raid5.c 149.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/seq_file.h>
51
#include "md.h"
52
#include "raid5.h"
53
#include "bitmap.h"
54

L
Linus Torvalds 已提交
55 56 57 58 59 60 61 62 63
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
64
#define BYPASS_THRESHOLD	1
65
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
66 67
#define HASH_MASK		(NR_HASH - 1)

68
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

90
#ifdef DEBUG
L
Linus Torvalds 已提交
91 92 93 94
#define inline
#define __inline__
#endif

95 96
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

97
/*
98 99
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
100 101 102
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
103
	return bio->bi_phys_segments & 0xffff;
104 105 106 107
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
108
	return (bio->bi_phys_segments >> 16) & 0xffff;
109 110 111 112 113 114 115 116 117 118 119 120 121
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
122
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
123 124 125 126 127
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
128
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
129 130
}

131 132 133
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
134 135 136 137
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
138 139 140 141 142
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
143 144 145 146 147
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
148

149 150 151 152 153
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
154 155
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
156 157
{
	int slot;
158

159
	if (idx == sh->pd_idx)
160
		return syndrome_disks;
161
	if (idx == sh->qd_idx)
162
		return syndrome_disks + 1;
163 164 165 166
	slot = (*count)++;
	return slot;
}

167 168 169 170 171 172 173 174
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
175
		bio_endio(bi, 0);
176 177 178 179
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
180 181
static void print_raid5_conf (raid5_conf_t *conf);

182 183 184 185 186 187 188
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

189
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
190 191
{
	if (atomic_dec_and_test(&sh->count)) {
192 193
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
194
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
195
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
196
				list_add_tail(&sh->lru, &conf->delayed_list);
197 198
				blk_plug_device(conf->mddev->queue);
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
199
				   sh->bm_seq - conf->seq_write > 0) {
200
				list_add_tail(&sh->lru, &conf->bitmap_list);
201 202
				blk_plug_device(conf->mddev->queue);
			} else {
203
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
204
				list_add_tail(&sh->lru, &conf->handle_list);
205
			}
L
Linus Torvalds 已提交
206 207
			md_wakeup_thread(conf->mddev->thread);
		} else {
208
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
209 210 211 212 213 214
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
215 216
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
217
				wake_up(&conf->wait_for_stripe);
218 219
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
220
			}
L
Linus Torvalds 已提交
221 222 223
		}
	}
}
224

L
Linus Torvalds 已提交
225 226 227 228
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
229

L
Linus Torvalds 已提交
230 231 232 233 234
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

235
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
236
{
237 238
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
239

240
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
241 242
}

243
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
244
{
245
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
246

247 248
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
249 250

	CHECK_DEVLOCK();
251
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

static void shrink_buffers(struct stripe_head *sh, int num)
{
	struct page *p;
	int i;

	for (i=0; i<num ; i++) {
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
283
		put_page(p);
L
Linus Torvalds 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	}
}

static int grow_buffers(struct stripe_head *sh, int num)
{
	int i;

	for (i=0; i<num; i++) {
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

302
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
303 304
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
305

306
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
307 308
{
	raid5_conf_t *conf = sh->raid_conf;
309
	int i;
L
Linus Torvalds 已提交
310

311 312
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
313
	BUG_ON(stripe_operations_active(sh));
314

L
Linus Torvalds 已提交
315
	CHECK_DEVLOCK();
316
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
317 318 319
		(unsigned long long)sh->sector);

	remove_hash(sh);
320

321
	sh->generation = conf->generation - previous;
322
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
323
	sh->sector = sector;
324
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
325 326
	sh->state = 0;

327 328

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
329 330
		struct r5dev *dev = &sh->dev[i];

331
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
332
		    test_bit(R5_LOCKED, &dev->flags)) {
333
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
334
			       (unsigned long long)sh->sector, i, dev->toread,
335
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
336 337 338 339
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
340
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
341 342 343 344
	}
	insert_hash(conf, sh);
}

345 346
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
347 348
{
	struct stripe_head *sh;
349
	struct hlist_node *hn;
L
Linus Torvalds 已提交
350 351

	CHECK_DEVLOCK();
352
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
355
			return sh;
356
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
357 358 359 360
	return NULL;
}

static void unplug_slaves(mddev_t *mddev);
361
static void raid5_unplug_device(struct request_queue *q);
L
Linus Torvalds 已提交
362

363 364
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
365
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
366 367 368
{
	struct stripe_head *sh;

369
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
370 371 372 373

	spin_lock_irq(&conf->device_lock);

	do {
374
		wait_event_lock_irq(conf->wait_for_stripe,
375
				    conf->quiesce == 0 || noquiesce,
376
				    conf->device_lock, /* nothing */);
377
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
378 379 380 381 382 383 384 385 386
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
387 388
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
389 390
						     || !conf->inactive_blocked),
						    conf->device_lock,
391
						    raid5_unplug_device(conf->mddev->queue)
L
Linus Torvalds 已提交
392 393 394
					);
				conf->inactive_blocked = 0;
			} else
395
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
396 397
		} else {
			if (atomic_read(&sh->count)) {
398 399
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
400 401 402
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
403 404
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
405 406
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
407 408 409 410 411 412 413 414 415 416 417
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

418 419 420 421
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
422

423
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
			rw = WRITE;
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
458
			if (s->syncing || s->expanding || s->expanded)
459 460
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
461 462
			set_bit(STRIPE_IO_STARTED, &sh->state);

463 464
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
465
				__func__, (unsigned long long)sh->sector,
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
					b_offset, clen,
529
					ASYNC_TX_DEP_ACK,
530 531 532 533
					tx, NULL, NULL);
			else
				tx = async_memcpy(bio_page, page, b_offset,
					page_offset, clen,
534
					ASYNC_TX_DEP_ACK,
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
					tx, NULL, NULL);
		}
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
550
	int i;
551

552
	pr_debug("%s: stripe %llu\n", __func__,
553 554 555
		(unsigned long long)sh->sector);

	/* clear completed biofills */
556
	spin_lock_irq(&conf->device_lock);
557 558 559 560
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
561 562
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
563
		 * !STRIPE_BIOFILL_RUN
564 565
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
566 567 568 569 570 571 572 573
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
574
				if (!raid5_dec_bi_phys_segments(rbi)) {
575 576 577 578 579 580 581
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
582 583
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
584 585 586

	return_io(return_bi);

587
	set_bit(STRIPE_HANDLE, &sh->state);
588 589 590 591 592 593 594 595 596
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
	int i;

597
	pr_debug("%s: stripe %llu\n", __func__,
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
		ops_complete_biofill, sh);
}

static void ops_complete_compute5(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];

628
	pr_debug("%s: stripe %llu\n", __func__,
629 630 631 632 633
		(unsigned long long)sh->sector);

	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
634 635 636
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
637 638 639 640
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

641
static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
642 643 644 645 646 647 648 649 650 651 652 653
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
654
		__func__, (unsigned long long)sh->sector, target);
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
			0, NULL, ops_complete_compute5, sh);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
			ASYNC_TX_XOR_ZERO_DST, NULL,
			ops_complete_compute5, sh);

	return tx;
}

static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

678
	pr_debug("%s: stripe %llu\n", __func__,
679 680 681 682 683 684 685 686 687 688 689 690 691 692
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];
	int count = 0, pd_idx = sh->pd_idx, i;

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

693
	pr_debug("%s: stripe %llu\n", __func__,
694 695 696 697 698
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
699
		if (test_bit(R5_Wantdrain, &dev->flags))
700 701 702 703 704 705 706 707 708 709 710
			xor_srcs[count++] = dev->page;
	}

	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
		ops_complete_prexor, sh);

	return tx;
}

static struct dma_async_tx_descriptor *
711
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
712 713
{
	int disks = sh->disks;
714
	int i;
715

716
	pr_debug("%s: stripe %llu\n", __func__,
717 718 719 720 721 722
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

723
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

static void ops_complete_postxor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	int disks = sh->disks, i, pd_idx = sh->pd_idx;

750
	pr_debug("%s: stripe %llu\n", __func__,
751 752 753 754 755 756 757 758
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (dev->written || i == pd_idx)
			set_bit(R5_UPTODATE, &dev->flags);
	}

759 760 761 762 763 764 765 766
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
767 768 769 770 771 772

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
773
ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
774 775 776 777 778 779 780
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];

	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
781
	int prexor = 0;
782 783
	unsigned long flags;

784
	pr_debug("%s: stripe %llu\n", __func__,
785 786 787 788 789
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
790 791
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

	if (unlikely(count == 1)) {
		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
820
			flags, tx, ops_complete_postxor, sh);
821 822
	} else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
823
			flags, tx, ops_complete_postxor, sh);
824 825 826 827 828 829
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

830
	pr_debug("%s: stripe %llu\n", __func__,
831 832
		(unsigned long long)sh->sector);

833
	sh->check_state = check_state_check_result;
834 835 836 837 838 839 840 841 842 843 844 845 846 847
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void ops_run_check(struct stripe_head *sh)
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];
	struct dma_async_tx_descriptor *tx;

	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

848
	pr_debug("%s: stripe %llu\n", __func__,
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (i != pd_idx)
			xor_srcs[count++] = dev->page;
	}

	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);

	atomic_inc(&sh->count);
	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
		ops_complete_check, sh);
}

865
static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
866 867 868 869
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;

870
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
871 872 873 874
		ops_run_biofill(sh);
		overlap_clear++;
	}

875 876 877 878 879 880
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
		tx = ops_run_compute5(sh);
		/* terminate the chain if postxor is not set to be run */
		if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
			async_tx_ack(tx);
	}
881

882
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
883 884
		tx = ops_run_prexor(sh, tx);

885
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
886
		tx = ops_run_biodrain(sh, tx);
887 888 889
		overlap_clear++;
	}

890
	if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
891
		ops_run_postxor(sh, tx);
892

893
	if (test_bit(STRIPE_OP_CHECK, &ops_request))
894 895 896 897 898 899 900 901 902 903
		ops_run_check(sh);

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
}

904
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
905 906
{
	struct stripe_head *sh;
907 908 909 910 911 912 913 914 915 916 917 918
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);

	if (grow_buffers(sh, conf->raid_disks)) {
		shrink_buffers(sh, conf->raid_disks);
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
919
	sh->disks = conf->raid_disks;
920 921 922 923 924 925 926 927 928 929
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
930
	struct kmem_cache *sc;
L
Linus Torvalds 已提交
931 932
	int devs = conf->raid_disks;

933 934 935 936
	sprintf(conf->cache_name[0],
		"raid%d-%s", conf->level, mdname(conf->mddev));
	sprintf(conf->cache_name[1],
		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
937 938
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
939
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
940
			       0, 0, NULL);
L
Linus Torvalds 已提交
941 942 943
	if (!sc)
		return 1;
	conf->slab_cache = sc;
944
	conf->pool_size = devs;
945
	while (num--)
946
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
947 948 949
			return 1;
	return 0;
}
950

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
979
	int err;
980
	struct kmem_cache *sc;
981 982 983 984 985
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

986 987 988
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
989

990 991 992
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
993
			       0, 0, NULL);
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1028
				    unplug_slaves(conf->mddev)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
	 * conf->disks.
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1075

1076
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1077 1078 1079
{
	struct stripe_head *sh;

1080 1081 1082 1083 1084
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1085
	BUG_ON(atomic_read(&sh->count));
1086
	shrink_buffers(sh, conf->pool_size);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1097 1098
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1099 1100 1101
	conf->slab_cache = NULL;
}

1102
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1103
{
1104
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1105
	raid5_conf_t *conf = sh->raid_conf;
1106
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1107
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1108 1109
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1110 1111 1112 1113 1114 1115


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1116 1117
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1118 1119 1120
		uptodate);
	if (i == disks) {
		BUG();
1121
		return;
L
Linus Torvalds 已提交
1122 1123 1124 1125
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1126
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1127
			rdev = conf->disks[i].rdev;
1128 1129 1130 1131 1132 1133
			printk_rl(KERN_INFO "raid5:%s: read error corrected"
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1134 1135 1136
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1137 1138
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1139
	} else {
1140
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1141
		int retry = 0;
1142 1143
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1144
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1145
		atomic_inc(&rdev->read_errors);
1146
		if (conf->mddev->degraded)
1147 1148 1149 1150 1151 1152 1153
			printk_rl(KERN_WARNING
				  "raid5:%s: read error not correctable "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1154
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1155
			/* Oh, no!!! */
1156 1157 1158 1159 1160 1161 1162
			printk_rl(KERN_WARNING
				  "raid5:%s: read error NOT corrected!! "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1163
		else if (atomic_read(&rdev->read_errors)
1164
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1165
			printk(KERN_WARNING
1166 1167
			       "raid5:%s: Too many read errors, failing device %s.\n",
			       mdname(conf->mddev), bdn);
1168 1169 1170 1171 1172
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1173 1174
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1175
			md_error(conf->mddev, rdev);
1176
		}
L
Linus Torvalds 已提交
1177 1178 1179 1180 1181 1182 1183
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1184
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1185
{
1186
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1187
	raid5_conf_t *conf = sh->raid_conf;
1188
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1189 1190 1191 1192 1193 1194
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1195
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1196 1197 1198 1199
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1200
		return;
L
Linus Torvalds 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1210
	release_stripe(sh);
L
Linus Torvalds 已提交
1211 1212 1213
}


1214
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1215
	
1216
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1232
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1233 1234 1235 1236 1237 1238
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1239
	pr_debug("raid5: error called\n");
L
Linus Torvalds 已提交
1240

1241
	if (!test_bit(Faulty, &rdev->flags)) {
1242
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1243 1244 1245
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1246
			mddev->degraded++;
1247
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1248 1249 1250
			/*
			 * if recovery was running, make sure it aborts.
			 */
1251
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1252
		}
1253
		set_bit(Faulty, &rdev->flags);
1254 1255 1256 1257
		printk(KERN_ALERT
		       "raid5: Disk failure on %s, disabling device.\n"
		       "raid5: Operation continuing on %d devices.\n",
		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1258
	}
1259
}
L
Linus Torvalds 已提交
1260 1261 1262 1263 1264

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1265
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1266 1267
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1268 1269 1270 1271
{
	long stripe;
	unsigned long chunk_number;
	unsigned int chunk_offset;
1272
	int pd_idx, qd_idx;
1273
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1274
	sector_t new_sector;
1275 1276
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1277 1278
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1279 1280 1281
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;
	BUG_ON(r_sector != chunk_number);

	/*
	 * Compute the stripe number
	 */
	stripe = chunk_number / data_disks;

	/*
	 * Compute the data disk and parity disk indexes inside the stripe
	 */
	*dd_idx = chunk_number % data_disks;

	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1305
	pd_idx = qd_idx = ~0;
1306 1307
	switch(conf->level) {
	case 4:
1308
		pd_idx = data_disks;
1309 1310
		break;
	case 5:
1311
		switch (algorithm) {
L
Linus Torvalds 已提交
1312
		case ALGORITHM_LEFT_ASYMMETRIC:
1313 1314
			pd_idx = data_disks - stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1315 1316 1317
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1318 1319
			pd_idx = stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1320 1321 1322
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1323 1324
			pd_idx = data_disks - stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1325 1326
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1327 1328
			pd_idx = stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1329
			break;
1330 1331 1332 1333 1334 1335 1336
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1337
		default:
N
NeilBrown 已提交
1338
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1339
				algorithm);
1340
			BUG();
1341 1342 1343 1344
		}
		break;
	case 6:

1345
		switch (algorithm) {
1346
		case ALGORITHM_LEFT_ASYMMETRIC:
1347 1348 1349
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1350
				(*dd_idx)++;	/* Q D D D P */
1351 1352
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1353 1354 1355
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1356 1357 1358
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1359
				(*dd_idx)++;	/* Q D D D P */
1360 1361
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1362 1363 1364
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1365 1366 1367
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1368 1369
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1370 1371 1372
			pd_idx = stripe % raid_disks;
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1373
			break;
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1396
			ddf_layout = 1;
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1411
			ddf_layout = 1;
1412 1413 1414 1415 1416 1417 1418
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1419
			ddf_layout = 1;
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
			pd_idx = data_disks - stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
			pd_idx = data_disks - stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;


1456
		default:
1457
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1458
			       algorithm);
1459
			BUG();
1460 1461
		}
		break;
L
Linus Torvalds 已提交
1462 1463
	}

1464 1465 1466
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1467
		sh->ddf_layout = ddf_layout;
1468
	}
L
Linus Torvalds 已提交
1469 1470 1471 1472 1473 1474 1475 1476
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1477
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1478 1479
{
	raid5_conf_t *conf = sh->raid_conf;
1480 1481
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1482
	sector_t new_sector = sh->sector, check;
1483 1484
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1485 1486
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1487 1488
	sector_t stripe;
	int chunk_offset;
1489
	int chunk_number, dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1490
	sector_t r_sector;
1491
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1492

1493

L
Linus Torvalds 已提交
1494 1495 1496 1497
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;
	BUG_ON(new_sector != stripe);

1498 1499 1500 1501 1502
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1503
		switch (algorithm) {
L
Linus Torvalds 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1515 1516 1517 1518 1519
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1520
		default:
N
NeilBrown 已提交
1521
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1522
			       algorithm);
1523
			BUG();
1524 1525 1526
		}
		break;
	case 6:
1527
		if (i == sh->qd_idx)
1528
			return 0; /* It is the Q disk */
1529
		switch (algorithm) {
1530 1531
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1532 1533 1534 1535
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
			else if (i > sh->pd_idx)
				i -= 2; /* D D Q P D */
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
1575
		default:
1576
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1577
			       algorithm);
1578
			BUG();
1579 1580
		}
		break;
L
Linus Torvalds 已提交
1581 1582 1583 1584 1585
	}

	chunk_number = stripe * data_disks + i;
	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;

1586
	check = raid5_compute_sector(conf, r_sector,
1587
				     previous, &dummy1, &sh2);
1588 1589
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
N
NeilBrown 已提交
1590
		printk(KERN_ERR "compute_blocknr: map not correct\n");
L
Linus Torvalds 已提交
1591 1592 1593 1594 1595 1596 1597 1598
		return 0;
	}
	return r_sector;
}



/*
1599 1600 1601 1602 1603
 * Copy data between a page in the stripe cache, and one or more bion
 * The page could align with the middle of the bio, or there could be
 * several bion, each with several bio_vecs, which cover part of the page
 * Multiple bion are linked together on bi_next.  There may be extras
 * at the end of this list.  We ignore them.
L
Linus Torvalds 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
 */
static void copy_data(int frombio, struct bio *bio,
		     struct page *page,
		     sector_t sector)
{
	char *pa = page_address(page);
	struct bio_vec *bvl;
	int i;
	int page_offset;

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio,i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else clen = len;
1632

L
Linus Torvalds 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
		if (clen > 0) {
			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
			if (frombio)
				memcpy(pa+page_offset, ba+b_offset, clen);
			else
				memcpy(ba+b_offset, pa+page_offset, clen);
			__bio_kunmap_atomic(ba, KM_USER0);
		}
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}
}

D
Dan Williams 已提交
1647 1648 1649 1650 1651
#define check_xor()	do {						  \
				if (count == MAX_XOR_BLOCKS) {		  \
				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
				count = 0;				  \
			   }						  \
L
Linus Torvalds 已提交
1652 1653
			} while(0)

1654 1655
static void compute_parity6(struct stripe_head *sh, int method)
{
1656
	raid5_conf_t *conf = sh->raid_conf;
1657
	int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1658
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1659 1660
	struct bio *chosen;
	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1661
	void *ptrs[syndrome_disks+2];
1662

1663 1664 1665
	pd_idx = sh->pd_idx;
	qd_idx = sh->qd_idx;
	d0_idx = raid6_d0(sh);
1666

1667
	pr_debug("compute_parity, stripe %llu, method %d\n",
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
		(unsigned long long)sh->sector, method);

	switch(method) {
	case READ_MODIFY_WRITE:
		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
	case RECONSTRUCT_WRITE:
		for (i= disks; i-- ;)
			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
				chosen = sh->dev[i].towrite;
				sh->dev[i].towrite = NULL;

				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
					wake_up(&conf->wait_for_overlap);

E
Eric Sesterhenn 已提交
1682
				BUG_ON(sh->dev[i].written);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
				sh->dev[i].written = chosen;
			}
		break;
	case CHECK_PARITY:
		BUG();		/* Not implemented yet */
	}

	for (i = disks; i--;)
		if (sh->dev[i].written) {
			sector_t sector = sh->dev[i].sector;
			struct bio *wbi = sh->dev[i].written;
			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
				copy_data(1, wbi, sh->dev[i].page, sector);
				wbi = r5_next_bio(wbi, sector);
			}

			set_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(R5_UPTODATE, &sh->dev[i].flags);
		}

1703
	/* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1704 1705 1706 1707

	for (i = 0; i < disks; i++)
		ptrs[i] = (void *)raid6_empty_zero_page;

1708 1709 1710
	count = 0;
	i = d0_idx;
	do {
1711 1712
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

1713
		ptrs[slot] = page_address(sh->dev[i].page);
1714
		if (slot < syndrome_disks &&
1715 1716 1717 1718 1719
		    !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
			printk(KERN_ERR "block %d/%d not uptodate "
			       "on parity calc\n", i, count);
			BUG();
		}
1720

1721 1722
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
1723
	BUG_ON(count != syndrome_disks);
1724

1725
	raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

	switch(method) {
	case RECONSTRUCT_WRITE:
		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
		break;
	case UPDATE_PARITY:
		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
		break;
	}
}


/* Compute one missing block */
static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
{
1745
	int i, count, disks = sh->disks;
D
Dan Williams 已提交
1746
	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1747
	int qd_idx = sh->qd_idx;
1748

1749
	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1750 1751 1752 1753 1754 1755
		(unsigned long long)sh->sector, dd_idx);

	if ( dd_idx == qd_idx ) {
		/* We're actually computing the Q drive */
		compute_parity6(sh, UPDATE_PARITY);
	} else {
D
Dan Williams 已提交
1756 1757 1758
		dest = page_address(sh->dev[dd_idx].page);
		if (!nozero) memset(dest, 0, STRIPE_SIZE);
		count = 0;
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
		for (i = disks ; i--; ) {
			if (i == dd_idx || i == qd_idx)
				continue;
			p = page_address(sh->dev[i].page);
			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
				ptr[count++] = p;
			else
				printk("compute_block() %d, stripe %llu, %d"
				       " not present\n", dd_idx,
				       (unsigned long long)sh->sector, i);

			check_xor();
		}
D
Dan Williams 已提交
1772 1773
		if (count)
			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1774 1775 1776 1777 1778 1779 1780 1781
		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
	}
}

/* Compute two missing blocks */
static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
{
1782
	int i, count, disks = sh->disks;
1783
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1784 1785 1786
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1787
	void *ptrs[syndrome_disks+2];
1788

1789 1790
	for (i = 0; i < disks ; i++)
		ptrs[i] = (void *)raid6_empty_zero_page;
1791 1792 1793
	count = 0;
	i = d0_idx;
	do {
1794 1795
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

1796
		ptrs[slot] = page_address(sh->dev[i].page);
1797

1798 1799 1800 1801 1802 1803
		if (i == dd_idx1)
			faila = slot;
		if (i == dd_idx2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
1804
	BUG_ON(count != syndrome_disks);
1805 1806 1807 1808

	BUG_ON(faila == failb);
	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }

1809
	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1810 1811
		 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
		 faila, failb);
1812

1813
	if (failb == syndrome_disks+1) {
1814
		/* Q disk is one of the missing disks */
1815
		if (faila == syndrome_disks) {
1816 1817 1818 1819 1820
			/* Missing P+Q, just recompute */
			compute_parity6(sh, UPDATE_PARITY);
			return;
		} else {
			/* We're missing D+Q; recompute D from P */
1821 1822 1823
			compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
					     dd_idx2 : dd_idx1),
					0);
1824 1825 1826 1827 1828
			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
			return;
		}
	}

1829
	/* We're missing D+P or D+D; */
1830
	if (failb == syndrome_disks) {
1831
		/* We're missing D+P. */
1832
		raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1833 1834
	} else {
		/* We're missing D+D. */
1835 1836
		raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
				  ptrs);
1837
	}
1838 1839 1840 1841

	/* Both the above update both missing blocks */
	set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
	set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1842 1843
}

1844
static void
1845
schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1846
			 int rcw, int expand)
1847 1848 1849 1850 1851 1852 1853 1854 1855
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
1856 1857 1858 1859
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
1860

1861
		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1862 1863 1864 1865 1866 1867

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
1868
				set_bit(R5_Wantdrain, &dev->flags);
1869 1870
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
1871
				s->locked++;
1872 1873
			}
		}
1874
		if (s->locked + 1 == disks)
1875 1876
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
				atomic_inc(&sh->raid_conf->pending_full_writes);
1877 1878 1879 1880
	} else {
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

1881
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1882 1883 1884
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1885 1886 1887 1888 1889 1890 1891 1892

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
1893 1894
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
1895 1896
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
1897
				s->locked++;
1898 1899 1900 1901 1902 1903 1904 1905 1906
			}
		}
	}

	/* keep the parity disk locked while asynchronous operations
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1907
	s->locked++;
1908

1909
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1910
		__func__, (unsigned long long)sh->sector,
1911
		s->locked, s->ops_request);
1912
}
1913

L
Linus Torvalds 已提交
1914 1915
/*
 * Each stripe/dev can have one or more bion attached.
1916
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
1917 1918 1919 1920 1921 1922
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
1923
	int firstwrite=0;
L
Linus Torvalds 已提交
1924

1925
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
1926 1927 1928 1929 1930 1931
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
1932
	if (forwrite) {
L
Linus Torvalds 已提交
1933
		bip = &sh->dev[dd_idx].towrite;
1934 1935 1936
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
1937 1938 1939 1940 1941 1942 1943 1944 1945
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

1946
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
1947 1948 1949
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
1950
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
1951 1952 1953
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

1954
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
1955 1956 1957
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

1958 1959 1960
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
1961
		sh->bm_seq = conf->seq_flush+1;
1962 1963 1964
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

1987 1988
static void end_reshape(raid5_conf_t *conf);

1989 1990 1991 1992 1993 1994 1995
static int page_is_zero(struct page *p)
{
	char *a = page_address(p);
	return ((*(u32*)a) == 0 &&
		memcmp(a, a+4, STRIPE_SIZE-4)==0);
}

1996 1997
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
1998
{
1999
	int sectors_per_chunk =
2000
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2001
	int dd_idx;
2002
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2003
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2004

2005 2006
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2007
			     *sectors_per_chunk + chunk_offset,
2008
			     previous,
2009
			     &dd_idx, sh);
2010 2011
}

2012
static void
2013
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2047
			if (!raid5_dec_bi_phys_segments(bi)) {
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2062
			if (!raid5_dec_bi_phys_segments(bi)) {
2063 2064 2065 2066 2067 2068 2069
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2070 2071 2072 2073 2074 2075
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2086
				if (!raid5_dec_bi_phys_segments(bi)) {
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2099 2100 2101
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2102 2103
}

2104 2105 2106 2107 2108
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2109
 */
2110 2111
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2112 2113 2114 2115 2116 2117
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2118 2119 2120 2121 2122 2123 2124 2125
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2126 2127
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2128 2129
		 */
		if ((s->uptodate == disks - 1) &&
2130
		    (s->failed && disk_idx == s->failed_num)) {
2131 2132
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid5_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2143
			return 1; /* uptodate + compute == disks */
2144
		} else if (test_bit(R5_Insync, &dev->flags)) {
2145 2146 2147 2148 2149 2150 2151 2152
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2153
	return 0;
2154 2155
}

2156 2157 2158 2159
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2160 2161 2162
			struct stripe_head_state *s, int disks)
{
	int i;
2163 2164 2165 2166 2167

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2168
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2169
	    !sh->reconstruct_state)
2170
		for (i = disks; i--; )
2171
			if (fetch_block5(sh, s, i, disks))
2172
				break;
2173 2174 2175
	set_bit(STRIPE_HANDLE, &sh->state);
}

2176
static void handle_stripe_fill6(struct stripe_head *sh,
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (!test_bit(R5_LOCKED, &dev->flags) &&
		    !test_bit(R5_UPTODATE, &dev->flags) &&
		    (dev->toread || (dev->towrite &&
		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
		     s->syncing || s->expanding ||
		     (s->failed >= 1 &&
		      (sh->dev[r6s->failed_num[0]].toread ||
		       s->to_write)) ||
		     (s->failed >= 2 &&
		      (sh->dev[r6s->failed_num[1]].toread ||
		       s->to_write)))) {
			/* we would like to get this block, possibly
			 * by computing it, but we might not be able to
			 */
2197 2198 2199
			if ((s->uptodate == disks - 1) &&
			    (s->failed && (i == r6s->failed_num[0] ||
					   i == r6s->failed_num[1]))) {
2200
				pr_debug("Computing stripe %llu block %d\n",
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
				       (unsigned long long)sh->sector, i);
				compute_block_1(sh, i, 0);
				s->uptodate++;
			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
				/* Computing 2-failure is *very* expensive; only
				 * do it if failed >= 2
				 */
				int other;
				for (other = disks; other--; ) {
					if (other == i)
						continue;
					if (!test_bit(R5_UPTODATE,
					      &sh->dev[other].flags))
						break;
				}
				BUG_ON(other < 0);
2217
				pr_debug("Computing stripe %llu blocks %d,%d\n",
2218 2219 2220 2221 2222 2223 2224 2225
				       (unsigned long long)sh->sector,
				       i, other);
				compute_block_2(sh, i, other);
				s->uptodate += 2;
			} else if (test_bit(R5_Insync, &dev->flags)) {
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
2226
				pr_debug("Reading block %d (sync=%d)\n",
2227 2228 2229 2230 2231 2232 2233 2234
					i, s->syncing);
			}
		}
	}
	set_bit(STRIPE_HANDLE, &sh->state);
}


2235
/* handle_stripe_clean_event
2236 2237 2238 2239
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2240
static void handle_stripe_clean_event(raid5_conf_t *conf,
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2254
				pr_debug("Return write for disc %d\n", i);
2255 2256 2257 2258 2259 2260
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2261
					if (!raid5_dec_bi_phys_segments(wbi)) {
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2279 2280 2281 2282

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2283 2284
}

2285
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2286 2287 2288 2289 2290 2291 2292 2293
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2294 2295
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2296 2297 2298 2299 2300 2301 2302 2303
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2304 2305 2306
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2307 2308 2309 2310
			else
				rcw += 2*disks;
		}
	}
2311
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2312 2313 2314 2315 2316 2317 2318 2319
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2320 2321
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2322 2323 2324
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2325
					pr_debug("Read_old block "
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2343 2344
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2345 2346 2347
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2348
					pr_debug("Read_old block "
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2362 2363 2364 2365 2366 2367 2368
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
	 * subsequent call wants to start a write request.  raid5_run_ops only
	 * handles the case where compute block and postxor are requested
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2369 2370 2371
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2372
		schedule_reconstruction5(sh, s, rcw == 0, 0);
2373 2374
}

2375
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2376 2377 2378 2379
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2380
	int qd_idx = sh->qd_idx;
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags)
		    && i != pd_idx && i != qd_idx
		    && (!test_bit(R5_LOCKED, &dev->flags)
			    ) &&
		    !test_bit(R5_UPTODATE, &dev->flags)) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
			else {
2391
				pr_debug("raid6: must_compute: "
2392 2393 2394 2395 2396
					"disk %d flags=%#lx\n", i, dev->flags);
				must_compute++;
			}
		}
	}
2397
	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	       (unsigned long long)sh->sector, rcw, must_compute);
	set_bit(STRIPE_HANDLE, &sh->state);

	if (rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags)
			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
			    && !test_bit(R5_LOCKED, &dev->flags) &&
			    !test_bit(R5_UPTODATE, &dev->flags) &&
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2412
					pr_debug("Read_old stripe %llu "
2413 2414 2415 2416 2417 2418
						"block %d for Reconstruct\n",
					     (unsigned long long)sh->sector, i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
2419
					pr_debug("Request delayed stripe %llu "
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
						"block %d for Reconstruct\n",
					     (unsigned long long)sh->sector, i);
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
	if (s->locked == 0 && rcw == 0 &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
		if (must_compute > 0) {
			/* We have failed blocks and need to compute them */
			switch (s->failed) {
			case 0:
				BUG();
			case 1:
				compute_block_1(sh, r6s->failed_num[0], 0);
				break;
			case 2:
				compute_block_2(sh, r6s->failed_num[0],
						r6s->failed_num[1]);
				break;
			default: /* This request should have been failed? */
				BUG();
			}
		}

2449
		pr_debug("Computing parity for stripe %llu\n",
2450 2451 2452 2453 2454
			(unsigned long long)sh->sector);
		compute_parity6(sh, RECONSTRUCT_WRITE);
		/* now every locked buffer is ready to be written */
		for (i = disks; i--; )
			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2455
				pr_debug("Writing stripe %llu block %d\n",
2456 2457 2458 2459
				       (unsigned long long)sh->sector, i);
				s->locked++;
				set_bit(R5_Wantwrite, &sh->dev[i].flags);
			}
2460 2461 2462
		if (s->locked == disks)
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
				atomic_inc(&conf->pending_full_writes);
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
		set_bit(STRIPE_INSYNC, &sh->state);

		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
			    IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2478
	struct r5dev *dev = NULL;
2479

2480
	set_bit(STRIPE_HANDLE, &sh->state);
2481

2482 2483 2484
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2485 2486
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2487 2488
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2489 2490
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2491
			break;
2492
		}
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2503

2504 2505 2506 2507 2508
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2509
		s->locked++;
2510
		set_bit(R5_Wantwrite, &dev->flags);
2511

2512 2513
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0)
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2542
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s,
				struct r6_state *r6s, struct page *tmp_page,
				int disks)
{
	int update_p = 0, update_q = 0;
	struct r5dev *dev;
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2570
	int qd_idx = sh->qd_idx;
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
	BUG_ON(s->uptodate < disks);
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

	/* If !tmp_page, we cannot do the calculations,
	 * but as we have set STRIPE_HANDLE, we will soon be called
	 * by stripe_handle with a tmp_page - just wait until then.
	 */
	if (tmp_page) {
		if (s->failed == r6s->q_failed) {
			/* The only possible failed device holds 'Q', so it
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
			compute_block_1(sh, pd_idx, 1);
			if (!page_is_zero(sh->dev[pd_idx].page)) {
				compute_block_1(sh, pd_idx, 0);
				update_p = 1;
			}
		}
		if (!r6s->q_failed && s->failed < 2) {
			/* q is not failed, and we didn't use it to generate
			 * anything, so it makes sense to check it
			 */
			memcpy(page_address(tmp_page),
			       page_address(sh->dev[qd_idx].page),
			       STRIPE_SIZE);
			compute_parity6(sh, UPDATE_PARITY);
			if (memcmp(page_address(tmp_page),
				   page_address(sh->dev[qd_idx].page),
				   STRIPE_SIZE) != 0) {
				clear_bit(STRIPE_INSYNC, &sh->state);
				update_q = 1;
			}
		}
		if (update_p || update_q) {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				update_p = update_q = 0;
		}

		/* now write out any block on a failed drive,
		 * or P or Q if they need it
		 */

		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}

		if (update_p) {
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (update_q) {
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2663
	struct dma_async_tx_descriptor *tx = NULL;
2664 2665
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2666
		if (i != sh->pd_idx && i != sh->qd_idx) {
2667
			int dd_idx, j;
2668 2669
			struct stripe_head *sh2;

2670
			sector_t bn = compute_blocknr(sh, i, 1);
2671 2672
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2673
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2686 2687 2688 2689 2690 2691

			/* place all the copies on one channel */
			tx = async_memcpy(sh2->dev[dd_idx].page,
				sh->dev[i].page, 0, 0, STRIPE_SIZE,
				ASYNC_TX_DEP_ACK, tx, NULL, NULL);

2692 2693 2694 2695
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2696
				    (!r6s || j != sh2->qd_idx) &&
2697 2698 2699 2700 2701 2702 2703
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2704

2705
		}
2706 2707 2708 2709 2710
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2711
}
L
Linus Torvalds 已提交
2712

2713

L
Linus Torvalds 已提交
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2730

2731
static bool handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
2732 2733
{
	raid5_conf_t *conf = sh->raid_conf;
2734 2735 2736
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
2737
	struct r5dev *dev;
2738
	mdk_rdev_t *blocked_rdev = NULL;
2739
	int prexor;
L
Linus Torvalds 已提交
2740

2741
	memset(&s, 0, sizeof(s));
2742 2743 2744 2745
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
2746 2747 2748 2749 2750

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

2751 2752 2753
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
2754

2755
	/* Now to look around and see what can be done */
2756
	rcu_read_lock();
L
Linus Torvalds 已提交
2757 2758
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2759
		struct r5dev *dev = &sh->dev[i];
L
Linus Torvalds 已提交
2760 2761
		clear_bit(R5_Insync, &dev->flags);

2762 2763 2764 2765 2766 2767 2768
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
2769
		 * ops_complete_biofill is guaranteed to be inactive
2770 2771
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2772
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2773
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2774 2775

		/* now count some things */
2776 2777
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2778
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
2779

2780 2781 2782
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
2783
			s.to_read++;
L
Linus Torvalds 已提交
2784
		if (dev->towrite) {
2785
			s.to_write++;
L
Linus Torvalds 已提交
2786
			if (!test_bit(R5_OVERWRITE, &dev->flags))
2787
				s.non_overwrite++;
L
Linus Torvalds 已提交
2788
		}
2789 2790
		if (dev->written)
			s.written++;
2791
		rdev = rcu_dereference(conf->disks[i].rdev);
2792 2793
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2794 2795 2796
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
2797
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
2798
			/* The ReadError flag will just be confusing now */
2799 2800 2801
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
2802
		if (!rdev || !test_bit(In_sync, &rdev->flags)
2803
		    || test_bit(R5_ReadError, &dev->flags)) {
2804 2805
			s.failed++;
			s.failed_num = i;
L
Linus Torvalds 已提交
2806 2807 2808
		} else
			set_bit(R5_Insync, &dev->flags);
	}
2809
	rcu_read_unlock();
2810

2811
	if (unlikely(blocked_rdev)) {
2812 2813 2814 2815 2816 2817 2818 2819
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
2820 2821
	}

2822 2823 2824 2825
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
2826

2827
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
2828
		" to_write=%d failed=%d failed_num=%d\n",
2829 2830
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
2831 2832 2833
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
2834
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2835
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2836
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
2837 2838
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
2839
		s.syncing = 0;
L
Linus Torvalds 已提交
2840 2841 2842 2843 2844 2845
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
2846 2847 2848 2849 2850
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2851
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
2852 2853 2854 2855 2856

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
2857
	if (s.to_read || s.non_overwrite ||
2858
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2859
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
2860

2861 2862 2863
	/* Now we check to see if any write operations have recently
	 * completed
	 */
2864
	prexor = 0;
2865
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2866
		prexor = 1;
2867 2868
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2869
		sh->reconstruct_state = reconstruct_state_idle;
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
2881 2882
				if (prexor)
					continue;
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
				IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
2902
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2903
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
2904 2905

	/* maybe we need to check and possibly fix the parity for this stripe
2906 2907 2908
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
2909
	 */
2910 2911
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
2912
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2913
	     !test_bit(STRIPE_INSYNC, &sh->state)))
2914
		handle_parity_checks5(conf, sh, &s, disks);
2915

2916
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
2917 2918 2919
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
2920 2921 2922 2923

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
2924 2925 2926 2927
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2928
		) {
2929
		dev = &sh->dev[s.failed_num];
2930 2931 2932 2933
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
2934
			s.locked++;
2935 2936 2937 2938
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
2939
			s.locked++;
2940 2941 2942
		}
	}

2943 2944
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
2945
		struct stripe_head *sh2
2946
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

2962
		sh->reconstruct_state = reconstruct_state_idle;
2963
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
2964
		for (i = conf->raid_disks; i--; ) {
2965
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
2966
			set_bit(R5_LOCKED, &sh->dev[i].flags);
2967
			s.locked++;
D
Dan Williams 已提交
2968
		}
2969 2970 2971
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2972
	    !sh->reconstruct_state) {
2973 2974
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
2975
		stripe_set_idx(sh->sector, conf, 0, sh);
2976
		schedule_reconstruction5(sh, &s, 1, 1);
2977
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2978
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2979
		atomic_dec(&conf->reshape_stripes);
2980 2981 2982 2983
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

2984
	if (s.expanding && s.locked == 0 &&
2985
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2986
		handle_stripe_expansion(conf, sh, NULL);
2987

2988
 unlock:
L
Linus Torvalds 已提交
2989 2990
	spin_unlock(&sh->lock);

2991 2992 2993 2994
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

2995 2996
	if (s.ops_request)
		raid5_run_ops(sh, s.ops_request);
2997

2998
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
2999

3000
	return_io(return_bi);
3001 3002

	return blocked_rdev == NULL;
L
Linus Torvalds 已提交
3003 3004
}

3005
static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
L
Linus Torvalds 已提交
3006
{
3007
	raid5_conf_t *conf = sh->raid_conf;
3008
	int disks = sh->disks;
3009
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
3010
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3011 3012
	struct stripe_head_state s;
	struct r6_state r6s;
3013
	struct r5dev *dev, *pdev, *qdev;
3014
	mdk_rdev_t *blocked_rdev = NULL;
L
Linus Torvalds 已提交
3015

3016
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3017 3018
		"pd_idx=%d, qd_idx=%d\n",
	       (unsigned long long)sh->sector, sh->state,
N
NeilBrown 已提交
3019
	       atomic_read(&sh->count), pd_idx, qd_idx);
3020
	memset(&s, 0, sizeof(s));
3021

3022 3023 3024 3025
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3026 3027 3028
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3029
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3030 3031

	rcu_read_lock();
3032 3033 3034 3035
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
		clear_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3036

3037
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3038 3039 3040 3041
			i, dev->flags, dev->toread, dev->towrite, dev->written);
		/* maybe we can reply to a read */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
			struct bio *rbi, *rbi2;
3042
			pr_debug("Return read for disc %d\n", i);
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
			spin_lock_irq(&conf->device_lock);
			rbi = dev->toread;
			dev->toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&conf->wait_for_overlap);
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
				copy_data(0, rbi, dev->page, dev->sector);
				rbi2 = r5_next_bio(rbi, dev->sector);
				spin_lock_irq(&conf->device_lock);
3053
				if (!raid5_dec_bi_phys_segments(rbi)) {
3054 3055 3056 3057 3058 3059 3060
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				spin_unlock_irq(&conf->device_lock);
				rbi = rbi2;
			}
		}
L
Linus Torvalds 已提交
3061

3062
		/* now count some things */
3063 3064
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
L
Linus Torvalds 已提交
3065

3066

3067 3068
		if (dev->toread)
			s.to_read++;
3069
		if (dev->towrite) {
3070
			s.to_write++;
3071
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3072
				s.non_overwrite++;
3073
		}
3074 3075
		if (dev->written)
			s.written++;
3076
		rdev = rcu_dereference(conf->disks[i].rdev);
3077 3078
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3079 3080 3081
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3082 3083 3084 3085
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3086
		}
3087 3088
		if (!rdev || !test_bit(In_sync, &rdev->flags)
		    || test_bit(R5_ReadError, &dev->flags)) {
3089 3090 3091
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3092 3093
		} else
			set_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3094 3095
	}
	rcu_read_unlock();
3096 3097

	if (unlikely(blocked_rdev)) {
3098 3099 3100 3101 3102 3103 3104 3105
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3106
	}
3107

3108
	pr_debug("locked=%d uptodate=%d to_read=%d"
3109
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3110 3111 3112 3113
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3114
	 */
3115
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3116
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3117
	if (s.failed > 2 && s.syncing) {
3118 3119
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3120
		s.syncing = 0;
3121 3122 3123 3124 3125 3126 3127
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3128 3129
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3130 3131 3132
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3133 3134 3135

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3136
			     && !test_bit(R5_LOCKED, &pdev->flags)
3137 3138
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3139
			     && !test_bit(R5_LOCKED, &qdev->flags)
3140
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3141
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3142 3143 3144 3145 3146

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3147 3148
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
	    (s.syncing && (s.uptodate < disks)) || s.expanding)
3149
		handle_stripe_fill6(sh, &s, &r6s, disks);
3150 3151

	/* now to consider writing and what else, if anything should be read */
3152
	if (s.to_write)
3153
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3154 3155

	/* maybe we need to check and possibly fix the parity for this stripe
3156 3157
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available
3158
	 */
3159 3160
	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3161

3162
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3163 3164 3165 3166 3167 3168 3169
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3170 3171 3172
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
				}
			}
		}
3188

3189
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3190
		struct stripe_head *sh2
3191
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3207 3208
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3209
		stripe_set_idx(sh->sector, conf, 0, sh);
3210 3211 3212
		compute_parity6(sh, RECONSTRUCT_WRITE);
		for (i = conf->raid_disks ; i-- ;  ) {
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3213
			s.locked++;
3214 3215 3216
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
		}
		clear_bit(STRIPE_EXPANDING, &sh->state);
3217
	} else if (s.expanded) {
3218 3219 3220 3221 3222 3223
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3224
	if (s.expanding && s.locked == 0 &&
3225
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3226
		handle_stripe_expansion(conf, sh, &r6s);
3227

3228
 unlock:
3229 3230
	spin_unlock(&sh->lock);

3231 3232 3233 3234
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

D
Dan Williams 已提交
3235
	ops_run_io(sh, &s);
3236

D
Dan Williams 已提交
3237
	return_io(return_bi);
3238 3239

	return blocked_rdev == NULL;
3240 3241
}

3242 3243
/* returns true if the stripe was handled */
static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3244 3245
{
	if (sh->raid_conf->level == 6)
3246
		return handle_stripe6(sh, tmp_page);
3247
	else
3248
		return handle_stripe5(sh);
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
}



static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3264
			list_add_tail(&sh->lru, &conf->hold_list);
3265
		}
3266 3267
	} else
		blk_plug_device(conf->mddev->queue);
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
3286
	raid5_conf_t *conf = mddev->private;
3287 3288 3289
	int i;

	rcu_read_lock();
3290
	for (i = 0; i < conf->raid_disks; i++) {
3291 3292
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3293
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3294 3295 3296 3297

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3298
			blk_unplug(r_queue);
3299 3300 3301 3302 3303 3304 3305 3306

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3307
static void raid5_unplug_device(struct request_queue *q)
3308 3309
{
	mddev_t *mddev = q->queuedata;
3310
	raid5_conf_t *conf = mddev->private;
3311 3312 3313 3314 3315 3316 3317
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	if (blk_remove_plug(q)) {
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3318
	}
L
Linus Torvalds 已提交
3319 3320 3321 3322 3323 3324 3325
	md_wakeup_thread(mddev->thread);

	spin_unlock_irqrestore(&conf->device_lock, flags);

	unplug_slaves(mddev);
}

3326 3327 3328
static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;
3329
	raid5_conf_t *conf = mddev->private;
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}

3344 3345 3346
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3347 3348 3349
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3350 3351
{
	mddev_t *mddev = q->queuedata;
3352
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3353
	int max;
3354
	unsigned int chunk_sectors = mddev->chunk_sectors;
3355
	unsigned int bio_sectors = bvm->bi_size >> 9;
3356

3357
	if ((bvm->bi_rw & 1) == WRITE)
3358 3359
		return biovec->bv_len; /* always allow writes to be mergeable */

3360 3361
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3362 3363 3364 3365 3366 3367 3368 3369
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3370 3371 3372 3373

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3374
	unsigned int chunk_sectors = mddev->chunk_sectors;
3375 3376
	unsigned int bio_sectors = bio->bi_size >> 9;

3377 3378
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3379 3380 3381 3382
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3412
		conf->retry_read_aligned_list = bi->bi_next;
3413
		bi->bi_next = NULL;
3414 3415 3416 3417
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3418 3419 3420 3421 3422 3423 3424
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3425 3426 3427 3428 3429 3430
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3431
static void raid5_align_endio(struct bio *bi, int error)
3432 3433
{
	struct bio* raid_bi  = bi->bi_private;
3434 3435 3436 3437 3438
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3439
	bio_put(bi);
3440 3441

	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3442
	conf = mddev->private;
3443 3444 3445 3446 3447 3448
	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3449
		bio_endio(raid_bi, 0);
3450 3451
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3452
		return;
3453 3454 3455
	}


3456
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3457 3458

	add_bio_to_retry(raid_bi, conf);
3459 3460
}

3461 3462
static int bio_fits_rdev(struct bio *bi)
{
3463
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3464

3465
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3466 3467
		return 0;
	blk_recount_segments(q, bi);
3468
	if (bi->bi_phys_segments > queue_max_phys_segments(q))
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3481
static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3482 3483
{
	mddev_t *mddev = q->queuedata;
3484
	raid5_conf_t *conf = mddev->private;
3485
	unsigned int dd_idx;
3486 3487 3488 3489
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3490
		pr_debug("chunk_aligned_read : non aligned\n");
3491 3492 3493
		return 0;
	}
	/*
3494
	 * use bio_clone to make a copy of the bio
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3508 3509
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3510
						    &dd_idx, NULL);
3511 3512 3513 3514 3515 3516

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3517 3518 3519 3520 3521
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3522 3523 3524 3525 3526 3527 3528
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3529 3530 3531 3532 3533 3534 3535
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3536 3537 3538 3539
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3540
		bio_put(align_bi);
3541 3542 3543 3544
		return 0;
	}
}

3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3597

3598
static int make_request(struct request_queue *q, struct bio * bi)
L
Linus Torvalds 已提交
3599 3600
{
	mddev_t *mddev = q->queuedata;
3601
	raid5_conf_t *conf = mddev->private;
3602
	int dd_idx;
L
Linus Torvalds 已提交
3603 3604 3605
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3606
	const int rw = bio_data_dir(bi);
T
Tejun Heo 已提交
3607
	int cpu, remaining;
L
Linus Torvalds 已提交
3608

3609
	if (unlikely(bio_barrier(bi))) {
3610
		bio_endio(bi, -EOPNOTSUPP);
3611 3612 3613
		return 0;
	}

3614
	md_write_start(mddev, bi);
3615

T
Tejun Heo 已提交
3616 3617 3618 3619 3620
	cpu = part_stat_lock();
	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
		      bio_sectors(bi));
	part_stat_unlock();
L
Linus Torvalds 已提交
3621

3622
	if (rw == READ &&
3623 3624
	     mddev->reshape_position == MaxSector &&
	     chunk_aligned_read(q,bi))
3625
		return 0;
3626

L
Linus Torvalds 已提交
3627 3628 3629 3630
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3631

L
Linus Torvalds 已提交
3632 3633
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3634
		int disks, data_disks;
3635
		int previous;
3636

3637
	retry:
3638
		previous = 0;
3639
		disks = conf->raid_disks;
3640
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3641
		if (unlikely(conf->reshape_progress != MaxSector)) {
3642
			/* spinlock is needed as reshape_progress may be
3643 3644
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3645
			 * Ofcourse reshape_progress could change after
3646 3647 3648 3649
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3650
			spin_lock_irq(&conf->device_lock);
3651 3652 3653
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3654
				disks = conf->previous_raid_disks;
3655 3656
				previous = 1;
			} else {
3657 3658 3659
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3660 3661 3662 3663 3664
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3665 3666
			spin_unlock_irq(&conf->device_lock);
		}
3667 3668
		data_disks = disks - conf->max_degraded;

3669 3670
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3671
						  &dd_idx, NULL);
3672
		pr_debug("raid5: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3673 3674 3675
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3676
		sh = get_active_stripe(conf, new_sector, previous,
3677
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
3678
		if (sh) {
3679
			if (unlikely(previous)) {
3680
				/* expansion might have moved on while waiting for a
3681 3682 3683 3684 3685 3686
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3687 3688 3689
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3690 3691 3692
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
3693 3694 3695 3696 3697 3698 3699 3700
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
					goto retry;
				}
			}
3701 3702 3703 3704 3705 3706 3707 3708 3709
			/* FIXME what if we get a false positive because these
			 * are being updated.
			 */
			if (logical_sector >= mddev->suspend_lo &&
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
				schedule();
				goto retry;
			}
3710 3711 3712 3713 3714

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3715 3716 3717 3718 3719 3720 3721 3722
				 * and wait a while
				 */
				raid5_unplug_device(mddev->queue);
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3723 3724
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
L
Linus Torvalds 已提交
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
3735
	remaining = raid5_dec_bi_phys_segments(bi);
3736 3737
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
3738

3739
		if ( rw == WRITE )
L
Linus Torvalds 已提交
3740
			md_write_end(mddev);
3741

3742
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
3743 3744 3745 3746
	}
	return 0;
}

D
Dan Williams 已提交
3747 3748
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

3749
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
3750
{
3751 3752 3753 3754 3755 3756 3757 3758 3759
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
L
Linus Torvalds 已提交
3760 3761
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
3762
	sector_t first_sector, last_sector;
3763 3764 3765
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
3766 3767
	int i;
	int dd_idx;
3768
	sector_t writepos, readpos, safepos;
3769
	sector_t stripe_addr;
3770
	int reshape_sectors;
3771
	struct list_head stripes;
3772

3773 3774 3775 3776 3777 3778 3779 3780 3781
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
		} else if (mddev->delta_disks > 0 &&
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
3782
		sector_div(sector_nr, new_data_disks);
3783 3784 3785 3786
		if (sector_nr) {
			*skipped = 1;
			return sector_nr;
		}
3787 3788
	}

3789 3790 3791 3792
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
3793 3794
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
3795
	else
3796
		reshape_sectors = mddev->chunk_sectors;
3797

3798 3799 3800 3801 3802
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
3803 3804
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
3805
	 */
3806
	writepos = conf->reshape_progress;
3807
	sector_div(writepos, new_data_disks);
3808 3809
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
3810
	safepos = conf->reshape_safe;
3811
	sector_div(safepos, data_disks);
3812
	if (mddev->delta_disks < 0) {
3813
		writepos -= min_t(sector_t, reshape_sectors, writepos);
3814
		readpos += reshape_sectors;
3815
		safepos += reshape_sectors;
3816
	} else {
3817
		writepos += reshape_sectors;
3818 3819
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
3820
	}
3821

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
3839
	if ((mddev->delta_disks < 0
3840 3841 3842
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3843 3844 3845
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
3846
		mddev->reshape_position = conf->reshape_progress;
3847
		mddev->curr_resync_completed = mddev->curr_resync;
3848
		conf->reshape_checkpoint = jiffies;
3849
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3850
		md_wakeup_thread(mddev->thread);
3851
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3852 3853
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
3854
		conf->reshape_safe = mddev->reshape_position;
3855 3856
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
3857
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3858 3859
	}

3860 3861 3862 3863
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
3864 3865
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
3866 3867
		       != sector_nr);
	} else {
3868
		BUG_ON(writepos != sector_nr + reshape_sectors);
3869 3870
		stripe_addr = sector_nr;
	}
3871
	INIT_LIST_HEAD(&stripes);
3872
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3873 3874
		int j;
		int skipped = 0;
3875
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3876 3877 3878 3879 3880 3881 3882 3883 3884
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
3885
			if (conf->level == 6 &&
3886
			    j == sh->qd_idx)
3887
				continue;
3888
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
3889
			if (s < raid5_size(mddev, 0, 0)) {
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
				skipped = 1;
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
		if (!skipped) {
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
3901
		list_add(&sh->lru, &stripes);
3902 3903
	}
	spin_lock_irq(&conf->device_lock);
3904
	if (mddev->delta_disks < 0)
3905
		conf->reshape_progress -= reshape_sectors * new_data_disks;
3906
	else
3907
		conf->reshape_progress += reshape_sectors * new_data_disks;
3908 3909 3910 3911 3912 3913 3914
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
3915
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3916
				     1, &dd_idx, NULL);
3917
	last_sector =
3918
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
3919
					    * new_data_disks - 1),
3920
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
3921 3922
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
3923
	while (first_sector <= last_sector) {
3924
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
3925 3926 3927 3928 3929
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
3930 3931 3932 3933 3934 3935 3936 3937
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
3938 3939 3940
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
3941
	sector_nr += reshape_sectors;
3942 3943
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
3944 3945 3946
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
3947
		mddev->reshape_position = conf->reshape_progress;
3948
		mddev->curr_resync_completed = mddev->curr_resync;
3949
		conf->reshape_checkpoint = jiffies;
3950 3951 3952 3953 3954 3955
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
3956
		conf->reshape_safe = mddev->reshape_position;
3957 3958
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
3959
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3960
	}
3961
	return reshape_sectors;
3962 3963 3964 3965 3966 3967 3968
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
A
Andre Noll 已提交
3969
	sector_t max_sector = mddev->dev_sectors;
3970
	int sync_blocks;
3971 3972
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
3973

3974
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
3975 3976
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
3977

3978 3979 3980 3981
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
3982 3983 3984 3985

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
3986
		else /* completed sync */
3987 3988 3989
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
3990 3991
		return 0;
	}
3992

3993 3994
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
3995

3996 3997 3998 3999 4000 4001
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4002
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4003 4004 4005
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4006
	if (mddev->degraded >= conf->max_degraded &&
4007
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4008
		sector_t rv = mddev->dev_sectors - sector_nr;
4009
		*skipped = 1;
L
Linus Torvalds 已提交
4010 4011
		return rv;
	}
4012
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4013
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4014 4015 4016 4017 4018 4019
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4020

N
NeilBrown 已提交
4021 4022 4023

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4024
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4025
	if (sh == NULL) {
4026
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4027
		/* make sure we don't swamp the stripe cache if someone else
4028
		 * is trying to get access
L
Linus Torvalds 已提交
4029
		 */
4030
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4031
	}
4032 4033 4034 4035
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4036
	for (i = 0; i < conf->raid_disks; i++)
4037 4038 4039 4040 4041 4042
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
4043 4044 4045 4046
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

4047 4048 4049
	/* wait for any blocked device to be handled */
	while(unlikely(!handle_stripe(sh, NULL)))
		;
L
Linus Torvalds 已提交
4050 4051 4052 4053 4054
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4068
	int dd_idx;
4069 4070 4071 4072 4073 4074
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4075
	sector = raid5_compute_sector(conf, logical_sector,
4076
				      0, &dd_idx, NULL);
4077 4078 4079
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4080 4081 4082
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4083

4084
		if (scnt < raid5_bi_hw_segments(raid_bio))
4085 4086 4087
			/* already done this stripe */
			continue;

4088
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4089 4090 4091

		if (!sh) {
			/* failed to get a stripe - must wait */
4092
			raid5_set_bi_hw_segments(raid_bio, scnt);
4093 4094 4095 4096 4097
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4098 4099
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4100
			raid5_set_bi_hw_segments(raid_bio, scnt);
4101 4102 4103 4104
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4105 4106 4107 4108 4109
		handle_stripe(sh, NULL);
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4110
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4111
	spin_unlock_irq(&conf->device_lock);
4112 4113
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4114 4115 4116 4117 4118 4119 4120
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}



L
Linus Torvalds 已提交
4121 4122 4123 4124 4125 4126 4127
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4128
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4129 4130
{
	struct stripe_head *sh;
4131
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4132 4133
	int handled;

4134
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4135 4136 4137 4138 4139 4140

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4141
		struct bio *bio;
L
Linus Torvalds 已提交
4142

4143
		if (conf->seq_flush != conf->seq_write) {
4144
			int seq = conf->seq_flush;
4145
			spin_unlock_irq(&conf->device_lock);
4146
			bitmap_unplug(mddev->bitmap);
4147
			spin_lock_irq(&conf->device_lock);
4148 4149 4150 4151
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4162 4163
		sh = __get_priority_stripe(conf);

4164
		if (!sh)
L
Linus Torvalds 已提交
4165 4166 4167 4168
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4169
		handle_stripe(sh, conf->spare_page);
L
Linus Torvalds 已提交
4170 4171 4172 4173
		release_stripe(sh);

		spin_lock_irq(&conf->device_lock);
	}
4174
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4175 4176 4177

	spin_unlock_irq(&conf->device_lock);

4178
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4179 4180
	unplug_slaves(mddev);

4181
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4182 4183
}

4184
static ssize_t
4185
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4186
{
4187
	raid5_conf_t *conf = mddev->private;
4188 4189 4190 4191
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4192 4193 4194
}

static ssize_t
4195
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4196
{
4197
	raid5_conf_t *conf = mddev->private;
4198
	unsigned long new;
4199 4200
	int err;

4201 4202
	if (len >= PAGE_SIZE)
		return -EINVAL;
4203 4204
	if (!conf)
		return -ENODEV;
4205

4206
	if (strict_strtoul(page, 10, &new))
4207 4208 4209 4210 4211 4212 4213 4214 4215
		return -EINVAL;
	if (new <= 16 || new > 32768)
		return -EINVAL;
	while (new < conf->max_nr_stripes) {
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4216 4217 4218
	err = md_allow_write(mddev);
	if (err)
		return err;
4219 4220 4221 4222 4223 4224 4225
	while (new > conf->max_nr_stripes) {
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
	return len;
}
4226

4227 4228 4229 4230
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4231

4232 4233 4234
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4235
	raid5_conf_t *conf = mddev->private;
4236 4237 4238 4239 4240 4241 4242 4243 4244
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4245
	raid5_conf_t *conf = mddev->private;
4246
	unsigned long new;
4247 4248 4249 4250 4251
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4252
	if (strict_strtoul(page, 10, &new))
4253
		return -EINVAL;
4254
	if (new > conf->max_nr_stripes)
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4266
static ssize_t
4267
stripe_cache_active_show(mddev_t *mddev, char *page)
4268
{
4269
	raid5_conf_t *conf = mddev->private;
4270 4271 4272 4273
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4274 4275
}

4276 4277
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4278

4279
static struct attribute *raid5_attrs[] =  {
4280 4281
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4282
	&raid5_preread_bypass_threshold.attr,
4283 4284
	NULL,
};
4285 4286 4287
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4288 4289
};

4290 4291 4292
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4293
	raid5_conf_t *conf = mddev->private;
4294 4295 4296

	if (!sectors)
		sectors = mddev->dev_sectors;
4297 4298 4299 4300 4301 4302 4303
	if (!raid_disks) {
		/* size is defined by the smallest of previous and new size */
		if (conf->raid_disks < conf->previous_raid_disks)
			raid_disks = conf->raid_disks;
		else
			raid_disks = conf->previous_raid_disks;
	}
4304

4305
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4306
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4307 4308 4309
	return sectors * (raid_disks - conf->max_degraded);
}

N
NeilBrown 已提交
4310
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4311 4312 4313 4314 4315 4316
{
	raid5_conf_t *conf;
	int raid_disk, memory;
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4317 4318 4319
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4320
		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4321 4322
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4323
	}
N
NeilBrown 已提交
4324 4325 4326 4327
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4328
		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
N
NeilBrown 已提交
4329 4330
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4331
	}
N
NeilBrown 已提交
4332 4333 4334 4335
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4336 4337
	}

4338 4339 4340
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
N
NeilBrown 已提交
4341
		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4342
		       mddev->new_chunk_sectors << 9, mdname(mddev));
N
NeilBrown 已提交
4343
		return ERR_PTR(-EINVAL);
4344 4345
	}

N
NeilBrown 已提交
4346 4347
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4348
		goto abort;
N
NeilBrown 已提交
4349 4350 4351 4352 4353

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4354 4355 4356
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;

	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4357 4358 4359
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4360

L
Linus Torvalds 已提交
4361 4362
	conf->mddev = mddev;

4363
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4364 4365
		goto abort;

N
NeilBrown 已提交
4366
	if (mddev->new_level == 6) {
4367 4368 4369 4370
		conf->spare_page = alloc_page(GFP_KERNEL);
		if (!conf->spare_page)
			goto abort;
	}
L
Linus Torvalds 已提交
4371 4372 4373 4374
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
4375
	INIT_LIST_HEAD(&conf->hold_list);
L
Linus Torvalds 已提交
4376
	INIT_LIST_HEAD(&conf->delayed_list);
4377
	INIT_LIST_HEAD(&conf->bitmap_list);
L
Linus Torvalds 已提交
4378 4379 4380
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
4381
	atomic_set(&conf->active_aligned_reads, 0);
4382
	conf->bypass_threshold = BYPASS_THRESHOLD;
L
Linus Torvalds 已提交
4383

4384
	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4385

4386
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4387
		raid_disk = rdev->raid_disk;
4388
		if (raid_disk >= conf->raid_disks
L
Linus Torvalds 已提交
4389 4390 4391 4392 4393 4394
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4395
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4396 4397 4398 4399
			char b[BDEVNAME_SIZE];
			printk(KERN_INFO "raid5: device %s operational as raid"
				" disk %d\n", bdevname(rdev->bdev,b),
				raid_disk);
4400 4401 4402
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4403 4404
	}

4405
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4406
	conf->level = mddev->new_level;
4407 4408 4409 4410
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4411
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4412
	conf->max_nr_stripes = NR_STRIPES;
4413
	conf->reshape_progress = mddev->reshape_position;
4414
	if (conf->reshape_progress != MaxSector) {
4415
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4416 4417
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4418

N
NeilBrown 已提交
4419 4420 4421 4422 4423 4424 4425 4426 4427
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
			"raid5: couldn't allocate %dkB for buffers\n", memory);
		goto abort;
	} else
		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
			memory, mdname(mddev));
L
Linus Torvalds 已提交
4428

N
NeilBrown 已提交
4429 4430 4431 4432 4433
	conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
	if (!conf->thread) {
		printk(KERN_ERR
		       "raid5: couldn't allocate thread for %s\n",
		       mdname(mddev));
4434 4435
		goto abort;
	}
N
NeilBrown 已提交
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464

	return conf;

 abort:
	if (conf) {
		shrink_stripes(conf);
		safe_put_page(conf->spare_page);
		kfree(conf->disks);
		kfree(conf->stripe_hashtbl);
		kfree(conf);
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
	int working_disks = 0;
	mdk_rdev_t *rdev;

	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4465
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4466

4467
		if (mddev->new_level != mddev->level) {
N
NeilBrown 已提交
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
			printk(KERN_ERR "raid5: %s: unsupported reshape "
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4479
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4480 4481 4482 4483 4484 4485 4486
			       (mddev->raid_disks - max_degraded))) {
			printk(KERN_ERR "raid5: reshape_position not "
			       "on a stripe boundary\n");
			return -EINVAL;
		}
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4487
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
		if (here_new >= here_old) {
			/* Reading from the same stripe as writing to - bad */
			printk(KERN_ERR "raid5: reshape_position too early for "
			       "auto-recovery - aborting.\n");
			return -EINVAL;
		}
		printk(KERN_INFO "raid5: reshape will continue\n");
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
4502
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
4503
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4504
	}
N
NeilBrown 已提交
4505

4506 4507 4508 4509 4510
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
	list_for_each_entry(rdev, &mddev->disks, same_set)
		if (rdev->raid_disk >= 0 &&
		    test_bit(In_sync, &rdev->flags))
			working_disks++;

	mddev->degraded = conf->raid_disks - working_disks;

4528
	if (mddev->degraded > conf->max_degraded) {
L
Linus Torvalds 已提交
4529 4530
		printk(KERN_ERR "raid5: not enough operational devices for %s"
			" (%d/%d failed)\n",
4531
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
4532 4533 4534
		goto abort;
	}

N
NeilBrown 已提交
4535
	/* device size must be a multiple of chunk size */
4536
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
4537 4538
	mddev->resync_max_sectors = mddev->dev_sectors;

4539
	if (mddev->degraded > 0 &&
L
Linus Torvalds 已提交
4540
	    mddev->recovery_cp != MaxSector) {
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
			       "raid5: starting dirty degraded array: %s"
			       "- data corruption possible.\n",
			       mdname(mddev));
		else {
			printk(KERN_ERR
			       "raid5: cannot start dirty degraded array for %s\n",
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
4552 4553 4554 4555
	}

	if (mddev->degraded == 0)
		printk("raid5: raid level %d set %s active with %d out of %d"
4556 4557 4558
		       " devices, algorithm %d\n", conf->level, mdname(mddev),
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
4559 4560 4561 4562
	else
		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
			" out of %d devices, algorithm %d\n", conf->level,
			mdname(mddev), mddev->raid_disks - mddev->degraded,
4563
			mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
4564 4565 4566

	print_raid5_conf(conf);

4567
	if (conf->reshape_progress != MaxSector) {
4568
		printk("...ok start reshape thread\n");
4569
		conf->reshape_safe = conf->reshape_progress;
4570 4571 4572 4573 4574 4575 4576 4577 4578
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
							"%s_reshape");
	}

L
Linus Torvalds 已提交
4579
	/* read-ahead size must cover two whole stripes, which is
4580
	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
L
Linus Torvalds 已提交
4581 4582
	 */
	{
4583 4584
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
4585
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
L
Linus Torvalds 已提交
4586 4587 4588 4589 4590
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
	}

	/* Ok, everything is just fine now */
4591 4592 4593 4594
	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
		printk(KERN_WARNING
		       "raid5: failed to create sysfs attributes for %s\n",
		       mdname(mddev));
4595

N
NeilBrown 已提交
4596 4597
	mddev->queue->queue_lock = &conf->device_lock;

4598
	mddev->queue->unplug_fn = raid5_unplug_device;
4599
	mddev->queue->backing_dev_info.congested_data = mddev;
4600
	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4601

4602
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4603

4604 4605
	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);

L
Linus Torvalds 已提交
4606 4607
	return 0;
abort:
4608
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
4609
	mddev->thread = NULL;
L
Linus Torvalds 已提交
4610
	if (conf) {
N
NeilBrown 已提交
4611
		shrink_stripes(conf);
L
Linus Torvalds 已提交
4612
		print_raid5_conf(conf);
4613
		safe_put_page(conf->spare_page);
4614
		kfree(conf->disks);
4615
		kfree(conf->stripe_hashtbl);
L
Linus Torvalds 已提交
4616 4617 4618 4619 4620 4621 4622 4623 4624
		kfree(conf);
	}
	mddev->private = NULL;
	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
	return -EIO;
}



4625
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
4626 4627 4628 4629 4630 4631
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
	shrink_stripes(conf);
4632
	kfree(conf->stripe_hashtbl);
4633
	mddev->queue->backing_dev_info.congested_fn = NULL;
L
Linus Torvalds 已提交
4634
	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4635
	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4636
	kfree(conf->disks);
4637
	kfree(conf);
L
Linus Torvalds 已提交
4638 4639 4640 4641
	mddev->private = NULL;
	return 0;
}

4642
#ifdef DEBUG
4643
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
4644 4645 4646
{
	int i;

4647 4648 4649 4650 4651
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4652
	for (i = 0; i < sh->disks; i++) {
4653 4654
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
4655
	}
4656
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
4657 4658
}

4659
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
4660 4661
{
	struct stripe_head *sh;
4662
	struct hlist_node *hn;
L
Linus Torvalds 已提交
4663 4664 4665 4666
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
4667
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
4668 4669
			if (sh->raid_conf != conf)
				continue;
4670
			print_sh(seq, sh);
L
Linus Torvalds 已提交
4671 4672 4673 4674 4675 4676
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

4677
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
4678 4679 4680 4681
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	int i;

4682 4683
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
4684
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
4685 4686 4687
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
4688
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
4689
	seq_printf (seq, "]");
4690
#ifdef DEBUG
4691 4692
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

	printk("RAID5 conf printout:\n");
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
4706 4707
	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
		 conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
4708 4709 4710 4711 4712 4713

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
		printk(" disk %d, o:%d, dev:%s\n",
4714
			i, !test_bit(Faulty, &tmp->rdev->flags),
L
Linus Torvalds 已提交
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
			bdevname(tmp->rdev->bdev,b));
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
4728
		    && !test_bit(Faulty, &tmp->rdev->flags)
4729 4730 4731
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4732
			mddev->degraded--;
4733
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
		}
	}
	print_raid5_conf(conf);
	return 0;
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
4750 4751 4752 4753
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

4754
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
4755 4756 4757 4758
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
4759 4760 4761 4762
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
4763 4764
		    mddev->degraded <= conf->max_degraded &&
		    number < conf->raid_disks) {
4765 4766 4767
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
4768
		p->rdev = NULL;
4769
		synchronize_rcu();
L
Linus Torvalds 已提交
4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
4785
	int err = -EEXIST;
L
Linus Torvalds 已提交
4786 4787
	int disk;
	struct disk_info *p;
4788 4789
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
4790

4791
	if (mddev->degraded > conf->max_degraded)
L
Linus Torvalds 已提交
4792
		/* no point adding a device */
4793
		return -EINVAL;
L
Linus Torvalds 已提交
4794

4795 4796
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
4797 4798

	/*
4799 4800
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
4801
	 */
4802
	if (rdev->saved_raid_disk >= 0 &&
4803
	    rdev->saved_raid_disk >= first &&
4804 4805 4806
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
4807 4808
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
4809
		if ((p=conf->disks + disk)->rdev == NULL) {
4810
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
4811
			rdev->raid_disk = disk;
4812
			err = 0;
4813 4814
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
4815
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
4816 4817 4818
			break;
		}
	print_raid5_conf(conf);
4819
	return err;
L
Linus Torvalds 已提交
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
4831
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4832 4833
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
4834 4835 4836
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
4837
	set_capacity(mddev->gendisk, mddev->array_sectors);
4838
	mddev->changed = 1;
A
Andre Noll 已提交
4839 4840
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
4841 4842
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
4843
	mddev->dev_sectors = sectors;
4844
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
4845 4846 4847
	return 0;
}

4848
static int raid5_check_reshape(mddev_t *mddev)
4849
{
4850
	raid5_conf_t *conf = mddev->private;
4851

4852 4853
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
4854
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
4855
		return -EINVAL; /* nothing to do */
4856 4857 4858
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
	if (mddev->degraded > conf->max_degraded)
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
4873 4874 4875 4876 4877 4878 4879 4880 4881

	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
4882 4883
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
		> conf->max_nr_stripes ||
4884 4885
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
		> conf->max_nr_stripes) {
4886
		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4887 4888
		       (max(mddev->chunk_sectors << 9,
			mddev->new_chunk_sectors << 9)
4889
			/ STRIPE_SIZE)*4);
4890 4891 4892
		return -ENOSPC;
	}

4893
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4894 4895 4896 4897
}

static int raid5_start_reshape(mddev_t *mddev)
{
4898
	raid5_conf_t *conf = mddev->private;
4899 4900 4901
	mdk_rdev_t *rdev;
	int spares = 0;
	int added_devices = 0;
4902
	unsigned long flags;
4903

4904
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4905 4906
		return -EBUSY;

4907
	list_for_each_entry(rdev, &mddev->disks, same_set)
4908 4909 4910
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
4911

4912
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4913 4914 4915 4916 4917
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
		printk(KERN_ERR "md: %s: array size must be reduced "
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

4929
	atomic_set(&conf->reshape_stripes, 0);
4930 4931
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
4932
	conf->raid_disks += mddev->delta_disks;
4933 4934
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
4935 4936
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
4937 4938 4939 4940 4941
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
4942
	conf->generation++;
4943 4944 4945 4946 4947
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
	 */
4948
	list_for_each_entry(rdev, &mddev->disks, same_set)
4949 4950
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
4951
			if (raid5_add_disk(mddev, rdev) == 0) {
4952 4953 4954
				char nm[20];
				set_bit(In_sync, &rdev->flags);
				added_devices++;
4955
				rdev->recovery_offset = 0;
4956
				sprintf(nm, "rd%d", rdev->raid_disk);
4957 4958 4959 4960 4961 4962
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
					printk(KERN_WARNING
					       "raid5: failed to create "
					       " link %s for %s\n",
					       nm, mdname(mddev));
4963 4964 4965 4966
			} else
				break;
		}

4967 4968 4969 4970 4971 4972
	if (mddev->delta_disks > 0) {
		spin_lock_irqsave(&conf->device_lock, flags);
		mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
4973
	mddev->raid_disks = conf->raid_disks;
4974
	mddev->reshape_position = 0;
4975
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4976

4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
						"%s_reshape");
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4987
		conf->reshape_progress = MaxSector;
4988 4989 4990
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
4991
	conf->reshape_checkpoint = jiffies;
4992 4993 4994 4995 4996
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

4997 4998 4999
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5000 5001 5002
static void end_reshape(raid5_conf_t *conf)
{

5003 5004 5005
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5006
		conf->previous_raid_disks = conf->raid_disks;
5007
		conf->reshape_progress = MaxSector;
5008
		spin_unlock_irq(&conf->device_lock);
5009
		wake_up(&conf->wait_for_overlap);
5010 5011 5012 5013 5014

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
		{
5015
			int data_disks = conf->raid_disks - conf->max_degraded;
5016
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5017
						   / PAGE_SIZE);
5018 5019 5020
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5021 5022 5023
	}
}

5024 5025 5026
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5027 5028 5029
static void raid5_finish_reshape(mddev_t *mddev)
{
	struct block_device *bdev;
5030
	raid5_conf_t *conf = mddev->private;
5031 5032 5033

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
			mddev->changed = 1;

			bdev = bdget_disk(mddev->gendisk, 0);
			if (bdev) {
				mutex_lock(&bdev->bd_inode->i_mutex);
				i_size_write(bdev->bd_inode,
					     (loff_t)mddev->array_sectors << 9);
				mutex_unlock(&bdev->bd_inode->i_mutex);
				bdput(bdev);
			}
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
			     d++)
				raid5_remove_disk(mddev, d);
5059
		}
5060
		mddev->layout = conf->algorithm;
5061
		mddev->chunk_sectors = conf->chunk_sectors;
5062 5063
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5064 5065 5066
	}
}

5067 5068
static void raid5_quiesce(mddev_t *mddev, int state)
{
5069
	raid5_conf_t *conf = mddev->private;
5070 5071

	switch(state) {
5072 5073 5074 5075
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5076 5077 5078 5079
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 1;
		wait_event_lock_irq(conf->wait_for_stripe,
5080 5081
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5082 5083 5084 5085 5086 5087 5088 5089
				    conf->device_lock, /* nothing */);
		spin_unlock_irq(&conf->device_lock);
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5090
		wake_up(&conf->wait_for_overlap);
5091 5092 5093 5094
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5095

5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118

static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5119
	mddev->new_chunk_sectors = chunksect;
5120 5121 5122 5123

	return setup_conf(mddev);
}

5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5157

5158 5159
static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
{
5160 5161 5162 5163
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5164
	 */
5165
	raid5_conf_t *conf = mddev->private;
5166 5167 5168 5169

	if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
		return -EINVAL;
	if (new_chunk > 0) {
5170
		if (!is_power_of_2(new_chunk))
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
			return -EINVAL;
		if (new_chunk < PAGE_SIZE)
			return -EINVAL;
		if (mddev->array_sectors & ((new_chunk>>9)-1))
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5181
	if (mddev->raid_disks == 2) {
5182

5183 5184 5185 5186 5187
		if (new_layout >= 0) {
			conf->algorithm = new_layout;
			mddev->layout = mddev->new_layout = new_layout;
		}
		if (new_chunk > 0) {
5188
			conf->chunk_sectors = new_chunk >> 9;
5189
			mddev->new_chunk_sectors = new_chunk >> 9;
5190
			mddev->chunk_sectors = new_chunk >> 9;
5191 5192 5193 5194 5195 5196 5197
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
	} else {
		if (new_layout >= 0)
			mddev->new_layout = new_layout;
		if (new_chunk > 0)
5198
			mddev->new_chunk_sectors = new_chunk >> 9;
5199
	}
5200 5201 5202 5203 5204 5205 5206
	return 0;
}

static int raid6_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
{
	if (new_layout >= 0 && !algorithm_valid_raid6(new_layout))
		return -EINVAL;
5207
	if (new_chunk > 0) {
5208
		if (!is_power_of_2(new_chunk))
5209 5210 5211 5212 5213 5214
			return -EINVAL;
		if (new_chunk < PAGE_SIZE)
			return -EINVAL;
		if (mddev->array_sectors & ((new_chunk>>9)-1))
			/* not factor of array size */
			return -EINVAL;
5215
	}
5216 5217 5218 5219 5220 5221

	/* They look valid */

	if (new_layout >= 0)
		mddev->new_layout = new_layout;
	if (new_chunk > 0)
5222
		mddev->new_chunk_sectors = new_chunk >> 9;
5223

5224 5225 5226
	return 0;
}

5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
	 *  raid0 - if all devices are the same - make it a raid4 layout
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */

	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5238 5239 5240 5241 5242
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5243 5244
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5245 5246 5247 5248 5249

	return ERR_PTR(-EINVAL);
}


5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5314
	.size		= raid5_size,
5315 5316
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5317
	.finish_reshape = raid5_finish_reshape,
5318
	.quiesce	= raid5_quiesce,
5319
	.takeover	= raid6_takeover,
5320
	.reconfig	= raid6_reconfig,
5321
};
5322
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5323 5324
{
	.name		= "raid5",
5325
	.level		= 5,
L
Linus Torvalds 已提交
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5337
	.size		= raid5_size,
5338 5339
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5340
	.finish_reshape = raid5_finish_reshape,
5341
	.quiesce	= raid5_quiesce,
5342
	.takeover	= raid5_takeover,
5343
	.reconfig	= raid5_reconfig,
L
Linus Torvalds 已提交
5344 5345
};

5346
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5347
{
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5361
	.size		= raid5_size,
5362 5363
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5364
	.finish_reshape = raid5_finish_reshape,
5365 5366 5367 5368 5369
	.quiesce	= raid5_quiesce,
};

static int __init raid5_init(void)
{
5370
	register_md_personality(&raid6_personality);
5371 5372 5373
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5374 5375
}

5376
static void raid5_exit(void)
L
Linus Torvalds 已提交
5377
{
5378
	unregister_md_personality(&raid6_personality);
5379 5380
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5381 5382 5383 5384 5385 5386
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5387 5388
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5389 5390
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5391 5392 5393 5394 5395 5396 5397
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");