raid5.c 152.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/seq_file.h>
51
#include <linux/cpu.h>
52
#include "md.h"
53
#include "raid5.h"
54
#include "bitmap.h"
55

L
Linus Torvalds 已提交
56 57 58 59 60 61 62 63 64
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
65
#define BYPASS_THRESHOLD	1
66
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
67 68
#define HASH_MASK		(NR_HASH - 1)

69
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

91
#ifdef DEBUG
L
Linus Torvalds 已提交
92 93 94 95
#define inline
#define __inline__
#endif

96 97
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

98
/*
99 100
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 102 103
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
104
	return bio->bi_phys_segments & 0xffff;
105 106 107 108
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
109
	return (bio->bi_phys_segments >> 16) & 0xffff;
110 111 112 113 114 115 116 117 118 119 120 121 122
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
123
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 125 126 127 128
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
129
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
130 131
}

132 133 134
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
135 136 137 138
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
139 140 141 142 143
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
144 145 146 147 148
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
149

150 151 152 153 154
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
155 156
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
157 158
{
	int slot;
159

160
	if (idx == sh->pd_idx)
161
		return syndrome_disks;
162
	if (idx == sh->qd_idx)
163
		return syndrome_disks + 1;
164 165 166 167
	slot = (*count)++;
	return slot;
}

168 169 170 171 172 173 174 175
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
176
		bio_endio(bi, 0);
177 178 179 180
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
181 182
static void print_raid5_conf (raid5_conf_t *conf);

183 184 185 186 187 188 189
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

190
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
191 192
{
	if (atomic_dec_and_test(&sh->count)) {
193 194
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
195
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
196
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
197
				list_add_tail(&sh->lru, &conf->delayed_list);
198 199
				blk_plug_device(conf->mddev->queue);
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
200
				   sh->bm_seq - conf->seq_write > 0) {
201
				list_add_tail(&sh->lru, &conf->bitmap_list);
202 203
				blk_plug_device(conf->mddev->queue);
			} else {
204
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
205
				list_add_tail(&sh->lru, &conf->handle_list);
206
			}
L
Linus Torvalds 已提交
207 208
			md_wakeup_thread(conf->mddev->thread);
		} else {
209
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
210 211 212 213 214 215
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
216 217
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
218
				wake_up(&conf->wait_for_stripe);
219 220
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
221
			}
L
Linus Torvalds 已提交
222 223 224
		}
	}
}
225

L
Linus Torvalds 已提交
226 227 228 229
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
230

L
Linus Torvalds 已提交
231 232 233 234 235
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

236
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
237
{
238 239
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
240

241
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
242 243
}

244
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
245
{
246
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
247

248 249
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
250 251

	CHECK_DEVLOCK();
252
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

static void shrink_buffers(struct stripe_head *sh, int num)
{
	struct page *p;
	int i;

	for (i=0; i<num ; i++) {
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
284
		put_page(p);
L
Linus Torvalds 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	}
}

static int grow_buffers(struct stripe_head *sh, int num)
{
	int i;

	for (i=0; i<num; i++) {
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

303
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
304 305
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
306

307
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
308 309
{
	raid5_conf_t *conf = sh->raid_conf;
310
	int i;
L
Linus Torvalds 已提交
311

312 313
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
314
	BUG_ON(stripe_operations_active(sh));
315

L
Linus Torvalds 已提交
316
	CHECK_DEVLOCK();
317
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
318 319 320
		(unsigned long long)sh->sector);

	remove_hash(sh);
321

322
	sh->generation = conf->generation - previous;
323
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
324
	sh->sector = sector;
325
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
326 327
	sh->state = 0;

328 329

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
330 331
		struct r5dev *dev = &sh->dev[i];

332
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
333
		    test_bit(R5_LOCKED, &dev->flags)) {
334
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
335
			       (unsigned long long)sh->sector, i, dev->toread,
336
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
337 338 339 340
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
341
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
342 343 344 345
	}
	insert_hash(conf, sh);
}

346 347
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
348 349
{
	struct stripe_head *sh;
350
	struct hlist_node *hn;
L
Linus Torvalds 已提交
351 352

	CHECK_DEVLOCK();
353
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
354
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
355
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
356
			return sh;
357
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
358 359 360 361
	return NULL;
}

static void unplug_slaves(mddev_t *mddev);
362
static void raid5_unplug_device(struct request_queue *q);
L
Linus Torvalds 已提交
363

364 365 366
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
		  int previous, int noblock)
L
Linus Torvalds 已提交
367 368 369
{
	struct stripe_head *sh;

370
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
371 372 373 374

	spin_lock_irq(&conf->device_lock);

	do {
375 376 377
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
378
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
379 380 381 382 383 384 385 386 387
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
388 389
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
390 391
						     || !conf->inactive_blocked),
						    conf->device_lock,
392
						    raid5_unplug_device(conf->mddev->queue)
L
Linus Torvalds 已提交
393 394 395
					);
				conf->inactive_blocked = 0;
			} else
396
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
397 398
		} else {
			if (atomic_read(&sh->count)) {
399 400
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
401 402 403
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
404 405
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
406 407
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
408 409 410 411 412 413 414 415 416 417 418
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

419 420 421 422
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
423

424
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
			rw = WRITE;
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
459
			if (s->syncing || s->expanding || s->expanded)
460 461
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
462 463
			set_bit(STRIPE_IO_STARTED, &sh->state);

464 465
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
466
				__func__, (unsigned long long)sh->sector,
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
503
	struct async_submit_ctl submit;
504 505 506 507 508

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
509 510

	init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
532
						  b_offset, clen, &submit);
533 534
			else
				tx = async_memcpy(bio_page, page, b_offset,
535
						  page_offset, clen, &submit);
536
		}
537 538 539
		/* chain the operations */
		submit.depend_tx = tx;

540 541 542 543 544 545 546 547 548 549 550 551 552
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
553
	int i;
554

555
	pr_debug("%s: stripe %llu\n", __func__,
556 557 558
		(unsigned long long)sh->sector);

	/* clear completed biofills */
559
	spin_lock_irq(&conf->device_lock);
560 561 562 563
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
564 565
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
566
		 * !STRIPE_BIOFILL_RUN
567 568
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
569 570 571 572 573 574 575 576
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
577
				if (!raid5_dec_bi_phys_segments(rbi)) {
578 579 580 581 582 583 584
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
585 586
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
587 588 589

	return_io(return_bi);

590
	set_bit(STRIPE_HANDLE, &sh->state);
591 592 593 594 595 596 597
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
598
	struct async_submit_ctl submit;
599 600
	int i;

601
	pr_debug("%s: stripe %llu\n", __func__,
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
622 623
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
624 625 626 627 628 629 630 631
}

static void ops_complete_compute5(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];

632
	pr_debug("%s: stripe %llu\n", __func__,
633 634 635 636 637
		(unsigned long long)sh->sector);

	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
638 639 640
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
641 642 643 644
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

645 646 647 648 649 650 651 652 653
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
654 655
{
	int disks = sh->disks;
656
	struct page **xor_srcs = percpu->scribble;
657 658 659 660 661
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
662
	struct async_submit_ctl submit;
663 664 665
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
666
		__func__, (unsigned long long)sh->sector, target);
667 668 669 670 671 672 673 674
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

675
	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
676
			  ops_complete_compute5, sh, to_addr_conv(sh, percpu));
677
	if (unlikely(count == 1))
678
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
679
	else
680
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
681 682 683 684 685 686 687 688

	return tx;
}

static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

689
	pr_debug("%s: stripe %llu\n", __func__,
690 691 692 693
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
694 695
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
696 697
{
	int disks = sh->disks;
698
	struct page **xor_srcs = percpu->scribble;
699
	int count = 0, pd_idx = sh->pd_idx, i;
700
	struct async_submit_ctl submit;
701 702 703 704

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

705
	pr_debug("%s: stripe %llu\n", __func__,
706 707 708 709 710
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
711
		if (test_bit(R5_Wantdrain, &dev->flags))
712 713 714
			xor_srcs[count++] = dev->page;
	}

715
	init_async_submit(&submit, ASYNC_TX_XOR_DROP_DST, tx,
716
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
717
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
718 719 720 721 722

	return tx;
}

static struct dma_async_tx_descriptor *
723
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
724 725
{
	int disks = sh->disks;
726
	int i;
727

728
	pr_debug("%s: stripe %llu\n", __func__,
729 730 731 732 733 734
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

735
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

static void ops_complete_postxor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	int disks = sh->disks, i, pd_idx = sh->pd_idx;

762
	pr_debug("%s: stripe %llu\n", __func__,
763 764 765 766 767 768 769 770
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (dev->written || i == pd_idx)
			set_bit(R5_UPTODATE, &dev->flags);
	}

771 772 773 774 775 776 777 778
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
779 780 781 782 783 784

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
785 786
ops_run_postxor(struct stripe_head *sh, struct raid5_percpu *percpu,
		struct dma_async_tx_descriptor *tx)
787 788
{
	int disks = sh->disks;
789
	struct page **xor_srcs = percpu->scribble;
790
	struct async_submit_ctl submit;
791 792
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
793
	int prexor = 0;
794 795
	unsigned long flags;

796
	pr_debug("%s: stripe %llu\n", __func__,
797 798 799 800 801
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
802 803
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
824
	flags = ASYNC_TX_ACK |
825 826 827 828
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

829 830
	init_async_submit(&submit, flags, tx, ops_complete_postxor, sh,
			  to_addr_conv(sh, percpu));
831 832 833 834
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
835 836 837 838 839 840
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

841
	pr_debug("%s: stripe %llu\n", __func__,
842 843
		(unsigned long long)sh->sector);

844
	sh->check_state = check_state_check_result;
845 846 847 848
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

849
static void ops_run_check(struct stripe_head *sh, struct raid5_percpu *percpu)
850 851
{
	int disks = sh->disks;
852
	struct page **xor_srcs = percpu->scribble;
853
	struct dma_async_tx_descriptor *tx;
854
	struct async_submit_ctl submit;
855 856 857 858

	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

859
	pr_debug("%s: stripe %llu\n", __func__,
860 861 862 863 864 865 866 867
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (i != pd_idx)
			xor_srcs[count++] = dev->page;
	}

868 869
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
870
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
871
			   &sh->ops.zero_sum_result, &submit);
872 873

	atomic_inc(&sh->count);
874 875
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
876 877
}

878
static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
879 880 881
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
882 883 884
	raid5_conf_t *conf = sh->raid_conf;
	struct raid5_percpu *percpu;
	unsigned long cpu;
885

886 887
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
888
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
889 890 891 892
		ops_run_biofill(sh);
		overlap_clear++;
	}

893
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
894
		tx = ops_run_compute5(sh, percpu);
895 896 897 898
		/* terminate the chain if postxor is not set to be run */
		if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
			async_tx_ack(tx);
	}
899

900
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
901
		tx = ops_run_prexor(sh, percpu, tx);
902

903
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
904
		tx = ops_run_biodrain(sh, tx);
905 906 907
		overlap_clear++;
	}

908
	if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
909
		ops_run_postxor(sh, percpu, tx);
910

911
	if (test_bit(STRIPE_OP_CHECK, &ops_request))
912
		ops_run_check(sh, percpu);
913 914 915 916 917 918 919

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
920
	put_cpu();
921 922
}

923
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
924 925
{
	struct stripe_head *sh;
926 927 928 929 930 931 932 933 934 935 936 937
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);

	if (grow_buffers(sh, conf->raid_disks)) {
		shrink_buffers(sh, conf->raid_disks);
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
938
	sh->disks = conf->raid_disks;
939 940 941 942 943 944 945 946 947 948
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
949
	struct kmem_cache *sc;
L
Linus Torvalds 已提交
950 951
	int devs = conf->raid_disks;

952 953 954 955
	sprintf(conf->cache_name[0],
		"raid%d-%s", conf->level, mdname(conf->mddev));
	sprintf(conf->cache_name[1],
		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
956 957
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
958
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
959
			       0, 0, NULL);
L
Linus Torvalds 已提交
960 961 962
	if (!sc)
		return 1;
	conf->slab_cache = sc;
963
	conf->pool_size = devs;
964
	while (num--)
965
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
966 967 968
			return 1;
	return 0;
}
969

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1020
	unsigned long cpu;
1021
	int err;
1022
	struct kmem_cache *sc;
1023 1024 1025 1026 1027
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1028 1029 1030
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1031

1032 1033 1034
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1035
			       0, 0, NULL);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1070
				    unplug_slaves(conf->mddev)
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1086
	 * conf->disks and the scribble region
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1116 1117 1118 1119
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1137

1138
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1139 1140 1141
{
	struct stripe_head *sh;

1142 1143 1144 1145 1146
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1147
	BUG_ON(atomic_read(&sh->count));
1148
	shrink_buffers(sh, conf->pool_size);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1159 1160
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1161 1162 1163
	conf->slab_cache = NULL;
}

1164
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1165
{
1166
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1167
	raid5_conf_t *conf = sh->raid_conf;
1168
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1169
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1170 1171
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1172 1173 1174 1175 1176 1177


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1178 1179
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1180 1181 1182
		uptodate);
	if (i == disks) {
		BUG();
1183
		return;
L
Linus Torvalds 已提交
1184 1185 1186 1187
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1188
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1189
			rdev = conf->disks[i].rdev;
1190 1191 1192 1193 1194 1195
			printk_rl(KERN_INFO "raid5:%s: read error corrected"
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1196 1197 1198
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1199 1200
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1201
	} else {
1202
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1203
		int retry = 0;
1204 1205
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1206
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1207
		atomic_inc(&rdev->read_errors);
1208
		if (conf->mddev->degraded)
1209 1210 1211 1212 1213 1214 1215
			printk_rl(KERN_WARNING
				  "raid5:%s: read error not correctable "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1216
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1217
			/* Oh, no!!! */
1218 1219 1220 1221 1222 1223 1224
			printk_rl(KERN_WARNING
				  "raid5:%s: read error NOT corrected!! "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1225
		else if (atomic_read(&rdev->read_errors)
1226
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1227
			printk(KERN_WARNING
1228 1229
			       "raid5:%s: Too many read errors, failing device %s.\n",
			       mdname(conf->mddev), bdn);
1230 1231 1232 1233 1234
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1235 1236
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1237
			md_error(conf->mddev, rdev);
1238
		}
L
Linus Torvalds 已提交
1239 1240 1241 1242 1243 1244 1245
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1246
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1247
{
1248
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1249
	raid5_conf_t *conf = sh->raid_conf;
1250
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1251 1252 1253 1254 1255 1256
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1257
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1258 1259 1260 1261
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1262
		return;
L
Linus Torvalds 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1272
	release_stripe(sh);
L
Linus Torvalds 已提交
1273 1274 1275
}


1276
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1277
	
1278
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1294
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1295 1296 1297 1298 1299 1300
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1301
	pr_debug("raid5: error called\n");
L
Linus Torvalds 已提交
1302

1303
	if (!test_bit(Faulty, &rdev->flags)) {
1304
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1305 1306 1307
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1308
			mddev->degraded++;
1309
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1310 1311 1312
			/*
			 * if recovery was running, make sure it aborts.
			 */
1313
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1314
		}
1315
		set_bit(Faulty, &rdev->flags);
1316 1317 1318 1319
		printk(KERN_ALERT
		       "raid5: Disk failure on %s, disabling device.\n"
		       "raid5: Operation continuing on %d devices.\n",
		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1320
	}
1321
}
L
Linus Torvalds 已提交
1322 1323 1324 1325 1326

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1327
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1328 1329
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1330 1331 1332 1333
{
	long stripe;
	unsigned long chunk_number;
	unsigned int chunk_offset;
1334
	int pd_idx, qd_idx;
1335
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1336
	sector_t new_sector;
1337 1338
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1339 1340
	int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
					 : (conf->chunk_size >> 9);
1341 1342 1343
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;
	BUG_ON(r_sector != chunk_number);

	/*
	 * Compute the stripe number
	 */
	stripe = chunk_number / data_disks;

	/*
	 * Compute the data disk and parity disk indexes inside the stripe
	 */
	*dd_idx = chunk_number % data_disks;

	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1367
	pd_idx = qd_idx = ~0;
1368 1369
	switch(conf->level) {
	case 4:
1370
		pd_idx = data_disks;
1371 1372
		break;
	case 5:
1373
		switch (algorithm) {
L
Linus Torvalds 已提交
1374
		case ALGORITHM_LEFT_ASYMMETRIC:
1375 1376
			pd_idx = data_disks - stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1377 1378 1379
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1380 1381
			pd_idx = stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1382 1383 1384
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1385 1386
			pd_idx = data_disks - stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1387 1388
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1389 1390
			pd_idx = stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1391
			break;
1392 1393 1394 1395 1396 1397 1398
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1399
		default:
N
NeilBrown 已提交
1400
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1401
				algorithm);
1402
			BUG();
1403 1404 1405 1406
		}
		break;
	case 6:

1407
		switch (algorithm) {
1408
		case ALGORITHM_LEFT_ASYMMETRIC:
1409 1410 1411
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1412
				(*dd_idx)++;	/* Q D D D P */
1413 1414
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1415 1416 1417
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1418 1419 1420
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1421
				(*dd_idx)++;	/* Q D D D P */
1422 1423
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1424 1425 1426
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1427 1428 1429
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1430 1431
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1432 1433 1434
			pd_idx = stripe % raid_disks;
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1435
			break;
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1458
			ddf_layout = 1;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1473
			ddf_layout = 1;
1474 1475 1476 1477 1478 1479 1480
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1481
			ddf_layout = 1;
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
			pd_idx = data_disks - stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
			pd_idx = data_disks - stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;


1518
		default:
1519
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1520
			       algorithm);
1521
			BUG();
1522 1523
		}
		break;
L
Linus Torvalds 已提交
1524 1525
	}

1526 1527 1528
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1529
		sh->ddf_layout = ddf_layout;
1530
	}
L
Linus Torvalds 已提交
1531 1532 1533 1534 1535 1536 1537 1538
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1539
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1540 1541
{
	raid5_conf_t *conf = sh->raid_conf;
1542 1543
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1544
	sector_t new_sector = sh->sector, check;
1545 1546
	int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
					 : (conf->chunk_size >> 9);
1547 1548
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1549 1550
	sector_t stripe;
	int chunk_offset;
1551
	int chunk_number, dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1552
	sector_t r_sector;
1553
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1554

1555

L
Linus Torvalds 已提交
1556 1557 1558 1559
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;
	BUG_ON(new_sector != stripe);

1560 1561 1562 1563 1564
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1565
		switch (algorithm) {
L
Linus Torvalds 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1577 1578 1579 1580 1581
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1582
		default:
N
NeilBrown 已提交
1583
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1584
			       algorithm);
1585
			BUG();
1586 1587 1588
		}
		break;
	case 6:
1589
		if (i == sh->qd_idx)
1590
			return 0; /* It is the Q disk */
1591
		switch (algorithm) {
1592 1593
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1594 1595 1596 1597
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
			else if (i > sh->pd_idx)
				i -= 2; /* D D Q P D */
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
1637
		default:
1638
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1639
			       algorithm);
1640
			BUG();
1641 1642
		}
		break;
L
Linus Torvalds 已提交
1643 1644 1645 1646 1647
	}

	chunk_number = stripe * data_disks + i;
	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;

1648
	check = raid5_compute_sector(conf, r_sector,
1649
				     previous, &dummy1, &sh2);
1650 1651
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
N
NeilBrown 已提交
1652
		printk(KERN_ERR "compute_blocknr: map not correct\n");
L
Linus Torvalds 已提交
1653 1654 1655 1656 1657 1658 1659 1660
		return 0;
	}
	return r_sector;
}



/*
1661 1662 1663 1664 1665
 * Copy data between a page in the stripe cache, and one or more bion
 * The page could align with the middle of the bio, or there could be
 * several bion, each with several bio_vecs, which cover part of the page
 * Multiple bion are linked together on bi_next.  There may be extras
 * at the end of this list.  We ignore them.
L
Linus Torvalds 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
 */
static void copy_data(int frombio, struct bio *bio,
		     struct page *page,
		     sector_t sector)
{
	char *pa = page_address(page);
	struct bio_vec *bvl;
	int i;
	int page_offset;

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio,i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else clen = len;
1694

L
Linus Torvalds 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
		if (clen > 0) {
			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
			if (frombio)
				memcpy(pa+page_offset, ba+b_offset, clen);
			else
				memcpy(ba+b_offset, pa+page_offset, clen);
			__bio_kunmap_atomic(ba, KM_USER0);
		}
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}
}

D
Dan Williams 已提交
1709 1710 1711 1712 1713
#define check_xor()	do {						  \
				if (count == MAX_XOR_BLOCKS) {		  \
				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
				count = 0;				  \
			   }						  \
L
Linus Torvalds 已提交
1714 1715
			} while(0)

1716 1717
static void compute_parity6(struct stripe_head *sh, int method)
{
1718
	raid5_conf_t *conf = sh->raid_conf;
1719
	int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1720
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1721 1722
	struct bio *chosen;
	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1723
	void *ptrs[syndrome_disks+2];
1724

1725 1726 1727
	pd_idx = sh->pd_idx;
	qd_idx = sh->qd_idx;
	d0_idx = raid6_d0(sh);
1728

1729
	pr_debug("compute_parity, stripe %llu, method %d\n",
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
		(unsigned long long)sh->sector, method);

	switch(method) {
	case READ_MODIFY_WRITE:
		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
	case RECONSTRUCT_WRITE:
		for (i= disks; i-- ;)
			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
				chosen = sh->dev[i].towrite;
				sh->dev[i].towrite = NULL;

				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
					wake_up(&conf->wait_for_overlap);

E
Eric Sesterhenn 已提交
1744
				BUG_ON(sh->dev[i].written);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
				sh->dev[i].written = chosen;
			}
		break;
	case CHECK_PARITY:
		BUG();		/* Not implemented yet */
	}

	for (i = disks; i--;)
		if (sh->dev[i].written) {
			sector_t sector = sh->dev[i].sector;
			struct bio *wbi = sh->dev[i].written;
			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
				copy_data(1, wbi, sh->dev[i].page, sector);
				wbi = r5_next_bio(wbi, sector);
			}

			set_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(R5_UPTODATE, &sh->dev[i].flags);
		}

1765
	/* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1766 1767 1768 1769

	for (i = 0; i < disks; i++)
		ptrs[i] = (void *)raid6_empty_zero_page;

1770 1771 1772
	count = 0;
	i = d0_idx;
	do {
1773 1774
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

1775
		ptrs[slot] = page_address(sh->dev[i].page);
1776
		if (slot < syndrome_disks &&
1777 1778 1779 1780 1781
		    !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
			printk(KERN_ERR "block %d/%d not uptodate "
			       "on parity calc\n", i, count);
			BUG();
		}
1782

1783 1784
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
1785
	BUG_ON(count != syndrome_disks);
1786

1787
	raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806

	switch(method) {
	case RECONSTRUCT_WRITE:
		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
		break;
	case UPDATE_PARITY:
		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
		break;
	}
}


/* Compute one missing block */
static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
{
1807
	int i, count, disks = sh->disks;
D
Dan Williams 已提交
1808
	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1809
	int qd_idx = sh->qd_idx;
1810

1811
	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1812 1813 1814 1815 1816 1817
		(unsigned long long)sh->sector, dd_idx);

	if ( dd_idx == qd_idx ) {
		/* We're actually computing the Q drive */
		compute_parity6(sh, UPDATE_PARITY);
	} else {
D
Dan Williams 已提交
1818 1819 1820
		dest = page_address(sh->dev[dd_idx].page);
		if (!nozero) memset(dest, 0, STRIPE_SIZE);
		count = 0;
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
		for (i = disks ; i--; ) {
			if (i == dd_idx || i == qd_idx)
				continue;
			p = page_address(sh->dev[i].page);
			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
				ptr[count++] = p;
			else
				printk("compute_block() %d, stripe %llu, %d"
				       " not present\n", dd_idx,
				       (unsigned long long)sh->sector, i);

			check_xor();
		}
D
Dan Williams 已提交
1834 1835
		if (count)
			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1836 1837 1838 1839 1840 1841 1842 1843
		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
	}
}

/* Compute two missing blocks */
static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
{
1844
	int i, count, disks = sh->disks;
1845
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1846 1847 1848
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1849
	void *ptrs[syndrome_disks+2];
1850

1851 1852
	for (i = 0; i < disks ; i++)
		ptrs[i] = (void *)raid6_empty_zero_page;
1853 1854 1855
	count = 0;
	i = d0_idx;
	do {
1856 1857
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

1858
		ptrs[slot] = page_address(sh->dev[i].page);
1859

1860 1861 1862 1863 1864 1865
		if (i == dd_idx1)
			faila = slot;
		if (i == dd_idx2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
1866
	BUG_ON(count != syndrome_disks);
1867 1868 1869 1870

	BUG_ON(faila == failb);
	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }

1871
	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1872 1873
		 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
		 faila, failb);
1874

1875
	if (failb == syndrome_disks+1) {
1876
		/* Q disk is one of the missing disks */
1877
		if (faila == syndrome_disks) {
1878 1879 1880 1881 1882
			/* Missing P+Q, just recompute */
			compute_parity6(sh, UPDATE_PARITY);
			return;
		} else {
			/* We're missing D+Q; recompute D from P */
1883 1884 1885
			compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
					     dd_idx2 : dd_idx1),
					0);
1886 1887 1888 1889 1890
			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
			return;
		}
	}

1891
	/* We're missing D+P or D+D; */
1892
	if (failb == syndrome_disks) {
1893
		/* We're missing D+P. */
1894
		raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1895 1896
	} else {
		/* We're missing D+D. */
1897 1898
		raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
				  ptrs);
1899
	}
1900 1901 1902 1903

	/* Both the above update both missing blocks */
	set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
	set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1904 1905
}

1906
static void
1907
schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1908
			 int rcw, int expand)
1909 1910 1911 1912 1913 1914 1915 1916 1917
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
1918 1919 1920 1921
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
1922

1923
		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1924 1925 1926 1927 1928 1929

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
1930
				set_bit(R5_Wantdrain, &dev->flags);
1931 1932
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
1933
				s->locked++;
1934 1935
			}
		}
1936
		if (s->locked + 1 == disks)
1937 1938
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
				atomic_inc(&sh->raid_conf->pending_full_writes);
1939 1940 1941 1942
	} else {
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

1943
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1944 1945 1946
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1947 1948 1949 1950 1951 1952 1953 1954

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
1955 1956
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
1957 1958
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
1959
				s->locked++;
1960 1961 1962 1963 1964 1965 1966 1967 1968
			}
		}
	}

	/* keep the parity disk locked while asynchronous operations
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1969
	s->locked++;
1970

1971
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1972
		__func__, (unsigned long long)sh->sector,
1973
		s->locked, s->ops_request);
1974
}
1975

L
Linus Torvalds 已提交
1976 1977
/*
 * Each stripe/dev can have one or more bion attached.
1978
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
1979 1980 1981 1982 1983 1984
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
1985
	int firstwrite=0;
L
Linus Torvalds 已提交
1986

1987
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
1988 1989 1990 1991 1992 1993
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
1994
	if (forwrite) {
L
Linus Torvalds 已提交
1995
		bip = &sh->dev[dd_idx].towrite;
1996 1997 1998
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2008
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2009 2010 2011
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2012
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
2013 2014 2015
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

2016
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
2017 2018 2019
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

2020 2021 2022
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
2023
		sh->bm_seq = conf->seq_flush+1;
2024 2025 2026
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

2049 2050
static void end_reshape(raid5_conf_t *conf);

2051 2052 2053 2054 2055 2056 2057
static int page_is_zero(struct page *p)
{
	char *a = page_address(p);
	return ((*(u32*)a) == 0 &&
		memcmp(a, a+4, STRIPE_SIZE-4)==0);
}

2058 2059
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2060
{
2061 2062 2063
	int sectors_per_chunk =
		previous ? (conf->prev_chunk >> 9)
			 : (conf->chunk_size >> 9);
2064
	int dd_idx;
2065
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2066
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2067

2068 2069
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2070
			     *sectors_per_chunk + chunk_offset,
2071
			     previous,
2072
			     &dd_idx, sh);
2073 2074
}

2075
static void
2076
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2110
			if (!raid5_dec_bi_phys_segments(bi)) {
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2125
			if (!raid5_dec_bi_phys_segments(bi)) {
2126 2127 2128 2129 2130 2131 2132
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2133 2134 2135 2136 2137 2138
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2149
				if (!raid5_dec_bi_phys_segments(bi)) {
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2162 2163 2164
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2165 2166
}

2167 2168 2169 2170 2171
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2172
 */
2173 2174
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2175 2176 2177 2178 2179 2180
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2181 2182 2183 2184 2185 2186 2187 2188
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2189 2190
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2191 2192
		 */
		if ((s->uptodate == disks - 1) &&
2193
		    (s->failed && disk_idx == s->failed_num)) {
2194 2195
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid5_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2206
			return 1; /* uptodate + compute == disks */
2207
		} else if (test_bit(R5_Insync, &dev->flags)) {
2208 2209 2210 2211 2212 2213 2214 2215
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2216
	return 0;
2217 2218
}

2219 2220 2221 2222
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2223 2224 2225
			struct stripe_head_state *s, int disks)
{
	int i;
2226 2227 2228 2229 2230

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2231
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2232
	    !sh->reconstruct_state)
2233
		for (i = disks; i--; )
2234
			if (fetch_block5(sh, s, i, disks))
2235
				break;
2236 2237 2238
	set_bit(STRIPE_HANDLE, &sh->state);
}

2239
static void handle_stripe_fill6(struct stripe_head *sh,
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (!test_bit(R5_LOCKED, &dev->flags) &&
		    !test_bit(R5_UPTODATE, &dev->flags) &&
		    (dev->toread || (dev->towrite &&
		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
		     s->syncing || s->expanding ||
		     (s->failed >= 1 &&
		      (sh->dev[r6s->failed_num[0]].toread ||
		       s->to_write)) ||
		     (s->failed >= 2 &&
		      (sh->dev[r6s->failed_num[1]].toread ||
		       s->to_write)))) {
			/* we would like to get this block, possibly
			 * by computing it, but we might not be able to
			 */
2260 2261 2262
			if ((s->uptodate == disks - 1) &&
			    (s->failed && (i == r6s->failed_num[0] ||
					   i == r6s->failed_num[1]))) {
2263
				pr_debug("Computing stripe %llu block %d\n",
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
				       (unsigned long long)sh->sector, i);
				compute_block_1(sh, i, 0);
				s->uptodate++;
			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
				/* Computing 2-failure is *very* expensive; only
				 * do it if failed >= 2
				 */
				int other;
				for (other = disks; other--; ) {
					if (other == i)
						continue;
					if (!test_bit(R5_UPTODATE,
					      &sh->dev[other].flags))
						break;
				}
				BUG_ON(other < 0);
2280
				pr_debug("Computing stripe %llu blocks %d,%d\n",
2281 2282 2283 2284 2285 2286 2287 2288
				       (unsigned long long)sh->sector,
				       i, other);
				compute_block_2(sh, i, other);
				s->uptodate += 2;
			} else if (test_bit(R5_Insync, &dev->flags)) {
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
2289
				pr_debug("Reading block %d (sync=%d)\n",
2290 2291 2292 2293 2294 2295 2296 2297
					i, s->syncing);
			}
		}
	}
	set_bit(STRIPE_HANDLE, &sh->state);
}


2298
/* handle_stripe_clean_event
2299 2300 2301 2302
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2303
static void handle_stripe_clean_event(raid5_conf_t *conf,
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2317
				pr_debug("Return write for disc %d\n", i);
2318 2319 2320 2321 2322 2323
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2324
					if (!raid5_dec_bi_phys_segments(wbi)) {
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2342 2343 2344 2345

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2346 2347
}

2348
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2349 2350 2351 2352 2353 2354 2355 2356
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2357 2358
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2359 2360 2361 2362 2363 2364 2365 2366
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2367 2368 2369
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2370 2371 2372 2373
			else
				rcw += 2*disks;
		}
	}
2374
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2375 2376 2377 2378 2379 2380 2381 2382
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2383 2384
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2385 2386 2387
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2388
					pr_debug("Read_old block "
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2406 2407
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2408 2409 2410
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2411
					pr_debug("Read_old block "
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2425 2426 2427 2428 2429 2430 2431
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
	 * subsequent call wants to start a write request.  raid5_run_ops only
	 * handles the case where compute block and postxor are requested
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2432 2433 2434
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2435
		schedule_reconstruction5(sh, s, rcw == 0, 0);
2436 2437
}

2438
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2439 2440 2441 2442
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2443
	int qd_idx = sh->qd_idx;
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags)
		    && i != pd_idx && i != qd_idx
		    && (!test_bit(R5_LOCKED, &dev->flags)
			    ) &&
		    !test_bit(R5_UPTODATE, &dev->flags)) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
			else {
2454
				pr_debug("raid6: must_compute: "
2455 2456 2457 2458 2459
					"disk %d flags=%#lx\n", i, dev->flags);
				must_compute++;
			}
		}
	}
2460
	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	       (unsigned long long)sh->sector, rcw, must_compute);
	set_bit(STRIPE_HANDLE, &sh->state);

	if (rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags)
			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
			    && !test_bit(R5_LOCKED, &dev->flags) &&
			    !test_bit(R5_UPTODATE, &dev->flags) &&
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2475
					pr_debug("Read_old stripe %llu "
2476 2477 2478 2479 2480 2481
						"block %d for Reconstruct\n",
					     (unsigned long long)sh->sector, i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
2482
					pr_debug("Request delayed stripe %llu "
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
						"block %d for Reconstruct\n",
					     (unsigned long long)sh->sector, i);
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
	if (s->locked == 0 && rcw == 0 &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
		if (must_compute > 0) {
			/* We have failed blocks and need to compute them */
			switch (s->failed) {
			case 0:
				BUG();
			case 1:
				compute_block_1(sh, r6s->failed_num[0], 0);
				break;
			case 2:
				compute_block_2(sh, r6s->failed_num[0],
						r6s->failed_num[1]);
				break;
			default: /* This request should have been failed? */
				BUG();
			}
		}

2512
		pr_debug("Computing parity for stripe %llu\n",
2513 2514 2515 2516 2517
			(unsigned long long)sh->sector);
		compute_parity6(sh, RECONSTRUCT_WRITE);
		/* now every locked buffer is ready to be written */
		for (i = disks; i--; )
			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2518
				pr_debug("Writing stripe %llu block %d\n",
2519 2520 2521 2522
				       (unsigned long long)sh->sector, i);
				s->locked++;
				set_bit(R5_Wantwrite, &sh->dev[i].flags);
			}
2523 2524 2525
		if (s->locked == disks)
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
				atomic_inc(&conf->pending_full_writes);
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
		set_bit(STRIPE_INSYNC, &sh->state);

		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
			    IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2541
	struct r5dev *dev = NULL;
2542

2543
	set_bit(STRIPE_HANDLE, &sh->state);
2544

2545 2546 2547
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2548 2549
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2550 2551
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2552 2553
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2554
			break;
2555
		}
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2566

2567 2568 2569 2570 2571
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2572
		s->locked++;
2573
		set_bit(R5_Wantwrite, &dev->flags);
2574

2575 2576
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0)
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2605
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2621 2622 2623 2624 2625
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2626 2627
				  struct stripe_head_state *s,
				  struct r6_state *r6s, int disks)
2628 2629 2630 2631
{
	int update_p = 0, update_q = 0;
	struct r5dev *dev;
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2632
	int qd_idx = sh->qd_idx;
2633 2634
	unsigned long cpu;
	struct page *tmp_page;
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
	BUG_ON(s->uptodate < disks);
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	cpu = get_cpu();
	tmp_page = per_cpu_ptr(conf->percpu, cpu)->spare_page;
	if (s->failed == r6s->q_failed) {
		/* The only possible failed device holds 'Q', so it
		 * makes sense to check P (If anything else were failed,
		 * we would have used P to recreate it).
		 */
		compute_block_1(sh, pd_idx, 1);
		if (!page_is_zero(sh->dev[pd_idx].page)) {
			compute_block_1(sh, pd_idx, 0);
			update_p = 1;
2656
		}
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	}
	if (!r6s->q_failed && s->failed < 2) {
		/* q is not failed, and we didn't use it to generate
		 * anything, so it makes sense to check it
		 */
		memcpy(page_address(tmp_page),
		       page_address(sh->dev[qd_idx].page),
		       STRIPE_SIZE);
		compute_parity6(sh, UPDATE_PARITY);
		if (memcmp(page_address(tmp_page),
			   page_address(sh->dev[qd_idx].page),
			   STRIPE_SIZE) != 0) {
			clear_bit(STRIPE_INSYNC, &sh->state);
			update_q = 1;
2671
		}
2672 2673
	}
	put_cpu();
2674

2675 2676 2677 2678 2679 2680
	if (update_p || update_q) {
		conf->mddev->resync_mismatches += STRIPE_SECTORS;
		if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
			/* don't try to repair!! */
			update_p = update_q = 0;
	}
2681

2682 2683 2684
	/* now write out any block on a failed drive,
	 * or P or Q if they need it
	 */
2685

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
	if (s->failed == 2) {
		dev = &sh->dev[r6s->failed_num[1]];
		s->locked++;
		set_bit(R5_LOCKED, &dev->flags);
		set_bit(R5_Wantwrite, &dev->flags);
	}
	if (s->failed >= 1) {
		dev = &sh->dev[r6s->failed_num[0]];
		s->locked++;
		set_bit(R5_LOCKED, &dev->flags);
		set_bit(R5_Wantwrite, &dev->flags);
	}
2698

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	if (update_p) {
		dev = &sh->dev[pd_idx];
		s->locked++;
		set_bit(R5_LOCKED, &dev->flags);
		set_bit(R5_Wantwrite, &dev->flags);
	}
	if (update_q) {
		dev = &sh->dev[qd_idx];
		s->locked++;
		set_bit(R5_LOCKED, &dev->flags);
		set_bit(R5_Wantwrite, &dev->flags);
2710
	}
2711 2712 2713
	clear_bit(STRIPE_DEGRADED, &sh->state);

	set_bit(STRIPE_INSYNC, &sh->state);
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2724
	struct dma_async_tx_descriptor *tx = NULL;
2725 2726
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2727
		if (i != sh->pd_idx && i != sh->qd_idx) {
2728
			int dd_idx, j;
2729
			struct stripe_head *sh2;
2730
			struct async_submit_ctl submit;
2731

2732
			sector_t bn = compute_blocknr(sh, i, 1);
2733 2734
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2735
			sh2 = get_active_stripe(conf, s, 0, 1);
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2748 2749

			/* place all the copies on one channel */
2750
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2751
			tx = async_memcpy(sh2->dev[dd_idx].page,
2752
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2753
					  &submit);
2754

2755 2756 2757 2758
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2759
				    (!r6s || j != sh2->qd_idx) &&
2760 2761 2762 2763 2764 2765 2766
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2767

2768
		}
2769 2770 2771 2772 2773
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2774
}
L
Linus Torvalds 已提交
2775

2776

L
Linus Torvalds 已提交
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2793

2794
static bool handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
2795 2796
{
	raid5_conf_t *conf = sh->raid_conf;
2797 2798 2799
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
2800
	struct r5dev *dev;
2801
	mdk_rdev_t *blocked_rdev = NULL;
2802
	int prexor;
L
Linus Torvalds 已提交
2803

2804
	memset(&s, 0, sizeof(s));
2805 2806 2807 2808
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
2809 2810 2811 2812 2813

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

2814 2815 2816
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
2817

2818
	/* Now to look around and see what can be done */
2819
	rcu_read_lock();
L
Linus Torvalds 已提交
2820 2821
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2822
		struct r5dev *dev = &sh->dev[i];
L
Linus Torvalds 已提交
2823 2824
		clear_bit(R5_Insync, &dev->flags);

2825 2826 2827 2828 2829 2830 2831
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
2832
		 * ops_complete_biofill is guaranteed to be inactive
2833 2834
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2835
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2836
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2837 2838

		/* now count some things */
2839 2840
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2841
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
2842

2843 2844 2845
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
2846
			s.to_read++;
L
Linus Torvalds 已提交
2847
		if (dev->towrite) {
2848
			s.to_write++;
L
Linus Torvalds 已提交
2849
			if (!test_bit(R5_OVERWRITE, &dev->flags))
2850
				s.non_overwrite++;
L
Linus Torvalds 已提交
2851
		}
2852 2853
		if (dev->written)
			s.written++;
2854
		rdev = rcu_dereference(conf->disks[i].rdev);
2855 2856
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2857 2858 2859
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
2860
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
2861
			/* The ReadError flag will just be confusing now */
2862 2863 2864
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
2865
		if (!rdev || !test_bit(In_sync, &rdev->flags)
2866
		    || test_bit(R5_ReadError, &dev->flags)) {
2867 2868
			s.failed++;
			s.failed_num = i;
L
Linus Torvalds 已提交
2869 2870 2871
		} else
			set_bit(R5_Insync, &dev->flags);
	}
2872
	rcu_read_unlock();
2873

2874
	if (unlikely(blocked_rdev)) {
2875 2876 2877 2878 2879 2880 2881 2882
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
2883 2884
	}

2885 2886 2887 2888
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
2889

2890
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
2891
		" to_write=%d failed=%d failed_num=%d\n",
2892 2893
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
2894 2895 2896
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
2897
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2898
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2899
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
2900 2901
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
2902
		s.syncing = 0;
L
Linus Torvalds 已提交
2903 2904 2905 2906 2907 2908
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
2909 2910 2911 2912 2913
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2914
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
2915 2916 2917 2918 2919

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
2920
	if (s.to_read || s.non_overwrite ||
2921
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2922
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
2923

2924 2925 2926
	/* Now we check to see if any write operations have recently
	 * completed
	 */
2927
	prexor = 0;
2928
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2929
		prexor = 1;
2930 2931
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2932
		sh->reconstruct_state = reconstruct_state_idle;
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
2944 2945
				if (prexor)
					continue;
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
				IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
2965
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2966
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
2967 2968

	/* maybe we need to check and possibly fix the parity for this stripe
2969 2970 2971
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
2972
	 */
2973 2974
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
2975
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2976
	     !test_bit(STRIPE_INSYNC, &sh->state)))
2977
		handle_parity_checks5(conf, sh, &s, disks);
2978

2979
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
2980 2981 2982
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
2983 2984 2985 2986

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
2987 2988 2989 2990
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2991
		) {
2992
		dev = &sh->dev[s.failed_num];
2993 2994 2995 2996
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
2997
			s.locked++;
2998 2999 3000 3001
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3002
			s.locked++;
3003 3004 3005
		}
	}

3006 3007
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
		struct stripe_head *sh2
			= get_active_stripe(conf, sh->sector, 1, 1);
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3025
		sh->reconstruct_state = reconstruct_state_idle;
3026
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
3027
		for (i = conf->raid_disks; i--; ) {
3028
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
3029
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3030
			s.locked++;
D
Dan Williams 已提交
3031
		}
3032 3033 3034
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3035
	    !sh->reconstruct_state) {
3036 3037
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
3038
		stripe_set_idx(sh->sector, conf, 0, sh);
3039
		schedule_reconstruction5(sh, &s, 1, 1);
3040
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3041
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3042
		atomic_dec(&conf->reshape_stripes);
3043 3044 3045 3046
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3047
	if (s.expanding && s.locked == 0 &&
3048
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3049
		handle_stripe_expansion(conf, sh, NULL);
3050

3051
 unlock:
L
Linus Torvalds 已提交
3052 3053
	spin_unlock(&sh->lock);

3054 3055 3056 3057
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3058 3059
	if (s.ops_request)
		raid5_run_ops(sh, s.ops_request);
3060

3061
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
3062

3063
	return_io(return_bi);
3064 3065

	return blocked_rdev == NULL;
L
Linus Torvalds 已提交
3066 3067
}

3068
static bool handle_stripe6(struct stripe_head *sh)
L
Linus Torvalds 已提交
3069
{
3070
	raid5_conf_t *conf = sh->raid_conf;
3071
	int disks = sh->disks;
3072
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
3073
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3074 3075
	struct stripe_head_state s;
	struct r6_state r6s;
3076
	struct r5dev *dev, *pdev, *qdev;
3077
	mdk_rdev_t *blocked_rdev = NULL;
L
Linus Torvalds 已提交
3078

3079
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3080 3081
		"pd_idx=%d, qd_idx=%d\n",
	       (unsigned long long)sh->sector, sh->state,
N
NeilBrown 已提交
3082
	       atomic_read(&sh->count), pd_idx, qd_idx);
3083
	memset(&s, 0, sizeof(s));
3084

3085 3086 3087 3088
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3089 3090 3091
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3092
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3093 3094

	rcu_read_lock();
3095 3096 3097 3098
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
		clear_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3099

3100
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3101 3102 3103 3104
			i, dev->flags, dev->toread, dev->towrite, dev->written);
		/* maybe we can reply to a read */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
			struct bio *rbi, *rbi2;
3105
			pr_debug("Return read for disc %d\n", i);
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
			spin_lock_irq(&conf->device_lock);
			rbi = dev->toread;
			dev->toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&conf->wait_for_overlap);
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
				copy_data(0, rbi, dev->page, dev->sector);
				rbi2 = r5_next_bio(rbi, dev->sector);
				spin_lock_irq(&conf->device_lock);
3116
				if (!raid5_dec_bi_phys_segments(rbi)) {
3117 3118 3119 3120 3121 3122 3123
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				spin_unlock_irq(&conf->device_lock);
				rbi = rbi2;
			}
		}
L
Linus Torvalds 已提交
3124

3125
		/* now count some things */
3126 3127
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
L
Linus Torvalds 已提交
3128

3129

3130 3131
		if (dev->toread)
			s.to_read++;
3132
		if (dev->towrite) {
3133
			s.to_write++;
3134
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3135
				s.non_overwrite++;
3136
		}
3137 3138
		if (dev->written)
			s.written++;
3139
		rdev = rcu_dereference(conf->disks[i].rdev);
3140 3141
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3142 3143 3144
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3145 3146 3147 3148
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3149
		}
3150 3151
		if (!rdev || !test_bit(In_sync, &rdev->flags)
		    || test_bit(R5_ReadError, &dev->flags)) {
3152 3153 3154
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3155 3156
		} else
			set_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3157 3158
	}
	rcu_read_unlock();
3159 3160

	if (unlikely(blocked_rdev)) {
3161 3162 3163 3164 3165 3166 3167 3168
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3169
	}
3170

3171
	pr_debug("locked=%d uptodate=%d to_read=%d"
3172
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3173 3174 3175 3176
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3177
	 */
3178
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3179
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3180
	if (s.failed > 2 && s.syncing) {
3181 3182
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3183
		s.syncing = 0;
3184 3185 3186 3187 3188 3189 3190
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3191 3192
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3193 3194 3195
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3196 3197 3198

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3199
			     && !test_bit(R5_LOCKED, &pdev->flags)
3200 3201
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3202
			     && !test_bit(R5_LOCKED, &qdev->flags)
3203
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3204
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3205 3206 3207 3208 3209

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3210 3211
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
	    (s.syncing && (s.uptodate < disks)) || s.expanding)
3212
		handle_stripe_fill6(sh, &s, &r6s, disks);
3213 3214

	/* now to consider writing and what else, if anything should be read */
3215
	if (s.to_write)
3216
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3217 3218

	/* maybe we need to check and possibly fix the parity for this stripe
3219 3220
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available
3221
	 */
3222
	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3223
		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3224

3225
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3226 3227 3228 3229 3230 3231 3232
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3233 3234 3235
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
				}
			}
		}
3251

3252
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
		struct stripe_head *sh2
			= get_active_stripe(conf, sh->sector, 1, 1);
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3270 3271
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3272
		stripe_set_idx(sh->sector, conf, 0, sh);
3273 3274 3275
		compute_parity6(sh, RECONSTRUCT_WRITE);
		for (i = conf->raid_disks ; i-- ;  ) {
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3276
			s.locked++;
3277 3278 3279
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
		}
		clear_bit(STRIPE_EXPANDING, &sh->state);
3280
	} else if (s.expanded) {
3281 3282 3283 3284 3285 3286
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3287
	if (s.expanding && s.locked == 0 &&
3288
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3289
		handle_stripe_expansion(conf, sh, &r6s);
3290

3291
 unlock:
3292 3293
	spin_unlock(&sh->lock);

3294 3295 3296 3297
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

D
Dan Williams 已提交
3298
	ops_run_io(sh, &s);
3299

D
Dan Williams 已提交
3300
	return_io(return_bi);
3301 3302

	return blocked_rdev == NULL;
3303 3304
}

3305
/* returns true if the stripe was handled */
3306
static bool handle_stripe(struct stripe_head *sh)
3307 3308
{
	if (sh->raid_conf->level == 6)
3309
		return handle_stripe6(sh);
3310
	else
3311
		return handle_stripe5(sh);
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3325
			list_add_tail(&sh->lru, &conf->hold_list);
3326
		}
3327 3328
	} else
		blk_plug_device(conf->mddev->queue);
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	int i;

	rcu_read_lock();
	for (i=0; i<mddev->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3354
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3355 3356 3357 3358

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3359
			blk_unplug(r_queue);
3360 3361 3362 3363 3364 3365 3366 3367

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3368
static void raid5_unplug_device(struct request_queue *q)
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	if (blk_remove_plug(q)) {
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3379
	}
L
Linus Torvalds 已提交
3380 3381 3382 3383 3384 3385 3386
	md_wakeup_thread(mddev->thread);

	spin_unlock_irqrestore(&conf->device_lock, flags);

	unplug_slaves(mddev);
}

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;
	raid5_conf_t *conf = mddev_to_conf(mddev);

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}

3405 3406 3407
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3408 3409 3410
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3411 3412
{
	mddev_t *mddev = q->queuedata;
3413
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3414 3415
	int max;
	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3416
	unsigned int bio_sectors = bvm->bi_size >> 9;
3417

3418
	if ((bvm->bi_rw & 1) == WRITE)
3419 3420
		return biovec->bv_len; /* always allow writes to be mergeable */

3421 3422
	if (mddev->new_chunk < mddev->chunk_size)
		chunk_sectors = mddev->new_chunk >> 9;
3423 3424 3425 3426 3427 3428 3429 3430
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3431 3432 3433 3434 3435 3436 3437

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
	unsigned int chunk_sectors = mddev->chunk_size >> 9;
	unsigned int bio_sectors = bio->bi_size >> 9;

3438 3439
	if (mddev->new_chunk < mddev->chunk_size)
		chunk_sectors = mddev->new_chunk >> 9;
3440 3441 3442 3443
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3473
		conf->retry_read_aligned_list = bi->bi_next;
3474
		bi->bi_next = NULL;
3475 3476 3477 3478
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3479 3480 3481 3482 3483 3484 3485
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3486 3487 3488 3489 3490 3491
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3492
static void raid5_align_endio(struct bio *bi, int error)
3493 3494
{
	struct bio* raid_bi  = bi->bi_private;
3495 3496 3497 3498 3499
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3500
	bio_put(bi);
3501 3502 3503 3504 3505 3506 3507 3508 3509

	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
	conf = mddev_to_conf(mddev);
	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3510
		bio_endio(raid_bi, 0);
3511 3512
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3513
		return;
3514 3515 3516
	}


3517
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3518 3519

	add_bio_to_retry(raid_bi, conf);
3520 3521
}

3522 3523
static int bio_fits_rdev(struct bio *bi)
{
3524
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3525 3526 3527 3528

	if ((bi->bi_size>>9) > q->max_sectors)
		return 0;
	blk_recount_segments(q, bi);
3529
	if (bi->bi_phys_segments > q->max_phys_segments)
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3542
static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3543 3544 3545
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
3546
	unsigned int dd_idx;
3547 3548 3549 3550
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3551
		pr_debug("chunk_aligned_read : non aligned\n");
3552 3553 3554
		return 0;
	}
	/*
3555
	 * use bio_clone to make a copy of the bio
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3569 3570
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3571
						    &dd_idx, NULL);
3572 3573 3574 3575 3576 3577

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3578 3579 3580 3581 3582
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3583 3584 3585 3586 3587 3588 3589
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3590 3591 3592 3593 3594 3595 3596
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3597 3598 3599 3600
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3601
		bio_put(align_bi);
3602 3603 3604 3605
		return 0;
	}
}

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3658

3659
static int make_request(struct request_queue *q, struct bio * bi)
L
Linus Torvalds 已提交
3660 3661 3662
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
3663
	int dd_idx;
L
Linus Torvalds 已提交
3664 3665 3666
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3667
	const int rw = bio_data_dir(bi);
T
Tejun Heo 已提交
3668
	int cpu, remaining;
L
Linus Torvalds 已提交
3669

3670
	if (unlikely(bio_barrier(bi))) {
3671
		bio_endio(bi, -EOPNOTSUPP);
3672 3673 3674
		return 0;
	}

3675
	md_write_start(mddev, bi);
3676

T
Tejun Heo 已提交
3677 3678 3679 3680 3681
	cpu = part_stat_lock();
	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
		      bio_sectors(bi));
	part_stat_unlock();
L
Linus Torvalds 已提交
3682

3683
	if (rw == READ &&
3684 3685
	     mddev->reshape_position == MaxSector &&
	     chunk_aligned_read(q,bi))
3686
		return 0;
3687

L
Linus Torvalds 已提交
3688 3689 3690 3691
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3692

L
Linus Torvalds 已提交
3693 3694
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3695
		int disks, data_disks;
3696
		int previous;
3697

3698
	retry:
3699
		previous = 0;
3700
		disks = conf->raid_disks;
3701
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3702
		if (unlikely(conf->reshape_progress != MaxSector)) {
3703
			/* spinlock is needed as reshape_progress may be
3704 3705
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3706
			 * Ofcourse reshape_progress could change after
3707 3708 3709 3710
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3711
			spin_lock_irq(&conf->device_lock);
3712 3713 3714
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3715
				disks = conf->previous_raid_disks;
3716 3717
				previous = 1;
			} else {
3718 3719 3720
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3721 3722 3723 3724 3725
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3726 3727
			spin_unlock_irq(&conf->device_lock);
		}
3728 3729
		data_disks = disks - conf->max_degraded;

3730 3731
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3732
						  &dd_idx, NULL);
3733
		pr_debug("raid5: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3734 3735 3736
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3737 3738
		sh = get_active_stripe(conf, new_sector, previous,
				       (bi->bi_rw&RWA_MASK));
L
Linus Torvalds 已提交
3739
		if (sh) {
3740
			if (unlikely(previous)) {
3741
				/* expansion might have moved on while waiting for a
3742 3743 3744 3745 3746 3747
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3748 3749 3750
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3751 3752 3753
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
3754 3755 3756 3757 3758 3759 3760 3761
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
					goto retry;
				}
			}
3762 3763 3764 3765 3766 3767 3768 3769 3770
			/* FIXME what if we get a false positive because these
			 * are being updated.
			 */
			if (logical_sector >= mddev->suspend_lo &&
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
				schedule();
				goto retry;
			}
3771 3772 3773 3774 3775

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3776 3777 3778 3779 3780 3781 3782 3783
				 * and wait a while
				 */
				raid5_unplug_device(mddev->queue);
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3784 3785
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
L
Linus Torvalds 已提交
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
3796
	remaining = raid5_dec_bi_phys_segments(bi);
3797 3798
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
3799

3800
		if ( rw == WRITE )
L
Linus Torvalds 已提交
3801
			md_write_end(mddev);
3802

3803
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
3804 3805 3806 3807
	}
	return 0;
}

D
Dan Williams 已提交
3808 3809
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

3810
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
3811
{
3812 3813 3814 3815 3816 3817 3818 3819 3820
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
L
Linus Torvalds 已提交
3821 3822
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
3823
	sector_t first_sector, last_sector;
3824 3825 3826
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
3827 3828
	int i;
	int dd_idx;
3829
	sector_t writepos, readpos, safepos;
3830
	sector_t stripe_addr;
3831
	int reshape_sectors;
3832
	struct list_head stripes;
3833

3834 3835 3836 3837 3838 3839 3840 3841 3842
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
		} else if (mddev->delta_disks > 0 &&
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
3843
		sector_div(sector_nr, new_data_disks);
3844 3845 3846 3847
		if (sector_nr) {
			*skipped = 1;
			return sector_nr;
		}
3848 3849
	}

3850 3851 3852 3853 3854 3855 3856 3857 3858
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
	if (mddev->new_chunk > mddev->chunk_size)
		reshape_sectors = mddev->new_chunk / 512;
	else
		reshape_sectors = mddev->chunk_size / 512;

3859 3860 3861 3862 3863
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
3864 3865
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
3866
	 */
3867
	writepos = conf->reshape_progress;
3868
	sector_div(writepos, new_data_disks);
3869 3870
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
3871
	safepos = conf->reshape_safe;
3872
	sector_div(safepos, data_disks);
3873
	if (mddev->delta_disks < 0) {
3874
		writepos -= reshape_sectors;
3875
		readpos += reshape_sectors;
3876
		safepos += reshape_sectors;
3877
	} else {
3878
		writepos += reshape_sectors;
3879
		readpos -= reshape_sectors;
3880
		safepos -= reshape_sectors;
3881
	}
3882

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
3900
	if ((mddev->delta_disks < 0
3901 3902 3903
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3904 3905 3906
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
3907
		mddev->reshape_position = conf->reshape_progress;
3908
		conf->reshape_checkpoint = jiffies;
3909
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3910
		md_wakeup_thread(mddev->thread);
3911
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3912 3913
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
3914
		conf->reshape_safe = mddev->reshape_position;
3915 3916 3917 3918
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
	}

3919 3920 3921 3922
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
3923 3924
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
3925 3926
		       != sector_nr);
	} else {
3927
		BUG_ON(writepos != sector_nr + reshape_sectors);
3928 3929
		stripe_addr = sector_nr;
	}
3930
	INIT_LIST_HEAD(&stripes);
3931
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3932 3933
		int j;
		int skipped = 0;
3934
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
3935 3936 3937 3938 3939 3940 3941 3942 3943
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
3944
			if (conf->level == 6 &&
3945
			    j == sh->qd_idx)
3946
				continue;
3947
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
3948
			if (s < raid5_size(mddev, 0, 0)) {
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
				skipped = 1;
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
		if (!skipped) {
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
3960
		list_add(&sh->lru, &stripes);
3961 3962
	}
	spin_lock_irq(&conf->device_lock);
3963
	if (mddev->delta_disks < 0)
3964
		conf->reshape_progress -= reshape_sectors * new_data_disks;
3965
	else
3966
		conf->reshape_progress += reshape_sectors * new_data_disks;
3967 3968 3969 3970 3971 3972 3973
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
3974
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3975
				     1, &dd_idx, NULL);
3976
	last_sector =
3977
		raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
3978
					    *(new_data_disks) - 1),
3979
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
3980 3981
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
3982
	while (first_sector <= last_sector) {
3983
		sh = get_active_stripe(conf, first_sector, 1, 0);
3984 3985 3986 3987 3988
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
3989 3990 3991 3992 3993 3994 3995 3996
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
3997 3998 3999
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4000
	sector_nr += reshape_sectors;
4001 4002 4003 4004
	if (sector_nr >= mddev->resync_max) {
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4005
		mddev->reshape_position = conf->reshape_progress;
4006
		conf->reshape_checkpoint = jiffies;
4007 4008 4009 4010 4011 4012
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4013
		conf->reshape_safe = mddev->reshape_position;
4014 4015 4016
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
	}
4017
	return reshape_sectors;
4018 4019 4020 4021 4022 4023 4024
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
A
Andre Noll 已提交
4025
	sector_t max_sector = mddev->dev_sectors;
4026
	int sync_blocks;
4027 4028
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4029

4030
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4031 4032
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
4033

4034 4035 4036 4037
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4038 4039 4040 4041

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4042
		else /* completed sync */
4043 4044 4045
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4046 4047
		return 0;
	}
4048

4049 4050
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4051

4052 4053 4054 4055 4056 4057
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4058
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4059 4060 4061
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4062
	if (mddev->degraded >= conf->max_degraded &&
4063
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4064
		sector_t rv = mddev->dev_sectors - sector_nr;
4065
		*skipped = 1;
L
Linus Torvalds 已提交
4066 4067
		return rv;
	}
4068
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4069
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4070 4071 4072 4073 4074 4075
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4076

N
NeilBrown 已提交
4077 4078 4079

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4080
	sh = get_active_stripe(conf, sector_nr, 0, 1);
L
Linus Torvalds 已提交
4081
	if (sh == NULL) {
4082
		sh = get_active_stripe(conf, sector_nr, 0, 0);
L
Linus Torvalds 已提交
4083
		/* make sure we don't swamp the stripe cache if someone else
4084
		 * is trying to get access
L
Linus Torvalds 已提交
4085
		 */
4086
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4087
	}
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
	for (i=0; i<mddev->raid_disks; i++)
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
4099 4100 4101 4102
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

4103
	/* wait for any blocked device to be handled */
4104
	while (unlikely(!handle_stripe(sh)))
4105
		;
L
Linus Torvalds 已提交
4106 4107 4108 4109 4110
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4124
	int dd_idx;
4125 4126 4127 4128 4129 4130
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4131
	sector = raid5_compute_sector(conf, logical_sector,
4132
				      0, &dd_idx, NULL);
4133 4134 4135
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4136 4137 4138
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4139

4140
		if (scnt < raid5_bi_hw_segments(raid_bio))
4141 4142 4143
			/* already done this stripe */
			continue;

4144
		sh = get_active_stripe(conf, sector, 0, 1);
4145 4146 4147

		if (!sh) {
			/* failed to get a stripe - must wait */
4148
			raid5_set_bi_hw_segments(raid_bio, scnt);
4149 4150 4151 4152 4153
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4154 4155
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4156
			raid5_set_bi_hw_segments(raid_bio, scnt);
4157 4158 4159 4160
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4161
		handle_stripe(sh);
4162 4163 4164 4165
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4166
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4167
	spin_unlock_irq(&conf->device_lock);
4168 4169
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4170 4171 4172 4173 4174 4175 4176
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}



L
Linus Torvalds 已提交
4177 4178 4179 4180 4181 4182 4183
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4184
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4185 4186 4187 4188 4189
{
	struct stripe_head *sh;
	raid5_conf_t *conf = mddev_to_conf(mddev);
	int handled;

4190
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4191 4192 4193 4194 4195 4196

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4197
		struct bio *bio;
L
Linus Torvalds 已提交
4198

4199
		if (conf->seq_flush != conf->seq_write) {
4200
			int seq = conf->seq_flush;
4201
			spin_unlock_irq(&conf->device_lock);
4202
			bitmap_unplug(mddev->bitmap);
4203
			spin_lock_irq(&conf->device_lock);
4204 4205 4206 4207
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4218 4219
		sh = __get_priority_stripe(conf);

4220
		if (!sh)
L
Linus Torvalds 已提交
4221 4222 4223 4224
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4225
		handle_stripe(sh);
L
Linus Torvalds 已提交
4226 4227 4228 4229
		release_stripe(sh);

		spin_lock_irq(&conf->device_lock);
	}
4230
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4231 4232 4233

	spin_unlock_irq(&conf->device_lock);

4234
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4235 4236
	unplug_slaves(mddev);

4237
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4238 4239
}

4240
static ssize_t
4241
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4242
{
4243
	raid5_conf_t *conf = mddev_to_conf(mddev);
4244 4245 4246 4247
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4248 4249 4250
}

static ssize_t
4251
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4252
{
4253
	raid5_conf_t *conf = mddev_to_conf(mddev);
4254
	unsigned long new;
4255 4256
	int err;

4257 4258
	if (len >= PAGE_SIZE)
		return -EINVAL;
4259 4260
	if (!conf)
		return -ENODEV;
4261

4262
	if (strict_strtoul(page, 10, &new))
4263 4264 4265 4266 4267 4268 4269 4270 4271
		return -EINVAL;
	if (new <= 16 || new > 32768)
		return -EINVAL;
	while (new < conf->max_nr_stripes) {
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4272 4273 4274
	err = md_allow_write(mddev);
	if (err)
		return err;
4275 4276 4277 4278 4279 4280 4281
	while (new > conf->max_nr_stripes) {
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
	return len;
}
4282

4283 4284 4285 4286
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4287

4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
4302
	unsigned long new;
4303 4304 4305 4306 4307
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4308
	if (strict_strtoul(page, 10, &new))
4309
		return -EINVAL;
4310
	if (new > conf->max_nr_stripes)
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4322
static ssize_t
4323
stripe_cache_active_show(mddev_t *mddev, char *page)
4324
{
4325
	raid5_conf_t *conf = mddev_to_conf(mddev);
4326 4327 4328 4329
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4330 4331
}

4332 4333
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4334

4335
static struct attribute *raid5_attrs[] =  {
4336 4337
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4338
	&raid5_preread_bypass_threshold.attr,
4339 4340
	NULL,
};
4341 4342 4343
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4344 4345
};

4346 4347 4348 4349 4350 4351 4352
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);

	if (!sectors)
		sectors = mddev->dev_sectors;
4353 4354 4355 4356 4357 4358 4359
	if (!raid_disks) {
		/* size is defined by the smallest of previous and new size */
		if (conf->raid_disks < conf->previous_raid_disks)
			raid_disks = conf->raid_disks;
		else
			raid_disks = conf->previous_raid_disks;
	}
4360 4361

	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4362
	sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
4363 4364 4365
	return sectors * (raid_disks - conf->max_degraded);
}

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4378
		kfree(percpu->scribble);
4379 4380 4381 4382 4383 4384 4385 4386 4387
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4388 4389 4390
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4391
	raid5_free_percpu(conf);
4392 4393 4394 4395 4396
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4408
		if (conf->level == 6 && !percpu->spare_page)
4409
			percpu->spare_page = alloc_page(GFP_KERNEL);
4410 4411 4412 4413 4414 4415 4416
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4417 4418 4419 4420 4421 4422 4423 4424
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
			return NOTIFY_BAD;
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4425
		kfree(percpu->scribble);
4426
		percpu->spare_page = NULL;
4427
		percpu->scribble = NULL;
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
	struct raid5_percpu *allcpus;
4441
	void *scribble;
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
		scribble = kmalloc(scribble_len(conf->raid_disks), GFP_KERNEL);
		if (!scribble) {
4462 4463 4464
			err = -ENOMEM;
			break;
		}
4465
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4478
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4479 4480 4481 4482 4483 4484
{
	raid5_conf_t *conf;
	int raid_disk, memory;
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4485 4486 4487
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4488
		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4489 4490
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4491
	}
N
NeilBrown 已提交
4492 4493 4494 4495
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4496
		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
N
NeilBrown 已提交
4497 4498
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4499
	}
N
NeilBrown 已提交
4500 4501 4502 4503
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4504 4505
	}

N
NeilBrown 已提交
4506 4507 4508 4509
	if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
			mddev->new_chunk, mdname(mddev));
		return ERR_PTR(-EINVAL);
4510 4511
	}

N
NeilBrown 已提交
4512 4513
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4514
		goto abort;
N
NeilBrown 已提交
4515 4516

	conf->raid_disks = mddev->raid_disks;
4517
	conf->scribble_len = scribble_len(conf->raid_disks);
N
NeilBrown 已提交
4518 4519 4520
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4521 4522 4523
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;

	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4524 4525 4526
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4527

L
Linus Torvalds 已提交
4528 4529
	conf->mddev = mddev;

4530
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4531 4532
		goto abort;

4533 4534 4535 4536
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

L
Linus Torvalds 已提交
4537 4538 4539 4540
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
4541
	INIT_LIST_HEAD(&conf->hold_list);
L
Linus Torvalds 已提交
4542
	INIT_LIST_HEAD(&conf->delayed_list);
4543
	INIT_LIST_HEAD(&conf->bitmap_list);
L
Linus Torvalds 已提交
4544 4545 4546
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
4547
	atomic_set(&conf->active_aligned_reads, 0);
4548
	conf->bypass_threshold = BYPASS_THRESHOLD;
L
Linus Torvalds 已提交
4549

4550
	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4551

4552
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4553
		raid_disk = rdev->raid_disk;
4554
		if (raid_disk >= conf->raid_disks
L
Linus Torvalds 已提交
4555 4556 4557 4558 4559 4560
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4561
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4562 4563 4564 4565
			char b[BDEVNAME_SIZE];
			printk(KERN_INFO "raid5: device %s operational as raid"
				" disk %d\n", bdevname(rdev->bdev,b),
				raid_disk);
4566 4567 4568
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4569 4570
	}

N
NeilBrown 已提交
4571
	conf->chunk_size = mddev->new_chunk;
4572 4573 4574 4575
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4576
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4577
	conf->max_nr_stripes = NR_STRIPES;
4578
	conf->reshape_progress = mddev->reshape_position;
4579
	if (conf->reshape_progress != MaxSector) {
4580
		conf->prev_chunk = mddev->chunk_size;
4581 4582
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4583

N
NeilBrown 已提交
4584 4585 4586 4587 4588 4589 4590 4591 4592
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
			"raid5: couldn't allocate %dkB for buffers\n", memory);
		goto abort;
	} else
		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
			memory, mdname(mddev));
L
Linus Torvalds 已提交
4593

N
NeilBrown 已提交
4594 4595 4596 4597 4598
	conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
	if (!conf->thread) {
		printk(KERN_ERR
		       "raid5: couldn't allocate thread for %s\n",
		       mdname(mddev));
4599 4600
		goto abort;
	}
N
NeilBrown 已提交
4601 4602 4603 4604 4605

	return conf;

 abort:
	if (conf) {
4606
		free_conf(conf);
N
NeilBrown 已提交
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
	int working_disks = 0;
	mdk_rdev_t *rdev;

	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4626
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4627

4628
		if (mddev->new_level != mddev->level) {
N
NeilBrown 已提交
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
			printk(KERN_ERR "raid5: %s: unsupported reshape "
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4640
		if (sector_div(here_new, (mddev->new_chunk>>9)*
N
NeilBrown 已提交
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
			       (mddev->raid_disks - max_degraded))) {
			printk(KERN_ERR "raid5: reshape_position not "
			       "on a stripe boundary\n");
			return -EINVAL;
		}
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
		sector_div(here_old, (mddev->chunk_size>>9)*
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
		if (here_new >= here_old) {
			/* Reading from the same stripe as writing to - bad */
			printk(KERN_ERR "raid5: reshape_position too early for "
			       "auto-recovery - aborting.\n");
			return -EINVAL;
		}
		printk(KERN_INFO "raid5: reshape will continue\n");
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
		BUG_ON(mddev->chunk_size != mddev->new_chunk);
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4665
	}
N
NeilBrown 已提交
4666

4667 4668 4669 4670 4671
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
	list_for_each_entry(rdev, &mddev->disks, same_set)
		if (rdev->raid_disk >= 0 &&
		    test_bit(In_sync, &rdev->flags))
			working_disks++;

	mddev->degraded = conf->raid_disks - working_disks;

4689
	if (mddev->degraded > conf->max_degraded) {
L
Linus Torvalds 已提交
4690 4691
		printk(KERN_ERR "raid5: not enough operational devices for %s"
			" (%d/%d failed)\n",
4692
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
4693 4694 4695
		goto abort;
	}

N
NeilBrown 已提交
4696 4697 4698 4699
	/* device size must be a multiple of chunk size */
	mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
	mddev->resync_max_sectors = mddev->dev_sectors;

4700
	if (mddev->degraded > 0 &&
L
Linus Torvalds 已提交
4701
	    mddev->recovery_cp != MaxSector) {
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
			       "raid5: starting dirty degraded array: %s"
			       "- data corruption possible.\n",
			       mdname(mddev));
		else {
			printk(KERN_ERR
			       "raid5: cannot start dirty degraded array for %s\n",
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
4713 4714 4715 4716
	}

	if (mddev->degraded == 0)
		printk("raid5: raid level %d set %s active with %d out of %d"
4717 4718 4719
		       " devices, algorithm %d\n", conf->level, mdname(mddev),
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
4720 4721 4722 4723
	else
		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
			" out of %d devices, algorithm %d\n", conf->level,
			mdname(mddev), mddev->raid_disks - mddev->degraded,
4724
			mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
4725 4726 4727

	print_raid5_conf(conf);

4728
	if (conf->reshape_progress != MaxSector) {
4729
		printk("...ok start reshape thread\n");
4730
		conf->reshape_safe = conf->reshape_progress;
4731 4732 4733 4734 4735 4736 4737 4738 4739
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
							"%s_reshape");
	}

L
Linus Torvalds 已提交
4740
	/* read-ahead size must cover two whole stripes, which is
4741
	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
L
Linus Torvalds 已提交
4742 4743
	 */
	{
4744 4745
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
4746
			(mddev->chunk_size / PAGE_SIZE);
L
Linus Torvalds 已提交
4747 4748 4749 4750 4751
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
	}

	/* Ok, everything is just fine now */
4752 4753 4754 4755
	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
		printk(KERN_WARNING
		       "raid5: failed to create sysfs attributes for %s\n",
		       mdname(mddev));
4756

N
NeilBrown 已提交
4757 4758
	mddev->queue->queue_lock = &conf->device_lock;

4759
	mddev->queue->unplug_fn = raid5_unplug_device;
4760
	mddev->queue->backing_dev_info.congested_data = mddev;
4761
	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4762

4763
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4764

4765 4766
	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);

L
Linus Torvalds 已提交
4767 4768
	return 0;
abort:
4769
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
4770
	mddev->thread = NULL;
L
Linus Torvalds 已提交
4771 4772
	if (conf) {
		print_raid5_conf(conf);
4773
		free_conf(conf);
L
Linus Torvalds 已提交
4774 4775 4776 4777 4778 4779 4780 4781
	}
	mddev->private = NULL;
	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
	return -EIO;
}



4782
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
4783 4784 4785 4786 4787
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
4788
	mddev->queue->backing_dev_info.congested_fn = NULL;
L
Linus Torvalds 已提交
4789
	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4790
	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4791
	free_conf(conf);
L
Linus Torvalds 已提交
4792 4793 4794 4795
	mddev->private = NULL;
	return 0;
}

4796
#ifdef DEBUG
4797
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
4798 4799 4800
{
	int i;

4801 4802 4803 4804 4805
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4806
	for (i = 0; i < sh->disks; i++) {
4807 4808
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
4809
	}
4810
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
4811 4812
}

4813
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
4814 4815
{
	struct stripe_head *sh;
4816
	struct hlist_node *hn;
L
Linus Torvalds 已提交
4817 4818 4819 4820
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
4821
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
4822 4823
			if (sh->raid_conf != conf)
				continue;
4824
			print_sh(seq, sh);
L
Linus Torvalds 已提交
4825 4826 4827 4828 4829 4830
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

4831
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
4832 4833 4834 4835 4836
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	int i;

	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4837
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
4838 4839 4840
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
4841
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
4842
	seq_printf (seq, "]");
4843
#ifdef DEBUG
4844 4845
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

	printk("RAID5 conf printout:\n");
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
4859 4860
	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
		 conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
4861 4862 4863 4864 4865 4866

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
		printk(" disk %d, o:%d, dev:%s\n",
4867
			i, !test_bit(Faulty, &tmp->rdev->flags),
L
Linus Torvalds 已提交
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
			bdevname(tmp->rdev->bdev,b));
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
4881
		    && !test_bit(Faulty, &tmp->rdev->flags)
4882 4883 4884
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4885
			mddev->degraded--;
4886
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
		}
	}
	print_raid5_conf(conf);
	return 0;
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
4903 4904 4905 4906
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

4907
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
4908 4909 4910 4911
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
4912 4913 4914 4915
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
4916 4917
		    mddev->degraded <= conf->max_degraded &&
		    number < conf->raid_disks) {
4918 4919 4920
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
4921
		p->rdev = NULL;
4922
		synchronize_rcu();
L
Linus Torvalds 已提交
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
4938
	int err = -EEXIST;
L
Linus Torvalds 已提交
4939 4940
	int disk;
	struct disk_info *p;
4941 4942
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
4943

4944
	if (mddev->degraded > conf->max_degraded)
L
Linus Torvalds 已提交
4945
		/* no point adding a device */
4946
		return -EINVAL;
L
Linus Torvalds 已提交
4947

4948 4949
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
4950 4951

	/*
4952 4953
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
4954
	 */
4955
	if (rdev->saved_raid_disk >= 0 &&
4956
	    rdev->saved_raid_disk >= first &&
4957 4958 4959
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
4960 4961
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
4962
		if ((p=conf->disks + disk)->rdev == NULL) {
4963
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
4964
			rdev->raid_disk = disk;
4965
			err = 0;
4966 4967
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
4968
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
4969 4970 4971
			break;
		}
	print_raid5_conf(conf);
4972
	return err;
L
Linus Torvalds 已提交
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4985 4986
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
4987 4988 4989
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
4990
	set_capacity(mddev->gendisk, mddev->array_sectors);
4991
	mddev->changed = 1;
A
Andre Noll 已提交
4992 4993
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
4994 4995
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
4996
	mddev->dev_sectors = sectors;
4997
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
4998 4999 5000
	return 0;
}

5001
static int raid5_check_reshape(mddev_t *mddev)
5002 5003 5004
{
	raid5_conf_t *conf = mddev_to_conf(mddev);

5005 5006 5007 5008
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
	    mddev->new_chunk == mddev->chunk_size)
		return -EINVAL; /* nothing to do */
5009 5010 5011
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
	if (mddev->degraded > conf->max_degraded)
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5026 5027 5028 5029 5030 5031 5032 5033 5034

	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
5035 5036
	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
5037
		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
5038 5039
		       (max(mddev->chunk_size, mddev->new_chunk)
			/ STRIPE_SIZE)*4);
5040 5041 5042
		return -ENOSPC;
	}

5043
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5044 5045 5046 5047 5048 5049 5050 5051
}

static int raid5_start_reshape(mddev_t *mddev)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	mdk_rdev_t *rdev;
	int spares = 0;
	int added_devices = 0;
5052
	unsigned long flags;
5053

5054
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5055 5056
		return -EBUSY;

5057
	list_for_each_entry(rdev, &mddev->disks, same_set)
5058 5059 5060
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
5061

5062
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5063 5064 5065 5066 5067
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
		printk(KERN_ERR "md: %s: array size must be reduced "
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5079
	atomic_set(&conf->reshape_stripes, 0);
5080 5081
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5082
	conf->raid_disks += mddev->delta_disks;
5083 5084 5085 5086
	conf->prev_chunk = conf->chunk_size;
	conf->chunk_size = mddev->new_chunk;
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5087 5088 5089 5090 5091
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5092
	conf->generation++;
5093 5094 5095 5096 5097
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
	 */
5098
	list_for_each_entry(rdev, &mddev->disks, same_set)
5099 5100
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
5101
			if (raid5_add_disk(mddev, rdev) == 0) {
5102 5103 5104
				char nm[20];
				set_bit(In_sync, &rdev->flags);
				added_devices++;
5105
				rdev->recovery_offset = 0;
5106
				sprintf(nm, "rd%d", rdev->raid_disk);
5107 5108 5109 5110 5111 5112
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
					printk(KERN_WARNING
					       "raid5: failed to create "
					       " link %s for %s\n",
					       nm, mdname(mddev));
5113 5114 5115 5116
			} else
				break;
		}

5117 5118 5119 5120 5121 5122
	if (mddev->delta_disks > 0) {
		spin_lock_irqsave(&conf->device_lock, flags);
		mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5123
	mddev->raid_disks = conf->raid_disks;
5124
	mddev->reshape_position = 0;
5125
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5126

5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
						"%s_reshape");
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5137
		conf->reshape_progress = MaxSector;
5138 5139 5140
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5141
	conf->reshape_checkpoint = jiffies;
5142 5143 5144 5145 5146
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5147 5148 5149
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5150 5151 5152
static void end_reshape(raid5_conf_t *conf)
{

5153 5154 5155
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5156
		conf->previous_raid_disks = conf->raid_disks;
5157
		conf->reshape_progress = MaxSector;
5158
		spin_unlock_irq(&conf->device_lock);
5159
		wake_up(&conf->wait_for_overlap);
5160 5161 5162 5163 5164

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
		{
5165 5166 5167
			int data_disks = conf->raid_disks - conf->max_degraded;
			int stripe = data_disks * (conf->chunk_size
						   / PAGE_SIZE);
5168 5169 5170
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5171 5172 5173
	}
}

5174 5175 5176
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5177 5178 5179
static void raid5_finish_reshape(mddev_t *mddev)
{
	struct block_device *bdev;
5180
	raid5_conf_t *conf = mddev_to_conf(mddev);
5181 5182 5183

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
			mddev->changed = 1;

			bdev = bdget_disk(mddev->gendisk, 0);
			if (bdev) {
				mutex_lock(&bdev->bd_inode->i_mutex);
				i_size_write(bdev->bd_inode,
					     (loff_t)mddev->array_sectors << 9);
				mutex_unlock(&bdev->bd_inode->i_mutex);
				bdput(bdev);
			}
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
			     d++)
				raid5_remove_disk(mddev, d);
5209
		}
5210 5211
		mddev->layout = conf->algorithm;
		mddev->chunk_size = conf->chunk_size;
5212 5213
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5214 5215 5216
	}
}

5217 5218 5219 5220 5221
static void raid5_quiesce(mddev_t *mddev, int state)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);

	switch(state) {
5222 5223 5224 5225
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5226 5227 5228 5229
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 1;
		wait_event_lock_irq(conf->wait_for_stripe,
5230 5231
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5232 5233 5234 5235 5236 5237 5238 5239
				    conf->device_lock, /* nothing */);
		spin_unlock_irq(&conf->device_lock);
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5240
		wake_up(&conf->wait_for_overlap);
5241 5242 5243 5244
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5245

5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273

static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
	mddev->new_chunk = chunksect << 9;

	return setup_conf(mddev);
}

5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5307

5308 5309
static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
{
5310 5311 5312 5313
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
	 */
	raid5_conf_t *conf = mddev_to_conf(mddev);

	if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
		return -EINVAL;
	if (new_chunk > 0) {
		if (new_chunk & (new_chunk-1))
			/* not a power of 2 */
			return -EINVAL;
		if (new_chunk < PAGE_SIZE)
			return -EINVAL;
		if (mddev->array_sectors & ((new_chunk>>9)-1))
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5332
	if (mddev->raid_disks == 2) {
5333

5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
		if (new_layout >= 0) {
			conf->algorithm = new_layout;
			mddev->layout = mddev->new_layout = new_layout;
		}
		if (new_chunk > 0) {
			conf->chunk_size = new_chunk;
			mddev->chunk_size = mddev->new_chunk = new_chunk;
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
	} else {
		if (new_layout >= 0)
			mddev->new_layout = new_layout;
		if (new_chunk > 0)
			mddev->new_chunk = new_chunk;
5349
	}
5350 5351 5352 5353 5354 5355 5356
	return 0;
}

static int raid6_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
{
	if (new_layout >= 0 && !algorithm_valid_raid6(new_layout))
		return -EINVAL;
5357
	if (new_chunk > 0) {
5358 5359 5360 5361 5362 5363 5364 5365
		if (new_chunk & (new_chunk-1))
			/* not a power of 2 */
			return -EINVAL;
		if (new_chunk < PAGE_SIZE)
			return -EINVAL;
		if (mddev->array_sectors & ((new_chunk>>9)-1))
			/* not factor of array size */
			return -EINVAL;
5366
	}
5367 5368 5369 5370 5371 5372 5373 5374

	/* They look valid */

	if (new_layout >= 0)
		mddev->new_layout = new_layout;
	if (new_chunk > 0)
		mddev->new_chunk = new_chunk;

5375 5376 5377
	return 0;
}

5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
	 *  raid0 - if all devices are the same - make it a raid4 layout
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 *
	 * For now, just do raid1
	 */

	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5391 5392 5393 5394 5395
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5396 5397
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5398 5399 5400 5401 5402

	return ERR_PTR(-EINVAL);
}


5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5467
	.size		= raid5_size,
5468 5469
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5470
	.finish_reshape = raid5_finish_reshape,
5471
	.quiesce	= raid5_quiesce,
5472
	.takeover	= raid6_takeover,
5473
	.reconfig	= raid6_reconfig,
5474
};
5475
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5476 5477
{
	.name		= "raid5",
5478
	.level		= 5,
L
Linus Torvalds 已提交
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5490
	.size		= raid5_size,
5491 5492
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5493
	.finish_reshape = raid5_finish_reshape,
5494
	.quiesce	= raid5_quiesce,
5495
	.takeover	= raid5_takeover,
5496
	.reconfig	= raid5_reconfig,
L
Linus Torvalds 已提交
5497 5498
};

5499
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5500
{
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5514
	.size		= raid5_size,
5515 5516
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5517
	.finish_reshape = raid5_finish_reshape,
5518 5519 5520 5521 5522
	.quiesce	= raid5_quiesce,
};

static int __init raid5_init(void)
{
5523
	register_md_personality(&raid6_personality);
5524 5525 5526
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5527 5528
}

5529
static void raid5_exit(void)
L
Linus Torvalds 已提交
5530
{
5531
	unregister_md_personality(&raid6_personality);
5532 5533
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5534 5535 5536 5537 5538 5539
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5540 5541
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5542 5543
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5544 5545 5546 5547 5548 5549 5550
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");