5527 5528 5529
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5530
	list_for_each_entry(rdev, &mddev->disks, same_set)
5531 5532 5533
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
5534

5535
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5536 5537 5538 5539 5540
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5541 5542 5543 5544 5545 5546
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5547
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5548 5549 5550 5551
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5552
	atomic_set(&conf->reshape_stripes, 0);
5553 5554
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5555
	conf->raid_disks += mddev->delta_disks;
5556 5557
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5558 5559
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5560 5561 5562 5563 5564
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5565
	conf->generation++;
5566 5567 5568 5569
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5570 5571 5572 5573
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5574
	 */
5575 5576
	if (mddev->delta_disks >= 0)
	    list_for_each_entry(rdev, &mddev->disks, same_set)
5577 5578
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
5579
			if (raid5_add_disk(mddev, rdev) == 0) {
5580
				char nm[20];
5581
				if (rdev->raid_disk >= conf->previous_raid_disks) {
5582
					set_bit(In_sync, &rdev->flags);
5583 5584
					added_devices++;
				} else
5585
					rdev->recovery_offset = 0;
5586
				sprintf(nm, "rd%d", rdev->raid_disk);
5587 5588
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
N
NeilBrown 已提交
5589
					/* Failure here is OK */;
5590 5591 5592 5593
			} else
				break;
		}

5594
	/* When a reshape changes the number of devices, ->degraded
5595
	 * is measured against the larger of the pre and post number of
5596
	 * devices.*/
5597 5598
	if (mddev->delta_disks > 0) {
		spin_lock_irqsave(&conf->device_lock, flags);
5599
		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5600 5601 5602
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5603
	mddev->raid_disks = conf->raid_disks;
5604
	mddev->reshape_position = conf->reshape_progress;
5605
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5606

5607 5608 5609 5610 5611
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5612
						"reshape");
5613 5614 5615 5616
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5617
		conf->reshape_progress = MaxSector;
5618 5619 5620
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5621
	conf->reshape_checkpoint = jiffies;
5622 5623 5624 5625 5626
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5627 5628 5629
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5630 5631 5632
static void end_reshape(raid5_conf_t *conf)
{

5633 5634 5635
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5636
		conf->previous_raid_disks = conf->raid_disks;
5637
		conf->reshape_progress = MaxSector;
5638
		spin_unlock_irq(&conf->device_lock);
5639
		wake_up(&conf->wait_for_overlap);
5640 5641 5642 5643

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5644
		if (conf->mddev->queue) {
5645
			int data_disks = conf->raid_disks - conf->max_degraded;
5646
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5647
						   / PAGE_SIZE);
5648 5649 5650
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5651 5652 5653
	}
}

5654 5655 5656
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5657 5658
static void raid5_finish_reshape(mddev_t *mddev)
{
5659
	raid5_conf_t *conf = mddev->private;
5660 5661 5662

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5663 5664 5665
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5666
			revalidate_disk(mddev->gendisk);
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5677 5678 5679 5680 5681 5682 5683 5684 5685
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
					char nm[20];
					sprintf(nm, "rd%d", rdev->raid_disk);
					sysfs_remove_link(&mddev->kobj, nm);
					rdev->raid_disk = -1;
				}
			}
5686
		}
5687
		mddev->layout = conf->algorithm;
5688
		mddev->chunk_sectors = conf->chunk_sectors;
5689 5690
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5691 5692 5693
	}
}

5694 5695
static void raid5_quiesce(mddev_t *mddev, int state)
{
5696
	raid5_conf_t *conf = mddev->private;
5697 5698

	switch(state) {
5699 5700 5701 5702
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5703 5704
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5705 5706 5707 5708
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5709
		wait_event_lock_irq(conf->wait_for_stripe,
5710 5711
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5712
				    conf->device_lock, /* nothing */);
5713
		conf->quiesce = 1;
5714
		spin_unlock_irq(&conf->device_lock);
5715 5716
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5717 5718 5719 5720 5721 5722
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5723
		wake_up(&conf->wait_for_overlap);
5724 5725 5726 5727
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5728

5729

D
Dan Williams 已提交
5730
static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5731
{
D
Dan Williams 已提交
5732
	struct raid0_private_data *raid0_priv = mddev->private;
5733

D
Dan Williams 已提交
5734 5735
	/* for raid0 takeover only one zone is supported */
	if (raid0_priv->nr_strip_zones > 1) {
5736 5737
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5738 5739 5740 5741
		return ERR_PTR(-EINVAL);
	}

	mddev->new_level = level;
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5775
	mddev->new_chunk_sectors = chunksect;
5776 5777 5778 5779

	return setup_conf(mddev);
}

5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5813

5814
static int raid5_check_reshape(mddev_t *mddev)
5815
{
5816 5817 5818 5819
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5820
	 */
5821
	raid5_conf_t *conf = mddev->private;
5822
	int new_chunk = mddev->new_chunk_sectors;
5823

5824
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5825 5826
		return -EINVAL;
	if (new_chunk > 0) {
5827
		if (!is_power_of_2(new_chunk))
5828
			return -EINVAL;
5829
		if (new_chunk < (PAGE_SIZE>>9))
5830
			return -EINVAL;
5831
		if (mddev->array_sectors & (new_chunk-1))
5832 5833 5834 5835 5836 5837
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5838
	if (mddev->raid_disks == 2) {
5839 5840 5841 5842
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5843 5844
		}
		if (new_chunk > 0) {
5845 5846
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5847 5848 5849
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5850
	}
5851
	return check_reshape(mddev);
5852 5853
}

5854
static int raid6_check_reshape(mddev_t *mddev)
5855
{
5856
	int new_chunk = mddev->new_chunk_sectors;
5857

5858
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5859
		return -EINVAL;
5860
	if (new_chunk > 0) {
5861
		if (!is_power_of_2(new_chunk))
5862
			return -EINVAL;
5863
		if (new_chunk < (PAGE_SIZE >> 9))
5864
			return -EINVAL;
5865
		if (mddev->array_sectors & (new_chunk-1))
5866 5867
			/* not factor of array size */
			return -EINVAL;
5868
	}
5869 5870

	/* They look valid */
5871
	return check_reshape(mddev);
5872 5873
}

5874 5875 5876
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
D
Dan Williams 已提交
5877
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5878 5879 5880 5881
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5882 5883
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5884 5885
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5886 5887 5888 5889 5890
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5891 5892
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5893 5894 5895 5896

	return ERR_PTR(-EINVAL);
}

5897 5898
static void *raid4_takeover(mddev_t *mddev)
{
D
Dan Williams 已提交
5899 5900 5901
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5902
	 */
D
Dan Williams 已提交
5903 5904
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5905 5906 5907 5908 5909 5910 5911 5912
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5913

5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5978
	.size		= raid5_size,
5979
	.check_reshape	= raid6_check_reshape,
5980
	.start_reshape  = raid5_start_reshape,
5981
	.finish_reshape = raid5_finish_reshape,
5982
	.quiesce	= raid5_quiesce,
5983
	.takeover	= raid6_takeover,
5984
};
5985
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5986 5987
{
	.name		= "raid5",
5988
	.level		= 5,
L
Linus Torvalds 已提交
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6000
	.size		= raid5_size,
6001 6002
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6003
	.finish_reshape = raid5_finish_reshape,
6004
	.quiesce	= raid5_quiesce,
6005
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
6006 6007
};

6008
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
6009
{
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
6023
	.size		= raid5_size,
6024 6025
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
6026
	.finish_reshape = raid5_finish_reshape,
6027
	.quiesce	= raid5_quiesce,
6028
	.takeover	= raid4_takeover,
6029 6030 6031 6032
};

static int __init raid5_init(void)
{
6033
	register_md_personality(&raid6_personality);
6034 6035 6036
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
6037 6038
}

6039
static void raid5_exit(void)
L
Linus Torvalds 已提交
6040
{
6041
	unregister_md_personality(&raid6_personality);
6042 6043
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
6044 6045 6046 6047 6048
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
6049
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
6050
MODULE_ALIAS("md-personality-4"); /* RAID5 */
6051 6052
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
6053 6054
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
6055 6056 6057 6058 6059 6060 6061
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");