raid5.c 164.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include <linux/slab.h>
54
#include "md.h"
55
#include "raid5.h"
56
#include "raid0.h"
57
#include "bitmap.h"
58

L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
68
#define BYPASS_THRESHOLD	1
69
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
70 71
#define HASH_MASK		(NR_HASH - 1)

72
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

94
#ifdef DEBUG
L
Linus Torvalds 已提交
95 96 97 98
#define inline
#define __inline__
#endif

99 100
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

101
/*
102 103
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 105 106
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
107
	return bio->bi_phys_segments & 0xffff;
108 109 110 111
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
112
	return (bio->bi_phys_segments >> 16) & 0xffff;
113 114 115 116 117 118 119 120 121 122 123 124 125
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
126
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 128 129 130 131
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
132
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 134
}

135 136 137
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
138 139 140 141
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
142 143 144 145 146
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
147 148 149 150 151
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
152

153 154 155 156 157
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
158 159
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
160
{
161
	int slot = *count;
162

163
	if (sh->ddf_layout)
164
		(*count)++;
165
	if (idx == sh->pd_idx)
166
		return syndrome_disks;
167
	if (idx == sh->qd_idx)
168
		return syndrome_disks + 1;
169
	if (!sh->ddf_layout)
170
		(*count)++;
171 172 173
	return slot;
}

174 175 176 177 178 179 180 181
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
182
		bio_endio(bi, 0);
183 184 185 186
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
187 188
static void print_raid5_conf (raid5_conf_t *conf);

189 190 191 192 193 194 195
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

196
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
197 198
{
	if (atomic_dec_and_test(&sh->count)) {
199 200
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
201
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
202
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
203
				list_add_tail(&sh->lru, &conf->delayed_list);
204 205
				blk_plug_device(conf->mddev->queue);
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206
				   sh->bm_seq - conf->seq_write > 0) {
207
				list_add_tail(&sh->lru, &conf->bitmap_list);
208 209
				blk_plug_device(conf->mddev->queue);
			} else {
210
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
211
				list_add_tail(&sh->lru, &conf->handle_list);
212
			}
L
Linus Torvalds 已提交
213 214
			md_wakeup_thread(conf->mddev->thread);
		} else {
215
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
216 217 218 219 220 221
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
222 223
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
224
				wake_up(&conf->wait_for_stripe);
225 226
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
227
			}
L
Linus Torvalds 已提交
228 229 230
		}
	}
}
231

L
Linus Torvalds 已提交
232 233 234 235
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
236

L
Linus Torvalds 已提交
237 238 239 240 241
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

242
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
243
{
244 245
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
246

247
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
248 249
}

250
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
251
{
252
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
253

254 255
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
256 257

	CHECK_DEVLOCK();
258
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

static void shrink_buffers(struct stripe_head *sh, int num)
{
	struct page *p;
	int i;

	for (i=0; i<num ; i++) {
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
290
		put_page(p);
L
Linus Torvalds 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	}
}

static int grow_buffers(struct stripe_head *sh, int num)
{
	int i;

	for (i=0; i<num; i++) {
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

309
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 311
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
312

313
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
314 315
{
	raid5_conf_t *conf = sh->raid_conf;
316
	int i;
L
Linus Torvalds 已提交
317

318 319
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320
	BUG_ON(stripe_operations_active(sh));
321

L
Linus Torvalds 已提交
322
	CHECK_DEVLOCK();
323
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
324 325 326
		(unsigned long long)sh->sector);

	remove_hash(sh);
327

328
	sh->generation = conf->generation - previous;
329
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
330
	sh->sector = sector;
331
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
332 333
	sh->state = 0;

334 335

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
336 337
		struct r5dev *dev = &sh->dev[i];

338
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
339
		    test_bit(R5_LOCKED, &dev->flags)) {
340
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
341
			       (unsigned long long)sh->sector, i, dev->toread,
342
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
343 344 345 346
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
347
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
348 349 350 351
	}
	insert_hash(conf, sh);
}

352 353
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
354 355
{
	struct stripe_head *sh;
356
	struct hlist_node *hn;
L
Linus Torvalds 已提交
357 358

	CHECK_DEVLOCK();
359
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
362
			return sh;
363
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
364 365 366 367
	return NULL;
}

static void unplug_slaves(mddev_t *mddev);
368
static void raid5_unplug_device(struct request_queue *q);
L
Linus Torvalds 已提交
369

370 371
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
372
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
373 374 375
{
	struct stripe_head *sh;

376
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
377 378 379 380

	spin_lock_irq(&conf->device_lock);

	do {
381
		wait_event_lock_irq(conf->wait_for_stripe,
382
				    conf->quiesce == 0 || noquiesce,
383
				    conf->device_lock, /* nothing */);
384
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
385 386 387 388 389 390 391 392 393
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
394 395
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
396 397
						     || !conf->inactive_blocked),
						    conf->device_lock,
398
						    raid5_unplug_device(conf->mddev->queue)
L
Linus Torvalds 已提交
399 400 401
					);
				conf->inactive_blocked = 0;
			} else
402
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
403 404
		} else {
			if (atomic_read(&sh->count)) {
405 406
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
407 408 409
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
410 411
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
412 413
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
414 415 416 417 418 419 420 421 422 423 424
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

425 426 427 428
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
429

430
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
			rw = WRITE;
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
465
			if (s->syncing || s->expanding || s->expanded)
466 467
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
468 469
			set_bit(STRIPE_IO_STARTED, &sh->state);

470 471
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
472
				__func__, (unsigned long long)sh->sector,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
509
	struct async_submit_ctl submit;
D
Dan Williams 已提交
510
	enum async_tx_flags flags = 0;
511 512 513 514 515

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
516

D
Dan Williams 已提交
517 518 519 520
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
542
						  b_offset, clen, &submit);
543 544
			else
				tx = async_memcpy(bio_page, page, b_offset,
545
						  page_offset, clen, &submit);
546
		}
547 548 549
		/* chain the operations */
		submit.depend_tx = tx;

550 551 552 553 554 555 556 557 558 559 560 561 562
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
563
	int i;
564

565
	pr_debug("%s: stripe %llu\n", __func__,
566 567 568
		(unsigned long long)sh->sector);

	/* clear completed biofills */
569
	spin_lock_irq(&conf->device_lock);
570 571 572 573
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
574 575
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
576
		 * !STRIPE_BIOFILL_RUN
577 578
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
579 580 581 582 583 584 585 586
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
587
				if (!raid5_dec_bi_phys_segments(rbi)) {
588 589 590 591 592 593 594
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
595 596
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
597 598 599

	return_io(return_bi);

600
	set_bit(STRIPE_HANDLE, &sh->state);
601 602 603 604 605 606 607
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
608
	struct async_submit_ctl submit;
609 610
	int i;

611
	pr_debug("%s: stripe %llu\n", __func__,
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
632 633
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
634 635
}

636
static void mark_target_uptodate(struct stripe_head *sh, int target)
637
{
638
	struct r5dev *tgt;
639

640 641
	if (target < 0)
		return;
642

643
	tgt = &sh->dev[target];
644 645 646
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
647 648
}

649
static void ops_complete_compute(void *stripe_head_ref)
650 651 652
{
	struct stripe_head *sh = stripe_head_ref;

653
	pr_debug("%s: stripe %llu\n", __func__,
654 655
		(unsigned long long)sh->sector);

656
	/* mark the computed target(s) as uptodate */
657
	mark_target_uptodate(sh, sh->ops.target);
658
	mark_target_uptodate(sh, sh->ops.target2);
659

660 661 662
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
663 664 665 666
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

667 668 669 670 671 672 673 674 675
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
676 677
{
	int disks = sh->disks;
678
	struct page **xor_srcs = percpu->scribble;
679 680 681 682 683
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
684
	struct async_submit_ctl submit;
685 686 687
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
688
		__func__, (unsigned long long)sh->sector, target);
689 690 691 692 693 694 695 696
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
697
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
698
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
699
	if (unlikely(count == 1))
700
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
701
	else
702
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
703 704 705 706

	return tx;
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
725
		srcs[i] = NULL;
726 727 728 729 730 731 732 733 734 735

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

736
	return syndrome_disks;
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
757
	else
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
774 775
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
776 777 778 779 780 781 782 783 784 785 786
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
787 788
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
789 790 791
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
792 793 794 795

	return tx;
}

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

817
	/* we need to open-code set_syndrome_sources to handle the
818 819 820
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
821
		blocks[i] = NULL;
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
848 849 850
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
851
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
871 872 873 874
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
875 876 877 878
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
879 880 881
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
882 883 884 885
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
886 887 888 889 890 891 892 893 894 895 896 897 898 899
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
900 901 902 903
	}
}


904 905 906 907
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

908
	pr_debug("%s: stripe %llu\n", __func__,
909 910 911 912
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
913 914
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
915 916
{
	int disks = sh->disks;
917
	struct page **xor_srcs = percpu->scribble;
918
	int count = 0, pd_idx = sh->pd_idx, i;
919
	struct async_submit_ctl submit;
920 921 922 923

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

924
	pr_debug("%s: stripe %llu\n", __func__,
925 926 927 928 929
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
930
		if (test_bit(R5_Wantdrain, &dev->flags))
931 932 933
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
934
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
935
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
936
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
937 938 939 940 941

	return tx;
}

static struct dma_async_tx_descriptor *
942
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
943 944
{
	int disks = sh->disks;
945
	int i;
946

947
	pr_debug("%s: stripe %llu\n", __func__,
948 949 950 951 952 953
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

954
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

976
static void ops_complete_reconstruct(void *stripe_head_ref)
977 978
{
	struct stripe_head *sh = stripe_head_ref;
979 980 981 982
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
983

984
	pr_debug("%s: stripe %llu\n", __func__,
985 986 987 988
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
989 990

		if (dev->written || i == pd_idx || i == qd_idx)
991 992 993
			set_bit(R5_UPTODATE, &dev->flags);
	}

994 995 996 997 998 999 1000 1001
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1002 1003 1004 1005 1006 1007

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1008 1009
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1010 1011
{
	int disks = sh->disks;
1012
	struct page **xor_srcs = percpu->scribble;
1013
	struct async_submit_ctl submit;
1014 1015
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1016
	int prexor = 0;
1017 1018
	unsigned long flags;

1019
	pr_debug("%s: stripe %llu\n", __func__,
1020 1021 1022 1023 1024
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1025 1026
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1047
	flags = ASYNC_TX_ACK |
1048 1049 1050 1051
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1052
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1053
			  to_addr_conv(sh, percpu));
1054 1055 1056 1057
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1058 1059
}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1077 1078 1079 1080 1081 1082
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1083
	pr_debug("%s: stripe %llu\n", __func__,
1084 1085
		(unsigned long long)sh->sector);

1086
	sh->check_state = check_state_check_result;
1087 1088 1089 1090
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1091
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1092 1093
{
	int disks = sh->disks;
1094 1095 1096
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1097
	struct page **xor_srcs = percpu->scribble;
1098
	struct dma_async_tx_descriptor *tx;
1099
	struct async_submit_ctl submit;
1100 1101
	int count;
	int i;
1102

1103
	pr_debug("%s: stripe %llu\n", __func__,
1104 1105
		(unsigned long long)sh->sector);

1106 1107 1108
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1109
	for (i = disks; i--; ) {
1110 1111 1112
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1113 1114
	}

1115 1116
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1117
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1118
			   &sh->ops.zero_sum_result, &submit);
1119 1120

	atomic_inc(&sh->count);
1121 1122
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1123 1124
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1137 1138

	atomic_inc(&sh->count);
1139 1140 1141 1142
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1143 1144
}

1145
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1146 1147 1148
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1149
	raid5_conf_t *conf = sh->raid_conf;
1150
	int level = conf->level;
1151 1152
	struct raid5_percpu *percpu;
	unsigned long cpu;
1153

1154 1155
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1156
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1157 1158 1159 1160
		ops_run_biofill(sh);
		overlap_clear++;
	}

1161
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1172 1173
			async_tx_ack(tx);
	}
1174

1175
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1176
		tx = ops_run_prexor(sh, percpu, tx);
1177

1178
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1179
		tx = ops_run_biodrain(sh, tx);
1180 1181 1182
		overlap_clear++;
	}

1183 1184 1185 1186 1187 1188
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1200 1201 1202 1203 1204 1205 1206

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1207
	put_cpu();
1208 1209
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1240
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1241 1242
{
	struct stripe_head *sh;
1243
	int disks = max(conf->raid_disks, conf->previous_raid_disks);
1244 1245 1246
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
1247
	memset(sh, 0, sizeof(*sh) + (disks-1)*sizeof(struct r5dev));
1248 1249
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);
1250 1251 1252
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1253

1254 1255
	if (grow_buffers(sh, disks)) {
		shrink_buffers(sh, disks);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1269
	struct kmem_cache *sc;
1270
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1271

1272 1273 1274 1275
	sprintf(conf->cache_name[0],
		"raid%d-%s", conf->level, mdname(conf->mddev));
	sprintf(conf->cache_name[1],
		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
1276 1277
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1278
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1279
			       0, 0, NULL);
L
Linus Torvalds 已提交
1280 1281 1282
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1283
	conf->pool_size = devs;
1284
	while (num--)
1285
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1286 1287 1288
			return 1;
	return 0;
}
1289

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1340
	unsigned long cpu;
1341
	int err;
1342
	struct kmem_cache *sc;
1343 1344 1345 1346 1347
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1348 1349 1350
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1351

1352 1353 1354
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1355
			       0, 0, NULL);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);
1368 1369 1370
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1393
				    unplug_slaves(conf->mddev)
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1409
	 * conf->disks and the scribble region
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1439 1440 1441 1442
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1443

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1460

1461
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1462 1463 1464
{
	struct stripe_head *sh;

1465 1466 1467 1468 1469
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1470
	BUG_ON(atomic_read(&sh->count));
1471
	shrink_buffers(sh, conf->pool_size);
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1482 1483
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1484 1485 1486
	conf->slab_cache = NULL;
}

1487
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1488
{
1489
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1490
	raid5_conf_t *conf = sh->raid_conf;
1491
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1492
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1493 1494
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1495 1496 1497 1498 1499 1500


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1501 1502
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1503 1504 1505
		uptodate);
	if (i == disks) {
		BUG();
1506
		return;
L
Linus Torvalds 已提交
1507 1508 1509 1510
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1511
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1512
			rdev = conf->disks[i].rdev;
1513
			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1514 1515 1516 1517 1518
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1519 1520 1521
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1522 1523
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1524
	} else {
1525
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1526
		int retry = 0;
1527 1528
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1529
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1530
		atomic_inc(&rdev->read_errors);
1531
		if (conf->mddev->degraded >= conf->max_degraded)
1532
			printk_rl(KERN_WARNING
1533
				  "md/raid:%s: read error not correctable "
1534 1535 1536 1537 1538
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1539
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1540
			/* Oh, no!!! */
1541
			printk_rl(KERN_WARNING
1542
				  "md/raid:%s: read error NOT corrected!! "
1543 1544 1545 1546 1547
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1548
		else if (atomic_read(&rdev->read_errors)
1549
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1550
			printk(KERN_WARNING
1551
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1552
			       mdname(conf->mddev), bdn);
1553 1554 1555 1556 1557
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1558 1559
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1560
			md_error(conf->mddev, rdev);
1561
		}
L
Linus Torvalds 已提交
1562 1563 1564 1565 1566 1567 1568
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1569
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1570
{
1571
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1572
	raid5_conf_t *conf = sh->raid_conf;
1573
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1574 1575 1576 1577 1578 1579
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1580
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1581 1582 1583 1584
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1585
		return;
L
Linus Torvalds 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1595
	release_stripe(sh);
L
Linus Torvalds 已提交
1596 1597 1598
}


1599
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1600
	
1601
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1617
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1618 1619 1620 1621 1622
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
1623
	raid5_conf_t *conf = mddev->private;
1624
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1625

1626
	if (!test_bit(Faulty, &rdev->flags)) {
1627
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1628 1629 1630
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1631
			mddev->degraded++;
1632
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1633 1634 1635
			/*
			 * if recovery was running, make sure it aborts.
			 */
1636
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1637
		}
1638
		set_bit(Faulty, &rdev->flags);
1639
		printk(KERN_ALERT
1640 1641 1642 1643 1644 1645 1646
		       "md/raid:%s: Disk failure on %s, disabling device.\n"
		       KERN_ALERT
		       "md/raid:%s: Operation continuing on %d devices.\n",
		       mdname(mddev),
		       bdevname(rdev->bdev, b),
		       mdname(mddev),
		       conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1647
	}
1648
}
L
Linus Torvalds 已提交
1649 1650 1651 1652 1653

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1654
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1655 1656
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1657
{
N
NeilBrown 已提交
1658
	sector_t stripe, stripe2;
1659
	sector_t chunk_number;
L
Linus Torvalds 已提交
1660
	unsigned int chunk_offset;
1661
	int pd_idx, qd_idx;
1662
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1663
	sector_t new_sector;
1664 1665
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1666 1667
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1668 1669 1670
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1683 1684
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1685
	stripe2 = stripe;
L
Linus Torvalds 已提交
1686 1687 1688
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1689
	pd_idx = qd_idx = ~0;
1690 1691
	switch(conf->level) {
	case 4:
1692
		pd_idx = data_disks;
1693 1694
		break;
	case 5:
1695
		switch (algorithm) {
L
Linus Torvalds 已提交
1696
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1697
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1698
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1699 1700 1701
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1702
			pd_idx = sector_div(stripe2, raid_disks);
1703
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1704 1705 1706
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1707
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1708
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1709 1710
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1711
			pd_idx = sector_div(stripe2, raid_disks);
1712
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1713
			break;
1714 1715 1716 1717 1718 1719 1720
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1721
		default:
1722
			BUG();
1723 1724 1725 1726
		}
		break;
	case 6:

1727
		switch (algorithm) {
1728
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1729
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1730 1731
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1732
				(*dd_idx)++;	/* Q D D D P */
1733 1734
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1735 1736 1737
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1738
			pd_idx = sector_div(stripe2, raid_disks);
1739 1740
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1741
				(*dd_idx)++;	/* Q D D D P */
1742 1743
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1744 1745 1746
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1747
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1748 1749
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1750 1751
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1752
			pd_idx = sector_div(stripe2, raid_disks);
1753 1754
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1755
			break;
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
1771
			pd_idx = sector_div(stripe2, raid_disks);
1772 1773 1774 1775 1776 1777
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1778
			ddf_layout = 1;
1779 1780 1781 1782 1783 1784 1785
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
1786 1787
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1788 1789 1790 1791 1792 1793
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1794
			ddf_layout = 1;
1795 1796 1797 1798
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
1799
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1800 1801
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1802
			ddf_layout = 1;
1803 1804 1805 1806
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
1807
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1808 1809 1810 1811 1812 1813
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
1814
			pd_idx = sector_div(stripe2, raid_disks-1);
1815 1816 1817 1818 1819 1820
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
1821
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1822 1823 1824 1825 1826
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
1827
			pd_idx = sector_div(stripe2, raid_disks-1);
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

1838
		default:
1839
			BUG();
1840 1841
		}
		break;
L
Linus Torvalds 已提交
1842 1843
	}

1844 1845 1846
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1847
		sh->ddf_layout = ddf_layout;
1848
	}
L
Linus Torvalds 已提交
1849 1850 1851 1852 1853 1854 1855 1856
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1857
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1858 1859
{
	raid5_conf_t *conf = sh->raid_conf;
1860 1861
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1862
	sector_t new_sector = sh->sector, check;
1863 1864
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1865 1866
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1867 1868
	sector_t stripe;
	int chunk_offset;
1869 1870
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1871
	sector_t r_sector;
1872
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1873

1874

L
Linus Torvalds 已提交
1875 1876 1877
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

1878 1879 1880 1881 1882
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1883
		switch (algorithm) {
L
Linus Torvalds 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1895 1896 1897 1898 1899
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1900
		default:
1901
			BUG();
1902 1903 1904
		}
		break;
	case 6:
1905
		if (i == sh->qd_idx)
1906
			return 0; /* It is the Q disk */
1907
		switch (algorithm) {
1908 1909
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1910 1911 1912 1913
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1928 1929 1930 1931 1932 1933
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
1934
			/* Like left_symmetric, but P is before Q */
1935 1936
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
1937 1938 1939 1940 1941 1942
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
1958
		default:
1959
			BUG();
1960 1961
		}
		break;
L
Linus Torvalds 已提交
1962 1963 1964
	}

	chunk_number = stripe * data_disks + i;
1965
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
1966

1967
	check = raid5_compute_sector(conf, r_sector,
1968
				     previous, &dummy1, &sh2);
1969 1970
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
1971 1972
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
1973 1974 1975 1976 1977 1978
		return 0;
	}
	return r_sector;
}


1979
static void
1980
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1981
			 int rcw, int expand)
1982 1983
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1984 1985
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
1986 1987 1988 1989 1990 1991 1992

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
1993 1994 1995 1996
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
1997

1998
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
1999 2000 2001 2002 2003 2004

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2005
				set_bit(R5_Wantdrain, &dev->flags);
2006 2007
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2008
				s->locked++;
2009 2010
			}
		}
2011
		if (s->locked + conf->max_degraded == disks)
2012
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2013
				atomic_inc(&conf->pending_full_writes);
2014
	} else {
2015
		BUG_ON(level == 6);
2016 2017 2018
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2019
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2020 2021
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2022
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2023 2024 2025 2026 2027 2028 2029 2030

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2031 2032
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2033 2034
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2035
				s->locked++;
2036 2037 2038 2039
			}
		}
	}

2040
	/* keep the parity disk(s) locked while asynchronous operations
2041 2042 2043 2044
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2045
	s->locked++;
2046

2047 2048 2049 2050 2051 2052 2053 2054 2055
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2056
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2057
		__func__, (unsigned long long)sh->sector,
2058
		s->locked, s->ops_request);
2059
}
2060

L
Linus Torvalds 已提交
2061 2062
/*
 * Each stripe/dev can have one or more bion attached.
2063
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2064 2065 2066 2067 2068 2069
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2070
	int firstwrite=0;
L
Linus Torvalds 已提交
2071

2072
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2073 2074 2075 2076 2077 2078
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
2079
	if (forwrite) {
L
Linus Torvalds 已提交
2080
		bip = &sh->dev[dd_idx].towrite;
2081 2082 2083
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2093
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2094 2095 2096
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2097
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
2098 2099 2100
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

2101
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
2102 2103 2104
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

2105 2106 2107
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
2108
		sh->bm_seq = conf->seq_flush+1;
2109 2110 2111
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

2134 2135
static void end_reshape(raid5_conf_t *conf);

2136 2137
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2138
{
2139
	int sectors_per_chunk =
2140
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2141
	int dd_idx;
2142
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2143
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2144

2145 2146
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2147
			     *sectors_per_chunk + chunk_offset,
2148
			     previous,
2149
			     &dd_idx, sh);
2150 2151
}

2152
static void
2153
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2187
			if (!raid5_dec_bi_phys_segments(bi)) {
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2202
			if (!raid5_dec_bi_phys_segments(bi)) {
2203 2204 2205 2206 2207 2208 2209
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2210 2211 2212 2213 2214 2215
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2226
				if (!raid5_dec_bi_phys_segments(bi)) {
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2239 2240 2241
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2242 2243
}

2244 2245 2246 2247 2248
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2249
 */
2250 2251
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2252 2253 2254 2255 2256 2257
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2258 2259 2260 2261 2262 2263 2264 2265
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2266 2267
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2268 2269
		 */
		if ((s->uptodate == disks - 1) &&
2270
		    (s->failed && disk_idx == s->failed_num)) {
2271 2272
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2273 2274
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
2275
			sh->ops.target2 = -1;
2276 2277
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
2278
			 * of raid_run_ops which services 'compute' operations
2279 2280 2281 2282 2283
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2284
			return 1; /* uptodate + compute == disks */
2285
		} else if (test_bit(R5_Insync, &dev->flags)) {
2286 2287 2288 2289 2290 2291 2292 2293
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2294
	return 0;
2295 2296
}

2297 2298 2299 2300
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2301 2302 2303
			struct stripe_head_state *s, int disks)
{
	int i;
2304 2305 2306 2307 2308

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2309
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2310
	    !sh->reconstruct_state)
2311
		for (i = disks; i--; )
2312
			if (fetch_block5(sh, s, i, disks))
2313
				break;
2314 2315 2316
	set_bit(STRIPE_HANDLE, &sh->state);
}

2317 2318 2319 2320 2321 2322 2323 2324
/* fetch_block6 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill6 to continue
 */
static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
			 struct r6_state *r6s, int disk_idx, int disks)
2325
{
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
				  &sh->dev[r6s->failed_num[1]] };

	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed >= 1 &&
	      (fdev[0]->toread || s->to_write)) ||
	     (s->failed >= 2 &&
	      (fdev[1]->toread || s->to_write)))) {
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
		    (s->failed && (disk_idx == r6s->failed_num[0] ||
				   disk_idx == r6s->failed_num[1]))) {
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2349
			 */
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2371
			}
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2391 2392
		}
	}
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414

	return 0;
}

/**
 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill6(struct stripe_head *sh,
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
			if (fetch_block6(sh, s, r6s, i, disks))
				break;
2415 2416 2417 2418
	set_bit(STRIPE_HANDLE, &sh->state);
}


2419
/* handle_stripe_clean_event
2420 2421 2422 2423
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2424
static void handle_stripe_clean_event(raid5_conf_t *conf,
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2438
				pr_debug("Return write for disc %d\n", i);
2439 2440 2441 2442 2443 2444
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2445
					if (!raid5_dec_bi_phys_segments(wbi)) {
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2463 2464 2465 2466

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2467 2468
}

2469
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2470 2471 2472 2473 2474 2475 2476 2477
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2478 2479
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2480 2481 2482 2483 2484 2485 2486 2487
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2488 2489 2490
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2491 2492 2493 2494
			else
				rcw += 2*disks;
		}
	}
2495
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2496 2497 2498 2499 2500 2501 2502 2503
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2504 2505
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2506 2507 2508
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2509
					pr_debug("Read_old block "
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2527 2528
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2529 2530 2531
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2532
					pr_debug("Read_old block "
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2546 2547
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2548 2549
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2550 2551 2552
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2553 2554 2555
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2556
		schedule_reconstruction(sh, s, rcw == 0, 0);
2557 2558
}

2559
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2560 2561 2562
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
2563
	int rcw = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2564
	int qd_idx = sh->qd_idx;
2565 2566

	set_bit(STRIPE_HANDLE, &sh->state);
2567 2568
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
		/* check if we haven't enough data */
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != pd_idx && i != qd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
			rcw++;
			if (!test_bit(R5_Insync, &dev->flags))
				continue; /* it's a failed drive */

			if (
			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				pr_debug("Read_old stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
			} else {
				pr_debug("Request delayed stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(STRIPE_DELAYED, &sh->state);
				set_bit(STRIPE_HANDLE, &sh->state);
2593 2594 2595 2596 2597 2598
			}
		}
	}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
2599 2600
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    s->locked == 0 && rcw == 0 &&
2601
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2602
		schedule_reconstruction(sh, s, 1, 0);
2603 2604 2605 2606 2607 2608
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2609
	struct r5dev *dev = NULL;
2610

2611
	set_bit(STRIPE_HANDLE, &sh->state);
2612

2613 2614 2615
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2616 2617
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2618 2619
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2620 2621
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2622
			break;
2623
		}
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2634

2635 2636 2637 2638 2639
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2640
		s->locked++;
2641
		set_bit(R5_Wantwrite, &dev->flags);
2642

2643 2644
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2661
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2673
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2674 2675 2676 2677
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2678
				sh->ops.target2 = -1;
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2690 2691 2692 2693 2694
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2695 2696
				  struct stripe_head_state *s,
				  struct r6_state *r6s, int disks)
2697 2698
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2699
	int qd_idx = sh->qd_idx;
2700
	struct r5dev *dev;
2701 2702 2703 2704

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2705

2706 2707 2708 2709 2710 2711
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2712 2713 2714
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2715
		if (s->failed == r6s->q_failed) {
2716
			/* The only possible failed device holds Q, so it
2717 2718 2719
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2720
			sh->check_state = check_state_run;
2721 2722
		}
		if (!r6s->q_failed && s->failed < 2) {
2723
			/* Q is not failed, and we didn't use it to generate
2724 2725
			 * anything, so it makes sense to check it
			 */
2726 2727 2728 2729
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2730 2731
		}

2732 2733
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2734

2735 2736 2737 2738
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2739
		}
2740 2741 2742 2743 2744 2745 2746
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2747 2748
		}

2749 2750 2751 2752 2753
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2754

2755 2756 2757
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2758 2759

		/* now write out any block on a failed drive,
2760
		 * or P or Q if they were recomputed
2761
		 */
2762
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2775
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2776 2777 2778 2779 2780
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2781
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2782 2783 2784 2785 2786 2787 2788 2789
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2865
	struct dma_async_tx_descriptor *tx = NULL;
2866 2867
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2868
		if (i != sh->pd_idx && i != sh->qd_idx) {
2869
			int dd_idx, j;
2870
			struct stripe_head *sh2;
2871
			struct async_submit_ctl submit;
2872

2873
			sector_t bn = compute_blocknr(sh, i, 1);
2874 2875
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2876
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2889 2890

			/* place all the copies on one channel */
2891
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2892
			tx = async_memcpy(sh2->dev[dd_idx].page,
2893
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2894
					  &submit);
2895

2896 2897 2898 2899
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2900
				    (!r6s || j != sh2->qd_idx) &&
2901 2902 2903 2904 2905 2906 2907
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2908

2909
		}
2910 2911 2912 2913 2914
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2915
}
L
Linus Torvalds 已提交
2916

2917

L
Linus Torvalds 已提交
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2934

2935
static void handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
2936 2937
{
	raid5_conf_t *conf = sh->raid_conf;
2938 2939 2940
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
2941
	struct r5dev *dev;
2942
	mdk_rdev_t *blocked_rdev = NULL;
2943
	int prexor;
2944
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
2945

2946
	memset(&s, 0, sizeof(s));
2947 2948 2949 2950
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
2951 2952 2953 2954 2955

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

2956 2957 2958
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
2959

2960
	/* Now to look around and see what can be done */
2961
	rcu_read_lock();
L
Linus Torvalds 已提交
2962 2963
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2964 2965

		dev = &sh->dev[i];
L
Linus Torvalds 已提交
2966 2967
		clear_bit(R5_Insync, &dev->flags);

2968 2969 2970 2971 2972 2973 2974
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
2975
		 * ops_complete_biofill is guaranteed to be inactive
2976 2977
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2978
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2979
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2980 2981

		/* now count some things */
2982 2983
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2984
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
2985

2986 2987 2988
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
2989
			s.to_read++;
L
Linus Torvalds 已提交
2990
		if (dev->towrite) {
2991
			s.to_write++;
L
Linus Torvalds 已提交
2992
			if (!test_bit(R5_OVERWRITE, &dev->flags))
2993
				s.non_overwrite++;
L
Linus Torvalds 已提交
2994
		}
2995 2996
		if (dev->written)
			s.written++;
2997
		rdev = rcu_dereference(conf->disks[i].rdev);
2998 2999
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3000 3001 3002
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3003
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
3004
			/* The ReadError flag will just be confusing now */
3005 3006 3007
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
3008
		if (!rdev || !test_bit(In_sync, &rdev->flags)
3009
		    || test_bit(R5_ReadError, &dev->flags)) {
3010 3011
			s.failed++;
			s.failed_num = i;
L
Linus Torvalds 已提交
3012 3013 3014
		} else
			set_bit(R5_Insync, &dev->flags);
	}
3015
	rcu_read_unlock();
3016

3017
	if (unlikely(blocked_rdev)) {
3018 3019 3020 3021 3022 3023 3024 3025
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3026 3027
	}

3028 3029 3030 3031
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
3032

3033
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
3034
		" to_write=%d failed=%d failed_num=%d\n",
3035 3036
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
3037 3038 3039
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
3040
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3041
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3042
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
3043 3044
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3045
		s.syncing = 0;
L
Linus Torvalds 已提交
3046 3047 3048 3049 3050 3051
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
3052 3053 3054 3055 3056
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3057
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
3058 3059 3060 3061 3062

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3063
	if (s.to_read || s.non_overwrite ||
3064
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3065
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
3066

3067 3068 3069
	/* Now we check to see if any write operations have recently
	 * completed
	 */
3070
	prexor = 0;
3071
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3072
		prexor = 1;
3073 3074
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3075
		sh->reconstruct_state = reconstruct_state_idle;
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
3087 3088
				if (prexor)
					continue;
3089 3090 3091 3092 3093
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3094 3095
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3096 3097 3098 3099 3100 3101 3102 3103
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3104
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3105
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
3106 3107

	/* maybe we need to check and possibly fix the parity for this stripe
3108 3109 3110
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
3111
	 */
3112 3113
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
3114
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3115
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3116
		handle_parity_checks5(conf, sh, &s, disks);
3117

3118
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
3119 3120 3121
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
3122 3123 3124 3125

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
3126 3127 3128 3129
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3130
		) {
3131
		dev = &sh->dev[s.failed_num];
3132 3133 3134 3135
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3136
			s.locked++;
3137 3138 3139 3140
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3141
			s.locked++;
3142 3143 3144
		}
	}

3145 3146
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
3147
		struct stripe_head *sh2
3148
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3164
		sh->reconstruct_state = reconstruct_state_idle;
3165
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
3166
		for (i = conf->raid_disks; i--; ) {
3167
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
3168
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3169
			s.locked++;
D
Dan Williams 已提交
3170
		}
3171 3172 3173
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3174
	    !sh->reconstruct_state) {
3175 3176
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
3177
		stripe_set_idx(sh->sector, conf, 0, sh);
3178
		schedule_reconstruction(sh, &s, 1, 1);
3179
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3180
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3181
		atomic_dec(&conf->reshape_stripes);
3182 3183 3184 3185
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3186
	if (s.expanding && s.locked == 0 &&
3187
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3188
		handle_stripe_expansion(conf, sh, NULL);
3189

3190
 unlock:
L
Linus Torvalds 已提交
3191 3192
	spin_unlock(&sh->lock);

3193 3194 3195 3196
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3197
	if (s.ops_request)
3198
		raid_run_ops(sh, s.ops_request);
3199

3200
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
3201

3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
		 * is waiting on a barrier, it won't continue until the writes
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}
3212
	return_io(return_bi);
L
Linus Torvalds 已提交
3213 3214
}

3215
static void handle_stripe6(struct stripe_head *sh)
L
Linus Torvalds 已提交
3216
{
3217
	raid5_conf_t *conf = sh->raid_conf;
3218
	int disks = sh->disks;
3219
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
3220
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3221 3222
	struct stripe_head_state s;
	struct r6_state r6s;
3223
	struct r5dev *dev, *pdev, *qdev;
3224
	mdk_rdev_t *blocked_rdev = NULL;
3225
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
3226

3227
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3228
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3229
	       (unsigned long long)sh->sector, sh->state,
3230 3231
	       atomic_read(&sh->count), pd_idx, qd_idx,
	       sh->check_state, sh->reconstruct_state);
3232
	memset(&s, 0, sizeof(s));
3233

3234 3235 3236 3237
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3238 3239 3240
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3241
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3242 3243

	rcu_read_lock();
3244 3245 3246 3247
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
		clear_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3248

3249
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3250
			i, dev->flags, dev->toread, dev->towrite, dev->written);
3251 3252 3253 3254 3255 3256 3257 3258
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3259

3260
		/* now count some things */
3261 3262
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3263 3264 3265 3266
		if (test_bit(R5_Wantcompute, &dev->flags)) {
			s.compute++;
			BUG_ON(s.compute > 2);
		}
L
Linus Torvalds 已提交
3267

3268 3269 3270
		if (test_bit(R5_Wantfill, &dev->flags)) {
			s.to_fill++;
		} else if (dev->toread)
3271
			s.to_read++;
3272
		if (dev->towrite) {
3273
			s.to_write++;
3274
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3275
				s.non_overwrite++;
3276
		}
3277 3278
		if (dev->written)
			s.written++;
3279
		rdev = rcu_dereference(conf->disks[i].rdev);
3280 3281
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3282 3283 3284
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3285 3286 3287 3288
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3289
		}
3290 3291
		if (!rdev || !test_bit(In_sync, &rdev->flags)
		    || test_bit(R5_ReadError, &dev->flags)) {
3292 3293 3294
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3295 3296
		} else
			set_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3297 3298
	}
	rcu_read_unlock();
3299 3300

	if (unlikely(blocked_rdev)) {
3301 3302 3303 3304 3305 3306 3307 3308
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3309
	}
3310

3311 3312 3313 3314 3315
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

3316
	pr_debug("locked=%d uptodate=%d to_read=%d"
3317
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3318 3319 3320 3321
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3322
	 */
3323
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3324
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3325
	if (s.failed > 2 && s.syncing) {
3326 3327
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3328
		s.syncing = 0;
3329 3330 3331 3332 3333 3334 3335
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3336 3337
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3338 3339 3340
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3341 3342 3343

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3344
			     && !test_bit(R5_LOCKED, &pdev->flags)
3345 3346
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3347
			     && !test_bit(R5_LOCKED, &qdev->flags)
3348
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3349
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3350 3351 3352 3353 3354

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3355
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3356
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3357
		handle_stripe_fill6(sh, &s, &r6s, disks);
3358

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	if (sh->reconstruct_state == reconstruct_state_drain_result) {

		sh->reconstruct_state = reconstruct_state_idle;
		/* All the 'written' buffers and the parity blocks are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
			    (i == sh->pd_idx || i == qd_idx ||
			     dev->written)) {
				pr_debug("Writing block %d\n", i);
				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
				set_bit(R5_Wantwrite, &dev->flags);
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == qd_idx) &&
				      s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3384 3385
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3386 3387
	}

3388 3389 3390 3391 3392 3393 3394
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3395
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3396 3397

	/* maybe we need to check and possibly fix the parity for this stripe
3398
	 * Any reads will already have been scheduled, so we just see if enough
3399 3400
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
3401
	 */
3402 3403 3404 3405
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3406
		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3407

3408
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3409 3410 3411 3412 3413 3414 3415
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3416 3417 3418
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3419 3420 3421 3422 3423 3424 3425 3426
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3427
					s.locked++;
3428 3429 3430 3431
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3432
					s.locked++;
3433 3434 3435
				}
			}
		}
3436

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
3450
		struct stripe_head *sh2
3451
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3467 3468
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3469
		stripe_set_idx(sh->sector, conf, 0, sh);
3470 3471
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3472 3473 3474 3475 3476 3477
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3478
	if (s.expanding && s.locked == 0 &&
3479
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3480
		handle_stripe_expansion(conf, sh, &r6s);
3481

3482
 unlock:
3483 3484
	spin_unlock(&sh->lock);

3485 3486 3487 3488
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3489 3490 3491
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3492
	ops_run_io(sh, &s);
3493

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505

	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
		 * is waiting on a barrier, it won't continue until the writes
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

D
Dan Williams 已提交
3506
	return_io(return_bi);
3507 3508
}

3509
static void handle_stripe(struct stripe_head *sh)
3510 3511
{
	if (sh->raid_conf->level == 6)
3512
		handle_stripe6(sh);
3513
	else
3514
		handle_stripe5(sh);
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3528
			list_add_tail(&sh->lru, &conf->hold_list);
3529
		}
3530 3531
	} else
		blk_plug_device(conf->mddev->queue);
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
3550
	raid5_conf_t *conf = mddev->private;
3551
	int i;
3552
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
3553 3554

	rcu_read_lock();
3555
	for (i = 0; i < devs; i++) {
3556 3557
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3558
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3559 3560 3561 3562

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3563
			blk_unplug(r_queue);
3564 3565 3566 3567 3568 3569 3570 3571

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3572
static void raid5_unplug_device(struct request_queue *q)
3573 3574
{
	mddev_t *mddev = q->queuedata;
3575
	raid5_conf_t *conf = mddev->private;
3576 3577 3578 3579 3580 3581 3582
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	if (blk_remove_plug(q)) {
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3583
	}
L
Linus Torvalds 已提交
3584 3585 3586 3587 3588 3589 3590
	md_wakeup_thread(mddev->thread);

	spin_unlock_irqrestore(&conf->device_lock, flags);

	unplug_slaves(mddev);
}

3591 3592 3593
static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;
3594
	raid5_conf_t *conf = mddev->private;
3595 3596 3597 3598

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3599 3600 3601

	if (mddev_congested(mddev, bits))
		return 1;
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}

3612 3613 3614
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3615 3616 3617
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3618 3619
{
	mddev_t *mddev = q->queuedata;
3620
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3621
	int max;
3622
	unsigned int chunk_sectors = mddev->chunk_sectors;
3623
	unsigned int bio_sectors = bvm->bi_size >> 9;
3624

3625
	if ((bvm->bi_rw & 1) == WRITE)
3626 3627
		return biovec->bv_len; /* always allow writes to be mergeable */

3628 3629
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3630 3631 3632 3633 3634 3635 3636 3637
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3638 3639 3640 3641

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3642
	unsigned int chunk_sectors = mddev->chunk_sectors;
3643 3644
	unsigned int bio_sectors = bio->bi_size >> 9;

3645 3646
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3647 3648 3649 3650
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3680
		conf->retry_read_aligned_list = bi->bi_next;
3681
		bi->bi_next = NULL;
3682 3683 3684 3685
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3686 3687 3688 3689 3690 3691 3692
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3693 3694 3695 3696 3697 3698
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3699
static void raid5_align_endio(struct bio *bi, int error)
3700 3701
{
	struct bio* raid_bi  = bi->bi_private;
3702 3703 3704 3705 3706
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3707
	bio_put(bi);
3708 3709 3710

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3711 3712
	mddev = rdev->mddev;
	conf = mddev->private;
3713 3714 3715 3716

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3717
		bio_endio(raid_bi, 0);
3718 3719
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3720
		return;
3721 3722 3723
	}


3724
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3725 3726

	add_bio_to_retry(raid_bi, conf);
3727 3728
}

3729 3730
static int bio_fits_rdev(struct bio *bi)
{
3731
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3732

3733
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3734 3735
		return 0;
	blk_recount_segments(q, bi);
3736
	if (bi->bi_phys_segments > queue_max_segments(q))
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3749
static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3750
{
3751
	raid5_conf_t *conf = mddev->private;
N
NeilBrown 已提交
3752
	int dd_idx;
3753 3754 3755 3756
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3757
		pr_debug("chunk_aligned_read : non aligned\n");
3758 3759 3760
		return 0;
	}
	/*
3761
	 * use bio_clone to make a copy of the bio
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3775 3776
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3777
						    &dd_idx, NULL);
3778 3779 3780 3781 3782 3783

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3784 3785 3786 3787 3788
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3789 3790 3791 3792 3793 3794 3795
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3796 3797 3798 3799 3800 3801 3802
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3803 3804 3805 3806
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3807
		bio_put(align_bi);
3808 3809 3810 3811
		return 0;
	}
}

3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3864

3865
static int make_request(mddev_t *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3866
{
3867
	raid5_conf_t *conf = mddev->private;
3868
	int dd_idx;
L
Linus Torvalds 已提交
3869 3870 3871
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3872
	const int rw = bio_data_dir(bi);
3873
	int remaining;
L
Linus Torvalds 已提交
3874

3875
	if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3876 3877 3878 3879 3880 3881 3882
		/* Drain all pending writes.  We only really need
		 * to ensure they have been submitted, but this is
		 * easier.
		 */
		mddev->pers->quiesce(mddev, 1);
		mddev->pers->quiesce(mddev, 0);
		md_barrier_request(mddev, bi);
3883 3884 3885
		return 0;
	}

3886
	md_write_start(mddev, bi);
3887

3888
	if (rw == READ &&
3889
	     mddev->reshape_position == MaxSector &&
3890
	     chunk_aligned_read(mddev,bi))
3891
		return 0;
3892

L
Linus Torvalds 已提交
3893 3894 3895 3896
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3897

L
Linus Torvalds 已提交
3898 3899
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3900
		int disks, data_disks;
3901
		int previous;
3902

3903
	retry:
3904
		previous = 0;
3905
		disks = conf->raid_disks;
3906
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3907
		if (unlikely(conf->reshape_progress != MaxSector)) {
3908
			/* spinlock is needed as reshape_progress may be
3909 3910
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3911
			 * Ofcourse reshape_progress could change after
3912 3913 3914 3915
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3916
			spin_lock_irq(&conf->device_lock);
3917 3918 3919
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3920
				disks = conf->previous_raid_disks;
3921 3922
				previous = 1;
			} else {
3923 3924 3925
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3926 3927 3928 3929 3930
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3931 3932
			spin_unlock_irq(&conf->device_lock);
		}
3933 3934
		data_disks = disks - conf->max_degraded;

3935 3936
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3937
						  &dd_idx, NULL);
3938
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3939 3940 3941
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3942
		sh = get_active_stripe(conf, new_sector, previous,
3943
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
3944
		if (sh) {
3945
			if (unlikely(previous)) {
3946
				/* expansion might have moved on while waiting for a
3947 3948 3949 3950 3951 3952
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3953 3954 3955
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3956 3957 3958
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
3959 3960 3961 3962 3963
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
3964
					schedule();
3965 3966 3967
					goto retry;
				}
			}
3968

3969 3970
			if (bio_data_dir(bi) == WRITE &&
			    logical_sector >= mddev->suspend_lo &&
3971 3972
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
3983 3984
				goto retry;
			}
3985 3986 3987 3988 3989

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3990 3991 3992 3993 3994 3995 3996 3997
				 * and wait a while
				 */
				raid5_unplug_device(mddev->queue);
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3998 3999
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
4000 4001 4002
			if (mddev->barrier && 
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
4013
	remaining = raid5_dec_bi_phys_segments(bi);
4014 4015
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
4016

4017
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4018
			md_write_end(mddev);
4019

4020
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4021
	}
4022 4023 4024 4025 4026 4027 4028 4029

	if (mddev->barrier) {
		/* We need to wait for the stripes to all be handled.
		 * So: wait for preread_active_stripes to drop to 0.
		 */
		wait_event(mddev->thread->wqueue,
			   atomic_read(&conf->preread_active_stripes) == 0);
	}
L
Linus Torvalds 已提交
4030 4031 4032
	return 0;
}

D
Dan Williams 已提交
4033 4034
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

4035
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4036
{
4037 4038 4039 4040 4041 4042 4043 4044 4045
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4046
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4047
	struct stripe_head *sh;
4048
	sector_t first_sector, last_sector;
4049 4050 4051
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4052 4053
	int i;
	int dd_idx;
4054
	sector_t writepos, readpos, safepos;
4055
	sector_t stripe_addr;
4056
	int reshape_sectors;
4057
	struct list_head stripes;
4058

4059 4060 4061 4062 4063 4064
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4065
		} else if (mddev->delta_disks >= 0 &&
4066 4067
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4068
		sector_div(sector_nr, new_data_disks);
4069
		if (sector_nr) {
4070 4071
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4072 4073 4074
			*skipped = 1;
			return sector_nr;
		}
4075 4076
	}

4077 4078 4079 4080
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4081 4082
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4083
	else
4084
		reshape_sectors = mddev->chunk_sectors;
4085

4086 4087 4088 4089 4090
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
4091 4092
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
4093
	 */
4094
	writepos = conf->reshape_progress;
4095
	sector_div(writepos, new_data_disks);
4096 4097
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4098
	safepos = conf->reshape_safe;
4099
	sector_div(safepos, data_disks);
4100
	if (mddev->delta_disks < 0) {
4101
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4102
		readpos += reshape_sectors;
4103
		safepos += reshape_sectors;
4104
	} else {
4105
		writepos += reshape_sectors;
4106 4107
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4108
	}
4109

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4127
	if ((mddev->delta_disks < 0
4128 4129 4130
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4131 4132 4133
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4134
		mddev->reshape_position = conf->reshape_progress;
4135
		mddev->curr_resync_completed = mddev->curr_resync;
4136
		conf->reshape_checkpoint = jiffies;
4137
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4138
		md_wakeup_thread(mddev->thread);
4139
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4140 4141
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4142
		conf->reshape_safe = mddev->reshape_position;
4143 4144
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4145
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4146 4147
	}

4148 4149 4150 4151
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4152 4153
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4154 4155
		       != sector_nr);
	} else {
4156
		BUG_ON(writepos != sector_nr + reshape_sectors);
4157 4158
		stripe_addr = sector_nr;
	}
4159
	INIT_LIST_HEAD(&stripes);
4160
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4161
		int j;
4162
		int skipped_disk = 0;
4163
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4164 4165 4166 4167 4168 4169 4170 4171 4172
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4173
			if (conf->level == 6 &&
4174
			    j == sh->qd_idx)
4175
				continue;
4176
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4177
			if (s < raid5_size(mddev, 0, 0)) {
4178
				skipped_disk = 1;
4179 4180 4181 4182 4183 4184
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4185
		if (!skipped_disk) {
4186 4187 4188
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4189
		list_add(&sh->lru, &stripes);
4190 4191
	}
	spin_lock_irq(&conf->device_lock);
4192
	if (mddev->delta_disks < 0)
4193
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4194
	else
4195
		conf->reshape_progress += reshape_sectors * new_data_disks;
4196 4197 4198 4199 4200 4201 4202
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4203
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4204
				     1, &dd_idx, NULL);
4205
	last_sector =
4206
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4207
					    * new_data_disks - 1),
4208
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4209 4210
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4211
	while (first_sector <= last_sector) {
4212
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4213 4214 4215 4216 4217
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4218 4219 4220 4221 4222 4223 4224 4225
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4226 4227 4228
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4229
	sector_nr += reshape_sectors;
4230 4231
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4232 4233 4234
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4235
		mddev->reshape_position = conf->reshape_progress;
4236
		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4237
		conf->reshape_checkpoint = jiffies;
4238 4239 4240 4241 4242 4243
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4244
		conf->reshape_safe = mddev->reshape_position;
4245 4246
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4247
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4248
	}
4249
	return reshape_sectors;
4250 4251 4252 4253 4254
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
4255
	raid5_conf_t *conf = mddev->private;
4256
	struct stripe_head *sh;
A
Andre Noll 已提交
4257
	sector_t max_sector = mddev->dev_sectors;
4258
	int sync_blocks;
4259 4260
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4261

4262
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4263 4264
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
4265

4266 4267 4268 4269
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4270 4271 4272 4273

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4274
		else /* completed sync */
4275 4276 4277
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4278 4279
		return 0;
	}
4280

4281 4282 4283
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4284 4285
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4286

4287 4288 4289 4290 4291 4292
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4293
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4294 4295 4296
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4297
	if (mddev->degraded >= conf->max_degraded &&
4298
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4299
		sector_t rv = mddev->dev_sectors - sector_nr;
4300
		*skipped = 1;
L
Linus Torvalds 已提交
4301 4302
		return rv;
	}
4303
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4304
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4305 4306 4307 4308 4309 4310
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4311

N
NeilBrown 已提交
4312 4313 4314

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4315
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4316
	if (sh == NULL) {
4317
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4318
		/* make sure we don't swamp the stripe cache if someone else
4319
		 * is trying to get access
L
Linus Torvalds 已提交
4320
		 */
4321
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4322
	}
4323 4324 4325 4326
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4327
	for (i = 0; i < conf->raid_disks; i++)
4328 4329 4330 4331 4332 4333
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
4334 4335 4336 4337
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

4338
	handle_stripe(sh);
L
Linus Torvalds 已提交
4339 4340 4341 4342 4343
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4357
	int dd_idx;
4358 4359 4360 4361 4362 4363
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4364
	sector = raid5_compute_sector(conf, logical_sector,
4365
				      0, &dd_idx, NULL);
4366 4367 4368
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4369 4370 4371
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4372

4373
		if (scnt < raid5_bi_hw_segments(raid_bio))
4374 4375 4376
			/* already done this stripe */
			continue;

4377
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4378 4379 4380

		if (!sh) {
			/* failed to get a stripe - must wait */
4381
			raid5_set_bi_hw_segments(raid_bio, scnt);
4382 4383 4384 4385 4386
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4387 4388
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4389
			raid5_set_bi_hw_segments(raid_bio, scnt);
4390 4391 4392 4393
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4394
		handle_stripe(sh);
4395 4396 4397 4398
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4399
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4400
	spin_unlock_irq(&conf->device_lock);
4401 4402
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4403 4404 4405 4406 4407 4408
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4409 4410 4411 4412 4413 4414 4415
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4416
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4417 4418
{
	struct stripe_head *sh;
4419
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4420 4421
	int handled;

4422
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4423 4424 4425 4426 4427 4428

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4429
		struct bio *bio;
L
Linus Torvalds 已提交
4430

4431
		if (conf->seq_flush != conf->seq_write) {
4432
			int seq = conf->seq_flush;
4433
			spin_unlock_irq(&conf->device_lock);
4434
			bitmap_unplug(mddev->bitmap);
4435
			spin_lock_irq(&conf->device_lock);
4436 4437 4438 4439
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4450 4451
		sh = __get_priority_stripe(conf);

4452
		if (!sh)
L
Linus Torvalds 已提交
4453 4454 4455 4456
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4457 4458 4459
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4460 4461 4462

		spin_lock_irq(&conf->device_lock);
	}
4463
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4464 4465 4466

	spin_unlock_irq(&conf->device_lock);

4467
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4468 4469
	unplug_slaves(mddev);

4470
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4471 4472
}

4473
static ssize_t
4474
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4475
{
4476
	raid5_conf_t *conf = mddev->private;
4477 4478 4479 4480
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4481 4482 4483
}

static ssize_t
4484
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4485
{
4486
	raid5_conf_t *conf = mddev->private;
4487
	unsigned long new;
4488 4489
	int err;

4490 4491
	if (len >= PAGE_SIZE)
		return -EINVAL;
4492 4493
	if (!conf)
		return -ENODEV;
4494

4495
	if (strict_strtoul(page, 10, &new))
4496 4497 4498 4499 4500 4501 4502 4503 4504
		return -EINVAL;
	if (new <= 16 || new > 32768)
		return -EINVAL;
	while (new < conf->max_nr_stripes) {
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4505 4506 4507
	err = md_allow_write(mddev);
	if (err)
		return err;
4508 4509 4510 4511 4512 4513 4514
	while (new > conf->max_nr_stripes) {
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
	return len;
}
4515

4516 4517 4518 4519
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4520

4521 4522 4523
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4524
	raid5_conf_t *conf = mddev->private;
4525 4526 4527 4528 4529 4530 4531 4532 4533
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4534
	raid5_conf_t *conf = mddev->private;
4535
	unsigned long new;
4536 4537 4538 4539 4540
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4541
	if (strict_strtoul(page, 10, &new))
4542
		return -EINVAL;
4543
	if (new > conf->max_nr_stripes)
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4555
static ssize_t
4556
stripe_cache_active_show(mddev_t *mddev, char *page)
4557
{
4558
	raid5_conf_t *conf = mddev->private;
4559 4560 4561 4562
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4563 4564
}

4565 4566
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4567

4568
static struct attribute *raid5_attrs[] =  {
4569 4570
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4571
	&raid5_preread_bypass_threshold.attr,
4572 4573
	NULL,
};
4574 4575 4576
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4577 4578
};

4579 4580 4581
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4582
	raid5_conf_t *conf = mddev->private;
4583 4584 4585

	if (!sectors)
		sectors = mddev->dev_sectors;
4586
	if (!raid_disks)
4587
		/* size is defined by the smallest of previous and new size */
4588
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4589

4590
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4591
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4592 4593 4594
	return sectors * (raid_disks - conf->max_degraded);
}

4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4607
		kfree(percpu->scribble);
4608 4609 4610 4611 4612 4613 4614 4615 4616
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4617 4618 4619
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4620
	raid5_free_percpu(conf);
4621 4622 4623 4624 4625
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4637
		if (conf->level == 6 && !percpu->spare_page)
4638
			percpu->spare_page = alloc_page(GFP_KERNEL);
4639 4640 4641 4642 4643 4644 4645
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4646 4647 4648 4649 4650 4651 4652 4653
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
			return NOTIFY_BAD;
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4654
		kfree(percpu->scribble);
4655
		percpu->spare_page = NULL;
4656
		percpu->scribble = NULL;
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
4669
	struct raid5_percpu __percpu *allcpus;
4670
	void *scribble;
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4681 4682 4683 4684 4685 4686 4687 4688
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4689
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4690
		if (!scribble) {
4691 4692 4693
			err = -ENOMEM;
			break;
		}
4694
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4707
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4708 4709
{
	raid5_conf_t *conf;
4710
	int raid_disk, memory, max_disks;
L
Linus Torvalds 已提交
4711 4712 4713
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4714 4715 4716
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4717
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4718 4719
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4720
	}
N
NeilBrown 已提交
4721 4722 4723 4724
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4725
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4726 4727
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4728
	}
N
NeilBrown 已提交
4729
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4730
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4731 4732
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4733 4734
	}

4735 4736 4737
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4738 4739
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4740
		return ERR_PTR(-EINVAL);
4741 4742
	}

N
NeilBrown 已提交
4743 4744
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4745
		goto abort;
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
N
NeilBrown 已提交
4758 4759 4760 4761 4762

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4763
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4764 4765
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4766

4767
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4768 4769 4770
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4771

L
Linus Torvalds 已提交
4772 4773
	conf->mddev = mddev;

4774
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4775 4776
		goto abort;

4777 4778 4779 4780
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4781
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4782

4783
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4784
		raid_disk = rdev->raid_disk;
4785
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4786 4787 4788 4789 4790 4791
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4792
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4793
			char b[BDEVNAME_SIZE];
4794 4795 4796
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4797 4798 4799
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4800 4801
	}

4802
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4803
	conf->level = mddev->new_level;
4804 4805 4806 4807
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4808
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4809
	conf->max_nr_stripes = NR_STRIPES;
4810
	conf->reshape_progress = mddev->reshape_position;
4811
	if (conf->reshape_progress != MaxSector) {
4812
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4813 4814
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4815

N
NeilBrown 已提交
4816
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4817
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4818 4819
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4820 4821
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4822 4823
		goto abort;
	} else
4824 4825
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4826

4827
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4828 4829
	if (!conf->thread) {
		printk(KERN_ERR
4830
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4831
		       mdname(mddev));
4832 4833
		goto abort;
	}
N
NeilBrown 已提交
4834 4835 4836 4837 4838

	return conf;

 abort:
	if (conf) {
4839
		free_conf(conf);
N
NeilBrown 已提交
4840 4841 4842 4843 4844
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

N
NeilBrown 已提交
4872 4873 4874
static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4875
	int working_disks = 0, chunk_size;
4876
	int dirty_parity_disks = 0;
N
NeilBrown 已提交
4877
	mdk_rdev_t *rdev;
4878
	sector_t reshape_offset = 0;
N
NeilBrown 已提交
4879

4880
	if (mddev->recovery_cp != MaxSector)
4881
		printk(KERN_NOTICE "md/raid:%s: not clean"
4882 4883
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4884 4885 4886 4887 4888 4889 4890 4891
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4892
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4893

4894
		if (mddev->new_level != mddev->level) {
4895
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4906
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4907
			       (mddev->raid_disks - max_degraded))) {
4908 4909
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
4910 4911
			return -EINVAL;
		}
4912
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
4913 4914
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4915
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4916 4917 4918
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
4930 4931 4932
				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
				       " in read-only mode - aborting\n",
				       mdname(mddev));
4933 4934 4935 4936 4937 4938 4939
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
4940
			/* Reading from the same stripe as writing to - bad */
4941 4942 4943
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
4944 4945
			return -EINVAL;
		}
4946 4947
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
4948 4949 4950 4951
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
4952
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
4953
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4954
	}
N
NeilBrown 已提交
4955

4956 4957 4958 4959 4960
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
4971 4972 4973 4974
	list_for_each_entry(rdev, &mddev->disks, same_set) {
		if (rdev->raid_disk < 0)
			continue;
		if (test_bit(In_sync, &rdev->flags))
N
NeilBrown 已提交
4975
			working_disks++;
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5004

5005 5006
	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
			   - working_disks);
N
NeilBrown 已提交
5007

5008
	if (mddev->degraded > conf->max_degraded) {
5009
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5010
			" (%d/%d failed)\n",
5011
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5012 5013 5014
		goto abort;
	}

N
NeilBrown 已提交
5015
	/* device size must be a multiple of chunk size */
5016
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5017 5018
	mddev->resync_max_sectors = mddev->dev_sectors;

5019
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5020
	    mddev->recovery_cp != MaxSector) {
5021 5022
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5023 5024
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5025 5026 5027
			       mdname(mddev));
		else {
			printk(KERN_ERR
5028
			       "md/raid:%s: cannot start dirty degraded array.\n",
5029 5030 5031
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5032 5033 5034
	}

	if (mddev->degraded == 0)
5035 5036
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5037 5038
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5039
	else
5040 5041 5042 5043 5044
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5045 5046 5047

	print_raid5_conf(conf);

5048 5049
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5050 5051 5052 5053 5054 5055
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5056
							"reshape");
5057 5058
	}

L
Linus Torvalds 已提交
5059
	/* read-ahead size must cover two whole stripes, which is
5060
	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
L
Linus Torvalds 已提交
5061 5062
	 */
	{
5063 5064
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
5065
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
L
Linus Torvalds 已提交
5066 5067 5068 5069 5070
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
	}

	/* Ok, everything is just fine now */
5071 5072 5073
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
	else if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5074
		printk(KERN_WARNING
5075
		       "md/raid:%s: failed to create sysfs attributes.\n",
5076
		       mdname(mddev));
5077

N
NeilBrown 已提交
5078 5079
	mddev->queue->queue_lock = &conf->device_lock;

5080
	mddev->queue->unplug_fn = raid5_unplug_device;
5081
	mddev->queue->backing_dev_info.congested_data = mddev;
5082
	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5083

5084
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5085

5086
	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5087 5088 5089 5090 5091 5092 5093 5094
	chunk_size = mddev->chunk_sectors << 9;
	blk_queue_io_min(mddev->queue, chunk_size);
	blk_queue_io_opt(mddev->queue, chunk_size *
			 (conf->raid_disks - conf->max_degraded));

	list_for_each_entry(rdev, &mddev->disks, same_set)
		disk_stack_limits(mddev->gendisk, rdev->bdev,
				  rdev->data_offset << 9);
5095

L
Linus Torvalds 已提交
5096 5097
	return 0;
abort:
5098
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
5099
	mddev->thread = NULL;
L
Linus Torvalds 已提交
5100 5101
	if (conf) {
		print_raid5_conf(conf);
5102
		free_conf(conf);
L
Linus Torvalds 已提交
5103 5104
	}
	mddev->private = NULL;
5105
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5106 5107 5108
	return -EIO;
}

5109
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
5110
{
5111
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5112 5113 5114

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
5115
	mddev->queue->backing_dev_info.congested_fn = NULL;
L
Linus Torvalds 已提交
5116
	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5117
	free_conf(conf);
5118 5119
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5120 5121 5122
	return 0;
}

5123
#ifdef DEBUG
5124
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
5125 5126 5127
{
	int i;

5128 5129 5130 5131 5132
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5133
	for (i = 0; i < sh->disks; i++) {
5134 5135
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
5136
	}
5137
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
5138 5139
}

5140
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
5141 5142
{
	struct stripe_head *sh;
5143
	struct hlist_node *hn;
L
Linus Torvalds 已提交
5144 5145 5146 5147
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
5148
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
5149 5150
			if (sh->raid_conf != conf)
				continue;
5151
			print_sh(seq, sh);
L
Linus Torvalds 已提交
5152 5153 5154 5155 5156 5157
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

5158
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
5159
{
5160
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5161 5162
	int i;

5163 5164
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5165
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5166 5167 5168
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5169
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5170
	seq_printf (seq, "]");
5171
#ifdef DEBUG
5172 5173
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
5174 5175 5176 5177 5178 5179 5180 5181
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

5182
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5183 5184 5185 5186
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5187 5188 5189
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5190 5191 5192 5193 5194

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5195 5196 5197
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
5210
		    && !test_bit(Faulty, &tmp->rdev->flags)
5211 5212 5213
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5214
			mddev->degraded--;
5215
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
		}
	}
	print_raid5_conf(conf);
	return 0;
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
5232 5233 5234 5235
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

5236
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
5237 5238 5239 5240
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
5241 5242 5243 5244
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
5245 5246
		    mddev->degraded <= conf->max_degraded &&
		    number < conf->raid_disks) {
5247 5248 5249
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
5250
		p->rdev = NULL;
5251
		synchronize_rcu();
L
Linus Torvalds 已提交
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
5267
	int err = -EEXIST;
L
Linus Torvalds 已提交
5268 5269
	int disk;
	struct disk_info *p;
5270 5271
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5272

5273
	if (mddev->degraded > conf->max_degraded)
L
Linus Torvalds 已提交
5274
		/* no point adding a device */
5275
		return -EINVAL;
L
Linus Torvalds 已提交
5276

5277 5278
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5279 5280

	/*
5281 5282
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5283
	 */
5284
	if (rdev->saved_raid_disk >= 0 &&
5285
	    rdev->saved_raid_disk >= first &&
5286 5287 5288
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5289 5290
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5291
		if ((p=conf->disks + disk)->rdev == NULL) {
5292
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5293
			rdev->raid_disk = disk;
5294
			err = 0;
5295 5296
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5297
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5298 5299 5300
			break;
		}
	print_raid5_conf(conf);
5301
	return err;
L
Linus Torvalds 已提交
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5313
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5314 5315
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5316 5317 5318
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5319
	set_capacity(mddev->gendisk, mddev->array_sectors);
5320
	revalidate_disk(mddev->gendisk);
A
Andre Noll 已提交
5321 5322
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5323 5324
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5325
	mddev->dev_sectors = sectors;
5326
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5327 5328 5329
	return 0;
}

5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5345 5346
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5347 5348 5349 5350 5351 5352 5353
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5354
static int check_reshape(mddev_t *mddev)
5355
{
5356
	raid5_conf_t *conf = mddev->private;
5357

5358 5359
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5360
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5361
		return 0; /* nothing to do */
5362 5363 5364
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
	if (mddev->degraded > conf->max_degraded)
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5379

5380
	if (!check_stripe_cache(mddev))
5381 5382
		return -ENOSPC;

5383
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5384 5385 5386 5387
}

static int raid5_start_reshape(mddev_t *mddev)
{
5388
	raid5_conf_t *conf = mddev->private;
5389 5390 5391
	mdk_rdev_t *rdev;
	int spares = 0;
	int added_devices = 0;
5392
	unsigned long flags;
5393

5394
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5395 5396
		return -EBUSY;

5397 5398 5399
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5400
	list_for_each_entry(rdev, &mddev->disks, same_set)
5401 5402 5403
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
5404

5405
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5406 5407 5408 5409 5410
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5411 5412 5413 5414 5415 5416
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5417
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5418 5419 5420 5421
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5422
	atomic_set(&conf->reshape_stripes, 0);
5423 5424
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5425
	conf->raid_disks += mddev->delta_disks;
5426 5427
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5428 5429
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5430 5431 5432 5433 5434
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5435
	conf->generation++;
5436 5437 5438 5439 5440
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
	 */
5441
	list_for_each_entry(rdev, &mddev->disks, same_set)
5442 5443
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
5444
			if (raid5_add_disk(mddev, rdev) == 0) {
5445
				char nm[20];
5446
				if (rdev->raid_disk >= conf->previous_raid_disks) {
5447
					set_bit(In_sync, &rdev->flags);
5448 5449
					added_devices++;
				} else
5450
					rdev->recovery_offset = 0;
5451
				sprintf(nm, "rd%d", rdev->raid_disk);
5452 5453 5454
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
					printk(KERN_WARNING
5455 5456 5457
					       "md/raid:%s: failed to create "
					       " link %s\n",
					       mdname(mddev), nm);
5458 5459 5460 5461
			} else
				break;
		}

5462 5463 5464
	/* When a reshape changes the number of devices, ->degraded
	 * is measured against the large of the pre and post number of
	 * devices.*/
5465 5466
	if (mddev->delta_disks > 0) {
		spin_lock_irqsave(&conf->device_lock, flags);
5467
		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5468 5469 5470
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5471
	mddev->raid_disks = conf->raid_disks;
5472
	mddev->reshape_position = conf->reshape_progress;
5473
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5474

5475 5476 5477 5478 5479
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5480
						"reshape");
5481 5482 5483 5484
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5485
		conf->reshape_progress = MaxSector;
5486 5487 5488
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5489
	conf->reshape_checkpoint = jiffies;
5490 5491 5492 5493 5494
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5495 5496 5497
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5498 5499 5500
static void end_reshape(raid5_conf_t *conf)
{

5501 5502 5503
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5504
		conf->previous_raid_disks = conf->raid_disks;
5505
		conf->reshape_progress = MaxSector;
5506
		spin_unlock_irq(&conf->device_lock);
5507
		wake_up(&conf->wait_for_overlap);
5508 5509 5510 5511 5512

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
		{
5513
			int data_disks = conf->raid_disks - conf->max_degraded;
5514
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5515
						   / PAGE_SIZE);
5516 5517 5518
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5519 5520 5521
	}
}

5522 5523 5524
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5525 5526
static void raid5_finish_reshape(mddev_t *mddev)
{
5527
	raid5_conf_t *conf = mddev->private;
5528 5529 5530

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5531 5532 5533
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5534
			revalidate_disk(mddev->gendisk);
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5545 5546 5547 5548 5549 5550 5551 5552 5553
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
					char nm[20];
					sprintf(nm, "rd%d", rdev->raid_disk);
					sysfs_remove_link(&mddev->kobj, nm);
					rdev->raid_disk = -1;
				}
			}
5554
		}
5555
		mddev->layout = conf->algorithm;
5556
		mddev->chunk_sectors = conf->chunk_sectors;
5557 5558
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5559 5560 5561
	}
}

5562 5563
static void raid5_quiesce(mddev_t *mddev, int state)
{
5564
	raid5_conf_t *conf = mddev->private;
5565 5566

	switch(state) {
5567 5568 5569 5570
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5571 5572
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5573 5574 5575 5576
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5577
		wait_event_lock_irq(conf->wait_for_stripe,
5578 5579
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5580
				    conf->device_lock, /* nothing */);
5581
		conf->quiesce = 1;
5582
		spin_unlock_irq(&conf->device_lock);
5583 5584
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5585 5586 5587 5588 5589 5590
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5591
		wake_up(&conf->wait_for_overlap);
5592 5593 5594 5595
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5596

5597

D
Dan Williams 已提交
5598
static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5599
{
D
Dan Williams 已提交
5600
	struct raid0_private_data *raid0_priv = mddev->private;
5601

D
Dan Williams 已提交
5602 5603
	/* for raid0 takeover only one zone is supported */
	if (raid0_priv->nr_strip_zones > 1) {
5604 5605
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5606 5607 5608 5609
		return ERR_PTR(-EINVAL);
	}

	mddev->new_level = level;
5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5643
	mddev->new_chunk_sectors = chunksect;
5644 5645 5646 5647

	return setup_conf(mddev);
}

5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5681

5682
static int raid5_check_reshape(mddev_t *mddev)
5683
{
5684 5685 5686 5687
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5688
	 */
5689
	raid5_conf_t *conf = mddev->private;
5690
	int new_chunk = mddev->new_chunk_sectors;
5691

5692
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5693 5694
		return -EINVAL;
	if (new_chunk > 0) {
5695
		if (!is_power_of_2(new_chunk))
5696
			return -EINVAL;
5697
		if (new_chunk < (PAGE_SIZE>>9))
5698
			return -EINVAL;
5699
		if (mddev->array_sectors & (new_chunk-1))
5700 5701 5702 5703 5704 5705
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5706
	if (mddev->raid_disks == 2) {
5707 5708 5709 5710
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5711 5712
		}
		if (new_chunk > 0) {
5713 5714
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5715 5716 5717
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5718
	}
5719
	return check_reshape(mddev);
5720 5721
}

5722
static int raid6_check_reshape(mddev_t *mddev)
5723
{
5724
	int new_chunk = mddev->new_chunk_sectors;
5725

5726
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5727
		return -EINVAL;
5728
	if (new_chunk > 0) {
5729
		if (!is_power_of_2(new_chunk))
5730
			return -EINVAL;
5731
		if (new_chunk < (PAGE_SIZE >> 9))
5732
			return -EINVAL;
5733
		if (mddev->array_sectors & (new_chunk-1))
5734 5735
			/* not factor of array size */
			return -EINVAL;
5736
	}
5737 5738

	/* They look valid */
5739
	return check_reshape(mddev);
5740 5741
}

5742 5743 5744
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
D
Dan Williams 已提交
5745
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5746 5747 5748 5749
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5750 5751
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5752 5753
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5754 5755 5756 5757 5758
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5759 5760
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5761 5762 5763 5764

	return ERR_PTR(-EINVAL);
}

5765 5766
static void *raid4_takeover(mddev_t *mddev)
{
D
Dan Williams 已提交
5767 5768 5769
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5770
	 */
D
Dan Williams 已提交
5771 5772
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5773 5774 5775 5776 5777 5778 5779 5780
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5781

5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5846
	.size		= raid5_size,
5847
	.check_reshape	= raid6_check_reshape,
5848
	.start_reshape  = raid5_start_reshape,
5849
	.finish_reshape = raid5_finish_reshape,
5850
	.quiesce	= raid5_quiesce,
5851
	.takeover	= raid6_takeover,
5852
};
5853
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5854 5855
{
	.name		= "raid5",
5856
	.level		= 5,
L
Linus Torvalds 已提交
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5868
	.size		= raid5_size,
5869 5870
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5871
	.finish_reshape = raid5_finish_reshape,
5872
	.quiesce	= raid5_quiesce,
5873
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5874 5875
};

5876
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5877
{
5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5891
	.size		= raid5_size,
5892 5893
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5894
	.finish_reshape = raid5_finish_reshape,
5895
	.quiesce	= raid5_quiesce,
5896
	.takeover	= raid4_takeover,
5897 5898 5899 5900
};

static int __init raid5_init(void)
{
5901
	register_md_personality(&raid6_personality);
5902 5903 5904
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5905 5906
}

5907
static void raid5_exit(void)
L
Linus Torvalds 已提交
5908
{
5909
	unregister_md_personality(&raid6_personality);
5910 5911
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5912 5913 5914 5915 5916
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
5917
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
5918
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5919 5920
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5921 5922
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5923 5924 5925 5926 5927 5928 5929
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");