raid5.c 155.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include <linux/slab.h>
54
#include "md.h"
55
#include "raid5.h"
56
#include "raid0.h"
57
#include "bitmap.h"
58

L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
68
#define BYPASS_THRESHOLD	1
69
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
70 71
#define HASH_MASK		(NR_HASH - 1)

72
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

94
#ifdef DEBUG
L
Linus Torvalds 已提交
95 96 97 98
#define inline
#define __inline__
#endif

99 100
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

101
/*
102 103
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 105 106
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
107
	return bio->bi_phys_segments & 0xffff;
108 109 110 111
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
112
	return (bio->bi_phys_segments >> 16) & 0xffff;
113 114 115 116 117 118 119 120 121 122 123 124 125
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
126
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 128 129 130 131
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
132
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
133 134
}

135 136 137
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
138 139 140 141
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
142 143 144 145 146
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
147 148 149 150 151
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
152

153 154 155 156 157
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
158 159
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
160
{
161
	int slot = *count;
162

163
	if (sh->ddf_layout)
164
		(*count)++;
165
	if (idx == sh->pd_idx)
166
		return syndrome_disks;
167
	if (idx == sh->qd_idx)
168
		return syndrome_disks + 1;
169
	if (!sh->ddf_layout)
170
		(*count)++;
171 172 173
	return slot;
}

174 175 176 177 178 179 180 181
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
182
		bio_endio(bi, 0);
183 184 185 186
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
187 188
static void print_raid5_conf (raid5_conf_t *conf);

189 190 191 192 193 194 195
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

196
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
197 198
{
	if (atomic_dec_and_test(&sh->count)) {
199 200
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
201
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
N
NeilBrown 已提交
202
			if (test_bit(STRIPE_DELAYED, &sh->state))
L
Linus Torvalds 已提交
203
				list_add_tail(&sh->lru, &conf->delayed_list);
N
NeilBrown 已提交
204 205
			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
				   sh->bm_seq - conf->seq_write > 0)
206
				list_add_tail(&sh->lru, &conf->bitmap_list);
N
NeilBrown 已提交
207
			else {
208
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
209
				list_add_tail(&sh->lru, &conf->handle_list);
210
			}
L
Linus Torvalds 已提交
211 212
			md_wakeup_thread(conf->mddev->thread);
		} else {
213
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
214 215 216 217 218 219
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
220 221
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
222
				wake_up(&conf->wait_for_stripe);
223 224
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
225
			}
L
Linus Torvalds 已提交
226 227 228
		}
	}
}
229

L
Linus Torvalds 已提交
230 231 232 233
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
234

L
Linus Torvalds 已提交
235 236 237 238 239
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

240
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
241
{
242 243
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
244

245
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
246 247
}

248
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
249
{
250
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
251

252 253
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
254 255

	CHECK_DEVLOCK();
256
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

278
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
279 280 281
{
	struct page *p;
	int i;
282
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
283

284
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
285 286 287 288
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
289
		put_page(p);
L
Linus Torvalds 已提交
290 291 292
	}
}

293
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
294 295
{
	int i;
296
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
297

298
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
299 300 301 302 303 304 305 306 307 308
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

309
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 311
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
312

313
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
314 315
{
	raid5_conf_t *conf = sh->raid_conf;
316
	int i;
L
Linus Torvalds 已提交
317

318 319
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320
	BUG_ON(stripe_operations_active(sh));
321

L
Linus Torvalds 已提交
322
	CHECK_DEVLOCK();
323
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
324 325 326
		(unsigned long long)sh->sector);

	remove_hash(sh);
327

328
	sh->generation = conf->generation - previous;
329
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
330
	sh->sector = sector;
331
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
332 333
	sh->state = 0;

334 335

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
336 337
		struct r5dev *dev = &sh->dev[i];

338
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
339
		    test_bit(R5_LOCKED, &dev->flags)) {
340
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
341
			       (unsigned long long)sh->sector, i, dev->toread,
342
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
343 344 345 346
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
347
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
348 349 350 351
	}
	insert_hash(conf, sh);
}

352 353
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
354 355
{
	struct stripe_head *sh;
356
	struct hlist_node *hn;
L
Linus Torvalds 已提交
357 358

	CHECK_DEVLOCK();
359
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
362
			return sh;
363
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
364 365 366
	return NULL;
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
static int has_failed(raid5_conf_t *conf)
{
	int degraded;
	int i;
	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

434 435
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
436
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
437 438 439
{
	struct stripe_head *sh;

440
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
441 442 443 444

	spin_lock_irq(&conf->device_lock);

	do {
445
		wait_event_lock_irq(conf->wait_for_stripe,
446
				    conf->quiesce == 0 || noquiesce,
447
				    conf->device_lock, /* nothing */);
448
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
449 450 451 452 453 454 455 456 457
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
458 459
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
460 461
						     || !conf->inactive_blocked),
						    conf->device_lock,
462
						    );
L
Linus Torvalds 已提交
463 464
				conf->inactive_blocked = 0;
			} else
465
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
466 467
		} else {
			if (atomic_read(&sh->count)) {
468 469
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
470 471 472
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
473 474
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
475 476
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
477 478 479 480 481 482 483 484 485 486 487
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

488 489 490 491
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
492

493
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 495 496 497 498 499 500 501 502 503
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
T
Tejun Heo 已提交
504 505 506 507 508 509
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510 511 512 513 514 515 516
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
517
		if (rw & WRITE)
518 519 520 521 522 523 524 525 526 527 528 529 530
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
531
			if (s->syncing || s->expanding || s->expanded)
532 533
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
534 535
			set_bit(STRIPE_IO_STARTED, &sh->state);

536 537
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538
				__func__, (unsigned long long)sh->sector,
539 540 541 542 543 544 545 546 547 548 549 550
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
551
			if ((rw & WRITE) &&
552 553 554 555 556
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
557
			if (rw & WRITE)
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
575
	struct async_submit_ctl submit;
D
Dan Williams 已提交
576
	enum async_tx_flags flags = 0;
577 578 579 580 581

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
582

D
Dan Williams 已提交
583 584 585 586
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

587
	bio_for_each_segment(bvl, bio, i) {
588
		int len = bvl->bv_len;
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
604 605
			b_offset += bvl->bv_offset;
			bio_page = bvl->bv_page;
606 607
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
608
						  b_offset, clen, &submit);
609 610
			else
				tx = async_memcpy(bio_page, page, b_offset,
611
						  page_offset, clen, &submit);
612
		}
613 614 615
		/* chain the operations */
		submit.depend_tx = tx;

616 617 618 619 620 621 622 623 624 625 626 627 628
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
629
	int i;
630

631
	pr_debug("%s: stripe %llu\n", __func__,
632 633 634
		(unsigned long long)sh->sector);

	/* clear completed biofills */
635
	spin_lock_irq(&conf->device_lock);
636 637 638 639
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
640 641
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
642
		 * !STRIPE_BIOFILL_RUN
643 644
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645 646 647 648 649 650 651 652
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
653
				if (!raid5_dec_bi_phys_segments(rbi)) {
654 655 656 657 658 659 660
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
661 662
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
663 664 665

	return_io(return_bi);

666
	set_bit(STRIPE_HANDLE, &sh->state);
667 668 669 670 671 672 673
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
674
	struct async_submit_ctl submit;
675 676
	int i;

677
	pr_debug("%s: stripe %llu\n", __func__,
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
698 699
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
700 701
}

702
static void mark_target_uptodate(struct stripe_head *sh, int target)
703
{
704
	struct r5dev *tgt;
705

706 707
	if (target < 0)
		return;
708

709
	tgt = &sh->dev[target];
710 711 712
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
713 714
}

715
static void ops_complete_compute(void *stripe_head_ref)
716 717 718
{
	struct stripe_head *sh = stripe_head_ref;

719
	pr_debug("%s: stripe %llu\n", __func__,
720 721
		(unsigned long long)sh->sector);

722
	/* mark the computed target(s) as uptodate */
723
	mark_target_uptodate(sh, sh->ops.target);
724
	mark_target_uptodate(sh, sh->ops.target2);
725

726 727 728
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
729 730 731 732
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

733 734 735 736 737 738 739 740 741
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
742 743
{
	int disks = sh->disks;
744
	struct page **xor_srcs = percpu->scribble;
745 746 747 748 749
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
750
	struct async_submit_ctl submit;
751 752 753
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
754
		__func__, (unsigned long long)sh->sector, target);
755 756 757 758 759 760 761 762
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
763
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
765
	if (unlikely(count == 1))
766
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767
	else
768
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
769 770 771 772

	return tx;
}

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
791
		srcs[i] = NULL;
792 793 794 795 796 797 798 799 800 801

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

802
	return syndrome_disks;
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
823
	else
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
840 841
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
842 843 844 845 846 847 848 849 850 851 852
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
853 854
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
855 856 857
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
858 859 860 861

	return tx;
}

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

883
	/* we need to open-code set_syndrome_sources to handle the
884 885 886
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
887
		blocks[i] = NULL;
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
914 915 916
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
917
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
937 938 939 940
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
941 942 943 944
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
945 946 947
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
948 949 950 951
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
952 953 954 955 956 957 958 959 960 961 962 963 964 965
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
966 967 968 969
	}
}


970 971 972 973
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

974
	pr_debug("%s: stripe %llu\n", __func__,
975 976 977 978
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
979 980
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
981 982
{
	int disks = sh->disks;
983
	struct page **xor_srcs = percpu->scribble;
984
	int count = 0, pd_idx = sh->pd_idx, i;
985
	struct async_submit_ctl submit;
986 987 988 989

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

990
	pr_debug("%s: stripe %llu\n", __func__,
991 992 993 994 995
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
996
		if (test_bit(R5_Wantdrain, &dev->flags))
997 998 999
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1000
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1003 1004 1005 1006 1007

	return tx;
}

static struct dma_async_tx_descriptor *
1008
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1009 1010
{
	int disks = sh->disks;
1011
	int i;
1012

1013
	pr_debug("%s: stripe %llu\n", __func__,
1014 1015 1016 1017 1018 1019
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1020
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021 1022
			struct bio *wbi;

1023
			spin_lock_irq(&sh->raid_conf->device_lock);
1024 1025 1026 1027
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
1028
			spin_unlock_irq(&sh->raid_conf->device_lock);
1029 1030 1031

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1032 1033
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1044
static void ops_complete_reconstruct(void *stripe_head_ref)
1045 1046
{
	struct stripe_head *sh = stripe_head_ref;
1047 1048 1049 1050
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
T
Tejun Heo 已提交
1051
	bool fua = false;
1052

1053
	pr_debug("%s: stripe %llu\n", __func__,
1054 1055
		(unsigned long long)sh->sector);

T
Tejun Heo 已提交
1056 1057 1058
	for (i = disks; i--; )
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);

1059 1060
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1061

T
Tejun Heo 已提交
1062
		if (dev->written || i == pd_idx || i == qd_idx) {
1063
			set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1064 1065 1066
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
		}
1067 1068
	}

1069 1070 1071 1072 1073 1074 1075 1076
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1077 1078 1079 1080 1081 1082

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1083 1084
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1085 1086
{
	int disks = sh->disks;
1087
	struct page **xor_srcs = percpu->scribble;
1088
	struct async_submit_ctl submit;
1089 1090
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1091
	int prexor = 0;
1092 1093
	unsigned long flags;

1094
	pr_debug("%s: stripe %llu\n", __func__,
1095 1096 1097 1098 1099
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1100 1101
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1122
	flags = ASYNC_TX_ACK |
1123 1124 1125 1126
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1127
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1128
			  to_addr_conv(sh, percpu));
1129 1130 1131 1132
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1133 1134
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1152 1153 1154 1155 1156 1157
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1158
	pr_debug("%s: stripe %llu\n", __func__,
1159 1160
		(unsigned long long)sh->sector);

1161
	sh->check_state = check_state_check_result;
1162 1163 1164 1165
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1166
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1167 1168
{
	int disks = sh->disks;
1169 1170 1171
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1172
	struct page **xor_srcs = percpu->scribble;
1173
	struct dma_async_tx_descriptor *tx;
1174
	struct async_submit_ctl submit;
1175 1176
	int count;
	int i;
1177

1178
	pr_debug("%s: stripe %llu\n", __func__,
1179 1180
		(unsigned long long)sh->sector);

1181 1182 1183
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1184
	for (i = disks; i--; ) {
1185 1186 1187
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1188 1189
	}

1190 1191
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1192
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1193
			   &sh->ops.zero_sum_result, &submit);
1194 1195

	atomic_inc(&sh->count);
1196 1197
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1198 1199
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1212 1213

	atomic_inc(&sh->count);
1214 1215 1216 1217
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1218 1219
}

1220
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1221 1222 1223
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1224
	raid5_conf_t *conf = sh->raid_conf;
1225
	int level = conf->level;
1226 1227
	struct raid5_percpu *percpu;
	unsigned long cpu;
1228

1229 1230
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1231
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1232 1233 1234 1235
		ops_run_biofill(sh);
		overlap_clear++;
	}

1236
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1247 1248
			async_tx_ack(tx);
	}
1249

1250
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1251
		tx = ops_run_prexor(sh, percpu, tx);
1252

1253
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1254
		tx = ops_run_biodrain(sh, tx);
1255 1256 1257
		overlap_clear++;
	}

1258 1259 1260 1261 1262 1263
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1264

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1275 1276 1277 1278 1279 1280 1281

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1282
	put_cpu();
1283 1284
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1315
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1316 1317
{
	struct stripe_head *sh;
N
Namhyung Kim 已提交
1318
	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1319 1320
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1321

1322
	sh->raid_conf = conf;
1323 1324 1325
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1326

1327 1328
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1342
	struct kmem_cache *sc;
1343
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1344

1345 1346 1347 1348 1349 1350 1351 1352
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1353 1354
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1355
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1356
			       0, 0, NULL);
L
Linus Torvalds 已提交
1357 1358 1359
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1360
	conf->pool_size = devs;
1361
	while (num--)
1362
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1363 1364 1365
			return 1;
	return 0;
}
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1417
	unsigned long cpu;
1418
	int err;
1419
	struct kmem_cache *sc;
1420 1421 1422 1423 1424
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1425 1426 1427
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1428

1429 1430 1431
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1432
			       0, 0, NULL);
1433 1434 1435 1436
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
N
Namhyung Kim 已提交
1437
		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1438 1439 1440 1441
		if (!nsh)
			break;

		nsh->raid_conf = conf;
1442 1443 1444
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
N
NeilBrown 已提交
1467
				    );
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1482
	 * conf->disks and the scribble region
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1512 1513 1514 1515
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1516

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1533

1534
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1535 1536 1537
{
	struct stripe_head *sh;

1538 1539 1540 1541 1542
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1543
	BUG_ON(atomic_read(&sh->count));
1544
	shrink_buffers(sh);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1555 1556
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1557 1558 1559
	conf->slab_cache = NULL;
}

1560
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1561
{
1562
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1563
	raid5_conf_t *conf = sh->raid_conf;
1564
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1565
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1566 1567
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1568 1569 1570 1571 1572 1573


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1574 1575
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1576 1577 1578
		uptodate);
	if (i == disks) {
		BUG();
1579
		return;
L
Linus Torvalds 已提交
1580 1581 1582 1583
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1584
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1585
			rdev = conf->disks[i].rdev;
1586
			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1587 1588 1589 1590 1591
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1592 1593 1594
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1595 1596
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1597
	} else {
1598
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1599
		int retry = 0;
1600 1601
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1602
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1603
		atomic_inc(&rdev->read_errors);
1604
		if (conf->mddev->degraded >= conf->max_degraded)
1605
			printk_rl(KERN_WARNING
1606
				  "md/raid:%s: read error not correctable "
1607 1608 1609 1610 1611
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1612
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1613
			/* Oh, no!!! */
1614
			printk_rl(KERN_WARNING
1615
				  "md/raid:%s: read error NOT corrected!! "
1616 1617 1618 1619 1620
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1621
		else if (atomic_read(&rdev->read_errors)
1622
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1623
			printk(KERN_WARNING
1624
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1625
			       mdname(conf->mddev), bdn);
1626 1627 1628 1629 1630
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1631 1632
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1633
			md_error(conf->mddev, rdev);
1634
		}
L
Linus Torvalds 已提交
1635 1636 1637 1638 1639 1640 1641
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1642
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1643
{
1644
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1645
	raid5_conf_t *conf = sh->raid_conf;
1646
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1647 1648 1649 1650 1651 1652
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1653
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1654 1655 1656 1657
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1658
		return;
L
Linus Torvalds 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1668
	release_stripe(sh);
L
Linus Torvalds 已提交
1669 1670 1671
}


1672
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1673
	
1674
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1690
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1691 1692 1693 1694 1695
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
1696
	raid5_conf_t *conf = mddev->private;
1697
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1698

1699 1700 1701 1702 1703 1704 1705 1706 1707
	if (test_and_clear_bit(In_sync, &rdev->flags)) {
		unsigned long flags;
		spin_lock_irqsave(&conf->device_lock, flags);
		mddev->degraded++;
		spin_unlock_irqrestore(&conf->device_lock, flags);
		/*
		 * if recovery was running, make sure it aborts.
		 */
		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1708
	}
1709 1710 1711 1712 1713 1714 1715 1716 1717
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
1718
}
L
Linus Torvalds 已提交
1719 1720 1721 1722 1723

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1724
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1725 1726
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1727
{
N
NeilBrown 已提交
1728
	sector_t stripe, stripe2;
1729
	sector_t chunk_number;
L
Linus Torvalds 已提交
1730
	unsigned int chunk_offset;
1731
	int pd_idx, qd_idx;
1732
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1733
	sector_t new_sector;
1734 1735
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1736 1737
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1738 1739 1740
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1753 1754
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1755
	stripe2 = stripe;
L
Linus Torvalds 已提交
1756 1757 1758
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1759
	pd_idx = qd_idx = -1;
1760 1761
	switch(conf->level) {
	case 4:
1762
		pd_idx = data_disks;
1763 1764
		break;
	case 5:
1765
		switch (algorithm) {
L
Linus Torvalds 已提交
1766
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1767
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1768
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1769 1770 1771
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1772
			pd_idx = sector_div(stripe2, raid_disks);
1773
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1774 1775 1776
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1777
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1778
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1779 1780
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1781
			pd_idx = sector_div(stripe2, raid_disks);
1782
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1783
			break;
1784 1785 1786 1787 1788 1789 1790
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1791
		default:
1792
			BUG();
1793 1794 1795 1796
		}
		break;
	case 6:

1797
		switch (algorithm) {
1798
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1799
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1800 1801
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1802
				(*dd_idx)++;	/* Q D D D P */
1803 1804
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1805 1806 1807
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1808
			pd_idx = sector_div(stripe2, raid_disks);
1809 1810
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1811
				(*dd_idx)++;	/* Q D D D P */
1812 1813
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1814 1815 1816
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1817
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1818 1819
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1820 1821
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1822
			pd_idx = sector_div(stripe2, raid_disks);
1823 1824
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1825
			break;
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
1841
			pd_idx = sector_div(stripe2, raid_disks);
1842 1843 1844 1845 1846 1847
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1848
			ddf_layout = 1;
1849 1850 1851 1852 1853 1854 1855
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
1856 1857
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1858 1859 1860 1861 1862 1863
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1864
			ddf_layout = 1;
1865 1866 1867 1868
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
1869
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1870 1871
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1872
			ddf_layout = 1;
1873 1874 1875 1876
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
1877
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1878 1879 1880 1881 1882 1883
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
1884
			pd_idx = sector_div(stripe2, raid_disks-1);
1885 1886 1887 1888 1889 1890
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
1891
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1892 1893 1894 1895 1896
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
1897
			pd_idx = sector_div(stripe2, raid_disks-1);
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

1908
		default:
1909
			BUG();
1910 1911
		}
		break;
L
Linus Torvalds 已提交
1912 1913
	}

1914 1915 1916
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1917
		sh->ddf_layout = ddf_layout;
1918
	}
L
Linus Torvalds 已提交
1919 1920 1921 1922 1923 1924 1925 1926
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1927
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1928 1929
{
	raid5_conf_t *conf = sh->raid_conf;
1930 1931
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1932
	sector_t new_sector = sh->sector, check;
1933 1934
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1935 1936
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1937 1938
	sector_t stripe;
	int chunk_offset;
1939 1940
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1941
	sector_t r_sector;
1942
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1943

1944

L
Linus Torvalds 已提交
1945 1946 1947
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

1948 1949 1950 1951 1952
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1953
		switch (algorithm) {
L
Linus Torvalds 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1965 1966 1967 1968 1969
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1970
		default:
1971
			BUG();
1972 1973 1974
		}
		break;
	case 6:
1975
		if (i == sh->qd_idx)
1976
			return 0; /* It is the Q disk */
1977
		switch (algorithm) {
1978 1979
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1980 1981 1982 1983
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1998 1999 2000 2001 2002 2003
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2004
			/* Like left_symmetric, but P is before Q */
2005 2006
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2007 2008 2009 2010 2011 2012
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2028
		default:
2029
			BUG();
2030 2031
		}
		break;
L
Linus Torvalds 已提交
2032 2033 2034
	}

	chunk_number = stripe * data_disks + i;
2035
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2036

2037
	check = raid5_compute_sector(conf, r_sector,
2038
				     previous, &dummy1, &sh2);
2039 2040
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2041 2042
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2043 2044 2045 2046 2047 2048
		return 0;
	}
	return r_sector;
}


2049
static void
2050
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2051
			 int rcw, int expand)
2052 2053
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2054 2055
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
2056 2057 2058 2059 2060 2061 2062

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2063 2064 2065 2066
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2067

2068
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2069 2070 2071 2072 2073 2074

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2075
				set_bit(R5_Wantdrain, &dev->flags);
2076 2077
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2078
				s->locked++;
2079 2080
			}
		}
2081
		if (s->locked + conf->max_degraded == disks)
2082
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2083
				atomic_inc(&conf->pending_full_writes);
2084
	} else {
2085
		BUG_ON(level == 6);
2086 2087 2088
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2089
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2090 2091
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2092
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2093 2094 2095 2096 2097 2098 2099 2100

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2101 2102
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2103 2104
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2105
				s->locked++;
2106 2107 2108 2109
			}
		}
	}

2110
	/* keep the parity disk(s) locked while asynchronous operations
2111 2112 2113 2114
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2115
	s->locked++;
2116

2117 2118 2119 2120 2121 2122 2123 2124 2125
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2126
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2127
		__func__, (unsigned long long)sh->sector,
2128
		s->locked, s->ops_request);
2129
}
2130

L
Linus Torvalds 已提交
2131 2132
/*
 * Each stripe/dev can have one or more bion attached.
2133
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2134 2135 2136 2137 2138 2139
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2140
	int firstwrite=0;
L
Linus Torvalds 已提交
2141

2142
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2143 2144 2145 2146 2147
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock_irq(&conf->device_lock);
2148
	if (forwrite) {
L
Linus Torvalds 已提交
2149
		bip = &sh->dev[dd_idx].towrite;
2150 2151 2152
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2153 2154 2155 2156 2157 2158 2159 2160 2161
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2162
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2163 2164 2165
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2166
	bi->bi_phys_segments++;
2167

L
Linus Torvalds 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	spin_unlock_irq(&conf->device_lock);

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
		(unsigned long long)(*bip)->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
L
Linus Torvalds 已提交
2193 2194 2195 2196 2197 2198 2199 2200
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	return 0;
}

2201 2202
static void end_reshape(raid5_conf_t *conf);

2203 2204
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2205
{
2206
	int sectors_per_chunk =
2207
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2208
	int dd_idx;
2209
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2210
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2211

2212 2213
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2214
			     *sectors_per_chunk + chunk_offset,
2215
			     previous,
2216
			     &dd_idx, sh);
2217 2218
}

2219
static void
2220
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2254
			if (!raid5_dec_bi_phys_segments(bi)) {
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2269
			if (!raid5_dec_bi_phys_segments(bi)) {
2270 2271 2272 2273 2274 2275 2276
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2277 2278 2279 2280 2281 2282
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2293
				if (!raid5_dec_bi_phys_segments(bi)) {
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2306 2307 2308
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2309 2310
}

2311
/* fetch_block - checks the given member device to see if its data needs
2312 2313 2314
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
2315
 * 0 to tell the loop in handle_stripe_fill to continue
2316
 */
2317 2318
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
2319
{
2320
	struct r5dev *dev = &sh->dev[disk_idx];
2321 2322
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
2323

2324
	/* is the data in this block needed, and can we get it? */
2325 2326 2327 2328 2329
	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
2330 2331
	     (s->failed >= 1 && fdev[0]->toread) ||
	     (s->failed >= 2 && fdev[1]->toread) ||
2332 2333 2334
	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2335 2336 2337 2338 2339 2340
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
2341 2342
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
2343 2344
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2345
			 */
2346 2347 2348 2349 2350 2351 2352 2353
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
2354 2355 2356 2357 2358 2359
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2373
			}
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2393 2394
		}
	}
2395 2396 2397 2398 2399

	return 0;
}

/**
2400
 * handle_stripe_fill - read or compute data to satisfy pending requests.
2401
 */
2402 2403 2404
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
2415
			if (fetch_block(sh, s, i, disks))
2416
				break;
2417 2418 2419 2420
	set_bit(STRIPE_HANDLE, &sh->state);
}


2421
/* handle_stripe_clean_event
2422 2423 2424 2425
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2426
static void handle_stripe_clean_event(raid5_conf_t *conf,
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2440
				pr_debug("Return write for disc %d\n", i);
2441 2442 2443 2444 2445 2446
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2447
					if (!raid5_dec_bi_phys_segments(wbi)) {
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2465 2466 2467 2468

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2469 2470
}

2471 2472 2473 2474
static void handle_stripe_dirtying(raid5_conf_t *conf,
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
2475 2476
{
	int rmw = 0, rcw = 0, i;
2477 2478 2479 2480 2481 2482 2483
	if (conf->max_degraded == 2) {
		/* RAID6 requires 'rcw' in current implementation
		 * Calculate the real rcw later - for now fake it
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
	} else for (i = disks; i--; ) {
2484 2485 2486 2487
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2488 2489
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2490 2491 2492 2493 2494 2495 2496 2497
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2498 2499 2500
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2501 2502 2503 2504
			else
				rcw += 2*disks;
		}
	}
2505
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2506 2507 2508 2509 2510 2511 2512 2513
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2514 2515
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2516 2517 2518
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2519
					pr_debug("Read_old block "
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2530
	if (rcw <= rmw && rcw > 0) {
2531
		/* want reconstruct write, but need to get some data */
2532
		rcw = 0;
2533 2534 2535
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2536
			    i != sh->pd_idx && i != sh->qd_idx &&
2537
			    !test_bit(R5_LOCKED, &dev->flags) &&
2538
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2539 2540 2541 2542
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
				if (!test_bit(R5_Insync, &dev->flags))
					continue; /* it's a failed drive */
2543 2544
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2545
					pr_debug("Read_old block "
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2556
	}
2557 2558 2559
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2560 2561
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2562 2563
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2564 2565 2566
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2567 2568 2569
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2570
		schedule_reconstruction(sh, s, rcw == 0, 0);
2571 2572 2573 2574 2575
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2576
	struct r5dev *dev = NULL;
2577

2578
	set_bit(STRIPE_HANDLE, &sh->state);
2579

2580 2581 2582
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2583 2584
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2585 2586
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2587 2588
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2589
			break;
2590
		}
2591
		dev = &sh->dev[s->failed_num[0]];
2592 2593 2594 2595 2596 2597 2598 2599 2600
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2601

2602 2603 2604 2605 2606
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2607
		s->locked++;
2608
		set_bit(R5_Wantwrite, &dev->flags);
2609

2610 2611
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2628
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2640
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2641 2642 2643 2644
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2645
				sh->ops.target2 = -1;
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2657 2658 2659 2660 2661
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2662
				  struct stripe_head_state *s,
2663
				  int disks)
2664 2665
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2666
	int qd_idx = sh->qd_idx;
2667
	struct r5dev *dev;
2668 2669 2670 2671

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2672

2673 2674 2675 2676 2677 2678
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2679 2680 2681
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2682
		if (s->failed == s->q_failed) {
2683
			/* The only possible failed device holds Q, so it
2684 2685 2686
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2687
			sh->check_state = check_state_run;
2688
		}
2689
		if (!s->q_failed && s->failed < 2) {
2690
			/* Q is not failed, and we didn't use it to generate
2691 2692
			 * anything, so it makes sense to check it
			 */
2693 2694 2695 2696
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2697 2698
		}

2699 2700
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2701

2702 2703 2704 2705
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2706
		}
2707 2708 2709 2710 2711 2712 2713
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2714 2715
		}

2716 2717 2718 2719 2720
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2721

2722 2723 2724
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2725 2726

		/* now write out any block on a failed drive,
2727
		 * or P or Q if they were recomputed
2728
		 */
2729
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2730
		if (s->failed == 2) {
2731
			dev = &sh->dev[s->failed_num[1]];
2732 2733 2734 2735 2736
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
2737
			dev = &sh->dev[s->failed_num[0]];
2738 2739 2740 2741
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2742
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2743 2744 2745 2746 2747
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2748
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2749 2750 2751 2752 2753 2754 2755 2756
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2821 2822 2823
	}
}

2824
static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2825 2826 2827 2828 2829 2830
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2831
	struct dma_async_tx_descriptor *tx = NULL;
2832 2833
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2834
		if (i != sh->pd_idx && i != sh->qd_idx) {
2835
			int dd_idx, j;
2836
			struct stripe_head *sh2;
2837
			struct async_submit_ctl submit;
2838

2839
			sector_t bn = compute_blocknr(sh, i, 1);
2840 2841
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2842
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2855 2856

			/* place all the copies on one channel */
2857
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2858
			tx = async_memcpy(sh2->dev[dd_idx].page,
2859
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2860
					  &submit);
2861

2862 2863 2864 2865
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2866
				    j != sh2->qd_idx &&
2867 2868 2869 2870 2871 2872 2873
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2874

2875
		}
2876 2877 2878 2879 2880
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2881
}
L
Linus Torvalds 已提交
2882

2883

L
Linus Torvalds 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2900

2901
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
2902
{
2903
	raid5_conf_t *conf = sh->raid_conf;
2904
	int disks = sh->disks;
2905 2906
	struct r5dev *dev;
	int i;
L
Linus Torvalds 已提交
2907

2908 2909 2910 2911 2912 2913 2914
	memset(s, 0, sizeof(*s));

	s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
2915

2916
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
2917
	rcu_read_lock();
2918
	spin_lock_irq(&conf->device_lock);
2919 2920
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2921

2922
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
2923

2924
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2925
			i, dev->flags, dev->toread, dev->towrite, dev->written);
2926 2927 2928 2929 2930 2931 2932 2933
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2934

2935
		/* now count some things */
2936 2937 2938 2939
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
2940
		if (test_bit(R5_Wantcompute, &dev->flags)) {
2941 2942
			s->compute++;
			BUG_ON(s->compute > 2);
2943
		}
L
Linus Torvalds 已提交
2944

2945
		if (test_bit(R5_Wantfill, &dev->flags))
2946
			s->to_fill++;
2947
		else if (dev->toread)
2948
			s->to_read++;
2949
		if (dev->towrite) {
2950
			s->to_write++;
2951
			if (!test_bit(R5_OVERWRITE, &dev->flags))
2952
				s->non_overwrite++;
2953
		}
2954
		if (dev->written)
2955
			s->written++;
2956
		rdev = rcu_dereference(conf->disks[i].rdev);
2957
		if (s->blocked_rdev == NULL &&
2958
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2959
			s->blocked_rdev = rdev;
2960 2961
			atomic_inc(&rdev->nr_pending);
		}
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* in sync if before recovery_offset */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
2973 2974 2975
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
2976
		}
2977 2978 2979
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
2980 2981 2982
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
2983
		}
L
Linus Torvalds 已提交
2984
	}
2985
	spin_unlock_irq(&conf->device_lock);
L
Linus Torvalds 已提交
2986
	rcu_read_unlock();
2987 2988 2989 2990 2991
}

static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
2992
	raid5_conf_t *conf = sh->raid_conf;
2993
	int i;
2994 2995
	int prexor;
	int disks = sh->disks;
2996
	struct r5dev *pdev, *qdev;
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016

	clear_bit(STRIPE_HANDLE, &sh->state);
	if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
		set_bit(STRIPE_SYNCING, &sh->state);
		clear_bit(STRIPE_INSYNC, &sh->state);
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
3017

3018
	analyse_stripe(sh, &s);
3019

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
	if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
		handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
	if (s.failed > conf->max_degraded && s.syncing) {
		md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
		clear_bit(STRIPE_SYNCING, &sh->state);
		s.syncing = 0;
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
	    || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
		handle_stripe_fill(sh, &s, disks);

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(sh->qd_idx >= 0 &&
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169

	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}


3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
3197

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
3214

3215
finish:
3216
	/* wait for this device to become unblocked */
3217 3218
	if (unlikely(s.blocked_rdev))
		md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3219

3220 3221 3222
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3223
	ops_run_io(sh, &s);
3224

3225

3226
	if (s.dec_preread_active) {
3227
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3228
		 * is waiting on a flush, it won't continue until the writes
3229 3230 3231 3232 3233 3234 3235 3236
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

3237
	return_io(s.return_bi);
3238

3239
	clear_bit(STRIPE_ACTIVE, &sh->state);
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3253
			list_add_tail(&sh->lru, &conf->hold_list);
3254
		}
N
NeilBrown 已提交
3255
	}
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

N
NeilBrown 已提交
3272
int md_raid5_congested(mddev_t *mddev, int bits)
3273
{
3274
	raid5_conf_t *conf = mddev->private;
3275 3276 3277 3278

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3279

3280 3281 3282 3283 3284 3285 3286 3287 3288
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3289 3290 3291 3292 3293 3294 3295 3296 3297
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3298

3299 3300 3301
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3302 3303 3304
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3305 3306
{
	mddev_t *mddev = q->queuedata;
3307
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3308
	int max;
3309
	unsigned int chunk_sectors = mddev->chunk_sectors;
3310
	unsigned int bio_sectors = bvm->bi_size >> 9;
3311

3312
	if ((bvm->bi_rw & 1) == WRITE)
3313 3314
		return biovec->bv_len; /* always allow writes to be mergeable */

3315 3316
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3317 3318 3319 3320 3321 3322 3323 3324
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3325 3326 3327 3328

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3329
	unsigned int chunk_sectors = mddev->chunk_sectors;
3330 3331
	unsigned int bio_sectors = bio->bi_size >> 9;

3332 3333
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3334 3335 3336 3337
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3367
		conf->retry_read_aligned_list = bi->bi_next;
3368
		bi->bi_next = NULL;
3369 3370 3371 3372
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3373 3374 3375 3376 3377 3378 3379
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3380 3381 3382 3383 3384 3385
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3386
static void raid5_align_endio(struct bio *bi, int error)
3387 3388
{
	struct bio* raid_bi  = bi->bi_private;
3389 3390 3391 3392 3393
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3394
	bio_put(bi);
3395 3396 3397

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3398 3399
	mddev = rdev->mddev;
	conf = mddev->private;
3400 3401 3402 3403

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3404
		bio_endio(raid_bi, 0);
3405 3406
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3407
		return;
3408 3409 3410
	}


3411
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3412 3413

	add_bio_to_retry(raid_bi, conf);
3414 3415
}

3416 3417
static int bio_fits_rdev(struct bio *bi)
{
3418
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3419

3420
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3421 3422
		return 0;
	blk_recount_segments(q, bi);
3423
	if (bi->bi_phys_segments > queue_max_segments(q))
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3436
static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3437
{
3438
	raid5_conf_t *conf = mddev->private;
N
NeilBrown 已提交
3439
	int dd_idx;
3440 3441 3442 3443
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3444
		pr_debug("chunk_aligned_read : non aligned\n");
3445 3446 3447
		return 0;
	}
	/*
3448
	 * use bio_clone_mddev to make a copy of the bio
3449
	 */
3450
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3462 3463
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3464
						    &dd_idx, NULL);
3465 3466 3467 3468 3469 3470

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3471 3472 3473 3474 3475
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3476 3477 3478 3479 3480 3481 3482
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3483 3484 3485 3486 3487 3488 3489
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3490 3491 3492 3493
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3494
		bio_put(align_bi);
3495 3496 3497 3498
		return 0;
	}
}

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3551

3552
static int make_request(mddev_t *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3553
{
3554
	raid5_conf_t *conf = mddev->private;
3555
	int dd_idx;
L
Linus Torvalds 已提交
3556 3557 3558
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3559
	const int rw = bio_data_dir(bi);
3560
	int remaining;
3561
	int plugged;
L
Linus Torvalds 已提交
3562

T
Tejun Heo 已提交
3563 3564
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
3565 3566 3567
		return 0;
	}

3568
	md_write_start(mddev, bi);
3569

3570
	if (rw == READ &&
3571
	     mddev->reshape_position == MaxSector &&
3572
	     chunk_aligned_read(mddev,bi))
3573
		return 0;
3574

L
Linus Torvalds 已提交
3575 3576 3577 3578
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3579

3580
	plugged = mddev_check_plugged(mddev);
L
Linus Torvalds 已提交
3581 3582
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3583
		int disks, data_disks;
3584
		int previous;
3585

3586
	retry:
3587
		previous = 0;
3588
		disks = conf->raid_disks;
3589
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3590
		if (unlikely(conf->reshape_progress != MaxSector)) {
3591
			/* spinlock is needed as reshape_progress may be
3592 3593
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3594
			 * Of course reshape_progress could change after
3595 3596 3597 3598
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3599
			spin_lock_irq(&conf->device_lock);
3600 3601 3602
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3603
				disks = conf->previous_raid_disks;
3604 3605
				previous = 1;
			} else {
3606 3607 3608
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3609 3610 3611 3612 3613
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3614 3615
			spin_unlock_irq(&conf->device_lock);
		}
3616 3617
		data_disks = disks - conf->max_degraded;

3618 3619
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3620
						  &dd_idx, NULL);
3621
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3622 3623 3624
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3625
		sh = get_active_stripe(conf, new_sector, previous,
3626
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
3627
		if (sh) {
3628
			if (unlikely(previous)) {
3629
				/* expansion might have moved on while waiting for a
3630 3631 3632 3633 3634 3635
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3636 3637 3638
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3639 3640 3641
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
3642 3643 3644 3645 3646
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
3647
					schedule();
3648 3649 3650
					goto retry;
				}
			}
3651

3652
			if (rw == WRITE &&
3653
			    logical_sector >= mddev->suspend_lo &&
3654 3655
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
3666 3667
				goto retry;
			}
3668 3669

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3670
			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
3671 3672
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3673 3674
				 * and wait a while
				 */
N
NeilBrown 已提交
3675
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
3676 3677 3678 3679 3680
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3681 3682
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
T
Tejun Heo 已提交
3683
			if ((bi->bi_rw & REQ_SYNC) &&
3684 3685
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
3686 3687 3688 3689 3690 3691 3692 3693 3694
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
3695 3696 3697
	if (!plugged)
		md_wakeup_thread(mddev->thread);

L
Linus Torvalds 已提交
3698
	spin_lock_irq(&conf->device_lock);
3699
	remaining = raid5_dec_bi_phys_segments(bi);
3700 3701
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
3702

3703
		if ( rw == WRITE )
L
Linus Torvalds 已提交
3704
			md_write_end(mddev);
3705

3706
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
3707
	}
3708

L
Linus Torvalds 已提交
3709 3710 3711
	return 0;
}

D
Dan Williams 已提交
3712 3713
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

3714
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
3715
{
3716 3717 3718 3719 3720 3721 3722 3723 3724
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
3725
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
3726
	struct stripe_head *sh;
3727
	sector_t first_sector, last_sector;
3728 3729 3730
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
3731 3732
	int i;
	int dd_idx;
3733
	sector_t writepos, readpos, safepos;
3734
	sector_t stripe_addr;
3735
	int reshape_sectors;
3736
	struct list_head stripes;
3737

3738 3739 3740 3741 3742 3743
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
3744
		} else if (mddev->delta_disks >= 0 &&
3745 3746
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
3747
		sector_div(sector_nr, new_data_disks);
3748
		if (sector_nr) {
3749 3750
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3751 3752 3753
			*skipped = 1;
			return sector_nr;
		}
3754 3755
	}

3756 3757 3758 3759
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
3760 3761
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
3762
	else
3763
		reshape_sectors = mddev->chunk_sectors;
3764

3765 3766 3767 3768 3769
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
3770 3771
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
3772
	 */
3773
	writepos = conf->reshape_progress;
3774
	sector_div(writepos, new_data_disks);
3775 3776
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
3777
	safepos = conf->reshape_safe;
3778
	sector_div(safepos, data_disks);
3779
	if (mddev->delta_disks < 0) {
3780
		writepos -= min_t(sector_t, reshape_sectors, writepos);
3781
		readpos += reshape_sectors;
3782
		safepos += reshape_sectors;
3783
	} else {
3784
		writepos += reshape_sectors;
3785 3786
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
3787
	}
3788

3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
3806
	if ((mddev->delta_disks < 0
3807 3808 3809
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3810 3811 3812
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
3813
		mddev->reshape_position = conf->reshape_progress;
3814
		mddev->curr_resync_completed = sector_nr;
3815
		conf->reshape_checkpoint = jiffies;
3816
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3817
		md_wakeup_thread(mddev->thread);
3818
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3819 3820
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
3821
		conf->reshape_safe = mddev->reshape_position;
3822 3823
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
3824
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3825 3826
	}

3827 3828 3829 3830
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
3831 3832
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
3833 3834
		       != sector_nr);
	} else {
3835
		BUG_ON(writepos != sector_nr + reshape_sectors);
3836 3837
		stripe_addr = sector_nr;
	}
3838
	INIT_LIST_HEAD(&stripes);
3839
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3840
		int j;
3841
		int skipped_disk = 0;
3842
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3843 3844 3845 3846 3847 3848 3849 3850 3851
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
3852
			if (conf->level == 6 &&
3853
			    j == sh->qd_idx)
3854
				continue;
3855
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
3856
			if (s < raid5_size(mddev, 0, 0)) {
3857
				skipped_disk = 1;
3858 3859 3860 3861 3862 3863
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
3864
		if (!skipped_disk) {
3865 3866 3867
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
3868
		list_add(&sh->lru, &stripes);
3869 3870
	}
	spin_lock_irq(&conf->device_lock);
3871
	if (mddev->delta_disks < 0)
3872
		conf->reshape_progress -= reshape_sectors * new_data_disks;
3873
	else
3874
		conf->reshape_progress += reshape_sectors * new_data_disks;
3875 3876 3877 3878 3879 3880 3881
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
3882
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3883
				     1, &dd_idx, NULL);
3884
	last_sector =
3885
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
3886
					    * new_data_disks - 1),
3887
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
3888 3889
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
3890
	while (first_sector <= last_sector) {
3891
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
3892 3893 3894 3895 3896
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
3897 3898 3899 3900 3901 3902 3903 3904
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
3905 3906 3907
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
3908
	sector_nr += reshape_sectors;
3909 3910
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
3911 3912 3913
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
3914
		mddev->reshape_position = conf->reshape_progress;
3915
		mddev->curr_resync_completed = sector_nr;
3916
		conf->reshape_checkpoint = jiffies;
3917 3918 3919 3920 3921 3922
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
3923
		conf->reshape_safe = mddev->reshape_position;
3924 3925
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
3926
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3927
	}
3928
	return reshape_sectors;
3929 3930 3931 3932 3933
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
3934
	raid5_conf_t *conf = mddev->private;
3935
	struct stripe_head *sh;
A
Andre Noll 已提交
3936
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
3937
	sector_t sync_blocks;
3938 3939
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
3940

3941
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
3942
		/* just being told to finish up .. nothing much to do */
3943

3944 3945 3946 3947
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
3948 3949 3950 3951

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
3952
		else /* completed sync */
3953 3954 3955
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
3956 3957
		return 0;
	}
3958

3959 3960 3961
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

3962 3963
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
3964

3965 3966 3967 3968 3969 3970
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

3971
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
3972 3973 3974
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
3975
	if (mddev->degraded >= conf->max_degraded &&
3976
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
3977
		sector_t rv = mddev->dev_sectors - sector_nr;
3978
		*skipped = 1;
L
Linus Torvalds 已提交
3979 3980
		return rv;
	}
3981
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3982
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3983 3984 3985 3986 3987 3988
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
3989

N
NeilBrown 已提交
3990 3991 3992

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

3993
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
3994
	if (sh == NULL) {
3995
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
3996
		/* make sure we don't swamp the stripe cache if someone else
3997
		 * is trying to get access
L
Linus Torvalds 已提交
3998
		 */
3999
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4000
	}
4001 4002 4003 4004
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4005
	for (i = 0; i < conf->raid_disks; i++)
4006 4007 4008 4009 4010
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

4011
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
L
Linus Torvalds 已提交
4012

4013
	handle_stripe(sh);
L
Linus Torvalds 已提交
4014 4015 4016 4017 4018
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4032
	int dd_idx;
4033 4034 4035 4036 4037 4038
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4039
	sector = raid5_compute_sector(conf, logical_sector,
4040
				      0, &dd_idx, NULL);
4041 4042 4043
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4044 4045 4046
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4047

4048
		if (scnt < raid5_bi_hw_segments(raid_bio))
4049 4050 4051
			/* already done this stripe */
			continue;

4052
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4053 4054 4055

		if (!sh) {
			/* failed to get a stripe - must wait */
4056
			raid5_set_bi_hw_segments(raid_bio, scnt);
4057 4058 4059 4060 4061
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4062 4063
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4064
			raid5_set_bi_hw_segments(raid_bio, scnt);
4065 4066 4067 4068
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4069
		handle_stripe(sh);
4070 4071 4072 4073
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4074
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4075
	spin_unlock_irq(&conf->device_lock);
4076 4077
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4078 4079 4080 4081 4082 4083
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4084 4085 4086 4087 4088 4089 4090
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4091
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4092 4093
{
	struct stripe_head *sh;
4094
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4095
	int handled;
4096
	struct blk_plug plug;
L
Linus Torvalds 已提交
4097

4098
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4099 4100 4101

	md_check_recovery(mddev);

4102
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4103 4104 4105
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4106
		struct bio *bio;
L
Linus Torvalds 已提交
4107

4108 4109 4110 4111
		if (atomic_read(&mddev->plug_cnt) == 0 &&
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
4112
			spin_unlock_irq(&conf->device_lock);
4113
			bitmap_unplug(mddev->bitmap);
4114
			spin_lock_irq(&conf->device_lock);
4115
			conf->seq_write = conf->seq_flush;
4116 4117
			activate_bit_delay(conf);
		}
4118 4119
		if (atomic_read(&mddev->plug_cnt) == 0)
			raid5_activate_delayed(conf);
4120

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4131 4132
		sh = __get_priority_stripe(conf);

4133
		if (!sh)
L
Linus Torvalds 已提交
4134 4135 4136 4137
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4138 4139 4140
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4141 4142 4143

		spin_lock_irq(&conf->device_lock);
	}
4144
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4145 4146 4147

	spin_unlock_irq(&conf->device_lock);

4148
	async_tx_issue_pending_all();
4149
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4150

4151
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4152 4153
}

4154
static ssize_t
4155
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4156
{
4157
	raid5_conf_t *conf = mddev->private;
4158 4159 4160 4161
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4162 4163
}

4164 4165
int
raid5_set_cache_size(mddev_t *mddev, int size)
4166
{
4167
	raid5_conf_t *conf = mddev->private;
4168 4169
	int err;

4170
	if (size <= 16 || size > 32768)
4171
		return -EINVAL;
4172
	while (size < conf->max_nr_stripes) {
4173 4174 4175 4176 4177
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4178 4179 4180
	err = md_allow_write(mddev);
	if (err)
		return err;
4181
	while (size > conf->max_nr_stripes) {
4182 4183 4184 4185
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev->private;
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4207 4208
	return len;
}
4209

4210 4211 4212 4213
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4214

4215 4216 4217
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4218
	raid5_conf_t *conf = mddev->private;
4219 4220 4221 4222 4223 4224 4225 4226 4227
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4228
	raid5_conf_t *conf = mddev->private;
4229
	unsigned long new;
4230 4231 4232 4233 4234
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4235
	if (strict_strtoul(page, 10, &new))
4236
		return -EINVAL;
4237
	if (new > conf->max_nr_stripes)
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4249
static ssize_t
4250
stripe_cache_active_show(mddev_t *mddev, char *page)
4251
{
4252
	raid5_conf_t *conf = mddev->private;
4253 4254 4255 4256
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4257 4258
}

4259 4260
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4261

4262
static struct attribute *raid5_attrs[] =  {
4263 4264
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4265
	&raid5_preread_bypass_threshold.attr,
4266 4267
	NULL,
};
4268 4269 4270
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4271 4272
};

4273 4274 4275
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4276
	raid5_conf_t *conf = mddev->private;
4277 4278 4279

	if (!sectors)
		sectors = mddev->dev_sectors;
4280
	if (!raid_disks)
4281
		/* size is defined by the smallest of previous and new size */
4282
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4283

4284
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4285
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4286 4287 4288
	return sectors * (raid_disks - conf->max_degraded);
}

4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4301
		kfree(percpu->scribble);
4302 4303 4304 4305 4306 4307 4308 4309 4310
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4311 4312 4313
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4314
	raid5_free_percpu(conf);
4315 4316 4317 4318 4319
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4331
		if (conf->level == 6 && !percpu->spare_page)
4332
			percpu->spare_page = alloc_page(GFP_KERNEL);
4333 4334 4335 4336 4337 4338 4339
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4340 4341
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4342
			return notifier_from_errno(-ENOMEM);
4343 4344 4345 4346 4347
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4348
		kfree(percpu->scribble);
4349
		percpu->spare_page = NULL;
4350
		percpu->scribble = NULL;
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
4363
	struct raid5_percpu __percpu *allcpus;
4364
	void *scribble;
4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4375 4376 4377 4378 4379 4380 4381 4382
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4383
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4384
		if (!scribble) {
4385 4386 4387
			err = -ENOMEM;
			break;
		}
4388
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4401
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4402 4403
{
	raid5_conf_t *conf;
4404
	int raid_disk, memory, max_disks;
L
Linus Torvalds 已提交
4405 4406 4407
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4408 4409 4410
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4411
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4412 4413
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4414
	}
N
NeilBrown 已提交
4415 4416 4417 4418
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4419
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4420 4421
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4422
	}
N
NeilBrown 已提交
4423
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4424
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4425 4426
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4427 4428
	}

4429 4430 4431
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4432 4433
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4434
		return ERR_PTR(-EINVAL);
4435 4436
	}

N
NeilBrown 已提交
4437 4438
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4439
		goto abort;
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
N
NeilBrown 已提交
4452 4453 4454 4455 4456

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4457
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4458 4459
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4460

4461
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4462 4463 4464
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4465

L
Linus Torvalds 已提交
4466 4467
	conf->mddev = mddev;

4468
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4469 4470
		goto abort;

4471 4472 4473 4474
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4475
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4476

4477
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4478
		raid_disk = rdev->raid_disk;
4479
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4480 4481 4482 4483 4484 4485
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4486
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4487
			char b[BDEVNAME_SIZE];
4488 4489 4490
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
4491
		} else if (rdev->saved_raid_disk != raid_disk)
4492 4493
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4494 4495
	}

4496
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4497
	conf->level = mddev->new_level;
4498 4499 4500 4501
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4502
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4503
	conf->max_nr_stripes = NR_STRIPES;
4504
	conf->reshape_progress = mddev->reshape_position;
4505
	if (conf->reshape_progress != MaxSector) {
4506
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4507 4508
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4509

N
NeilBrown 已提交
4510
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4511
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4512 4513
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4514 4515
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4516 4517
		goto abort;
	} else
4518 4519
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4520

4521
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4522 4523
	if (!conf->thread) {
		printk(KERN_ERR
4524
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4525
		       mdname(mddev));
4526 4527
		goto abort;
	}
N
NeilBrown 已提交
4528 4529 4530 4531 4532

	return conf;

 abort:
	if (conf) {
4533
		free_conf(conf);
N
NeilBrown 已提交
4534 4535 4536 4537 4538
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

N
NeilBrown 已提交
4566 4567 4568
static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4569
	int working_disks = 0;
4570
	int dirty_parity_disks = 0;
N
NeilBrown 已提交
4571
	mdk_rdev_t *rdev;
4572
	sector_t reshape_offset = 0;
N
NeilBrown 已提交
4573

4574
	if (mddev->recovery_cp != MaxSector)
4575
		printk(KERN_NOTICE "md/raid:%s: not clean"
4576 4577
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4578 4579 4580 4581 4582 4583 4584 4585
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4586
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4587

4588
		if (mddev->new_level != mddev->level) {
4589
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4600
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4601
			       (mddev->raid_disks - max_degraded))) {
4602 4603
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
4604 4605
			return -EINVAL;
		}
4606
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
4607 4608
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4609
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4610 4611 4612
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
4624 4625 4626
				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
				       " in read-only mode - aborting\n",
				       mdname(mddev));
4627 4628 4629 4630 4631 4632 4633
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
4634
			/* Reading from the same stripe as writing to - bad */
4635 4636 4637
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
4638 4639
			return -EINVAL;
		}
4640 4641
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
4642 4643 4644 4645
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
4646
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
4647
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4648
	}
N
NeilBrown 已提交
4649

4650 4651 4652 4653 4654
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
4665 4666 4667
	list_for_each_entry(rdev, &mddev->disks, same_set) {
		if (rdev->raid_disk < 0)
			continue;
4668
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
4669
			working_disks++;
4670 4671
			continue;
		}
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
4700

4701 4702
	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
			   - working_disks);
N
NeilBrown 已提交
4703

4704
	if (has_failed(conf)) {
4705
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
4706
			" (%d/%d failed)\n",
4707
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
4708 4709 4710
		goto abort;
	}

N
NeilBrown 已提交
4711
	/* device size must be a multiple of chunk size */
4712
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
4713 4714
	mddev->resync_max_sectors = mddev->dev_sectors;

4715
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
4716
	    mddev->recovery_cp != MaxSector) {
4717 4718
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
4719 4720
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
4721 4722 4723
			       mdname(mddev));
		else {
			printk(KERN_ERR
4724
			       "md/raid:%s: cannot start dirty degraded array.\n",
4725 4726 4727
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
4728 4729 4730
	}

	if (mddev->degraded == 0)
4731 4732
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
4733 4734
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
4735
	else
4736 4737 4738 4739 4740
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
4741 4742 4743

	print_raid5_conf(conf);

4744 4745
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
4746 4747 4748 4749 4750 4751
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4752
							"reshape");
4753 4754
	}

L
Linus Torvalds 已提交
4755 4756

	/* Ok, everything is just fine now */
4757 4758
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
4759 4760
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4761
		printk(KERN_WARNING
4762
		       "raid5: failed to create sysfs attributes for %s\n",
4763
		       mdname(mddev));
4764
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4765

4766
	if (mddev->queue) {
4767
		int chunk_size;
4768 4769 4770 4771 4772 4773 4774 4775 4776
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
4777

4778
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4779

N
NeilBrown 已提交
4780 4781
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4782

4783 4784 4785 4786
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
4787

4788 4789 4790 4791
		list_for_each_entry(rdev, &mddev->disks, same_set)
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
	}
4792

L
Linus Torvalds 已提交
4793 4794
	return 0;
abort:
4795
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
4796
	mddev->thread = NULL;
L
Linus Torvalds 已提交
4797 4798
	if (conf) {
		print_raid5_conf(conf);
4799
		free_conf(conf);
L
Linus Torvalds 已提交
4800 4801
	}
	mddev->private = NULL;
4802
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
4803 4804 4805
	return -EIO;
}

4806
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
4807
{
4808
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4809 4810 4811

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
N
NeilBrown 已提交
4812 4813
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
4814
	free_conf(conf);
4815 4816
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
4817 4818 4819
	return 0;
}

4820
#ifdef DEBUG
4821
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
4822 4823 4824
{
	int i;

4825 4826 4827 4828 4829
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4830
	for (i = 0; i < sh->disks; i++) {
4831 4832
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
4833
	}
4834
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
4835 4836
}

4837
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
4838 4839
{
	struct stripe_head *sh;
4840
	struct hlist_node *hn;
L
Linus Torvalds 已提交
4841 4842 4843 4844
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
4845
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
4846 4847
			if (sh->raid_conf != conf)
				continue;
4848
			print_sh(seq, sh);
L
Linus Torvalds 已提交
4849 4850 4851 4852 4853 4854
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

4855
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
4856
{
4857
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4858 4859
	int i;

4860 4861
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
4862
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
4863 4864 4865
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
4866
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
4867
	seq_printf (seq, "]");
4868
#ifdef DEBUG
4869 4870
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
4871 4872 4873 4874 4875 4876 4877 4878
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

4879
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
4880 4881 4882 4883
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
4884 4885 4886
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
4887 4888 4889 4890 4891

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
4892 4893 4894
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
4895 4896 4897 4898 4899 4900 4901 4902
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;
4903 4904
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
4905 4906 4907 4908

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
4909
		    && tmp->rdev->recovery_offset == MaxSector
4910
		    && !test_bit(Faulty, &tmp->rdev->flags)
4911
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4912
			count++;
4913
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
4914 4915
		}
	}
4916 4917 4918
	spin_lock_irqsave(&conf->device_lock, flags);
	mddev->degraded -= count;
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4919
	print_raid5_conf(conf);
4920
	return count;
L
Linus Torvalds 已提交
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
4933 4934 4935 4936
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

4937
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
4938 4939 4940 4941
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
4942 4943 4944 4945
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
4946
		    !has_failed(conf) &&
4947
		    number < conf->raid_disks) {
4948 4949 4950
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
4951
		p->rdev = NULL;
4952
		synchronize_rcu();
L
Linus Torvalds 已提交
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
4968
	int err = -EEXIST;
L
Linus Torvalds 已提交
4969 4970
	int disk;
	struct disk_info *p;
4971 4972
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
4973

4974
	if (has_failed(conf))
L
Linus Torvalds 已提交
4975
		/* no point adding a device */
4976
		return -EINVAL;
L
Linus Torvalds 已提交
4977

4978 4979
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
4980 4981

	/*
4982 4983
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
4984
	 */
4985
	if (rdev->saved_raid_disk >= 0 &&
4986
	    rdev->saved_raid_disk >= first &&
4987 4988 4989
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
4990 4991
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
4992
		if ((p=conf->disks + disk)->rdev == NULL) {
4993
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
4994
			rdev->raid_disk = disk;
4995
			err = 0;
4996 4997
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
4998
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
4999 5000 5001
			break;
		}
	print_raid5_conf(conf);
5002
	return err;
L
Linus Torvalds 已提交
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5014
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5015 5016
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5017 5018 5019
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5020
	set_capacity(mddev->gendisk, mddev->array_sectors);
5021
	revalidate_disk(mddev->gendisk);
5022 5023
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
5024
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5025 5026
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5027
	mddev->dev_sectors = sectors;
5028
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5029 5030 5031
	return 0;
}

5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5047 5048
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5049 5050 5051 5052 5053 5054 5055
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5056
static int check_reshape(mddev_t *mddev)
5057
{
5058
	raid5_conf_t *conf = mddev->private;
5059

5060 5061
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5062
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5063
		return 0; /* nothing to do */
5064 5065 5066
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5067
	if (has_failed(conf))
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5081

5082
	if (!check_stripe_cache(mddev))
5083 5084
		return -ENOSPC;

5085
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5086 5087 5088 5089
}

static int raid5_start_reshape(mddev_t *mddev)
{
5090
	raid5_conf_t *conf = mddev->private;
5091 5092
	mdk_rdev_t *rdev;
	int spares = 0;
5093
	unsigned long flags;
5094

5095
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5096 5097
		return -EBUSY;

5098 5099 5100
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5101
	list_for_each_entry(rdev, &mddev->disks, same_set)
5102 5103
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5104
			spares++;
5105

5106
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5107 5108 5109 5110 5111
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5112 5113 5114 5115 5116 5117
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5118
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5119 5120 5121 5122
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5123
	atomic_set(&conf->reshape_stripes, 0);
5124 5125
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5126
	conf->raid_disks += mddev->delta_disks;
5127 5128
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5129 5130
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5131 5132 5133 5134 5135
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5136
	conf->generation++;
5137 5138 5139 5140
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5141 5142 5143 5144
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5145
	 */
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
	if (mddev->delta_disks >= 0) {
		int added_devices = 0;
		list_for_each_entry(rdev, &mddev->disks, same_set)
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					char nm[20];
					if (rdev->raid_disk
					    >= conf->previous_raid_disks) {
						set_bit(In_sync, &rdev->flags);
						added_devices++;
					} else
						rdev->recovery_offset = 0;
					sprintf(nm, "rd%d", rdev->raid_disk);
					if (sysfs_create_link(&mddev->kobj,
							      &rdev->kobj, nm))
						/* Failure here is OK */;
5163
				}
5164 5165 5166 5167 5168 5169
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
				added_devices++;
			}
5170

5171 5172 5173 5174
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
5175
		spin_lock_irqsave(&conf->device_lock, flags);
5176
		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5177 5178 5179
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5180
	mddev->raid_disks = conf->raid_disks;
5181
	mddev->reshape_position = conf->reshape_progress;
5182
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5183

5184 5185 5186 5187 5188
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5189
						"reshape");
5190 5191 5192 5193
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5194
		conf->reshape_progress = MaxSector;
5195 5196 5197
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5198
	conf->reshape_checkpoint = jiffies;
5199 5200 5201 5202 5203
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5204 5205 5206
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5207 5208 5209
static void end_reshape(raid5_conf_t *conf)
{

5210 5211 5212
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5213
		conf->previous_raid_disks = conf->raid_disks;
5214
		conf->reshape_progress = MaxSector;
5215
		spin_unlock_irq(&conf->device_lock);
5216
		wake_up(&conf->wait_for_overlap);
5217 5218 5219 5220

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5221
		if (conf->mddev->queue) {
5222
			int data_disks = conf->raid_disks - conf->max_degraded;
5223
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5224
						   / PAGE_SIZE);
5225 5226 5227
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5228 5229 5230
	}
}

5231 5232 5233
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5234 5235
static void raid5_finish_reshape(mddev_t *mddev)
{
5236
	raid5_conf_t *conf = mddev->private;
5237 5238 5239

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5240 5241 5242
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5243
			revalidate_disk(mddev->gendisk);
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5254 5255 5256 5257 5258 5259 5260 5261 5262
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
					char nm[20];
					sprintf(nm, "rd%d", rdev->raid_disk);
					sysfs_remove_link(&mddev->kobj, nm);
					rdev->raid_disk = -1;
				}
			}
5263
		}
5264
		mddev->layout = conf->algorithm;
5265
		mddev->chunk_sectors = conf->chunk_sectors;
5266 5267
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5268 5269 5270
	}
}

5271 5272
static void raid5_quiesce(mddev_t *mddev, int state)
{
5273
	raid5_conf_t *conf = mddev->private;
5274 5275

	switch(state) {
5276 5277 5278 5279
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5280 5281
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5282 5283 5284 5285
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5286
		wait_event_lock_irq(conf->wait_for_stripe,
5287 5288
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5289
				    conf->device_lock, /* nothing */);
5290
		conf->quiesce = 1;
5291
		spin_unlock_irq(&conf->device_lock);
5292 5293
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5294 5295 5296 5297 5298 5299
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5300
		wake_up(&conf->wait_for_overlap);
5301 5302 5303 5304
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5305

5306

D
Dan Williams 已提交
5307
static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5308
{
D
Dan Williams 已提交
5309
	struct raid0_private_data *raid0_priv = mddev->private;
5310
	sector_t sectors;
5311

D
Dan Williams 已提交
5312 5313
	/* for raid0 takeover only one zone is supported */
	if (raid0_priv->nr_strip_zones > 1) {
5314 5315
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5316 5317 5318
		return ERR_PTR(-EINVAL);
	}

5319 5320 5321
	sectors = raid0_priv->strip_zone[0].zone_end;
	sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
5322
	mddev->new_level = level;
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5356
	mddev->new_chunk_sectors = chunksect;
5357 5358 5359 5360

	return setup_conf(mddev);
}

5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5394

5395
static int raid5_check_reshape(mddev_t *mddev)
5396
{
5397 5398 5399 5400
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5401
	 */
5402
	raid5_conf_t *conf = mddev->private;
5403
	int new_chunk = mddev->new_chunk_sectors;
5404

5405
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5406 5407
		return -EINVAL;
	if (new_chunk > 0) {
5408
		if (!is_power_of_2(new_chunk))
5409
			return -EINVAL;
5410
		if (new_chunk < (PAGE_SIZE>>9))
5411
			return -EINVAL;
5412
		if (mddev->array_sectors & (new_chunk-1))
5413 5414 5415 5416 5417 5418
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5419
	if (mddev->raid_disks == 2) {
5420 5421 5422 5423
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5424 5425
		}
		if (new_chunk > 0) {
5426 5427
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5428 5429 5430
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5431
	}
5432
	return check_reshape(mddev);
5433 5434
}

5435
static int raid6_check_reshape(mddev_t *mddev)
5436
{
5437
	int new_chunk = mddev->new_chunk_sectors;
5438

5439
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5440
		return -EINVAL;
5441
	if (new_chunk > 0) {
5442
		if (!is_power_of_2(new_chunk))
5443
			return -EINVAL;
5444
		if (new_chunk < (PAGE_SIZE >> 9))
5445
			return -EINVAL;
5446
		if (mddev->array_sectors & (new_chunk-1))
5447 5448
			/* not factor of array size */
			return -EINVAL;
5449
	}
5450 5451

	/* They look valid */
5452
	return check_reshape(mddev);
5453 5454
}

5455 5456 5457
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
D
Dan Williams 已提交
5458
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5459 5460 5461 5462
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5463 5464
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5465 5466
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5467 5468 5469 5470 5471
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5472 5473
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5474 5475 5476 5477

	return ERR_PTR(-EINVAL);
}

5478 5479
static void *raid4_takeover(mddev_t *mddev)
{
D
Dan Williams 已提交
5480 5481 5482
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5483
	 */
D
Dan Williams 已提交
5484 5485
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5486 5487 5488 5489 5490 5491 5492 5493
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5494

5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5559
	.size		= raid5_size,
5560
	.check_reshape	= raid6_check_reshape,
5561
	.start_reshape  = raid5_start_reshape,
5562
	.finish_reshape = raid5_finish_reshape,
5563
	.quiesce	= raid5_quiesce,
5564
	.takeover	= raid6_takeover,
5565
};
5566
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5567 5568
{
	.name		= "raid5",
5569
	.level		= 5,
L
Linus Torvalds 已提交
5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5581
	.size		= raid5_size,
5582 5583
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5584
	.finish_reshape = raid5_finish_reshape,
5585
	.quiesce	= raid5_quiesce,
5586
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5587 5588
};

5589
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5590
{
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5604
	.size		= raid5_size,
5605 5606
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5607
	.finish_reshape = raid5_finish_reshape,
5608
	.quiesce	= raid5_quiesce,
5609
	.takeover	= raid4_takeover,
5610 5611 5612 5613
};

static int __init raid5_init(void)
{
5614
	register_md_personality(&raid6_personality);
5615 5616 5617
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5618 5619
}

5620
static void raid5_exit(void)
L
Linus Torvalds 已提交
5621
{
5622
	unregister_md_personality(&raid6_personality);
5623 5624
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5625 5626 5627 5628 5629
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
5630
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
5631
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5632 5633
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5634 5635
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5636 5637 5638 5639 5640 5641 5642
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");