raid5.c 160.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include "md.h"
54
#include "raid5.h"
55
#include "bitmap.h"
56

L
Linus Torvalds 已提交
57 58 59 60 61 62 63 64 65
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
66
#define BYPASS_THRESHOLD	1
67
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
68 69
#define HASH_MASK		(NR_HASH - 1)

70
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

92
#ifdef DEBUG
L
Linus Torvalds 已提交
93 94 95 96
#define inline
#define __inline__
#endif

97 98
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

99
/*
100 101
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
102 103 104
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
105
	return bio->bi_phys_segments & 0xffff;
106 107 108 109
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
110
	return (bio->bi_phys_segments >> 16) & 0xffff;
111 112 113 114 115 116 117 118 119 120 121 122 123
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
124
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
125 126 127 128 129
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
130
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
131 132
}

133 134 135
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
136 137 138 139
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
140 141 142 143 144
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
145 146 147 148 149
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
150

151 152 153 154 155
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
156 157
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
158 159
{
	int slot;
160

161
	if (idx == sh->pd_idx)
162
		return syndrome_disks;
163
	if (idx == sh->qd_idx)
164
		return syndrome_disks + 1;
165 166 167 168
	slot = (*count)++;
	return slot;
}

169 170 171 172 173 174 175 176
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
177
		bio_endio(bi, 0);
178 179 180 181
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
182 183
static void print_raid5_conf (raid5_conf_t *conf);

184 185 186 187 188 189 190
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

191
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
192 193
{
	if (atomic_dec_and_test(&sh->count)) {
194 195
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
196
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
197
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
198
				list_add_tail(&sh->lru, &conf->delayed_list);
199 200
				blk_plug_device(conf->mddev->queue);
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
201
				   sh->bm_seq - conf->seq_write > 0) {
202
				list_add_tail(&sh->lru, &conf->bitmap_list);
203 204
				blk_plug_device(conf->mddev->queue);
			} else {
205
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
206
				list_add_tail(&sh->lru, &conf->handle_list);
207
			}
L
Linus Torvalds 已提交
208 209
			md_wakeup_thread(conf->mddev->thread);
		} else {
210
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
211 212 213 214 215 216
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
217 218
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
219
				wake_up(&conf->wait_for_stripe);
220 221
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
222
			}
L
Linus Torvalds 已提交
223 224 225
		}
	}
}
226

L
Linus Torvalds 已提交
227 228 229 230
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
231

L
Linus Torvalds 已提交
232 233 234 235 236
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

237
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
238
{
239 240
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
241

242
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
243 244
}

245
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
246
{
247
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
248

249 250
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
251 252

	CHECK_DEVLOCK();
253
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

static void shrink_buffers(struct stripe_head *sh, int num)
{
	struct page *p;
	int i;

	for (i=0; i<num ; i++) {
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
285
		put_page(p);
L
Linus Torvalds 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	}
}

static int grow_buffers(struct stripe_head *sh, int num)
{
	int i;

	for (i=0; i<num; i++) {
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

304
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
305 306
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
307

308
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
309 310
{
	raid5_conf_t *conf = sh->raid_conf;
311
	int i;
L
Linus Torvalds 已提交
312

313 314
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
315
	BUG_ON(stripe_operations_active(sh));
316

L
Linus Torvalds 已提交
317
	CHECK_DEVLOCK();
318
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
319 320 321
		(unsigned long long)sh->sector);

	remove_hash(sh);
322

323
	sh->generation = conf->generation - previous;
324
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
325
	sh->sector = sector;
326
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
327 328
	sh->state = 0;

329 330

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
331 332
		struct r5dev *dev = &sh->dev[i];

333
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
334
		    test_bit(R5_LOCKED, &dev->flags)) {
335
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
336
			       (unsigned long long)sh->sector, i, dev->toread,
337
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
338 339 340 341
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
342
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
343 344 345 346
	}
	insert_hash(conf, sh);
}

347 348
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
349 350
{
	struct stripe_head *sh;
351
	struct hlist_node *hn;
L
Linus Torvalds 已提交
352 353

	CHECK_DEVLOCK();
354
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
355
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
356
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
357
			return sh;
358
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
359 360 361 362
	return NULL;
}

static void unplug_slaves(mddev_t *mddev);
363
static void raid5_unplug_device(struct request_queue *q);
L
Linus Torvalds 已提交
364

365 366
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
367
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
368 369 370
{
	struct stripe_head *sh;

371
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
372 373 374 375

	spin_lock_irq(&conf->device_lock);

	do {
376
		wait_event_lock_irq(conf->wait_for_stripe,
377
				    conf->quiesce == 0 || noquiesce,
378
				    conf->device_lock, /* nothing */);
379
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387 388
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
389 390
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
391 392
						     || !conf->inactive_blocked),
						    conf->device_lock,
393
						    raid5_unplug_device(conf->mddev->queue)
L
Linus Torvalds 已提交
394 395 396
					);
				conf->inactive_blocked = 0;
			} else
397
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
398 399
		} else {
			if (atomic_read(&sh->count)) {
400 401
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
402 403 404
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
405 406
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
407 408
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
409 410 411 412 413 414 415 416 417 418 419
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

420 421 422 423
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
424

425
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
			rw = WRITE;
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
460
			if (s->syncing || s->expanding || s->expanded)
461 462
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
463 464
			set_bit(STRIPE_IO_STARTED, &sh->state);

465 466
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
467
				__func__, (unsigned long long)sh->sector,
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
504
	struct async_submit_ctl submit;
D
Dan Williams 已提交
505
	enum async_tx_flags flags = 0;
506 507 508 509 510

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
511

D
Dan Williams 已提交
512 513 514 515
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
537
						  b_offset, clen, &submit);
538 539
			else
				tx = async_memcpy(bio_page, page, b_offset,
540
						  page_offset, clen, &submit);
541
		}
542 543 544
		/* chain the operations */
		submit.depend_tx = tx;

545 546 547 548 549 550 551 552 553 554 555 556 557
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
558
	int i;
559

560
	pr_debug("%s: stripe %llu\n", __func__,
561 562 563
		(unsigned long long)sh->sector);

	/* clear completed biofills */
564
	spin_lock_irq(&conf->device_lock);
565 566 567 568
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
569 570
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
571
		 * !STRIPE_BIOFILL_RUN
572 573
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
574 575 576 577 578 579 580 581
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
582
				if (!raid5_dec_bi_phys_segments(rbi)) {
583 584 585 586 587 588 589
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
590 591
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
592 593 594

	return_io(return_bi);

595
	set_bit(STRIPE_HANDLE, &sh->state);
596 597 598 599 600 601 602
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
603
	struct async_submit_ctl submit;
604 605
	int i;

606
	pr_debug("%s: stripe %llu\n", __func__,
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
627 628
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
629 630
}

631
static void mark_target_uptodate(struct stripe_head *sh, int target)
632
{
633
	struct r5dev *tgt;
634

635 636
	if (target < 0)
		return;
637

638
	tgt = &sh->dev[target];
639 640 641
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
642 643
}

644
static void ops_complete_compute(void *stripe_head_ref)
645 646 647
{
	struct stripe_head *sh = stripe_head_ref;

648
	pr_debug("%s: stripe %llu\n", __func__,
649 650
		(unsigned long long)sh->sector);

651
	/* mark the computed target(s) as uptodate */
652
	mark_target_uptodate(sh, sh->ops.target);
653
	mark_target_uptodate(sh, sh->ops.target2);
654

655 656 657
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
658 659 660 661
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

662 663 664 665 666 667 668 669 670
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
671 672
{
	int disks = sh->disks;
673
	struct page **xor_srcs = percpu->scribble;
674 675 676 677 678
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
679
	struct async_submit_ctl submit;
680 681 682
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
683
		__func__, (unsigned long long)sh->sector, target);
684 685 686 687 688 689 690 691
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
692
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
693
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
694
	if (unlikely(count == 1))
695
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
696
	else
697
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
698 699 700 701

	return tx;
}

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
		srcs[i] = (void *)raid6_empty_zero_page;

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
	BUG_ON(count != syndrome_disks);

	return count;
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
753
	else
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
770 771
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
772 773 774 775 776 777 778 779 780 781 782
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
783 784
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
785 786 787
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
788 789 790 791

	return tx;
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

	/* we need to open-code set_syndrome_sources to handle to the
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
		blocks[i] = (void *)raid6_empty_zero_page;
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
	BUG_ON(count != syndrome_disks);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
845 846 847
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
868 869 870 871
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
872 873 874 875
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
876 877 878
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
879 880 881 882 883
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	}

D
Dan Williams 已提交
884 885
	init_async_submit(&submit, ASYNC_TX_FENCE, NULL, ops_complete_compute,
			  sh, to_addr_conv(sh, percpu));
886 887 888 889 890 891 892 893 894 895 896 897
	if (failb == syndrome_disks) {
		/* We're missing D+P. */
		return async_raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE,
					       faila, blocks, &submit);
	} else {
		/* We're missing D+D. */
		return async_raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE,
					       faila, failb, blocks, &submit);
	}
}


898 899 900 901
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

902
	pr_debug("%s: stripe %llu\n", __func__,
903 904 905 906
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
907 908
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
909 910
{
	int disks = sh->disks;
911
	struct page **xor_srcs = percpu->scribble;
912
	int count = 0, pd_idx = sh->pd_idx, i;
913
	struct async_submit_ctl submit;
914 915 916 917

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

918
	pr_debug("%s: stripe %llu\n", __func__,
919 920 921 922 923
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
924
		if (test_bit(R5_Wantdrain, &dev->flags))
925 926 927
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
928
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
929
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
930
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
931 932 933 934 935

	return tx;
}

static struct dma_async_tx_descriptor *
936
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
937 938
{
	int disks = sh->disks;
939
	int i;
940

941
	pr_debug("%s: stripe %llu\n", __func__,
942 943 944 945 946 947
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

948
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

970
static void ops_complete_reconstruct(void *stripe_head_ref)
971 972
{
	struct stripe_head *sh = stripe_head_ref;
973 974 975 976
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
977

978
	pr_debug("%s: stripe %llu\n", __func__,
979 980 981 982
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
983 984

		if (dev->written || i == pd_idx || i == qd_idx)
985 986 987
			set_bit(R5_UPTODATE, &dev->flags);
	}

988 989 990 991 992 993 994 995
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
996 997 998 999 1000 1001

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1002 1003
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1004 1005
{
	int disks = sh->disks;
1006
	struct page **xor_srcs = percpu->scribble;
1007
	struct async_submit_ctl submit;
1008 1009
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1010
	int prexor = 0;
1011 1012
	unsigned long flags;

1013
	pr_debug("%s: stripe %llu\n", __func__,
1014 1015 1016 1017 1018
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1019 1020
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1041
	flags = ASYNC_TX_ACK |
1042 1043 1044 1045
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1046
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1047
			  to_addr_conv(sh, percpu));
1048 1049 1050 1051
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1052 1053
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1071 1072 1073 1074 1075 1076
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1077
	pr_debug("%s: stripe %llu\n", __func__,
1078 1079
		(unsigned long long)sh->sector);

1080
	sh->check_state = check_state_check_result;
1081 1082 1083 1084
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1085
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1086 1087
{
	int disks = sh->disks;
1088 1089 1090
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1091
	struct page **xor_srcs = percpu->scribble;
1092
	struct dma_async_tx_descriptor *tx;
1093
	struct async_submit_ctl submit;
1094 1095
	int count;
	int i;
1096

1097
	pr_debug("%s: stripe %llu\n", __func__,
1098 1099
		(unsigned long long)sh->sector);

1100 1101 1102
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1103
	for (i = disks; i--; ) {
1104 1105 1106
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1107 1108
	}

1109 1110
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1111
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1112
			   &sh->ops.zero_sum_result, &submit);
1113 1114

	atomic_inc(&sh->count);
1115 1116
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;

	atomic_inc(&sh->count);
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1140 1141 1142
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1143
	raid5_conf_t *conf = sh->raid_conf;
1144
	int level = conf->level;
1145 1146
	struct raid5_percpu *percpu;
	unsigned long cpu;
1147

1148 1149
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1150
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1151 1152 1153 1154
		ops_run_biofill(sh);
		overlap_clear++;
	}

1155
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1166 1167
			async_tx_ack(tx);
	}
1168

1169
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1170
		tx = ops_run_prexor(sh, percpu, tx);
1171

1172
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1173
		tx = ops_run_biodrain(sh, tx);
1174 1175 1176
		overlap_clear++;
	}

1177 1178 1179 1180 1181 1182
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1194 1195 1196 1197 1198 1199 1200

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1201
	put_cpu();
1202 1203
}

1204
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1205 1206
{
	struct stripe_head *sh;
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);

	if (grow_buffers(sh, conf->raid_disks)) {
		shrink_buffers(sh, conf->raid_disks);
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
1219
	sh->disks = conf->raid_disks;
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1230
	struct kmem_cache *sc;
L
Linus Torvalds 已提交
1231 1232
	int devs = conf->raid_disks;

1233 1234 1235 1236
	sprintf(conf->cache_name[0],
		"raid%d-%s", conf->level, mdname(conf->mddev));
	sprintf(conf->cache_name[1],
		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
1237 1238
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1239
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1240
			       0, 0, NULL);
L
Linus Torvalds 已提交
1241 1242 1243
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1244
	conf->pool_size = devs;
1245
	while (num--)
1246
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1247 1248 1249
			return 1;
	return 0;
}
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1301
	unsigned long cpu;
1302
	int err;
1303
	struct kmem_cache *sc;
1304 1305 1306 1307 1308
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1309 1310 1311
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1312

1313 1314 1315
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1316
			       0, 0, NULL);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1351
				    unplug_slaves(conf->mddev)
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1367
	 * conf->disks and the scribble region
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1397 1398 1399 1400
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1401

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1418

1419
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1420 1421 1422
{
	struct stripe_head *sh;

1423 1424 1425 1426 1427
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1428
	BUG_ON(atomic_read(&sh->count));
1429
	shrink_buffers(sh, conf->pool_size);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1440 1441
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1442 1443 1444
	conf->slab_cache = NULL;
}

1445
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1446
{
1447
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1448
	raid5_conf_t *conf = sh->raid_conf;
1449
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1450
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1451 1452
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1453 1454 1455 1456 1457 1458


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1459 1460
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1461 1462 1463
		uptodate);
	if (i == disks) {
		BUG();
1464
		return;
L
Linus Torvalds 已提交
1465 1466 1467 1468
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1469
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1470
			rdev = conf->disks[i].rdev;
1471 1472 1473 1474 1475 1476
			printk_rl(KERN_INFO "raid5:%s: read error corrected"
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1477 1478 1479
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1480 1481
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1482
	} else {
1483
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1484
		int retry = 0;
1485 1486
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1487
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1488
		atomic_inc(&rdev->read_errors);
1489
		if (conf->mddev->degraded)
1490 1491 1492 1493 1494 1495 1496
			printk_rl(KERN_WARNING
				  "raid5:%s: read error not correctable "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1497
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1498
			/* Oh, no!!! */
1499 1500 1501 1502 1503 1504 1505
			printk_rl(KERN_WARNING
				  "raid5:%s: read error NOT corrected!! "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1506
		else if (atomic_read(&rdev->read_errors)
1507
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1508
			printk(KERN_WARNING
1509 1510
			       "raid5:%s: Too many read errors, failing device %s.\n",
			       mdname(conf->mddev), bdn);
1511 1512 1513 1514 1515
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1516 1517
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1518
			md_error(conf->mddev, rdev);
1519
		}
L
Linus Torvalds 已提交
1520 1521 1522 1523 1524 1525 1526
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1527
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1528
{
1529
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1530
	raid5_conf_t *conf = sh->raid_conf;
1531
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1532 1533 1534 1535 1536 1537
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1538
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1539 1540 1541 1542
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1543
		return;
L
Linus Torvalds 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1553
	release_stripe(sh);
L
Linus Torvalds 已提交
1554 1555 1556
}


1557
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1558
	
1559
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1575
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1576 1577 1578 1579 1580 1581
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1582
	pr_debug("raid5: error called\n");
L
Linus Torvalds 已提交
1583

1584
	if (!test_bit(Faulty, &rdev->flags)) {
1585
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1586 1587 1588
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1589
			mddev->degraded++;
1590
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1591 1592 1593
			/*
			 * if recovery was running, make sure it aborts.
			 */
1594
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1595
		}
1596
		set_bit(Faulty, &rdev->flags);
1597 1598 1599 1600
		printk(KERN_ALERT
		       "raid5: Disk failure on %s, disabling device.\n"
		       "raid5: Operation continuing on %d devices.\n",
		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1601
	}
1602
}
L
Linus Torvalds 已提交
1603 1604 1605 1606 1607

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1608
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1609 1610
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1611 1612 1613 1614
{
	long stripe;
	unsigned long chunk_number;
	unsigned int chunk_offset;
1615
	int pd_idx, qd_idx;
1616
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1617
	sector_t new_sector;
1618 1619
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1620 1621
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1622 1623 1624
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;
	BUG_ON(r_sector != chunk_number);

	/*
	 * Compute the stripe number
	 */
	stripe = chunk_number / data_disks;

	/*
	 * Compute the data disk and parity disk indexes inside the stripe
	 */
	*dd_idx = chunk_number % data_disks;

	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1648
	pd_idx = qd_idx = ~0;
1649 1650
	switch(conf->level) {
	case 4:
1651
		pd_idx = data_disks;
1652 1653
		break;
	case 5:
1654
		switch (algorithm) {
L
Linus Torvalds 已提交
1655
		case ALGORITHM_LEFT_ASYMMETRIC:
1656 1657
			pd_idx = data_disks - stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1658 1659 1660
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1661 1662
			pd_idx = stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1663 1664 1665
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1666 1667
			pd_idx = data_disks - stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1668 1669
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1670 1671
			pd_idx = stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1672
			break;
1673 1674 1675 1676 1677 1678 1679
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1680
		default:
N
NeilBrown 已提交
1681
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1682
				algorithm);
1683
			BUG();
1684 1685 1686 1687
		}
		break;
	case 6:

1688
		switch (algorithm) {
1689
		case ALGORITHM_LEFT_ASYMMETRIC:
1690 1691 1692
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1693
				(*dd_idx)++;	/* Q D D D P */
1694 1695
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1696 1697 1698
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1699 1700 1701
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1702
				(*dd_idx)++;	/* Q D D D P */
1703 1704
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1705 1706 1707
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1708 1709 1710
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1711 1712
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1713 1714 1715
			pd_idx = stripe % raid_disks;
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1716
			break;
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1739
			ddf_layout = 1;
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1754
			ddf_layout = 1;
1755 1756 1757 1758 1759 1760 1761
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1762
			ddf_layout = 1;
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
			pd_idx = data_disks - stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
			pd_idx = data_disks - stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;


1799
		default:
1800
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1801
			       algorithm);
1802
			BUG();
1803 1804
		}
		break;
L
Linus Torvalds 已提交
1805 1806
	}

1807 1808 1809
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1810
		sh->ddf_layout = ddf_layout;
1811
	}
L
Linus Torvalds 已提交
1812 1813 1814 1815 1816 1817 1818 1819
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1820
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1821 1822
{
	raid5_conf_t *conf = sh->raid_conf;
1823 1824
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1825
	sector_t new_sector = sh->sector, check;
1826 1827
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1828 1829
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1830 1831
	sector_t stripe;
	int chunk_offset;
1832
	int chunk_number, dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1833
	sector_t r_sector;
1834
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1835

1836

L
Linus Torvalds 已提交
1837 1838 1839 1840
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;
	BUG_ON(new_sector != stripe);

1841 1842 1843 1844 1845
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1846
		switch (algorithm) {
L
Linus Torvalds 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1858 1859 1860 1861 1862
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1863
		default:
N
NeilBrown 已提交
1864
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1865
			       algorithm);
1866
			BUG();
1867 1868 1869
		}
		break;
	case 6:
1870
		if (i == sh->qd_idx)
1871
			return 0; /* It is the Q disk */
1872
		switch (algorithm) {
1873 1874
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1875 1876 1877 1878
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
			else if (i > sh->pd_idx)
				i -= 2; /* D D Q P D */
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
1918
		default:
1919
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1920
			       algorithm);
1921
			BUG();
1922 1923
		}
		break;
L
Linus Torvalds 已提交
1924 1925 1926 1927 1928
	}

	chunk_number = stripe * data_disks + i;
	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;

1929
	check = raid5_compute_sector(conf, r_sector,
1930
				     previous, &dummy1, &sh2);
1931 1932
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
N
NeilBrown 已提交
1933
		printk(KERN_ERR "compute_blocknr: map not correct\n");
L
Linus Torvalds 已提交
1934 1935 1936 1937 1938 1939
		return 0;
	}
	return r_sector;
}


1940
static void
1941
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1942
			 int rcw, int expand)
1943 1944
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1945 1946
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
1947 1948 1949 1950 1951 1952 1953

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
1954 1955 1956 1957
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
1958

1959
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
1960 1961 1962 1963 1964 1965

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
1966
				set_bit(R5_Wantdrain, &dev->flags);
1967 1968
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
1969
				s->locked++;
1970 1971
			}
		}
1972
		if (s->locked + conf->max_degraded == disks)
1973
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1974
				atomic_inc(&conf->pending_full_writes);
1975
	} else {
1976
		BUG_ON(level == 6);
1977 1978 1979
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

1980
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1981 1982
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1983
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
1984 1985 1986 1987 1988 1989 1990 1991

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
1992 1993
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
1994 1995
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
1996
				s->locked++;
1997 1998 1999 2000
			}
		}
	}

2001
	/* keep the parity disk(s) locked while asynchronous operations
2002 2003 2004 2005
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2006
	s->locked++;
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2017
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2018
		__func__, (unsigned long long)sh->sector,
2019
		s->locked, s->ops_request);
2020
}
2021

L
Linus Torvalds 已提交
2022 2023
/*
 * Each stripe/dev can have one or more bion attached.
2024
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2025 2026 2027 2028 2029 2030
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2031
	int firstwrite=0;
L
Linus Torvalds 已提交
2032

2033
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2034 2035 2036 2037 2038 2039
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
2040
	if (forwrite) {
L
Linus Torvalds 已提交
2041
		bip = &sh->dev[dd_idx].towrite;
2042 2043 2044
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2054
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2055 2056 2057
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2058
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
2059 2060 2061
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

2062
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
2063 2064 2065
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

2066 2067 2068
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
2069
		sh->bm_seq = conf->seq_flush+1;
2070 2071 2072
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

2095 2096
static void end_reshape(raid5_conf_t *conf);

2097 2098
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2099
{
2100
	int sectors_per_chunk =
2101
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2102
	int dd_idx;
2103
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2104
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2105

2106 2107
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2108
			     *sectors_per_chunk + chunk_offset,
2109
			     previous,
2110
			     &dd_idx, sh);
2111 2112
}

2113
static void
2114
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2148
			if (!raid5_dec_bi_phys_segments(bi)) {
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2163
			if (!raid5_dec_bi_phys_segments(bi)) {
2164 2165 2166 2167 2168 2169 2170
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2171 2172 2173 2174 2175 2176
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2187
				if (!raid5_dec_bi_phys_segments(bi)) {
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2200 2201 2202
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2203 2204
}

2205 2206 2207 2208 2209
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2210
 */
2211 2212
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2213 2214 2215 2216 2217 2218
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2219 2220 2221 2222 2223 2224 2225 2226
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2227 2228
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2229 2230
		 */
		if ((s->uptodate == disks - 1) &&
2231
		    (s->failed && disk_idx == s->failed_num)) {
2232 2233
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2234 2235
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
2236
			sh->ops.target2 = -1;
2237 2238
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
2239
			 * of raid_run_ops which services 'compute' operations
2240 2241 2242 2243 2244
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2245
			return 1; /* uptodate + compute == disks */
2246
		} else if (test_bit(R5_Insync, &dev->flags)) {
2247 2248 2249 2250 2251 2252 2253 2254
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2255
	return 0;
2256 2257
}

2258 2259 2260 2261
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2262 2263 2264
			struct stripe_head_state *s, int disks)
{
	int i;
2265 2266 2267 2268 2269

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2270
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2271
	    !sh->reconstruct_state)
2272
		for (i = disks; i--; )
2273
			if (fetch_block5(sh, s, i, disks))
2274
				break;
2275 2276 2277
	set_bit(STRIPE_HANDLE, &sh->state);
}

2278 2279 2280 2281 2282 2283 2284 2285
/* fetch_block6 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill6 to continue
 */
static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
			 struct r6_state *r6s, int disk_idx, int disks)
2286
{
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
				  &sh->dev[r6s->failed_num[1]] };

	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed >= 1 &&
	      (fdev[0]->toread || s->to_write)) ||
	     (s->failed >= 2 &&
	      (fdev[1]->toread || s->to_write)))) {
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
		    (s->failed && (disk_idx == r6s->failed_num[0] ||
				   disk_idx == r6s->failed_num[1]))) {
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2310
			 */
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2332
			}
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2352 2353
		}
	}
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375

	return 0;
}

/**
 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill6(struct stripe_head *sh,
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
			if (fetch_block6(sh, s, r6s, i, disks))
				break;
2376 2377 2378 2379
	set_bit(STRIPE_HANDLE, &sh->state);
}


2380
/* handle_stripe_clean_event
2381 2382 2383 2384
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2385
static void handle_stripe_clean_event(raid5_conf_t *conf,
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2399
				pr_debug("Return write for disc %d\n", i);
2400 2401 2402 2403 2404 2405
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2406
					if (!raid5_dec_bi_phys_segments(wbi)) {
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2424 2425 2426 2427

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2428 2429
}

2430
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2431 2432 2433 2434 2435 2436 2437 2438
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2439 2440
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2441 2442 2443 2444 2445 2446 2447 2448
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2449 2450 2451
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2452 2453 2454 2455
			else
				rcw += 2*disks;
		}
	}
2456
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2457 2458 2459 2460 2461 2462 2463 2464
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2465 2466
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2467 2468 2469
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2470
					pr_debug("Read_old block "
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2488 2489
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2490 2491 2492
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2493
					pr_debug("Read_old block "
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2507 2508
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2509 2510
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2511 2512 2513
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2514 2515 2516
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2517
		schedule_reconstruction(sh, s, rcw == 0, 0);
2518 2519
}

2520
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2521 2522 2523
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
2524
	int rcw = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2525
	int qd_idx = sh->qd_idx;
2526 2527

	set_bit(STRIPE_HANDLE, &sh->state);
2528 2529
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
		/* check if we haven't enough data */
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != pd_idx && i != qd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
			rcw++;
			if (!test_bit(R5_Insync, &dev->flags))
				continue; /* it's a failed drive */

			if (
			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				pr_debug("Read_old stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
			} else {
				pr_debug("Request delayed stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(STRIPE_DELAYED, &sh->state);
				set_bit(STRIPE_HANDLE, &sh->state);
2554 2555 2556 2557 2558 2559
			}
		}
	}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
2560 2561
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    s->locked == 0 && rcw == 0 &&
2562
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2563
		schedule_reconstruction(sh, s, 1, 0);
2564 2565 2566 2567 2568 2569
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2570
	struct r5dev *dev = NULL;
2571

2572
	set_bit(STRIPE_HANDLE, &sh->state);
2573

2574 2575 2576
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2577 2578
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2579 2580
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2581 2582
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2583
			break;
2584
		}
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2595

2596 2597 2598 2599 2600
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2601
		s->locked++;
2602
		set_bit(R5_Wantwrite, &dev->flags);
2603

2604 2605
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2622
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2634
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2635 2636 2637 2638
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2639
				sh->ops.target2 = -1;
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2651 2652 2653 2654 2655
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2656 2657
				  struct stripe_head_state *s,
				  struct r6_state *r6s, int disks)
2658 2659
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2660
	int qd_idx = sh->qd_idx;
2661
	struct r5dev *dev;
2662 2663 2664 2665

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2666

2667 2668 2669 2670 2671 2672
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2673 2674 2675
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2676
		if (s->failed == r6s->q_failed) {
2677
			/* The only possible failed device holds Q, so it
2678 2679 2680
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2681
			sh->check_state = check_state_run;
2682 2683
		}
		if (!r6s->q_failed && s->failed < 2) {
2684
			/* Q is not failed, and we didn't use it to generate
2685 2686
			 * anything, so it makes sense to check it
			 */
2687 2688 2689 2690
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2691 2692
		}

2693 2694
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2695

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
		}
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2708 2709
		}

2710 2711 2712 2713 2714
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2715

2716 2717 2718
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2719

2720
		/* now write out any block on a failed drive,
2721
		 * or P or Q if they were recomputed
2722
		 */
2723
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2736
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2737 2738 2739 2740 2741
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2742
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2743 2744 2745 2746 2747 2748 2749 2750
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2826
	struct dma_async_tx_descriptor *tx = NULL;
2827 2828
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2829
		if (i != sh->pd_idx && i != sh->qd_idx) {
2830
			int dd_idx, j;
2831
			struct stripe_head *sh2;
2832
			struct async_submit_ctl submit;
2833

2834
			sector_t bn = compute_blocknr(sh, i, 1);
2835 2836
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2837
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2850 2851

			/* place all the copies on one channel */
2852
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2853
			tx = async_memcpy(sh2->dev[dd_idx].page,
2854
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2855
					  &submit);
2856

2857 2858 2859 2860
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2861
				    (!r6s || j != sh2->qd_idx) &&
2862 2863 2864 2865 2866 2867 2868
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2869

2870
		}
2871 2872 2873 2874 2875
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2876
}
L
Linus Torvalds 已提交
2877

2878

L
Linus Torvalds 已提交
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2895

2896
static bool handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
2897 2898
{
	raid5_conf_t *conf = sh->raid_conf;
2899 2900 2901
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
2902
	struct r5dev *dev;
2903
	mdk_rdev_t *blocked_rdev = NULL;
2904
	int prexor;
L
Linus Torvalds 已提交
2905

2906
	memset(&s, 0, sizeof(s));
2907 2908 2909 2910
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

2916 2917 2918
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
2919

2920
	/* Now to look around and see what can be done */
2921
	rcu_read_lock();
L
Linus Torvalds 已提交
2922 2923
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2924
		struct r5dev *dev = &sh->dev[i];
L
Linus Torvalds 已提交
2925 2926
		clear_bit(R5_Insync, &dev->flags);

2927 2928 2929 2930 2931 2932 2933
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
2934
		 * ops_complete_biofill is guaranteed to be inactive
2935 2936
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2937
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2938
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2939 2940

		/* now count some things */
2941 2942
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2943
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
2944

2945 2946 2947
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
2948
			s.to_read++;
L
Linus Torvalds 已提交
2949
		if (dev->towrite) {
2950
			s.to_write++;
L
Linus Torvalds 已提交
2951
			if (!test_bit(R5_OVERWRITE, &dev->flags))
2952
				s.non_overwrite++;
L
Linus Torvalds 已提交
2953
		}
2954 2955
		if (dev->written)
			s.written++;
2956
		rdev = rcu_dereference(conf->disks[i].rdev);
2957 2958
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2959 2960 2961
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
2962
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
2963
			/* The ReadError flag will just be confusing now */
2964 2965 2966
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
2967
		if (!rdev || !test_bit(In_sync, &rdev->flags)
2968
		    || test_bit(R5_ReadError, &dev->flags)) {
2969 2970
			s.failed++;
			s.failed_num = i;
L
Linus Torvalds 已提交
2971 2972 2973
		} else
			set_bit(R5_Insync, &dev->flags);
	}
2974
	rcu_read_unlock();
2975

2976
	if (unlikely(blocked_rdev)) {
2977 2978 2979 2980 2981 2982 2983 2984
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
2985 2986
	}

2987 2988 2989 2990
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
2991

2992
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
2993
		" to_write=%d failed=%d failed_num=%d\n",
2994 2995
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
2996 2997 2998
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
2999
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3000
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3001
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
3002 3003
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3004
		s.syncing = 0;
L
Linus Torvalds 已提交
3005 3006 3007 3008 3009 3010
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
3011 3012 3013 3014 3015
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3016
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
3017 3018 3019 3020 3021

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3022
	if (s.to_read || s.non_overwrite ||
3023
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3024
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
3025

3026 3027 3028
	/* Now we check to see if any write operations have recently
	 * completed
	 */
3029
	prexor = 0;
3030
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3031
		prexor = 1;
3032 3033
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3034
		sh->reconstruct_state = reconstruct_state_idle;
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
3046 3047
				if (prexor)
					continue;
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
				IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3067
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3068
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
3069 3070

	/* maybe we need to check and possibly fix the parity for this stripe
3071 3072 3073
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
3074
	 */
3075 3076
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
3077
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3078
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3079
		handle_parity_checks5(conf, sh, &s, disks);
3080

3081
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
3082 3083 3084
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
3085 3086 3087 3088

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
3089 3090 3091 3092
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3093
		) {
3094
		dev = &sh->dev[s.failed_num];
3095 3096 3097 3098
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3099
			s.locked++;
3100 3101 3102 3103
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3104
			s.locked++;
3105 3106 3107
		}
	}

3108 3109
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
3110
		struct stripe_head *sh2
3111
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3127
		sh->reconstruct_state = reconstruct_state_idle;
3128
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
3129
		for (i = conf->raid_disks; i--; ) {
3130
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
3131
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3132
			s.locked++;
D
Dan Williams 已提交
3133
		}
3134 3135 3136
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3137
	    !sh->reconstruct_state) {
3138 3139
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
3140
		stripe_set_idx(sh->sector, conf, 0, sh);
3141
		schedule_reconstruction(sh, &s, 1, 1);
3142
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3143
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3144
		atomic_dec(&conf->reshape_stripes);
3145 3146 3147 3148
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3149
	if (s.expanding && s.locked == 0 &&
3150
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3151
		handle_stripe_expansion(conf, sh, NULL);
3152

3153
 unlock:
L
Linus Torvalds 已提交
3154 3155
	spin_unlock(&sh->lock);

3156 3157 3158 3159
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3160
	if (s.ops_request)
3161
		raid_run_ops(sh, s.ops_request);
3162

3163
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
3164

3165
	return_io(return_bi);
3166 3167

	return blocked_rdev == NULL;
L
Linus Torvalds 已提交
3168 3169
}

3170
static bool handle_stripe6(struct stripe_head *sh)
L
Linus Torvalds 已提交
3171
{
3172
	raid5_conf_t *conf = sh->raid_conf;
3173
	int disks = sh->disks;
3174
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
3175
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3176 3177
	struct stripe_head_state s;
	struct r6_state r6s;
3178
	struct r5dev *dev, *pdev, *qdev;
3179
	mdk_rdev_t *blocked_rdev = NULL;
L
Linus Torvalds 已提交
3180

3181
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3182
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3183
	       (unsigned long long)sh->sector, sh->state,
3184 3185
	       atomic_read(&sh->count), pd_idx, qd_idx,
	       sh->check_state, sh->reconstruct_state);
3186
	memset(&s, 0, sizeof(s));
3187

3188 3189 3190 3191
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3192 3193 3194
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3195
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3196 3197

	rcu_read_lock();
3198 3199 3200 3201
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
		clear_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3202

3203
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3204
			i, dev->flags, dev->toread, dev->towrite, dev->written);
3205 3206 3207 3208 3209 3210 3211 3212
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3213

3214
		/* now count some things */
3215 3216
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3217 3218 3219 3220
		if (test_bit(R5_Wantcompute, &dev->flags)) {
			s.compute++;
			BUG_ON(s.compute > 2);
		}
L
Linus Torvalds 已提交
3221

3222 3223 3224
		if (test_bit(R5_Wantfill, &dev->flags)) {
			s.to_fill++;
		} else if (dev->toread)
3225
			s.to_read++;
3226
		if (dev->towrite) {
3227
			s.to_write++;
3228
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3229
				s.non_overwrite++;
3230
		}
3231 3232
		if (dev->written)
			s.written++;
3233
		rdev = rcu_dereference(conf->disks[i].rdev);
3234 3235
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3236 3237 3238
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3239 3240 3241 3242
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3243
		}
3244 3245
		if (!rdev || !test_bit(In_sync, &rdev->flags)
		    || test_bit(R5_ReadError, &dev->flags)) {
3246 3247 3248
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3249 3250
		} else
			set_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3251 3252
	}
	rcu_read_unlock();
3253 3254

	if (unlikely(blocked_rdev)) {
3255 3256 3257 3258 3259 3260 3261 3262
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3263
	}
3264

3265 3266 3267 3268 3269
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

3270
	pr_debug("locked=%d uptodate=%d to_read=%d"
3271
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3272 3273 3274 3275
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3276
	 */
3277
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3278
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3279
	if (s.failed > 2 && s.syncing) {
3280 3281
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3282
		s.syncing = 0;
3283 3284 3285 3286 3287 3288 3289
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3290 3291
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3292 3293 3294
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3295 3296 3297

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3298
			     && !test_bit(R5_LOCKED, &pdev->flags)
3299 3300
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3301
			     && !test_bit(R5_LOCKED, &qdev->flags)
3302
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3303
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3304 3305 3306 3307 3308

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3309
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3310
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3311
		handle_stripe_fill6(sh, &s, &r6s, disks);
3312

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	if (sh->reconstruct_state == reconstruct_state_drain_result) {
		int qd_idx = sh->qd_idx;

		sh->reconstruct_state = reconstruct_state_idle;
		/* All the 'written' buffers and the parity blocks are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
			    (i == sh->pd_idx || i == qd_idx ||
			     dev->written)) {
				pr_debug("Writing block %d\n", i);
				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
				set_bit(R5_Wantwrite, &dev->flags);
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == qd_idx) &&
				      s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
				IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}

3347 3348 3349 3350 3351 3352 3353
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3354
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3355 3356

	/* maybe we need to check and possibly fix the parity for this stripe
3357
	 * Any reads will already have been scheduled, so we just see if enough
3358 3359
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
3360
	 */
3361 3362 3363 3364
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3365
		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3366

3367
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3368 3369 3370 3371 3372 3373 3374
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3375 3376 3377
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3378 3379 3380 3381 3382 3383 3384 3385
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3386
					s.locked++;
3387 3388 3389 3390
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3391
					s.locked++;
3392 3393 3394
				}
			}
		}
3395

3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
3409
		struct stripe_head *sh2
3410
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3426 3427
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3428
		stripe_set_idx(sh->sector, conf, 0, sh);
3429 3430
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3431 3432 3433 3434 3435 3436
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3437
	if (s.expanding && s.locked == 0 &&
3438
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3439
		handle_stripe_expansion(conf, sh, &r6s);
3440

3441
 unlock:
3442 3443
	spin_unlock(&sh->lock);

3444 3445 3446 3447
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3448 3449 3450
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3451
	ops_run_io(sh, &s);
3452

D
Dan Williams 已提交
3453
	return_io(return_bi);
3454 3455

	return blocked_rdev == NULL;
3456 3457
}

3458
/* returns true if the stripe was handled */
3459
static bool handle_stripe(struct stripe_head *sh)
3460 3461
{
	if (sh->raid_conf->level == 6)
3462
		return handle_stripe6(sh);
3463
	else
3464
		return handle_stripe5(sh);
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3478
			list_add_tail(&sh->lru, &conf->hold_list);
3479
		}
3480 3481
	} else
		blk_plug_device(conf->mddev->queue);
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
3500
	raid5_conf_t *conf = mddev->private;
3501 3502 3503
	int i;

	rcu_read_lock();
3504
	for (i = 0; i < conf->raid_disks; i++) {
3505 3506
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3507
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3508 3509 3510 3511

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3512
			blk_unplug(r_queue);
3513 3514 3515 3516 3517 3518 3519 3520

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3521
static void raid5_unplug_device(struct request_queue *q)
3522 3523
{
	mddev_t *mddev = q->queuedata;
3524
	raid5_conf_t *conf = mddev->private;
3525 3526 3527 3528 3529 3530 3531
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	if (blk_remove_plug(q)) {
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3532
	}
L
Linus Torvalds 已提交
3533 3534 3535 3536 3537 3538 3539
	md_wakeup_thread(mddev->thread);

	spin_unlock_irqrestore(&conf->device_lock, flags);

	unplug_slaves(mddev);
}

3540 3541 3542
static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;
3543
	raid5_conf_t *conf = mddev->private;
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}

3558 3559 3560
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3561 3562 3563
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3564 3565
{
	mddev_t *mddev = q->queuedata;
3566
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3567
	int max;
3568
	unsigned int chunk_sectors = mddev->chunk_sectors;
3569
	unsigned int bio_sectors = bvm->bi_size >> 9;
3570

3571
	if ((bvm->bi_rw & 1) == WRITE)
3572 3573
		return biovec->bv_len; /* always allow writes to be mergeable */

3574 3575
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3576 3577 3578 3579 3580 3581 3582 3583
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3584 3585 3586 3587

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3588
	unsigned int chunk_sectors = mddev->chunk_sectors;
3589 3590
	unsigned int bio_sectors = bio->bi_size >> 9;

3591 3592
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3593 3594 3595 3596
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3626
		conf->retry_read_aligned_list = bi->bi_next;
3627
		bi->bi_next = NULL;
3628 3629 3630 3631
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3632 3633 3634 3635 3636 3637 3638
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3639 3640 3641 3642 3643 3644
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3645
static void raid5_align_endio(struct bio *bi, int error)
3646 3647
{
	struct bio* raid_bi  = bi->bi_private;
3648 3649 3650 3651 3652
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3653
	bio_put(bi);
3654 3655

	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3656
	conf = mddev->private;
3657 3658 3659 3660 3661 3662
	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3663
		bio_endio(raid_bi, 0);
3664 3665
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3666
		return;
3667 3668 3669
	}


3670
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3671 3672

	add_bio_to_retry(raid_bi, conf);
3673 3674
}

3675 3676
static int bio_fits_rdev(struct bio *bi)
{
3677
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3678

3679
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3680 3681
		return 0;
	blk_recount_segments(q, bi);
3682
	if (bi->bi_phys_segments > queue_max_phys_segments(q))
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3695
static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3696 3697
{
	mddev_t *mddev = q->queuedata;
3698
	raid5_conf_t *conf = mddev->private;
3699
	unsigned int dd_idx;
3700 3701 3702 3703
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3704
		pr_debug("chunk_aligned_read : non aligned\n");
3705 3706 3707
		return 0;
	}
	/*
3708
	 * use bio_clone to make a copy of the bio
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3722 3723
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3724
						    &dd_idx, NULL);
3725 3726 3727 3728 3729 3730

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3731 3732 3733 3734 3735
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3736 3737 3738 3739 3740 3741 3742
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3743 3744 3745 3746 3747 3748 3749
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3750 3751 3752 3753
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3754
		bio_put(align_bi);
3755 3756 3757 3758
		return 0;
	}
}

3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3811

3812
static int make_request(struct request_queue *q, struct bio * bi)
L
Linus Torvalds 已提交
3813 3814
{
	mddev_t *mddev = q->queuedata;
3815
	raid5_conf_t *conf = mddev->private;
3816
	int dd_idx;
L
Linus Torvalds 已提交
3817 3818 3819
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3820
	const int rw = bio_data_dir(bi);
T
Tejun Heo 已提交
3821
	int cpu, remaining;
L
Linus Torvalds 已提交
3822

3823
	if (unlikely(bio_barrier(bi))) {
3824
		bio_endio(bi, -EOPNOTSUPP);
3825 3826 3827
		return 0;
	}

3828
	md_write_start(mddev, bi);
3829

T
Tejun Heo 已提交
3830 3831 3832 3833 3834
	cpu = part_stat_lock();
	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
		      bio_sectors(bi));
	part_stat_unlock();
L
Linus Torvalds 已提交
3835

3836
	if (rw == READ &&
3837 3838
	     mddev->reshape_position == MaxSector &&
	     chunk_aligned_read(q,bi))
3839
		return 0;
3840

L
Linus Torvalds 已提交
3841 3842 3843 3844
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3845

L
Linus Torvalds 已提交
3846 3847
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3848
		int disks, data_disks;
3849
		int previous;
3850

3851
	retry:
3852
		previous = 0;
3853
		disks = conf->raid_disks;
3854
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3855
		if (unlikely(conf->reshape_progress != MaxSector)) {
3856
			/* spinlock is needed as reshape_progress may be
3857 3858
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3859
			 * Ofcourse reshape_progress could change after
3860 3861 3862 3863
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3864
			spin_lock_irq(&conf->device_lock);
3865 3866 3867
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3868
				disks = conf->previous_raid_disks;
3869 3870
				previous = 1;
			} else {
3871 3872 3873
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3874 3875 3876 3877 3878
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3879 3880
			spin_unlock_irq(&conf->device_lock);
		}
3881 3882
		data_disks = disks - conf->max_degraded;

3883 3884
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3885
						  &dd_idx, NULL);
3886
		pr_debug("raid5: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3887 3888 3889
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3890
		sh = get_active_stripe(conf, new_sector, previous,
3891
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
3892
		if (sh) {
3893
			if (unlikely(previous)) {
3894
				/* expansion might have moved on while waiting for a
3895 3896 3897 3898 3899 3900
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3901 3902 3903
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3904 3905 3906
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
3907 3908 3909 3910 3911
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
3912
					schedule();
3913 3914 3915
					goto retry;
				}
			}
3916

3917 3918
			if (bio_data_dir(bi) == WRITE &&
			    logical_sector >= mddev->suspend_lo &&
3919 3920
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
3931 3932
				goto retry;
			}
3933 3934 3935 3936 3937

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3938 3939 3940 3941 3942 3943 3944 3945
				 * and wait a while
				 */
				raid5_unplug_device(mddev->queue);
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3946 3947
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
L
Linus Torvalds 已提交
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
3958
	remaining = raid5_dec_bi_phys_segments(bi);
3959 3960
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
3961

3962
		if ( rw == WRITE )
L
Linus Torvalds 已提交
3963
			md_write_end(mddev);
3964

3965
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
3966 3967 3968 3969
	}
	return 0;
}

D
Dan Williams 已提交
3970 3971
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

3972
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
3973
{
3974 3975 3976 3977 3978 3979 3980 3981 3982
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
L
Linus Torvalds 已提交
3983 3984
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
3985
	sector_t first_sector, last_sector;
3986 3987 3988
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
3989 3990
	int i;
	int dd_idx;
3991
	sector_t writepos, readpos, safepos;
3992
	sector_t stripe_addr;
3993
	int reshape_sectors;
3994
	struct list_head stripes;
3995

3996 3997 3998 3999 4000 4001
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4002
		} else if (mddev->delta_disks >= 0 &&
4003 4004
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4005
		sector_div(sector_nr, new_data_disks);
4006 4007 4008 4009
		if (sector_nr) {
			*skipped = 1;
			return sector_nr;
		}
4010 4011
	}

4012 4013 4014 4015
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4016 4017
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4018
	else
4019
		reshape_sectors = mddev->chunk_sectors;
4020

4021 4022 4023 4024 4025
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
4026 4027
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
4028
	 */
4029
	writepos = conf->reshape_progress;
4030
	sector_div(writepos, new_data_disks);
4031 4032
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4033
	safepos = conf->reshape_safe;
4034
	sector_div(safepos, data_disks);
4035
	if (mddev->delta_disks < 0) {
4036
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4037
		readpos += reshape_sectors;
4038
		safepos += reshape_sectors;
4039
	} else {
4040
		writepos += reshape_sectors;
4041 4042
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4043
	}
4044

4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4062
	if ((mddev->delta_disks < 0
4063 4064 4065
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4066 4067 4068
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4069
		mddev->reshape_position = conf->reshape_progress;
4070
		mddev->curr_resync_completed = mddev->curr_resync;
4071
		conf->reshape_checkpoint = jiffies;
4072
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4073
		md_wakeup_thread(mddev->thread);
4074
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4075 4076
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4077
		conf->reshape_safe = mddev->reshape_position;
4078 4079
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4080
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4081 4082
	}

4083 4084 4085 4086
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4087 4088
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4089 4090
		       != sector_nr);
	} else {
4091
		BUG_ON(writepos != sector_nr + reshape_sectors);
4092 4093
		stripe_addr = sector_nr;
	}
4094
	INIT_LIST_HEAD(&stripes);
4095
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4096 4097
		int j;
		int skipped = 0;
4098
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4099 4100 4101 4102 4103 4104 4105 4106 4107
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4108
			if (conf->level == 6 &&
4109
			    j == sh->qd_idx)
4110
				continue;
4111
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4112
			if (s < raid5_size(mddev, 0, 0)) {
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
				skipped = 1;
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
		if (!skipped) {
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4124
		list_add(&sh->lru, &stripes);
4125 4126
	}
	spin_lock_irq(&conf->device_lock);
4127
	if (mddev->delta_disks < 0)
4128
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4129
	else
4130
		conf->reshape_progress += reshape_sectors * new_data_disks;
4131 4132 4133 4134 4135 4136 4137
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4138
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4139
				     1, &dd_idx, NULL);
4140
	last_sector =
4141
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4142
					    * new_data_disks - 1),
4143
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4144 4145
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4146
	while (first_sector <= last_sector) {
4147
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4148 4149 4150 4151 4152
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4153 4154 4155 4156 4157 4158 4159 4160
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4161 4162 4163
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4164
	sector_nr += reshape_sectors;
4165 4166
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4167 4168 4169
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4170
		mddev->reshape_position = conf->reshape_progress;
4171
		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4172
		conf->reshape_checkpoint = jiffies;
4173 4174 4175 4176 4177 4178
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4179
		conf->reshape_safe = mddev->reshape_position;
4180 4181
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4182
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4183
	}
4184
	return reshape_sectors;
4185 4186 4187 4188 4189 4190 4191
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
A
Andre Noll 已提交
4192
	sector_t max_sector = mddev->dev_sectors;
4193
	int sync_blocks;
4194 4195
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4196

4197
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4198 4199
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
4200

4201 4202 4203 4204
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4205 4206 4207 4208

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4209
		else /* completed sync */
4210 4211 4212
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4213 4214
		return 0;
	}
4215

4216 4217 4218
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4219 4220
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4221

4222 4223 4224 4225 4226 4227
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4228
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4229 4230 4231
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4232
	if (mddev->degraded >= conf->max_degraded &&
4233
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4234
		sector_t rv = mddev->dev_sectors - sector_nr;
4235
		*skipped = 1;
L
Linus Torvalds 已提交
4236 4237
		return rv;
	}
4238
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4239
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4240 4241 4242 4243 4244 4245
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4246

N
NeilBrown 已提交
4247 4248 4249

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4250
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4251
	if (sh == NULL) {
4252
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4253
		/* make sure we don't swamp the stripe cache if someone else
4254
		 * is trying to get access
L
Linus Torvalds 已提交
4255
		 */
4256
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4257
	}
4258 4259 4260 4261
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4262
	for (i = 0; i < conf->raid_disks; i++)
4263 4264 4265 4266 4267 4268
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
4269 4270 4271 4272
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

4273
	/* wait for any blocked device to be handled */
4274
	while (unlikely(!handle_stripe(sh)))
4275
		;
L
Linus Torvalds 已提交
4276 4277 4278 4279 4280
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4294
	int dd_idx;
4295 4296 4297 4298 4299 4300
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4301
	sector = raid5_compute_sector(conf, logical_sector,
4302
				      0, &dd_idx, NULL);
4303 4304 4305
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4306 4307 4308
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4309

4310
		if (scnt < raid5_bi_hw_segments(raid_bio))
4311 4312 4313
			/* already done this stripe */
			continue;

4314
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4315 4316 4317

		if (!sh) {
			/* failed to get a stripe - must wait */
4318
			raid5_set_bi_hw_segments(raid_bio, scnt);
4319 4320 4321 4322 4323
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4324 4325
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4326
			raid5_set_bi_hw_segments(raid_bio, scnt);
4327 4328 4329 4330
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4331
		handle_stripe(sh);
4332 4333 4334 4335
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4336
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4337
	spin_unlock_irq(&conf->device_lock);
4338 4339
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4340 4341 4342 4343 4344
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}

4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
#ifdef CONFIG_MULTICORE_RAID456
static void __process_stripe(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;

	handle_stripe(sh);
	release_stripe(sh);
}

static void process_stripe(struct stripe_head *sh, struct list_head *domain)
{
	async_schedule_domain(__process_stripe, sh, domain);
}

static void synchronize_stripe_processing(struct list_head *domain)
{
	async_synchronize_full_domain(domain);
}
#else
static void process_stripe(struct stripe_head *sh, struct list_head *domain)
{
	handle_stripe(sh);
	release_stripe(sh);
	cond_resched();
}

static void synchronize_stripe_processing(struct list_head *domain)
{
}
#endif
4375 4376


L
Linus Torvalds 已提交
4377 4378 4379 4380 4381 4382 4383
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4384
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4385 4386
{
	struct stripe_head *sh;
4387
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4388
	int handled;
4389
	LIST_HEAD(raid_domain);
L
Linus Torvalds 已提交
4390

4391
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4392 4393 4394 4395 4396 4397

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4398
		struct bio *bio;
L
Linus Torvalds 已提交
4399

4400
		if (conf->seq_flush != conf->seq_write) {
4401
			int seq = conf->seq_flush;
4402
			spin_unlock_irq(&conf->device_lock);
4403
			bitmap_unplug(mddev->bitmap);
4404
			spin_lock_irq(&conf->device_lock);
4405 4406 4407 4408
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4419 4420
		sh = __get_priority_stripe(conf);

4421
		if (!sh)
L
Linus Torvalds 已提交
4422 4423 4424 4425
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4426
		process_stripe(sh, &raid_domain);
L
Linus Torvalds 已提交
4427 4428 4429

		spin_lock_irq(&conf->device_lock);
	}
4430
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4431 4432 4433

	spin_unlock_irq(&conf->device_lock);

4434
	synchronize_stripe_processing(&raid_domain);
4435
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4436 4437
	unplug_slaves(mddev);

4438
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4439 4440
}

4441
static ssize_t
4442
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4443
{
4444
	raid5_conf_t *conf = mddev->private;
4445 4446 4447 4448
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4449 4450 4451
}

static ssize_t
4452
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4453
{
4454
	raid5_conf_t *conf = mddev->private;
4455
	unsigned long new;
4456 4457
	int err;

4458 4459
	if (len >= PAGE_SIZE)
		return -EINVAL;
4460 4461
	if (!conf)
		return -ENODEV;
4462

4463
	if (strict_strtoul(page, 10, &new))
4464 4465 4466 4467 4468 4469 4470 4471 4472
		return -EINVAL;
	if (new <= 16 || new > 32768)
		return -EINVAL;
	while (new < conf->max_nr_stripes) {
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4473 4474 4475
	err = md_allow_write(mddev);
	if (err)
		return err;
4476 4477 4478 4479 4480 4481 4482
	while (new > conf->max_nr_stripes) {
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
	return len;
}
4483

4484 4485 4486 4487
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4488

4489 4490 4491
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4492
	raid5_conf_t *conf = mddev->private;
4493 4494 4495 4496 4497 4498 4499 4500 4501
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4502
	raid5_conf_t *conf = mddev->private;
4503
	unsigned long new;
4504 4505 4506 4507 4508
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4509
	if (strict_strtoul(page, 10, &new))
4510
		return -EINVAL;
4511
	if (new > conf->max_nr_stripes)
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4523
static ssize_t
4524
stripe_cache_active_show(mddev_t *mddev, char *page)
4525
{
4526
	raid5_conf_t *conf = mddev->private;
4527 4528 4529 4530
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4531 4532
}

4533 4534
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4535

4536
static struct attribute *raid5_attrs[] =  {
4537 4538
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4539
	&raid5_preread_bypass_threshold.attr,
4540 4541
	NULL,
};
4542 4543 4544
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4545 4546
};

4547 4548 4549
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4550
	raid5_conf_t *conf = mddev->private;
4551 4552 4553

	if (!sectors)
		sectors = mddev->dev_sectors;
4554 4555 4556 4557 4558 4559 4560
	if (!raid_disks) {
		/* size is defined by the smallest of previous and new size */
		if (conf->raid_disks < conf->previous_raid_disks)
			raid_disks = conf->raid_disks;
		else
			raid_disks = conf->previous_raid_disks;
	}
4561

4562
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4563
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4564 4565 4566
	return sectors * (raid_disks - conf->max_degraded);
}

4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4579
		kfree(percpu->scribble);
4580 4581 4582 4583 4584 4585 4586 4587 4588
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4589 4590 4591
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4592
	raid5_free_percpu(conf);
4593 4594 4595 4596 4597
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4609
		if (conf->level == 6 && !percpu->spare_page)
4610
			percpu->spare_page = alloc_page(GFP_KERNEL);
4611 4612 4613 4614 4615 4616 4617
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4618 4619 4620 4621 4622 4623 4624 4625
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
			return NOTIFY_BAD;
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4626
		kfree(percpu->scribble);
4627
		percpu->spare_page = NULL;
4628
		percpu->scribble = NULL;
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
	struct raid5_percpu *allcpus;
4642
	void *scribble;
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
		scribble = kmalloc(scribble_len(conf->raid_disks), GFP_KERNEL);
		if (!scribble) {
4663 4664 4665
			err = -ENOMEM;
			break;
		}
4666
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4679
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4680 4681 4682 4683 4684 4685
{
	raid5_conf_t *conf;
	int raid_disk, memory;
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4686 4687 4688
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4689
		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4690 4691
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4692
	}
N
NeilBrown 已提交
4693 4694 4695 4696
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4697
		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
N
NeilBrown 已提交
4698 4699
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4700
	}
N
NeilBrown 已提交
4701 4702 4703 4704
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4705 4706
	}

4707 4708 4709
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
N
NeilBrown 已提交
4710
		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4711
		       mddev->new_chunk_sectors << 9, mdname(mddev));
N
NeilBrown 已提交
4712
		return ERR_PTR(-EINVAL);
4713 4714
	}

N
NeilBrown 已提交
4715 4716
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4717
		goto abort;
N
NeilBrown 已提交
4718 4719

	conf->raid_disks = mddev->raid_disks;
4720
	conf->scribble_len = scribble_len(conf->raid_disks);
N
NeilBrown 已提交
4721 4722 4723
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4724 4725 4726
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;

	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4727 4728 4729
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4730

L
Linus Torvalds 已提交
4731 4732
	conf->mddev = mddev;

4733
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4734 4735
		goto abort;

4736 4737 4738 4739
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

L
Linus Torvalds 已提交
4740 4741 4742 4743
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
4744
	INIT_LIST_HEAD(&conf->hold_list);
L
Linus Torvalds 已提交
4745
	INIT_LIST_HEAD(&conf->delayed_list);
4746
	INIT_LIST_HEAD(&conf->bitmap_list);
L
Linus Torvalds 已提交
4747 4748 4749
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
4750
	atomic_set(&conf->active_aligned_reads, 0);
4751
	conf->bypass_threshold = BYPASS_THRESHOLD;
L
Linus Torvalds 已提交
4752

4753
	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4754

4755
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4756
		raid_disk = rdev->raid_disk;
4757
		if (raid_disk >= conf->raid_disks
L
Linus Torvalds 已提交
4758 4759 4760 4761 4762 4763
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4764
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4765 4766 4767 4768
			char b[BDEVNAME_SIZE];
			printk(KERN_INFO "raid5: device %s operational as raid"
				" disk %d\n", bdevname(rdev->bdev,b),
				raid_disk);
4769 4770 4771
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4772 4773
	}

4774
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4775
	conf->level = mddev->new_level;
4776 4777 4778 4779
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4780
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4781
	conf->max_nr_stripes = NR_STRIPES;
4782
	conf->reshape_progress = mddev->reshape_position;
4783
	if (conf->reshape_progress != MaxSector) {
4784
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4785 4786
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4787

N
NeilBrown 已提交
4788 4789 4790 4791 4792 4793 4794 4795 4796
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
			"raid5: couldn't allocate %dkB for buffers\n", memory);
		goto abort;
	} else
		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
			memory, mdname(mddev));
L
Linus Torvalds 已提交
4797

N
NeilBrown 已提交
4798 4799 4800 4801 4802
	conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
	if (!conf->thread) {
		printk(KERN_ERR
		       "raid5: couldn't allocate thread for %s\n",
		       mdname(mddev));
4803 4804
		goto abort;
	}
N
NeilBrown 已提交
4805 4806 4807 4808 4809

	return conf;

 abort:
	if (conf) {
4810
		free_conf(conf);
N
NeilBrown 已提交
4811 4812 4813 4814 4815 4816 4817 4818
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4819
	int working_disks = 0, chunk_size;
N
NeilBrown 已提交
4820 4821
	mdk_rdev_t *rdev;

4822 4823 4824 4825
	if (mddev->recovery_cp != MaxSector)
		printk(KERN_NOTICE "raid5: %s is not clean"
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4826 4827 4828 4829 4830 4831 4832 4833
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4834
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4835

4836
		if (mddev->new_level != mddev->level) {
N
NeilBrown 已提交
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
			printk(KERN_ERR "raid5: %s: unsupported reshape "
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4848
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4849 4850 4851 4852 4853 4854 4855
			       (mddev->raid_disks - max_degraded))) {
			printk(KERN_ERR "raid5: reshape_position not "
			       "on a stripe boundary\n");
			return -EINVAL;
		}
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4856
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4857 4858 4859
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
				printk(KERN_ERR "raid5: in-place reshape must be started"
				       " in read-only mode - aborting\n");
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
			/* Reading from the same stripe as writing to - bad */
			printk(KERN_ERR "raid5: reshape_position too early for "
			       "auto-recovery - aborting.\n");
			return -EINVAL;
		}
		printk(KERN_INFO "raid5: reshape will continue\n");
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
4890
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
4891
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4892
	}
N
NeilBrown 已提交
4893

4894 4895 4896 4897 4898
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
	list_for_each_entry(rdev, &mddev->disks, same_set)
		if (rdev->raid_disk >= 0 &&
		    test_bit(In_sync, &rdev->flags))
			working_disks++;

	mddev->degraded = conf->raid_disks - working_disks;

4916
	if (mddev->degraded > conf->max_degraded) {
L
Linus Torvalds 已提交
4917 4918
		printk(KERN_ERR "raid5: not enough operational devices for %s"
			" (%d/%d failed)\n",
4919
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
4920 4921 4922
		goto abort;
	}

N
NeilBrown 已提交
4923
	/* device size must be a multiple of chunk size */
4924
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
4925 4926
	mddev->resync_max_sectors = mddev->dev_sectors;

4927
	if (mddev->degraded > 0 &&
L
Linus Torvalds 已提交
4928
	    mddev->recovery_cp != MaxSector) {
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
			       "raid5: starting dirty degraded array: %s"
			       "- data corruption possible.\n",
			       mdname(mddev));
		else {
			printk(KERN_ERR
			       "raid5: cannot start dirty degraded array for %s\n",
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
4940 4941 4942 4943
	}

	if (mddev->degraded == 0)
		printk("raid5: raid level %d set %s active with %d out of %d"
4944 4945 4946
		       " devices, algorithm %d\n", conf->level, mdname(mddev),
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
4947 4948 4949 4950
	else
		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
			" out of %d devices, algorithm %d\n", conf->level,
			mdname(mddev), mddev->raid_disks - mddev->degraded,
4951
			mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
4952 4953 4954

	print_raid5_conf(conf);

4955
	if (conf->reshape_progress != MaxSector) {
4956
		printk("...ok start reshape thread\n");
4957
		conf->reshape_safe = conf->reshape_progress;
4958 4959 4960 4961 4962 4963 4964 4965 4966
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
							"%s_reshape");
	}

L
Linus Torvalds 已提交
4967
	/* read-ahead size must cover two whole stripes, which is
4968
	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
L
Linus Torvalds 已提交
4969 4970
	 */
	{
4971 4972
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
4973
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
L
Linus Torvalds 已提交
4974 4975 4976 4977 4978
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
	}

	/* Ok, everything is just fine now */
4979 4980 4981 4982
	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
		printk(KERN_WARNING
		       "raid5: failed to create sysfs attributes for %s\n",
		       mdname(mddev));
4983

N
NeilBrown 已提交
4984 4985
	mddev->queue->queue_lock = &conf->device_lock;

4986
	mddev->queue->unplug_fn = raid5_unplug_device;
4987
	mddev->queue->backing_dev_info.congested_data = mddev;
4988
	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4989

4990
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4991

4992
	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4993 4994 4995 4996 4997 4998 4999 5000
	chunk_size = mddev->chunk_sectors << 9;
	blk_queue_io_min(mddev->queue, chunk_size);
	blk_queue_io_opt(mddev->queue, chunk_size *
			 (conf->raid_disks - conf->max_degraded));

	list_for_each_entry(rdev, &mddev->disks, same_set)
		disk_stack_limits(mddev->gendisk, rdev->bdev,
				  rdev->data_offset << 9);
5001

L
Linus Torvalds 已提交
5002 5003
	return 0;
abort:
5004
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
5005
	mddev->thread = NULL;
L
Linus Torvalds 已提交
5006 5007
	if (conf) {
		print_raid5_conf(conf);
5008
		free_conf(conf);
L
Linus Torvalds 已提交
5009 5010 5011 5012 5013 5014 5015 5016
	}
	mddev->private = NULL;
	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
	return -EIO;
}



5017
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
5018 5019 5020 5021 5022
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
5023
	mddev->queue->backing_dev_info.congested_fn = NULL;
L
Linus Torvalds 已提交
5024
	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5025
	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
5026
	free_conf(conf);
L
Linus Torvalds 已提交
5027 5028 5029 5030
	mddev->private = NULL;
	return 0;
}

5031
#ifdef DEBUG
5032
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
5033 5034 5035
{
	int i;

5036 5037 5038 5039 5040
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5041
	for (i = 0; i < sh->disks; i++) {
5042 5043
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
5044
	}
5045
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
5046 5047
}

5048
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
5049 5050
{
	struct stripe_head *sh;
5051
	struct hlist_node *hn;
L
Linus Torvalds 已提交
5052 5053 5054 5055
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
5056
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
5057 5058
			if (sh->raid_conf != conf)
				continue;
5059
			print_sh(seq, sh);
L
Linus Torvalds 已提交
5060 5061 5062 5063 5064 5065
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

5066
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
5067 5068 5069 5070
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	int i;

5071 5072
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5073
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5074 5075 5076
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5077
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5078
	seq_printf (seq, "]");
5079
#ifdef DEBUG
5080 5081
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

	printk("RAID5 conf printout:\n");
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5095 5096
	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
		 conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5097 5098 5099 5100 5101 5102

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
		printk(" disk %d, o:%d, dev:%s\n",
5103
			i, !test_bit(Faulty, &tmp->rdev->flags),
L
Linus Torvalds 已提交
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
			bdevname(tmp->rdev->bdev,b));
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
5117
		    && !test_bit(Faulty, &tmp->rdev->flags)
5118 5119 5120
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5121
			mddev->degraded--;
5122
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
		}
	}
	print_raid5_conf(conf);
	return 0;
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
5139 5140 5141 5142
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

5143
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
5144 5145 5146 5147
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
5148 5149 5150 5151
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
5152 5153
		    mddev->degraded <= conf->max_degraded &&
		    number < conf->raid_disks) {
5154 5155 5156
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
5157
		p->rdev = NULL;
5158
		synchronize_rcu();
L
Linus Torvalds 已提交
5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
5174
	int err = -EEXIST;
L
Linus Torvalds 已提交
5175 5176
	int disk;
	struct disk_info *p;
5177 5178
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5179

5180
	if (mddev->degraded > conf->max_degraded)
L
Linus Torvalds 已提交
5181
		/* no point adding a device */
5182
		return -EINVAL;
L
Linus Torvalds 已提交
5183

5184 5185
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5186 5187

	/*
5188 5189
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5190
	 */
5191
	if (rdev->saved_raid_disk >= 0 &&
5192
	    rdev->saved_raid_disk >= first &&
5193 5194 5195
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5196 5197
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5198
		if ((p=conf->disks + disk)->rdev == NULL) {
5199
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5200
			rdev->raid_disk = disk;
5201
			err = 0;
5202 5203
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5204
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5205 5206 5207
			break;
		}
	print_raid5_conf(conf);
5208
	return err;
L
Linus Torvalds 已提交
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5220
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5221 5222
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5223 5224 5225
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5226
	set_capacity(mddev->gendisk, mddev->array_sectors);
5227
	mddev->changed = 1;
5228
	revalidate_disk(mddev->gendisk);
A
Andre Noll 已提交
5229 5230
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5231 5232
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5233
	mddev->dev_sectors = sectors;
5234
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5235 5236 5237
	return 0;
}

5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5261
static int check_reshape(mddev_t *mddev)
5262
{
5263
	raid5_conf_t *conf = mddev->private;
5264

5265 5266
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5267
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5268
		return 0; /* nothing to do */
5269 5270 5271
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
	if (mddev->degraded > conf->max_degraded)
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5286

5287
	if (!check_stripe_cache(mddev))
5288 5289
		return -ENOSPC;

5290
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5291 5292 5293 5294
}

static int raid5_start_reshape(mddev_t *mddev)
{
5295
	raid5_conf_t *conf = mddev->private;
5296 5297 5298
	mdk_rdev_t *rdev;
	int spares = 0;
	int added_devices = 0;
5299
	unsigned long flags;
5300

5301
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5302 5303
		return -EBUSY;

5304 5305 5306
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5307
	list_for_each_entry(rdev, &mddev->disks, same_set)
5308 5309 5310
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
5311

5312
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5313 5314 5315 5316 5317
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
		printk(KERN_ERR "md: %s: array size must be reduced "
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5329
	atomic_set(&conf->reshape_stripes, 0);
5330 5331
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5332
	conf->raid_disks += mddev->delta_disks;
5333 5334
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5335 5336
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5337 5338 5339 5340 5341
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5342
	conf->generation++;
5343 5344 5345 5346 5347
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
	 */
5348
	list_for_each_entry(rdev, &mddev->disks, same_set)
5349 5350
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
5351
			if (raid5_add_disk(mddev, rdev) == 0) {
5352 5353 5354
				char nm[20];
				set_bit(In_sync, &rdev->flags);
				added_devices++;
5355
				rdev->recovery_offset = 0;
5356
				sprintf(nm, "rd%d", rdev->raid_disk);
5357 5358 5359 5360 5361 5362
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
					printk(KERN_WARNING
					       "raid5: failed to create "
					       " link %s for %s\n",
					       nm, mdname(mddev));
5363 5364 5365 5366
			} else
				break;
		}

5367 5368 5369 5370 5371 5372
	if (mddev->delta_disks > 0) {
		spin_lock_irqsave(&conf->device_lock, flags);
		mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5373
	mddev->raid_disks = conf->raid_disks;
5374
	mddev->reshape_position = conf->reshape_progress;
5375
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5376

5377 5378 5379 5380 5381 5382 5383 5384 5385 5386
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
						"%s_reshape");
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5387
		conf->reshape_progress = MaxSector;
5388 5389 5390
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5391
	conf->reshape_checkpoint = jiffies;
5392 5393 5394 5395 5396
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5397 5398 5399
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5400 5401 5402
static void end_reshape(raid5_conf_t *conf)
{

5403 5404 5405
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5406
		conf->previous_raid_disks = conf->raid_disks;
5407
		conf->reshape_progress = MaxSector;
5408
		spin_unlock_irq(&conf->device_lock);
5409
		wake_up(&conf->wait_for_overlap);
5410 5411 5412 5413 5414

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
		{
5415
			int data_disks = conf->raid_disks - conf->max_degraded;
5416
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5417
						   / PAGE_SIZE);
5418 5419 5420
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5421 5422 5423
	}
}

5424 5425 5426
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5427 5428
static void raid5_finish_reshape(mddev_t *mddev)
{
5429
	raid5_conf_t *conf = mddev->private;
5430 5431 5432

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5433 5434 5435 5436
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
			mddev->changed = 1;
5437
			revalidate_disk(mddev->gendisk);
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5448 5449 5450 5451 5452 5453 5454 5455 5456
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
					char nm[20];
					sprintf(nm, "rd%d", rdev->raid_disk);
					sysfs_remove_link(&mddev->kobj, nm);
					rdev->raid_disk = -1;
				}
			}
5457
		}
5458
		mddev->layout = conf->algorithm;
5459
		mddev->chunk_sectors = conf->chunk_sectors;
5460 5461
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5462 5463 5464
	}
}

5465 5466
static void raid5_quiesce(mddev_t *mddev, int state)
{
5467
	raid5_conf_t *conf = mddev->private;
5468 5469

	switch(state) {
5470 5471 5472 5473
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5474 5475
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5476 5477 5478 5479
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5480
		wait_event_lock_irq(conf->wait_for_stripe,
5481 5482
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5483
				    conf->device_lock, /* nothing */);
5484
		conf->quiesce = 1;
5485
		spin_unlock_irq(&conf->device_lock);
5486 5487
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5488 5489 5490 5491 5492 5493
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5494
		wake_up(&conf->wait_for_overlap);
5495 5496 5497 5498
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5499

5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522

static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5523
	mddev->new_chunk_sectors = chunksect;
5524 5525 5526 5527

	return setup_conf(mddev);
}

5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5561

5562
static int raid5_check_reshape(mddev_t *mddev)
5563
{
5564 5565 5566 5567
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5568
	 */
5569
	raid5_conf_t *conf = mddev->private;
5570
	int new_chunk = mddev->new_chunk_sectors;
5571

5572
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5573 5574
		return -EINVAL;
	if (new_chunk > 0) {
5575
		if (!is_power_of_2(new_chunk))
5576
			return -EINVAL;
5577
		if (new_chunk < (PAGE_SIZE>>9))
5578
			return -EINVAL;
5579
		if (mddev->array_sectors & (new_chunk-1))
5580 5581 5582 5583 5584 5585
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5586
	if (mddev->raid_disks == 2) {
5587 5588 5589 5590
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5591 5592
		}
		if (new_chunk > 0) {
5593 5594
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5595 5596 5597
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5598
	}
5599
	return check_reshape(mddev);
5600 5601
}

5602
static int raid6_check_reshape(mddev_t *mddev)
5603
{
5604
	int new_chunk = mddev->new_chunk_sectors;
5605

5606
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5607
		return -EINVAL;
5608
	if (new_chunk > 0) {
5609
		if (!is_power_of_2(new_chunk))
5610
			return -EINVAL;
5611
		if (new_chunk < (PAGE_SIZE >> 9))
5612
			return -EINVAL;
5613
		if (mddev->array_sectors & (new_chunk-1))
5614 5615
			/* not factor of array size */
			return -EINVAL;
5616
	}
5617 5618

	/* They look valid */
5619
	return check_reshape(mddev);
5620 5621
}

5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
	 *  raid0 - if all devices are the same - make it a raid4 layout
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */

	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5633 5634 5635 5636 5637
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5638 5639
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5640 5641 5642 5643 5644

	return ERR_PTR(-EINVAL);
}


5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5709
	.size		= raid5_size,
5710
	.check_reshape	= raid6_check_reshape,
5711
	.start_reshape  = raid5_start_reshape,
5712
	.finish_reshape = raid5_finish_reshape,
5713
	.quiesce	= raid5_quiesce,
5714
	.takeover	= raid6_takeover,
5715
};
5716
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5717 5718
{
	.name		= "raid5",
5719
	.level		= 5,
L
Linus Torvalds 已提交
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5731
	.size		= raid5_size,
5732 5733
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5734
	.finish_reshape = raid5_finish_reshape,
5735
	.quiesce	= raid5_quiesce,
5736
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5737 5738
};

5739
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5740
{
5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5754
	.size		= raid5_size,
5755 5756
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5757
	.finish_reshape = raid5_finish_reshape,
5758 5759 5760 5761 5762
	.quiesce	= raid5_quiesce,
};

static int __init raid5_init(void)
{
5763
	register_md_personality(&raid6_personality);
5764 5765 5766
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5767 5768
}

5769
static void raid5_exit(void)
L
Linus Torvalds 已提交
5770
{
5771
	unregister_md_personality(&raid6_personality);
5772 5773
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5774 5775 5776 5777 5778 5779
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5780 5781
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5782 5783
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5784 5785 5786 5787 5788 5789 5790
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");