raid5.c 160.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include "md.h"
54
#include "raid5.h"
55
#include "bitmap.h"
56

L
Linus Torvalds 已提交
57 58 59 60 61 62 63 64 65
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
66
#define BYPASS_THRESHOLD	1
67
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
68 69
#define HASH_MASK		(NR_HASH - 1)

70
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

92
#ifdef DEBUG
L
Linus Torvalds 已提交
93 94 95 96
#define inline
#define __inline__
#endif

97 98
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

99
/*
100 101
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
102 103 104
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
105
	return bio->bi_phys_segments & 0xffff;
106 107 108 109
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
110
	return (bio->bi_phys_segments >> 16) & 0xffff;
111 112 113 114 115 116 117 118 119 120 121 122 123
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
124
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
125 126 127 128 129
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
130
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
131 132
}

133 134 135
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
136 137 138 139
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
140 141 142 143 144
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
145 146 147 148 149
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
150

151 152 153 154 155
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
156 157
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
158 159
{
	int slot;
160

161
	if (idx == sh->pd_idx)
162
		return syndrome_disks;
163
	if (idx == sh->qd_idx)
164
		return syndrome_disks + 1;
165 166 167 168
	slot = (*count)++;
	return slot;
}

169 170 171 172 173 174 175 176
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
177
		bio_endio(bi, 0);
178 179 180 181
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
182 183
static void print_raid5_conf (raid5_conf_t *conf);

184 185 186 187 188 189 190
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

191
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
192 193
{
	if (atomic_dec_and_test(&sh->count)) {
194 195
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
196
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
197
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
198
				list_add_tail(&sh->lru, &conf->delayed_list);
199 200
				blk_plug_device(conf->mddev->queue);
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
201
				   sh->bm_seq - conf->seq_write > 0) {
202
				list_add_tail(&sh->lru, &conf->bitmap_list);
203 204
				blk_plug_device(conf->mddev->queue);
			} else {
205
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
206
				list_add_tail(&sh->lru, &conf->handle_list);
207
			}
L
Linus Torvalds 已提交
208 209
			md_wakeup_thread(conf->mddev->thread);
		} else {
210
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
211 212 213 214 215 216
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
217 218
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
219
				wake_up(&conf->wait_for_stripe);
220 221
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
222
			}
L
Linus Torvalds 已提交
223 224 225
		}
	}
}
226

L
Linus Torvalds 已提交
227 228 229 230
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
231

L
Linus Torvalds 已提交
232 233 234 235 236
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

237
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
238
{
239 240
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
241

242
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
243 244
}

245
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
246
{
247
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
248

249 250
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
251 252

	CHECK_DEVLOCK();
253
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

static void shrink_buffers(struct stripe_head *sh, int num)
{
	struct page *p;
	int i;

	for (i=0; i<num ; i++) {
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
285
		put_page(p);
L
Linus Torvalds 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	}
}

static int grow_buffers(struct stripe_head *sh, int num)
{
	int i;

	for (i=0; i<num; i++) {
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

304
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
305 306
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
307

308
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
309 310
{
	raid5_conf_t *conf = sh->raid_conf;
311
	int i;
L
Linus Torvalds 已提交
312

313 314
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
315
	BUG_ON(stripe_operations_active(sh));
316

L
Linus Torvalds 已提交
317
	CHECK_DEVLOCK();
318
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
319 320 321
		(unsigned long long)sh->sector);

	remove_hash(sh);
322

323
	sh->generation = conf->generation - previous;
324
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
325
	sh->sector = sector;
326
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
327 328
	sh->state = 0;

329 330

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
331 332
		struct r5dev *dev = &sh->dev[i];

333
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
334
		    test_bit(R5_LOCKED, &dev->flags)) {
335
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
336
			       (unsigned long long)sh->sector, i, dev->toread,
337
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
338 339 340 341
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
342
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
343 344 345 346
	}
	insert_hash(conf, sh);
}

347 348
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
349 350
{
	struct stripe_head *sh;
351
	struct hlist_node *hn;
L
Linus Torvalds 已提交
352 353

	CHECK_DEVLOCK();
354
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
355
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
356
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
357
			return sh;
358
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
359 360 361 362
	return NULL;
}

static void unplug_slaves(mddev_t *mddev);
363
static void raid5_unplug_device(struct request_queue *q);
L
Linus Torvalds 已提交
364

365 366
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
367
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
368 369 370
{
	struct stripe_head *sh;

371
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
372 373 374 375

	spin_lock_irq(&conf->device_lock);

	do {
376
		wait_event_lock_irq(conf->wait_for_stripe,
377
				    conf->quiesce == 0 || noquiesce,
378
				    conf->device_lock, /* nothing */);
379
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387 388
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
389 390
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
391 392
						     || !conf->inactive_blocked),
						    conf->device_lock,
393
						    raid5_unplug_device(conf->mddev->queue)
L
Linus Torvalds 已提交
394 395 396
					);
				conf->inactive_blocked = 0;
			} else
397
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
398 399
		} else {
			if (atomic_read(&sh->count)) {
400 401
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
402 403 404
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
405 406
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
407 408
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
409 410 411 412 413 414 415 416 417 418 419
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

420 421 422 423
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
424

425
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
			rw = WRITE;
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
460
			if (s->syncing || s->expanding || s->expanded)
461 462
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
463 464
			set_bit(STRIPE_IO_STARTED, &sh->state);

465 466
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
467
				__func__, (unsigned long long)sh->sector,
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
504
	struct async_submit_ctl submit;
D
Dan Williams 已提交
505
	enum async_tx_flags flags = 0;
506 507 508 509 510

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
511

D
Dan Williams 已提交
512 513 514 515
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
537
						  b_offset, clen, &submit);
538 539
			else
				tx = async_memcpy(bio_page, page, b_offset,
540
						  page_offset, clen, &submit);
541
		}
542 543 544
		/* chain the operations */
		submit.depend_tx = tx;

545 546 547 548 549 550 551 552 553 554 555 556 557
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
558
	int i;
559

560
	pr_debug("%s: stripe %llu\n", __func__,
561 562 563
		(unsigned long long)sh->sector);

	/* clear completed biofills */
564
	spin_lock_irq(&conf->device_lock);
565 566 567 568
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
569 570
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
571
		 * !STRIPE_BIOFILL_RUN
572 573
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
574 575 576 577 578 579 580 581
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
582
				if (!raid5_dec_bi_phys_segments(rbi)) {
583 584 585 586 587 588 589
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
590 591
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
592 593 594

	return_io(return_bi);

595
	set_bit(STRIPE_HANDLE, &sh->state);
596 597 598 599 600 601 602
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
603
	struct async_submit_ctl submit;
604 605
	int i;

606
	pr_debug("%s: stripe %llu\n", __func__,
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
627 628
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
629 630
}

631
static void mark_target_uptodate(struct stripe_head *sh, int target)
632
{
633
	struct r5dev *tgt;
634

635 636
	if (target < 0)
		return;
637

638
	tgt = &sh->dev[target];
639 640 641
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
642 643
}

644
static void ops_complete_compute(void *stripe_head_ref)
645 646 647
{
	struct stripe_head *sh = stripe_head_ref;

648
	pr_debug("%s: stripe %llu\n", __func__,
649 650
		(unsigned long long)sh->sector);

651
	/* mark the computed target(s) as uptodate */
652
	mark_target_uptodate(sh, sh->ops.target);
653
	mark_target_uptodate(sh, sh->ops.target2);
654

655 656 657
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
658 659 660 661
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

662 663 664 665 666 667 668 669 670
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
671 672
{
	int disks = sh->disks;
673
	struct page **xor_srcs = percpu->scribble;
674 675 676 677 678
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
679
	struct async_submit_ctl submit;
680 681 682
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
683
		__func__, (unsigned long long)sh->sector, target);
684 685 686 687 688 689 690 691
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
692
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
693
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
694
	if (unlikely(count == 1))
695
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
696
	else
697
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
698 699 700 701

	return tx;
}

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
		srcs[i] = (void *)raid6_empty_zero_page;

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
	BUG_ON(count != syndrome_disks);

	return count;
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
753
	else
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
770 771
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
772 773 774 775 776 777 778 779 780 781 782
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
783 784
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
785 786 787
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
788 789 790 791

	return tx;
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

813
	/* we need to open-code set_syndrome_sources to handle the
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
		blocks[i] = (void *)raid6_empty_zero_page;
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
	BUG_ON(count != syndrome_disks);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
845 846 847
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
868 869 870 871
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
872 873 874 875
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
876 877 878
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
879 880 881 882
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
883 884 885 886 887 888 889 890 891 892 893 894 895 896
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
897 898 899 900
	}
}


901 902 903 904
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

905
	pr_debug("%s: stripe %llu\n", __func__,
906 907 908 909
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
910 911
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
912 913
{
	int disks = sh->disks;
914
	struct page **xor_srcs = percpu->scribble;
915
	int count = 0, pd_idx = sh->pd_idx, i;
916
	struct async_submit_ctl submit;
917 918 919 920

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

921
	pr_debug("%s: stripe %llu\n", __func__,
922 923 924 925 926
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
927
		if (test_bit(R5_Wantdrain, &dev->flags))
928 929 930
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
931
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
932
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
933
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
934 935 936 937 938

	return tx;
}

static struct dma_async_tx_descriptor *
939
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
940 941
{
	int disks = sh->disks;
942
	int i;
943

944
	pr_debug("%s: stripe %llu\n", __func__,
945 946 947 948 949 950
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

951
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

973
static void ops_complete_reconstruct(void *stripe_head_ref)
974 975
{
	struct stripe_head *sh = stripe_head_ref;
976 977 978 979
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
980

981
	pr_debug("%s: stripe %llu\n", __func__,
982 983 984 985
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
986 987

		if (dev->written || i == pd_idx || i == qd_idx)
988 989 990
			set_bit(R5_UPTODATE, &dev->flags);
	}

991 992 993 994 995 996 997 998
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
999 1000 1001 1002 1003 1004

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1005 1006
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1007 1008
{
	int disks = sh->disks;
1009
	struct page **xor_srcs = percpu->scribble;
1010
	struct async_submit_ctl submit;
1011 1012
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1013
	int prexor = 0;
1014 1015
	unsigned long flags;

1016
	pr_debug("%s: stripe %llu\n", __func__,
1017 1018 1019 1020 1021
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1022 1023
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1044
	flags = ASYNC_TX_ACK |
1045 1046 1047 1048
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1049
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1050
			  to_addr_conv(sh, percpu));
1051 1052 1053 1054
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1055 1056
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1074 1075 1076 1077 1078 1079
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1080
	pr_debug("%s: stripe %llu\n", __func__,
1081 1082
		(unsigned long long)sh->sector);

1083
	sh->check_state = check_state_check_result;
1084 1085 1086 1087
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1088
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1089 1090
{
	int disks = sh->disks;
1091 1092 1093
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1094
	struct page **xor_srcs = percpu->scribble;
1095
	struct dma_async_tx_descriptor *tx;
1096
	struct async_submit_ctl submit;
1097 1098
	int count;
	int i;
1099

1100
	pr_debug("%s: stripe %llu\n", __func__,
1101 1102
		(unsigned long long)sh->sector);

1103 1104 1105
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1106
	for (i = disks; i--; ) {
1107 1108 1109
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1110 1111
	}

1112 1113
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1114
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1115
			   &sh->ops.zero_sum_result, &submit);
1116 1117

	atomic_inc(&sh->count);
1118 1119
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1120 1121
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1134 1135

	atomic_inc(&sh->count);
1136 1137 1138 1139
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1140 1141
}

1142
static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1143 1144 1145
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1146
	raid5_conf_t *conf = sh->raid_conf;
1147
	int level = conf->level;
1148 1149
	struct raid5_percpu *percpu;
	unsigned long cpu;
1150

1151 1152
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1153
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1154 1155 1156 1157
		ops_run_biofill(sh);
		overlap_clear++;
	}

1158
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1169 1170
			async_tx_ack(tx);
	}
1171

1172
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1173
		tx = ops_run_prexor(sh, percpu, tx);
1174

1175
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1176
		tx = ops_run_biodrain(sh, tx);
1177 1178 1179
		overlap_clear++;
	}

1180 1181 1182 1183 1184 1185
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1186

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1197 1198 1199 1200 1201 1202 1203

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1204
	put_cpu();
1205 1206
}

1207
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1208 1209
{
	struct stripe_head *sh;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);

	if (grow_buffers(sh, conf->raid_disks)) {
		shrink_buffers(sh, conf->raid_disks);
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
1222
	sh->disks = conf->raid_disks;
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1233
	struct kmem_cache *sc;
L
Linus Torvalds 已提交
1234 1235
	int devs = conf->raid_disks;

1236 1237 1238 1239
	sprintf(conf->cache_name[0],
		"raid%d-%s", conf->level, mdname(conf->mddev));
	sprintf(conf->cache_name[1],
		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
1240 1241
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1242
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1243
			       0, 0, NULL);
L
Linus Torvalds 已提交
1244 1245 1246
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1247
	conf->pool_size = devs;
1248
	while (num--)
1249
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1250 1251 1252
			return 1;
	return 0;
}
1253

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1304
	unsigned long cpu;
1305
	int err;
1306
	struct kmem_cache *sc;
1307 1308 1309 1310 1311
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1312 1313 1314
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1315

1316 1317 1318
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1319
			       0, 0, NULL);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1354
				    unplug_slaves(conf->mddev)
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1370
	 * conf->disks and the scribble region
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1400 1401 1402 1403
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1421

1422
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1423 1424 1425
{
	struct stripe_head *sh;

1426 1427 1428 1429 1430
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1431
	BUG_ON(atomic_read(&sh->count));
1432
	shrink_buffers(sh, conf->pool_size);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1443 1444
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1445 1446 1447
	conf->slab_cache = NULL;
}

1448
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1449
{
1450
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1451
	raid5_conf_t *conf = sh->raid_conf;
1452
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1453
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1454 1455
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1456 1457 1458 1459 1460 1461


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1462 1463
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1464 1465 1466
		uptodate);
	if (i == disks) {
		BUG();
1467
		return;
L
Linus Torvalds 已提交
1468 1469 1470 1471
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1472
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1473
			rdev = conf->disks[i].rdev;
1474 1475 1476 1477 1478 1479
			printk_rl(KERN_INFO "raid5:%s: read error corrected"
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1480 1481 1482
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1483 1484
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1485
	} else {
1486
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1487
		int retry = 0;
1488 1489
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1490
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1491
		atomic_inc(&rdev->read_errors);
1492
		if (conf->mddev->degraded)
1493 1494 1495 1496 1497 1498 1499
			printk_rl(KERN_WARNING
				  "raid5:%s: read error not correctable "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1500
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1501
			/* Oh, no!!! */
1502 1503 1504 1505 1506 1507 1508
			printk_rl(KERN_WARNING
				  "raid5:%s: read error NOT corrected!! "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1509
		else if (atomic_read(&rdev->read_errors)
1510
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1511
			printk(KERN_WARNING
1512 1513
			       "raid5:%s: Too many read errors, failing device %s.\n",
			       mdname(conf->mddev), bdn);
1514 1515 1516 1517 1518
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1519 1520
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1521
			md_error(conf->mddev, rdev);
1522
		}
L
Linus Torvalds 已提交
1523 1524 1525 1526 1527 1528 1529
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1530
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1531
{
1532
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1533
	raid5_conf_t *conf = sh->raid_conf;
1534
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1535 1536 1537 1538 1539 1540
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1541
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1542 1543 1544 1545
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1546
		return;
L
Linus Torvalds 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1556
	release_stripe(sh);
L
Linus Torvalds 已提交
1557 1558 1559
}


1560
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1561
	
1562
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1578
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1579 1580 1581 1582 1583 1584
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1585
	pr_debug("raid5: error called\n");
L
Linus Torvalds 已提交
1586

1587
	if (!test_bit(Faulty, &rdev->flags)) {
1588
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1589 1590 1591
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1592
			mddev->degraded++;
1593
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1594 1595 1596
			/*
			 * if recovery was running, make sure it aborts.
			 */
1597
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1598
		}
1599
		set_bit(Faulty, &rdev->flags);
1600 1601 1602 1603
		printk(KERN_ALERT
		       "raid5: Disk failure on %s, disabling device.\n"
		       "raid5: Operation continuing on %d devices.\n",
		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1604
	}
1605
}
L
Linus Torvalds 已提交
1606 1607 1608 1609 1610

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1611
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1612 1613
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1614 1615 1616 1617
{
	long stripe;
	unsigned long chunk_number;
	unsigned int chunk_offset;
1618
	int pd_idx, qd_idx;
1619
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1620
	sector_t new_sector;
1621 1622
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1623 1624
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1625 1626 1627
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;
	BUG_ON(r_sector != chunk_number);

	/*
	 * Compute the stripe number
	 */
	stripe = chunk_number / data_disks;

	/*
	 * Compute the data disk and parity disk indexes inside the stripe
	 */
	*dd_idx = chunk_number % data_disks;

	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1651
	pd_idx = qd_idx = ~0;
1652 1653
	switch(conf->level) {
	case 4:
1654
		pd_idx = data_disks;
1655 1656
		break;
	case 5:
1657
		switch (algorithm) {
L
Linus Torvalds 已提交
1658
		case ALGORITHM_LEFT_ASYMMETRIC:
1659 1660
			pd_idx = data_disks - stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1661 1662 1663
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1664 1665
			pd_idx = stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1666 1667 1668
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1669 1670
			pd_idx = data_disks - stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1671 1672
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1673 1674
			pd_idx = stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1675
			break;
1676 1677 1678 1679 1680 1681 1682
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1683
		default:
N
NeilBrown 已提交
1684
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1685
				algorithm);
1686
			BUG();
1687 1688 1689 1690
		}
		break;
	case 6:

1691
		switch (algorithm) {
1692
		case ALGORITHM_LEFT_ASYMMETRIC:
1693 1694 1695
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1696
				(*dd_idx)++;	/* Q D D D P */
1697 1698
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1699 1700 1701
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1702 1703 1704
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1705
				(*dd_idx)++;	/* Q D D D P */
1706 1707
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1708 1709 1710
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1711 1712 1713
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1714 1715
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1716 1717 1718
			pd_idx = stripe % raid_disks;
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1719
			break;
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1742
			ddf_layout = 1;
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1757
			ddf_layout = 1;
1758 1759 1760 1761 1762 1763 1764
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1765
			ddf_layout = 1;
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
			pd_idx = data_disks - stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
			pd_idx = data_disks - stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;


1802
		default:
1803
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1804
			       algorithm);
1805
			BUG();
1806 1807
		}
		break;
L
Linus Torvalds 已提交
1808 1809
	}

1810 1811 1812
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1813
		sh->ddf_layout = ddf_layout;
1814
	}
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819 1820 1821 1822
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1823
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1824 1825
{
	raid5_conf_t *conf = sh->raid_conf;
1826 1827
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1828
	sector_t new_sector = sh->sector, check;
1829 1830
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1831 1832
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1833 1834
	sector_t stripe;
	int chunk_offset;
1835
	int chunk_number, dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1836
	sector_t r_sector;
1837
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1838

1839

L
Linus Torvalds 已提交
1840 1841 1842 1843
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;
	BUG_ON(new_sector != stripe);

1844 1845 1846 1847 1848
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1849
		switch (algorithm) {
L
Linus Torvalds 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1861 1862 1863 1864 1865
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1866
		default:
N
NeilBrown 已提交
1867
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1868
			       algorithm);
1869
			BUG();
1870 1871 1872
		}
		break;
	case 6:
1873
		if (i == sh->qd_idx)
1874
			return 0; /* It is the Q disk */
1875
		switch (algorithm) {
1876 1877
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1878 1879 1880 1881
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
			else if (i > sh->pd_idx)
				i -= 2; /* D D Q P D */
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
1921
		default:
1922
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1923
			       algorithm);
1924
			BUG();
1925 1926
		}
		break;
L
Linus Torvalds 已提交
1927 1928 1929 1930 1931
	}

	chunk_number = stripe * data_disks + i;
	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;

1932
	check = raid5_compute_sector(conf, r_sector,
1933
				     previous, &dummy1, &sh2);
1934 1935
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
N
NeilBrown 已提交
1936
		printk(KERN_ERR "compute_blocknr: map not correct\n");
L
Linus Torvalds 已提交
1937 1938 1939 1940 1941 1942
		return 0;
	}
	return r_sector;
}


1943
static void
1944
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1945
			 int rcw, int expand)
1946 1947
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1948 1949
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
1950 1951 1952 1953 1954 1955 1956

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
1957 1958 1959 1960
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
1961

1962
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
1963 1964 1965 1966 1967 1968

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
1969
				set_bit(R5_Wantdrain, &dev->flags);
1970 1971
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
1972
				s->locked++;
1973 1974
			}
		}
1975
		if (s->locked + conf->max_degraded == disks)
1976
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1977
				atomic_inc(&conf->pending_full_writes);
1978
	} else {
1979
		BUG_ON(level == 6);
1980 1981 1982
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

1983
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1984 1985
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1986
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
1987 1988 1989 1990 1991 1992 1993 1994

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
1995 1996
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
1997 1998
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
1999
				s->locked++;
2000 2001 2002 2003
			}
		}
	}

2004
	/* keep the parity disk(s) locked while asynchronous operations
2005 2006 2007 2008
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2009
	s->locked++;
2010

2011 2012 2013 2014 2015 2016 2017 2018 2019
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2020
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2021
		__func__, (unsigned long long)sh->sector,
2022
		s->locked, s->ops_request);
2023
}
2024

L
Linus Torvalds 已提交
2025 2026
/*
 * Each stripe/dev can have one or more bion attached.
2027
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2028 2029 2030 2031 2032 2033
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2034
	int firstwrite=0;
L
Linus Torvalds 已提交
2035

2036
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2037 2038 2039 2040 2041 2042
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
2043
	if (forwrite) {
L
Linus Torvalds 已提交
2044
		bip = &sh->dev[dd_idx].towrite;
2045 2046 2047
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2057
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2058 2059 2060
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2061
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
2062 2063 2064
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

2065
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
2066 2067 2068
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

2069 2070 2071
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
2072
		sh->bm_seq = conf->seq_flush+1;
2073 2074 2075
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

2098 2099
static void end_reshape(raid5_conf_t *conf);

2100 2101
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2102
{
2103
	int sectors_per_chunk =
2104
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2105
	int dd_idx;
2106
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2107
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2108

2109 2110
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2111
			     *sectors_per_chunk + chunk_offset,
2112
			     previous,
2113
			     &dd_idx, sh);
2114 2115
}

2116
static void
2117
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2151
			if (!raid5_dec_bi_phys_segments(bi)) {
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2166
			if (!raid5_dec_bi_phys_segments(bi)) {
2167 2168 2169 2170 2171 2172 2173
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2174 2175 2176 2177 2178 2179
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2190
				if (!raid5_dec_bi_phys_segments(bi)) {
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2203 2204 2205
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2206 2207
}

2208 2209 2210 2211 2212
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2213
 */
2214 2215
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2216 2217 2218 2219 2220 2221
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2222 2223 2224 2225 2226 2227 2228 2229
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2230 2231
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2232 2233
		 */
		if ((s->uptodate == disks - 1) &&
2234
		    (s->failed && disk_idx == s->failed_num)) {
2235 2236
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2237 2238
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
2239
			sh->ops.target2 = -1;
2240 2241
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
2242
			 * of raid_run_ops which services 'compute' operations
2243 2244 2245 2246 2247
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2248
			return 1; /* uptodate + compute == disks */
2249
		} else if (test_bit(R5_Insync, &dev->flags)) {
2250 2251 2252 2253 2254 2255 2256 2257
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2258
	return 0;
2259 2260
}

2261 2262 2263 2264
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2265 2266 2267
			struct stripe_head_state *s, int disks)
{
	int i;
2268 2269 2270 2271 2272

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2273
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2274
	    !sh->reconstruct_state)
2275
		for (i = disks; i--; )
2276
			if (fetch_block5(sh, s, i, disks))
2277
				break;
2278 2279 2280
	set_bit(STRIPE_HANDLE, &sh->state);
}

2281 2282 2283 2284 2285 2286 2287 2288
/* fetch_block6 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill6 to continue
 */
static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
			 struct r6_state *r6s, int disk_idx, int disks)
2289
{
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
				  &sh->dev[r6s->failed_num[1]] };

	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed >= 1 &&
	      (fdev[0]->toread || s->to_write)) ||
	     (s->failed >= 2 &&
	      (fdev[1]->toread || s->to_write)))) {
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
		    (s->failed && (disk_idx == r6s->failed_num[0] ||
				   disk_idx == r6s->failed_num[1]))) {
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2313
			 */
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2335
			}
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2355 2356
		}
	}
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378

	return 0;
}

/**
 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill6(struct stripe_head *sh,
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
			if (fetch_block6(sh, s, r6s, i, disks))
				break;
2379 2380 2381 2382
	set_bit(STRIPE_HANDLE, &sh->state);
}


2383
/* handle_stripe_clean_event
2384 2385 2386 2387
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2388
static void handle_stripe_clean_event(raid5_conf_t *conf,
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2402
				pr_debug("Return write for disc %d\n", i);
2403 2404 2405 2406 2407 2408
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2409
					if (!raid5_dec_bi_phys_segments(wbi)) {
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2427 2428 2429 2430

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2431 2432
}

2433
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2434 2435 2436 2437 2438 2439 2440 2441
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2442 2443
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2444 2445 2446 2447 2448 2449 2450 2451
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2452 2453 2454
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2455 2456 2457 2458
			else
				rcw += 2*disks;
		}
	}
2459
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2460 2461 2462 2463 2464 2465 2466 2467
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2468 2469
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2470 2471 2472
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2473
					pr_debug("Read_old block "
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2491 2492
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2493 2494 2495
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2496
					pr_debug("Read_old block "
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2510 2511
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2512 2513
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2514 2515 2516
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2517 2518 2519
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2520
		schedule_reconstruction(sh, s, rcw == 0, 0);
2521 2522
}

2523
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2524 2525 2526
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
2527
	int rcw = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2528
	int qd_idx = sh->qd_idx;
2529 2530

	set_bit(STRIPE_HANDLE, &sh->state);
2531 2532
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
		/* check if we haven't enough data */
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != pd_idx && i != qd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
			rcw++;
			if (!test_bit(R5_Insync, &dev->flags))
				continue; /* it's a failed drive */

			if (
			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				pr_debug("Read_old stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
			} else {
				pr_debug("Request delayed stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(STRIPE_DELAYED, &sh->state);
				set_bit(STRIPE_HANDLE, &sh->state);
2557 2558 2559 2560 2561 2562
			}
		}
	}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
2563 2564
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    s->locked == 0 && rcw == 0 &&
2565
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2566
		schedule_reconstruction(sh, s, 1, 0);
2567 2568 2569 2570 2571 2572
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2573
	struct r5dev *dev = NULL;
2574

2575
	set_bit(STRIPE_HANDLE, &sh->state);
2576

2577 2578 2579
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2580 2581
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2582 2583
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2584 2585
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2586
			break;
2587
		}
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2598

2599 2600 2601 2602 2603
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2604
		s->locked++;
2605
		set_bit(R5_Wantwrite, &dev->flags);
2606

2607 2608
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2625
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2637
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2638 2639 2640 2641
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2642
				sh->ops.target2 = -1;
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2654 2655 2656 2657 2658
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2659 2660
				  struct stripe_head_state *s,
				  struct r6_state *r6s, int disks)
2661 2662
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2663
	int qd_idx = sh->qd_idx;
2664
	struct r5dev *dev;
2665 2666 2667 2668

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2669

2670 2671 2672 2673 2674 2675
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2676 2677 2678
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2679
		if (s->failed == r6s->q_failed) {
2680
			/* The only possible failed device holds Q, so it
2681 2682 2683
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2684
			sh->check_state = check_state_run;
2685 2686
		}
		if (!r6s->q_failed && s->failed < 2) {
2687
			/* Q is not failed, and we didn't use it to generate
2688 2689
			 * anything, so it makes sense to check it
			 */
2690 2691 2692 2693
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2694 2695
		}

2696 2697
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2698

2699 2700 2701 2702
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2703
		}
2704 2705 2706 2707 2708 2709 2710
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2711 2712
		}

2713 2714 2715 2716 2717
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2718

2719 2720 2721
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2722 2723

		/* now write out any block on a failed drive,
2724
		 * or P or Q if they were recomputed
2725
		 */
2726
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2739
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2740 2741 2742 2743 2744
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2745
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2746 2747 2748 2749 2750 2751 2752 2753
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2829
	struct dma_async_tx_descriptor *tx = NULL;
2830 2831
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2832
		if (i != sh->pd_idx && i != sh->qd_idx) {
2833
			int dd_idx, j;
2834
			struct stripe_head *sh2;
2835
			struct async_submit_ctl submit;
2836

2837
			sector_t bn = compute_blocknr(sh, i, 1);
2838 2839
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2840
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2853 2854

			/* place all the copies on one channel */
2855
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2856
			tx = async_memcpy(sh2->dev[dd_idx].page,
2857
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2858
					  &submit);
2859

2860 2861 2862 2863
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2864
				    (!r6s || j != sh2->qd_idx) &&
2865 2866 2867 2868 2869 2870 2871
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2872

2873
		}
2874 2875 2876 2877 2878
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2879
}
L
Linus Torvalds 已提交
2880

2881

L
Linus Torvalds 已提交
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2898

2899
static bool handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
2900 2901
{
	raid5_conf_t *conf = sh->raid_conf;
2902 2903 2904
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
2905
	struct r5dev *dev;
2906
	mdk_rdev_t *blocked_rdev = NULL;
2907
	int prexor;
L
Linus Torvalds 已提交
2908

2909
	memset(&s, 0, sizeof(s));
2910 2911 2912 2913
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
2914 2915 2916 2917 2918

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

2919 2920 2921
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
2922

2923
	/* Now to look around and see what can be done */
2924
	rcu_read_lock();
L
Linus Torvalds 已提交
2925 2926
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2927 2928

		dev = &sh->dev[i];
L
Linus Torvalds 已提交
2929 2930
		clear_bit(R5_Insync, &dev->flags);

2931 2932 2933 2934 2935 2936 2937
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
2938
		 * ops_complete_biofill is guaranteed to be inactive
2939 2940
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2941
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2942
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2943 2944

		/* now count some things */
2945 2946
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2947
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
2948

2949 2950 2951
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
2952
			s.to_read++;
L
Linus Torvalds 已提交
2953
		if (dev->towrite) {
2954
			s.to_write++;
L
Linus Torvalds 已提交
2955
			if (!test_bit(R5_OVERWRITE, &dev->flags))
2956
				s.non_overwrite++;
L
Linus Torvalds 已提交
2957
		}
2958 2959
		if (dev->written)
			s.written++;
2960
		rdev = rcu_dereference(conf->disks[i].rdev);
2961 2962
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2963 2964 2965
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
2966
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
2967
			/* The ReadError flag will just be confusing now */
2968 2969 2970
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
2971
		if (!rdev || !test_bit(In_sync, &rdev->flags)
2972
		    || test_bit(R5_ReadError, &dev->flags)) {
2973 2974
			s.failed++;
			s.failed_num = i;
L
Linus Torvalds 已提交
2975 2976 2977
		} else
			set_bit(R5_Insync, &dev->flags);
	}
2978
	rcu_read_unlock();
2979

2980
	if (unlikely(blocked_rdev)) {
2981 2982 2983 2984 2985 2986 2987 2988
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
2989 2990
	}

2991 2992 2993 2994
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
2995

2996
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
2997
		" to_write=%d failed=%d failed_num=%d\n",
2998 2999
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
3000 3001 3002
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
3003
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3004
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3005
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
3006 3007
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3008
		s.syncing = 0;
L
Linus Torvalds 已提交
3009 3010 3011 3012 3013 3014
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
3015 3016 3017 3018 3019
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3020
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
3021 3022 3023 3024 3025

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3026
	if (s.to_read || s.non_overwrite ||
3027
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3028
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
3029

3030 3031 3032
	/* Now we check to see if any write operations have recently
	 * completed
	 */
3033
	prexor = 0;
3034
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3035
		prexor = 1;
3036 3037
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3038
		sh->reconstruct_state = reconstruct_state_idle;
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
3050 3051
				if (prexor)
					continue;
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
				IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3071
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3072
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
3073 3074

	/* maybe we need to check and possibly fix the parity for this stripe
3075 3076 3077
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
3078
	 */
3079 3080
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
3081
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3082
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3083
		handle_parity_checks5(conf, sh, &s, disks);
3084

3085
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
3086 3087 3088
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
3089 3090 3091 3092

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
3093 3094 3095 3096
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3097
		) {
3098
		dev = &sh->dev[s.failed_num];
3099 3100 3101 3102
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3103
			s.locked++;
3104 3105 3106 3107
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3108
			s.locked++;
3109 3110 3111
		}
	}

3112 3113
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
3114
		struct stripe_head *sh2
3115
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3131
		sh->reconstruct_state = reconstruct_state_idle;
3132
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
3133
		for (i = conf->raid_disks; i--; ) {
3134
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
3135
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3136
			s.locked++;
D
Dan Williams 已提交
3137
		}
3138 3139 3140
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3141
	    !sh->reconstruct_state) {
3142 3143
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
3144
		stripe_set_idx(sh->sector, conf, 0, sh);
3145
		schedule_reconstruction(sh, &s, 1, 1);
3146
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3147
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3148
		atomic_dec(&conf->reshape_stripes);
3149 3150 3151 3152
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3153
	if (s.expanding && s.locked == 0 &&
3154
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3155
		handle_stripe_expansion(conf, sh, NULL);
3156

3157
 unlock:
L
Linus Torvalds 已提交
3158 3159
	spin_unlock(&sh->lock);

3160 3161 3162 3163
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3164
	if (s.ops_request)
3165
		raid_run_ops(sh, s.ops_request);
3166

3167
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
3168

3169
	return_io(return_bi);
3170 3171

	return blocked_rdev == NULL;
L
Linus Torvalds 已提交
3172 3173
}

3174
static bool handle_stripe6(struct stripe_head *sh)
L
Linus Torvalds 已提交
3175
{
3176
	raid5_conf_t *conf = sh->raid_conf;
3177
	int disks = sh->disks;
3178
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
3179
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3180 3181
	struct stripe_head_state s;
	struct r6_state r6s;
3182
	struct r5dev *dev, *pdev, *qdev;
3183
	mdk_rdev_t *blocked_rdev = NULL;
L
Linus Torvalds 已提交
3184

3185
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3186
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3187
	       (unsigned long long)sh->sector, sh->state,
3188 3189
	       atomic_read(&sh->count), pd_idx, qd_idx,
	       sh->check_state, sh->reconstruct_state);
3190
	memset(&s, 0, sizeof(s));
3191

3192 3193 3194 3195
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3196 3197 3198
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3199
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3200 3201

	rcu_read_lock();
3202 3203 3204 3205
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
		clear_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3206

3207
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3208
			i, dev->flags, dev->toread, dev->towrite, dev->written);
3209 3210 3211 3212 3213 3214 3215 3216
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3217

3218
		/* now count some things */
3219 3220
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3221 3222 3223 3224
		if (test_bit(R5_Wantcompute, &dev->flags)) {
			s.compute++;
			BUG_ON(s.compute > 2);
		}
L
Linus Torvalds 已提交
3225

3226 3227 3228
		if (test_bit(R5_Wantfill, &dev->flags)) {
			s.to_fill++;
		} else if (dev->toread)
3229
			s.to_read++;
3230
		if (dev->towrite) {
3231
			s.to_write++;
3232
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3233
				s.non_overwrite++;
3234
		}
3235 3236
		if (dev->written)
			s.written++;
3237
		rdev = rcu_dereference(conf->disks[i].rdev);
3238 3239
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3240 3241 3242
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3243 3244 3245 3246
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3247
		}
3248 3249
		if (!rdev || !test_bit(In_sync, &rdev->flags)
		    || test_bit(R5_ReadError, &dev->flags)) {
3250 3251 3252
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3253 3254
		} else
			set_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3255 3256
	}
	rcu_read_unlock();
3257 3258

	if (unlikely(blocked_rdev)) {
3259 3260 3261 3262 3263 3264 3265 3266
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3267
	}
3268

3269 3270 3271 3272 3273
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

3274
	pr_debug("locked=%d uptodate=%d to_read=%d"
3275
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3276 3277 3278 3279
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3280
	 */
3281
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3282
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3283
	if (s.failed > 2 && s.syncing) {
3284 3285
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3286
		s.syncing = 0;
3287 3288 3289 3290 3291 3292 3293
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3294 3295
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3296 3297 3298
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3299 3300 3301

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3302
			     && !test_bit(R5_LOCKED, &pdev->flags)
3303 3304
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3305
			     && !test_bit(R5_LOCKED, &qdev->flags)
3306
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3307
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3308 3309 3310 3311 3312

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3313
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3314
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3315
		handle_stripe_fill6(sh, &s, &r6s, disks);
3316

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	if (sh->reconstruct_state == reconstruct_state_drain_result) {
		int qd_idx = sh->qd_idx;

		sh->reconstruct_state = reconstruct_state_idle;
		/* All the 'written' buffers and the parity blocks are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
			    (i == sh->pd_idx || i == qd_idx ||
			     dev->written)) {
				pr_debug("Writing block %d\n", i);
				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
				set_bit(R5_Wantwrite, &dev->flags);
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == qd_idx) &&
				      s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
				IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}

3351 3352 3353 3354 3355 3356 3357
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3358
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3359 3360

	/* maybe we need to check and possibly fix the parity for this stripe
3361
	 * Any reads will already have been scheduled, so we just see if enough
3362 3363
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
3364
	 */
3365 3366 3367 3368
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3369
		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3370

3371
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3372 3373 3374 3375 3376 3377 3378
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3379 3380 3381
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3382 3383 3384 3385 3386 3387 3388 3389
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3390
					s.locked++;
3391 3392 3393 3394
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3395
					s.locked++;
3396 3397 3398
				}
			}
		}
3399

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
3413
		struct stripe_head *sh2
3414
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3430 3431
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3432
		stripe_set_idx(sh->sector, conf, 0, sh);
3433 3434
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3435 3436 3437 3438 3439 3440
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3441
	if (s.expanding && s.locked == 0 &&
3442
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3443
		handle_stripe_expansion(conf, sh, &r6s);
3444

3445
 unlock:
3446 3447
	spin_unlock(&sh->lock);

3448 3449 3450 3451
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3452 3453 3454
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3455
	ops_run_io(sh, &s);
3456

D
Dan Williams 已提交
3457
	return_io(return_bi);
3458 3459

	return blocked_rdev == NULL;
3460 3461
}

3462
/* returns true if the stripe was handled */
3463
static bool handle_stripe(struct stripe_head *sh)
3464 3465
{
	if (sh->raid_conf->level == 6)
3466
		return handle_stripe6(sh);
3467
	else
3468
		return handle_stripe5(sh);
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3482
			list_add_tail(&sh->lru, &conf->hold_list);
3483
		}
3484 3485
	} else
		blk_plug_device(conf->mddev->queue);
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
3504
	raid5_conf_t *conf = mddev->private;
3505 3506 3507
	int i;

	rcu_read_lock();
3508
	for (i = 0; i < conf->raid_disks; i++) {
3509 3510
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3511
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3512 3513 3514 3515

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3516
			blk_unplug(r_queue);
3517 3518 3519 3520 3521 3522 3523 3524

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3525
static void raid5_unplug_device(struct request_queue *q)
3526 3527
{
	mddev_t *mddev = q->queuedata;
3528
	raid5_conf_t *conf = mddev->private;
3529 3530 3531 3532 3533 3534 3535
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	if (blk_remove_plug(q)) {
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3536
	}
L
Linus Torvalds 已提交
3537 3538 3539 3540 3541 3542 3543
	md_wakeup_thread(mddev->thread);

	spin_unlock_irqrestore(&conf->device_lock, flags);

	unplug_slaves(mddev);
}

3544 3545 3546
static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;
3547
	raid5_conf_t *conf = mddev->private;
3548 3549 3550 3551

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3552 3553 3554

	if (mddev_congested(mddev, bits))
		return 1;
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}

3565 3566 3567
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3568 3569 3570
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3571 3572
{
	mddev_t *mddev = q->queuedata;
3573
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3574
	int max;
3575
	unsigned int chunk_sectors = mddev->chunk_sectors;
3576
	unsigned int bio_sectors = bvm->bi_size >> 9;
3577

3578
	if ((bvm->bi_rw & 1) == WRITE)
3579 3580
		return biovec->bv_len; /* always allow writes to be mergeable */

3581 3582
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3583 3584 3585 3586 3587 3588 3589 3590
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3591 3592 3593 3594

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3595
	unsigned int chunk_sectors = mddev->chunk_sectors;
3596 3597
	unsigned int bio_sectors = bio->bi_size >> 9;

3598 3599
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3600 3601 3602 3603
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3633
		conf->retry_read_aligned_list = bi->bi_next;
3634
		bi->bi_next = NULL;
3635 3636 3637 3638
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3639 3640 3641 3642 3643 3644 3645
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3646 3647 3648 3649 3650 3651
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3652
static void raid5_align_endio(struct bio *bi, int error)
3653 3654
{
	struct bio* raid_bi  = bi->bi_private;
3655 3656 3657 3658 3659
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3660
	bio_put(bi);
3661 3662

	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3663
	conf = mddev->private;
3664 3665 3666 3667 3668 3669
	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3670
		bio_endio(raid_bi, 0);
3671 3672
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3673
		return;
3674 3675 3676
	}


3677
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3678 3679

	add_bio_to_retry(raid_bi, conf);
3680 3681
}

3682 3683
static int bio_fits_rdev(struct bio *bi)
{
3684
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3685

3686
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3687 3688
		return 0;
	blk_recount_segments(q, bi);
3689
	if (bi->bi_phys_segments > queue_max_phys_segments(q))
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3702
static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3703 3704
{
	mddev_t *mddev = q->queuedata;
3705
	raid5_conf_t *conf = mddev->private;
3706
	unsigned int dd_idx;
3707 3708 3709 3710
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3711
		pr_debug("chunk_aligned_read : non aligned\n");
3712 3713 3714
		return 0;
	}
	/*
3715
	 * use bio_clone to make a copy of the bio
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3729 3730
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3731
						    &dd_idx, NULL);
3732 3733 3734 3735 3736 3737

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3738 3739 3740 3741 3742
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3743 3744 3745 3746 3747 3748 3749
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3750 3751 3752 3753 3754 3755 3756
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3757 3758 3759 3760
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3761
		bio_put(align_bi);
3762 3763 3764 3765
		return 0;
	}
}

3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3818

3819
static int make_request(struct request_queue *q, struct bio * bi)
L
Linus Torvalds 已提交
3820 3821
{
	mddev_t *mddev = q->queuedata;
3822
	raid5_conf_t *conf = mddev->private;
3823
	int dd_idx;
L
Linus Torvalds 已提交
3824 3825 3826
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3827
	const int rw = bio_data_dir(bi);
T
Tejun Heo 已提交
3828
	int cpu, remaining;
L
Linus Torvalds 已提交
3829

3830
	if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3831
		bio_endio(bi, -EOPNOTSUPP);
3832 3833 3834
		return 0;
	}

3835
	md_write_start(mddev, bi);
3836

T
Tejun Heo 已提交
3837 3838 3839 3840 3841
	cpu = part_stat_lock();
	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
		      bio_sectors(bi));
	part_stat_unlock();
L
Linus Torvalds 已提交
3842

3843
	if (rw == READ &&
3844 3845
	     mddev->reshape_position == MaxSector &&
	     chunk_aligned_read(q,bi))
3846
		return 0;
3847

L
Linus Torvalds 已提交
3848 3849 3850 3851
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3852

L
Linus Torvalds 已提交
3853 3854
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3855
		int disks, data_disks;
3856
		int previous;
3857

3858
	retry:
3859
		previous = 0;
3860
		disks = conf->raid_disks;
3861
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3862
		if (unlikely(conf->reshape_progress != MaxSector)) {
3863
			/* spinlock is needed as reshape_progress may be
3864 3865
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3866
			 * Ofcourse reshape_progress could change after
3867 3868 3869 3870
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3871
			spin_lock_irq(&conf->device_lock);
3872 3873 3874
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3875
				disks = conf->previous_raid_disks;
3876 3877
				previous = 1;
			} else {
3878 3879 3880
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3881 3882 3883 3884 3885
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3886 3887
			spin_unlock_irq(&conf->device_lock);
		}
3888 3889
		data_disks = disks - conf->max_degraded;

3890 3891
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3892
						  &dd_idx, NULL);
3893
		pr_debug("raid5: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3894 3895 3896
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3897
		sh = get_active_stripe(conf, new_sector, previous,
3898
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
3899
		if (sh) {
3900
			if (unlikely(previous)) {
3901
				/* expansion might have moved on while waiting for a
3902 3903 3904 3905 3906 3907
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3908 3909 3910
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3911 3912 3913
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
3914 3915 3916 3917 3918
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
3919
					schedule();
3920 3921 3922
					goto retry;
				}
			}
3923

3924 3925
			if (bio_data_dir(bi) == WRITE &&
			    logical_sector >= mddev->suspend_lo &&
3926 3927
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
3938 3939
				goto retry;
			}
3940 3941 3942 3943 3944

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3945 3946 3947 3948 3949 3950 3951 3952
				 * and wait a while
				 */
				raid5_unplug_device(mddev->queue);
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3953 3954
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
L
Linus Torvalds 已提交
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
3965
	remaining = raid5_dec_bi_phys_segments(bi);
3966 3967
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
3968

3969
		if ( rw == WRITE )
L
Linus Torvalds 已提交
3970
			md_write_end(mddev);
3971

3972
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
3973 3974 3975 3976
	}
	return 0;
}

D
Dan Williams 已提交
3977 3978
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

3979
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
3980
{
3981 3982 3983 3984 3985 3986 3987 3988 3989
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
L
Linus Torvalds 已提交
3990 3991
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
3992
	sector_t first_sector, last_sector;
3993 3994 3995
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
3996 3997
	int i;
	int dd_idx;
3998
	sector_t writepos, readpos, safepos;
3999
	sector_t stripe_addr;
4000
	int reshape_sectors;
4001
	struct list_head stripes;
4002

4003 4004 4005 4006 4007 4008
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4009
		} else if (mddev->delta_disks >= 0 &&
4010 4011
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4012
		sector_div(sector_nr, new_data_disks);
4013 4014 4015 4016
		if (sector_nr) {
			*skipped = 1;
			return sector_nr;
		}
4017 4018
	}

4019 4020 4021 4022
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4023 4024
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4025
	else
4026
		reshape_sectors = mddev->chunk_sectors;
4027

4028 4029 4030 4031 4032
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
4033 4034
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
4035
	 */
4036
	writepos = conf->reshape_progress;
4037
	sector_div(writepos, new_data_disks);
4038 4039
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4040
	safepos = conf->reshape_safe;
4041
	sector_div(safepos, data_disks);
4042
	if (mddev->delta_disks < 0) {
4043
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4044
		readpos += reshape_sectors;
4045
		safepos += reshape_sectors;
4046
	} else {
4047
		writepos += reshape_sectors;
4048 4049
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4050
	}
4051

4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4069
	if ((mddev->delta_disks < 0
4070 4071 4072
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4073 4074 4075
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4076
		mddev->reshape_position = conf->reshape_progress;
4077
		mddev->curr_resync_completed = mddev->curr_resync;
4078
		conf->reshape_checkpoint = jiffies;
4079
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4080
		md_wakeup_thread(mddev->thread);
4081
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4082 4083
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4084
		conf->reshape_safe = mddev->reshape_position;
4085 4086
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4087
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4088 4089
	}

4090 4091 4092 4093
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4094 4095
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4096 4097
		       != sector_nr);
	} else {
4098
		BUG_ON(writepos != sector_nr + reshape_sectors);
4099 4100
		stripe_addr = sector_nr;
	}
4101
	INIT_LIST_HEAD(&stripes);
4102
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4103
		int j;
4104
		int skipped_disk = 0;
4105
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4106 4107 4108 4109 4110 4111 4112 4113 4114
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4115
			if (conf->level == 6 &&
4116
			    j == sh->qd_idx)
4117
				continue;
4118
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4119
			if (s < raid5_size(mddev, 0, 0)) {
4120
				skipped_disk = 1;
4121 4122 4123 4124 4125 4126
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4127
		if (!skipped_disk) {
4128 4129 4130
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4131
		list_add(&sh->lru, &stripes);
4132 4133
	}
	spin_lock_irq(&conf->device_lock);
4134
	if (mddev->delta_disks < 0)
4135
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4136
	else
4137
		conf->reshape_progress += reshape_sectors * new_data_disks;
4138 4139 4140 4141 4142 4143 4144
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4145
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4146
				     1, &dd_idx, NULL);
4147
	last_sector =
4148
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4149
					    * new_data_disks - 1),
4150
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4151 4152
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4153
	while (first_sector <= last_sector) {
4154
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4155 4156 4157 4158 4159
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4160 4161 4162 4163 4164 4165 4166 4167
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4168 4169 4170
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4171
	sector_nr += reshape_sectors;
4172 4173
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4174 4175 4176
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4177
		mddev->reshape_position = conf->reshape_progress;
4178
		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4179
		conf->reshape_checkpoint = jiffies;
4180 4181 4182 4183 4184 4185
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4186
		conf->reshape_safe = mddev->reshape_position;
4187 4188
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4189
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4190
	}
4191
	return reshape_sectors;
4192 4193 4194 4195 4196 4197 4198
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
A
Andre Noll 已提交
4199
	sector_t max_sector = mddev->dev_sectors;
4200
	int sync_blocks;
4201 4202
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4203

4204
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4205 4206
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
4207

4208 4209 4210 4211
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4212 4213 4214 4215

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4216
		else /* completed sync */
4217 4218 4219
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4220 4221
		return 0;
	}
4222

4223 4224 4225
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4226 4227
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4228

4229 4230 4231 4232 4233 4234
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4235
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4236 4237 4238
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4239
	if (mddev->degraded >= conf->max_degraded &&
4240
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4241
		sector_t rv = mddev->dev_sectors - sector_nr;
4242
		*skipped = 1;
L
Linus Torvalds 已提交
4243 4244
		return rv;
	}
4245
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4246
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4247 4248 4249 4250 4251 4252
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4253

N
NeilBrown 已提交
4254 4255 4256

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4257
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4258
	if (sh == NULL) {
4259
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4260
		/* make sure we don't swamp the stripe cache if someone else
4261
		 * is trying to get access
L
Linus Torvalds 已提交
4262
		 */
4263
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4264
	}
4265 4266 4267 4268
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4269
	for (i = 0; i < conf->raid_disks; i++)
4270 4271 4272 4273 4274 4275
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
4276 4277 4278 4279
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

4280
	/* wait for any blocked device to be handled */
4281
	while (unlikely(!handle_stripe(sh)))
4282
		;
L
Linus Torvalds 已提交
4283 4284 4285 4286 4287
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4301
	int dd_idx;
4302 4303 4304 4305 4306 4307
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4308
	sector = raid5_compute_sector(conf, logical_sector,
4309
				      0, &dd_idx, NULL);
4310 4311 4312
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4313 4314 4315
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4316

4317
		if (scnt < raid5_bi_hw_segments(raid_bio))
4318 4319 4320
			/* already done this stripe */
			continue;

4321
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4322 4323 4324

		if (!sh) {
			/* failed to get a stripe - must wait */
4325
			raid5_set_bi_hw_segments(raid_bio, scnt);
4326 4327 4328 4329 4330
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4331 4332
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4333
			raid5_set_bi_hw_segments(raid_bio, scnt);
4334 4335 4336 4337
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4338
		handle_stripe(sh);
4339 4340 4341 4342
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4343
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4344
	spin_unlock_irq(&conf->device_lock);
4345 4346
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4347 4348 4349 4350 4351
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}

4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
#ifdef CONFIG_MULTICORE_RAID456
static void __process_stripe(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;

	handle_stripe(sh);
	release_stripe(sh);
}

static void process_stripe(struct stripe_head *sh, struct list_head *domain)
{
	async_schedule_domain(__process_stripe, sh, domain);
}

static void synchronize_stripe_processing(struct list_head *domain)
{
	async_synchronize_full_domain(domain);
}
#else
static void process_stripe(struct stripe_head *sh, struct list_head *domain)
{
	handle_stripe(sh);
	release_stripe(sh);
	cond_resched();
}

static void synchronize_stripe_processing(struct list_head *domain)
{
}
#endif
4382 4383


L
Linus Torvalds 已提交
4384 4385 4386 4387 4388 4389 4390
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4391
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4392 4393
{
	struct stripe_head *sh;
4394
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4395
	int handled;
4396
	LIST_HEAD(raid_domain);
L
Linus Torvalds 已提交
4397

4398
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4399 4400 4401 4402 4403 4404

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4405
		struct bio *bio;
L
Linus Torvalds 已提交
4406

4407
		if (conf->seq_flush != conf->seq_write) {
4408
			int seq = conf->seq_flush;
4409
			spin_unlock_irq(&conf->device_lock);
4410
			bitmap_unplug(mddev->bitmap);
4411
			spin_lock_irq(&conf->device_lock);
4412 4413 4414 4415
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4426 4427
		sh = __get_priority_stripe(conf);

4428
		if (!sh)
L
Linus Torvalds 已提交
4429 4430 4431 4432
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4433
		process_stripe(sh, &raid_domain);
L
Linus Torvalds 已提交
4434 4435 4436

		spin_lock_irq(&conf->device_lock);
	}
4437
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4438 4439 4440

	spin_unlock_irq(&conf->device_lock);

4441
	synchronize_stripe_processing(&raid_domain);
4442
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4443 4444
	unplug_slaves(mddev);

4445
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4446 4447
}

4448
static ssize_t
4449
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4450
{
4451
	raid5_conf_t *conf = mddev->private;
4452 4453 4454 4455
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4456 4457 4458
}

static ssize_t
4459
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4460
{
4461
	raid5_conf_t *conf = mddev->private;
4462
	unsigned long new;
4463 4464
	int err;

4465 4466
	if (len >= PAGE_SIZE)
		return -EINVAL;
4467 4468
	if (!conf)
		return -ENODEV;
4469

4470
	if (strict_strtoul(page, 10, &new))
4471 4472 4473 4474 4475 4476 4477 4478 4479
		return -EINVAL;
	if (new <= 16 || new > 32768)
		return -EINVAL;
	while (new < conf->max_nr_stripes) {
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4480 4481 4482
	err = md_allow_write(mddev);
	if (err)
		return err;
4483 4484 4485 4486 4487 4488 4489
	while (new > conf->max_nr_stripes) {
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
	return len;
}
4490

4491 4492 4493 4494
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4495

4496 4497 4498
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4499
	raid5_conf_t *conf = mddev->private;
4500 4501 4502 4503 4504 4505 4506 4507 4508
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4509
	raid5_conf_t *conf = mddev->private;
4510
	unsigned long new;
4511 4512 4513 4514 4515
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4516
	if (strict_strtoul(page, 10, &new))
4517
		return -EINVAL;
4518
	if (new > conf->max_nr_stripes)
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4530
static ssize_t
4531
stripe_cache_active_show(mddev_t *mddev, char *page)
4532
{
4533
	raid5_conf_t *conf = mddev->private;
4534 4535 4536 4537
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4538 4539
}

4540 4541
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4542

4543
static struct attribute *raid5_attrs[] =  {
4544 4545
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4546
	&raid5_preread_bypass_threshold.attr,
4547 4548
	NULL,
};
4549 4550 4551
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4552 4553
};

4554 4555 4556
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4557
	raid5_conf_t *conf = mddev->private;
4558 4559 4560

	if (!sectors)
		sectors = mddev->dev_sectors;
4561 4562 4563 4564 4565 4566 4567
	if (!raid_disks) {
		/* size is defined by the smallest of previous and new size */
		if (conf->raid_disks < conf->previous_raid_disks)
			raid_disks = conf->raid_disks;
		else
			raid_disks = conf->previous_raid_disks;
	}
4568

4569
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4570
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4571 4572 4573
	return sectors * (raid_disks - conf->max_degraded);
}

4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4586
		kfree(percpu->scribble);
4587 4588 4589 4590 4591 4592 4593 4594 4595
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4596 4597 4598
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4599
	raid5_free_percpu(conf);
4600 4601 4602 4603 4604
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4616
		if (conf->level == 6 && !percpu->spare_page)
4617
			percpu->spare_page = alloc_page(GFP_KERNEL);
4618 4619 4620 4621 4622 4623 4624
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4625 4626 4627 4628 4629 4630 4631 4632
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
			return NOTIFY_BAD;
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4633
		kfree(percpu->scribble);
4634
		percpu->spare_page = NULL;
4635
		percpu->scribble = NULL;
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
	struct raid5_percpu *allcpus;
4649
	void *scribble;
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
		scribble = kmalloc(scribble_len(conf->raid_disks), GFP_KERNEL);
		if (!scribble) {
4670 4671 4672
			err = -ENOMEM;
			break;
		}
4673
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4686
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4687 4688 4689 4690 4691 4692
{
	raid5_conf_t *conf;
	int raid_disk, memory;
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4693 4694 4695
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4696
		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4697 4698
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4699
	}
N
NeilBrown 已提交
4700 4701 4702 4703
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4704
		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
N
NeilBrown 已提交
4705 4706
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4707
	}
N
NeilBrown 已提交
4708 4709 4710 4711
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4712 4713
	}

4714 4715 4716
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
N
NeilBrown 已提交
4717
		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4718
		       mddev->new_chunk_sectors << 9, mdname(mddev));
N
NeilBrown 已提交
4719
		return ERR_PTR(-EINVAL);
4720 4721
	}

N
NeilBrown 已提交
4722 4723
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4724
		goto abort;
N
NeilBrown 已提交
4725 4726

	conf->raid_disks = mddev->raid_disks;
4727
	conf->scribble_len = scribble_len(conf->raid_disks);
N
NeilBrown 已提交
4728 4729 4730
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4731 4732 4733
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;

	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4734 4735 4736
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4737

L
Linus Torvalds 已提交
4738 4739
	conf->mddev = mddev;

4740
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4741 4742
		goto abort;

4743 4744 4745 4746
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

L
Linus Torvalds 已提交
4747 4748 4749 4750
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
4751
	INIT_LIST_HEAD(&conf->hold_list);
L
Linus Torvalds 已提交
4752
	INIT_LIST_HEAD(&conf->delayed_list);
4753
	INIT_LIST_HEAD(&conf->bitmap_list);
L
Linus Torvalds 已提交
4754 4755 4756
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
4757
	atomic_set(&conf->active_aligned_reads, 0);
4758
	conf->bypass_threshold = BYPASS_THRESHOLD;
L
Linus Torvalds 已提交
4759

4760
	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4761

4762
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4763
		raid_disk = rdev->raid_disk;
4764
		if (raid_disk >= conf->raid_disks
L
Linus Torvalds 已提交
4765 4766 4767 4768 4769 4770
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4771
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4772 4773 4774 4775
			char b[BDEVNAME_SIZE];
			printk(KERN_INFO "raid5: device %s operational as raid"
				" disk %d\n", bdevname(rdev->bdev,b),
				raid_disk);
4776 4777 4778
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4779 4780
	}

4781
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4782
	conf->level = mddev->new_level;
4783 4784 4785 4786
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4787
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4788
	conf->max_nr_stripes = NR_STRIPES;
4789
	conf->reshape_progress = mddev->reshape_position;
4790
	if (conf->reshape_progress != MaxSector) {
4791
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4792 4793
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4794

N
NeilBrown 已提交
4795 4796 4797 4798 4799 4800 4801 4802 4803
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
			"raid5: couldn't allocate %dkB for buffers\n", memory);
		goto abort;
	} else
		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
			memory, mdname(mddev));
L
Linus Torvalds 已提交
4804

4805
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4806 4807 4808 4809
	if (!conf->thread) {
		printk(KERN_ERR
		       "raid5: couldn't allocate thread for %s\n",
		       mdname(mddev));
4810 4811
		goto abort;
	}
N
NeilBrown 已提交
4812 4813 4814 4815 4816

	return conf;

 abort:
	if (conf) {
4817
		free_conf(conf);
N
NeilBrown 已提交
4818 4819 4820 4821 4822 4823 4824 4825
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4826
	int working_disks = 0, chunk_size;
N
NeilBrown 已提交
4827 4828
	mdk_rdev_t *rdev;

4829 4830 4831 4832
	if (mddev->recovery_cp != MaxSector)
		printk(KERN_NOTICE "raid5: %s is not clean"
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4833 4834 4835 4836 4837 4838 4839 4840
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4841
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4842

4843
		if (mddev->new_level != mddev->level) {
N
NeilBrown 已提交
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
			printk(KERN_ERR "raid5: %s: unsupported reshape "
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4855
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4856 4857 4858 4859 4860 4861 4862
			       (mddev->raid_disks - max_degraded))) {
			printk(KERN_ERR "raid5: reshape_position not "
			       "on a stripe boundary\n");
			return -EINVAL;
		}
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4863
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4864 4865 4866
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
				printk(KERN_ERR "raid5: in-place reshape must be started"
				       " in read-only mode - aborting\n");
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
			/* Reading from the same stripe as writing to - bad */
			printk(KERN_ERR "raid5: reshape_position too early for "
			       "auto-recovery - aborting.\n");
			return -EINVAL;
		}
		printk(KERN_INFO "raid5: reshape will continue\n");
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
4897
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
4898
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4899
	}
N
NeilBrown 已提交
4900

4901 4902 4903 4904 4905
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
	list_for_each_entry(rdev, &mddev->disks, same_set)
		if (rdev->raid_disk >= 0 &&
		    test_bit(In_sync, &rdev->flags))
			working_disks++;

	mddev->degraded = conf->raid_disks - working_disks;

4923
	if (mddev->degraded > conf->max_degraded) {
L
Linus Torvalds 已提交
4924 4925
		printk(KERN_ERR "raid5: not enough operational devices for %s"
			" (%d/%d failed)\n",
4926
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
4927 4928 4929
		goto abort;
	}

N
NeilBrown 已提交
4930
	/* device size must be a multiple of chunk size */
4931
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
4932 4933
	mddev->resync_max_sectors = mddev->dev_sectors;

4934
	if (mddev->degraded > 0 &&
L
Linus Torvalds 已提交
4935
	    mddev->recovery_cp != MaxSector) {
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
			       "raid5: starting dirty degraded array: %s"
			       "- data corruption possible.\n",
			       mdname(mddev));
		else {
			printk(KERN_ERR
			       "raid5: cannot start dirty degraded array for %s\n",
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
4947 4948 4949 4950
	}

	if (mddev->degraded == 0)
		printk("raid5: raid level %d set %s active with %d out of %d"
4951 4952 4953
		       " devices, algorithm %d\n", conf->level, mdname(mddev),
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
4954 4955 4956 4957
	else
		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
			" out of %d devices, algorithm %d\n", conf->level,
			mdname(mddev), mddev->raid_disks - mddev->degraded,
4958
			mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
4959 4960 4961

	print_raid5_conf(conf);

4962
	if (conf->reshape_progress != MaxSector) {
4963
		printk("...ok start reshape thread\n");
4964
		conf->reshape_safe = conf->reshape_progress;
4965 4966 4967 4968 4969 4970
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4971
							"reshape");
4972 4973
	}

L
Linus Torvalds 已提交
4974
	/* read-ahead size must cover two whole stripes, which is
4975
	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
L
Linus Torvalds 已提交
4976 4977
	 */
	{
4978 4979
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
4980
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
L
Linus Torvalds 已提交
4981 4982 4983 4984 4985
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
	}

	/* Ok, everything is just fine now */
4986 4987 4988 4989
	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
		printk(KERN_WARNING
		       "raid5: failed to create sysfs attributes for %s\n",
		       mdname(mddev));
4990

N
NeilBrown 已提交
4991 4992
	mddev->queue->queue_lock = &conf->device_lock;

4993
	mddev->queue->unplug_fn = raid5_unplug_device;
4994
	mddev->queue->backing_dev_info.congested_data = mddev;
4995
	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4996

4997
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4998

4999
	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5000 5001 5002 5003 5004 5005 5006 5007
	chunk_size = mddev->chunk_sectors << 9;
	blk_queue_io_min(mddev->queue, chunk_size);
	blk_queue_io_opt(mddev->queue, chunk_size *
			 (conf->raid_disks - conf->max_degraded));

	list_for_each_entry(rdev, &mddev->disks, same_set)
		disk_stack_limits(mddev->gendisk, rdev->bdev,
				  rdev->data_offset << 9);
5008

L
Linus Torvalds 已提交
5009 5010
	return 0;
abort:
5011
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
5012
	mddev->thread = NULL;
L
Linus Torvalds 已提交
5013 5014
	if (conf) {
		print_raid5_conf(conf);
5015
		free_conf(conf);
L
Linus Torvalds 已提交
5016 5017 5018 5019 5020 5021 5022 5023
	}
	mddev->private = NULL;
	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
	return -EIO;
}



5024
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
5025 5026 5027 5028 5029
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
5030
	mddev->queue->backing_dev_info.congested_fn = NULL;
L
Linus Torvalds 已提交
5031
	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5032
	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
5033
	free_conf(conf);
L
Linus Torvalds 已提交
5034 5035 5036 5037
	mddev->private = NULL;
	return 0;
}

5038
#ifdef DEBUG
5039
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
5040 5041 5042
{
	int i;

5043 5044 5045 5046 5047
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5048
	for (i = 0; i < sh->disks; i++) {
5049 5050
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
5051
	}
5052
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
5053 5054
}

5055
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
5056 5057
{
	struct stripe_head *sh;
5058
	struct hlist_node *hn;
L
Linus Torvalds 已提交
5059 5060 5061 5062
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
5063
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
5064 5065
			if (sh->raid_conf != conf)
				continue;
5066
			print_sh(seq, sh);
L
Linus Torvalds 已提交
5067 5068 5069 5070 5071 5072
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

5073
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
5074 5075 5076 5077
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	int i;

5078 5079
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5080
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5081 5082 5083
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5084
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5085
	seq_printf (seq, "]");
5086
#ifdef DEBUG
5087 5088
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

	printk("RAID5 conf printout:\n");
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5102 5103
	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
		 conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5104 5105 5106 5107 5108 5109

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
		printk(" disk %d, o:%d, dev:%s\n",
5110
			i, !test_bit(Faulty, &tmp->rdev->flags),
L
Linus Torvalds 已提交
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123
			bdevname(tmp->rdev->bdev,b));
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
5124
		    && !test_bit(Faulty, &tmp->rdev->flags)
5125 5126 5127
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5128
			mddev->degraded--;
5129
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
		}
	}
	print_raid5_conf(conf);
	return 0;
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
5146 5147 5148 5149
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

5150
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
5151 5152 5153 5154
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
5155 5156 5157 5158
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
5159 5160
		    mddev->degraded <= conf->max_degraded &&
		    number < conf->raid_disks) {
5161 5162 5163
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
5164
		p->rdev = NULL;
5165
		synchronize_rcu();
L
Linus Torvalds 已提交
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
5181
	int err = -EEXIST;
L
Linus Torvalds 已提交
5182 5183
	int disk;
	struct disk_info *p;
5184 5185
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5186

5187
	if (mddev->degraded > conf->max_degraded)
L
Linus Torvalds 已提交
5188
		/* no point adding a device */
5189
		return -EINVAL;
L
Linus Torvalds 已提交
5190

5191 5192
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5193 5194

	/*
5195 5196
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5197
	 */
5198
	if (rdev->saved_raid_disk >= 0 &&
5199
	    rdev->saved_raid_disk >= first &&
5200 5201 5202
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5203 5204
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5205
		if ((p=conf->disks + disk)->rdev == NULL) {
5206
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5207
			rdev->raid_disk = disk;
5208
			err = 0;
5209 5210
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5211
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5212 5213 5214
			break;
		}
	print_raid5_conf(conf);
5215
	return err;
L
Linus Torvalds 已提交
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5227
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5228 5229
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5230 5231 5232
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5233
	set_capacity(mddev->gendisk, mddev->array_sectors);
5234
	mddev->changed = 1;
5235
	revalidate_disk(mddev->gendisk);
A
Andre Noll 已提交
5236 5237
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5238 5239
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5240
	mddev->dev_sectors = sectors;
5241
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5242 5243 5244
	return 0;
}

5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5268
static int check_reshape(mddev_t *mddev)
5269
{
5270
	raid5_conf_t *conf = mddev->private;
5271

5272 5273
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5274
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5275
		return 0; /* nothing to do */
5276 5277 5278
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
	if (mddev->degraded > conf->max_degraded)
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5293

5294
	if (!check_stripe_cache(mddev))
5295 5296
		return -ENOSPC;

5297
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5298 5299 5300 5301
}

static int raid5_start_reshape(mddev_t *mddev)
{
5302
	raid5_conf_t *conf = mddev->private;
5303 5304 5305
	mdk_rdev_t *rdev;
	int spares = 0;
	int added_devices = 0;
5306
	unsigned long flags;
5307

5308
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5309 5310
		return -EBUSY;

5311 5312 5313
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5314
	list_for_each_entry(rdev, &mddev->disks, same_set)
5315 5316 5317
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
5318

5319
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5320 5321 5322 5323 5324
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
		printk(KERN_ERR "md: %s: array size must be reduced "
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5336
	atomic_set(&conf->reshape_stripes, 0);
5337 5338
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5339
	conf->raid_disks += mddev->delta_disks;
5340 5341
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5342 5343
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5344 5345 5346 5347 5348
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5349
	conf->generation++;
5350 5351 5352 5353 5354
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
	 */
5355
	list_for_each_entry(rdev, &mddev->disks, same_set)
5356 5357
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
5358
			if (raid5_add_disk(mddev, rdev) == 0) {
5359 5360 5361
				char nm[20];
				set_bit(In_sync, &rdev->flags);
				added_devices++;
5362
				rdev->recovery_offset = 0;
5363
				sprintf(nm, "rd%d", rdev->raid_disk);
5364 5365 5366 5367 5368 5369
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
					printk(KERN_WARNING
					       "raid5: failed to create "
					       " link %s for %s\n",
					       nm, mdname(mddev));
5370 5371 5372 5373
			} else
				break;
		}

5374 5375 5376 5377 5378 5379
	if (mddev->delta_disks > 0) {
		spin_lock_irqsave(&conf->device_lock, flags);
		mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5380
	mddev->raid_disks = conf->raid_disks;
5381
	mddev->reshape_position = conf->reshape_progress;
5382
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5383

5384 5385 5386 5387 5388
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5389
						"reshape");
5390 5391 5392 5393
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5394
		conf->reshape_progress = MaxSector;
5395 5396 5397
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5398
	conf->reshape_checkpoint = jiffies;
5399 5400 5401 5402 5403
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5404 5405 5406
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5407 5408 5409
static void end_reshape(raid5_conf_t *conf)
{

5410 5411 5412
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5413
		conf->previous_raid_disks = conf->raid_disks;
5414
		conf->reshape_progress = MaxSector;
5415
		spin_unlock_irq(&conf->device_lock);
5416
		wake_up(&conf->wait_for_overlap);
5417 5418 5419 5420 5421

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
		{
5422
			int data_disks = conf->raid_disks - conf->max_degraded;
5423
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5424
						   / PAGE_SIZE);
5425 5426 5427
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5428 5429 5430
	}
}

5431 5432 5433
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5434 5435
static void raid5_finish_reshape(mddev_t *mddev)
{
5436
	raid5_conf_t *conf = mddev->private;
5437 5438 5439

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5440 5441 5442 5443
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
			mddev->changed = 1;
5444
			revalidate_disk(mddev->gendisk);
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5455 5456 5457 5458 5459 5460 5461 5462 5463
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
					char nm[20];
					sprintf(nm, "rd%d", rdev->raid_disk);
					sysfs_remove_link(&mddev->kobj, nm);
					rdev->raid_disk = -1;
				}
			}
5464
		}
5465
		mddev->layout = conf->algorithm;
5466
		mddev->chunk_sectors = conf->chunk_sectors;
5467 5468
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5469 5470 5471
	}
}

5472 5473
static void raid5_quiesce(mddev_t *mddev, int state)
{
5474
	raid5_conf_t *conf = mddev->private;
5475 5476

	switch(state) {
5477 5478 5479 5480
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5481 5482
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5483 5484 5485 5486
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5487
		wait_event_lock_irq(conf->wait_for_stripe,
5488 5489
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5490
				    conf->device_lock, /* nothing */);
5491
		conf->quiesce = 1;
5492
		spin_unlock_irq(&conf->device_lock);
5493 5494
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5495 5496 5497 5498 5499 5500
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5501
		wake_up(&conf->wait_for_overlap);
5502 5503 5504 5505
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5506

5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529

static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5530
	mddev->new_chunk_sectors = chunksect;
5531 5532 5533 5534

	return setup_conf(mddev);
}

5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5568

5569
static int raid5_check_reshape(mddev_t *mddev)
5570
{
5571 5572 5573 5574
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5575
	 */
5576
	raid5_conf_t *conf = mddev->private;
5577
	int new_chunk = mddev->new_chunk_sectors;
5578

5579
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5580 5581
		return -EINVAL;
	if (new_chunk > 0) {
5582
		if (!is_power_of_2(new_chunk))
5583
			return -EINVAL;
5584
		if (new_chunk < (PAGE_SIZE>>9))
5585
			return -EINVAL;
5586
		if (mddev->array_sectors & (new_chunk-1))
5587 5588 5589 5590 5591 5592
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5593
	if (mddev->raid_disks == 2) {
5594 5595 5596 5597
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5598 5599
		}
		if (new_chunk > 0) {
5600 5601
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5602 5603 5604
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5605
	}
5606
	return check_reshape(mddev);
5607 5608
}

5609
static int raid6_check_reshape(mddev_t *mddev)
5610
{
5611
	int new_chunk = mddev->new_chunk_sectors;
5612

5613
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5614
		return -EINVAL;
5615
	if (new_chunk > 0) {
5616
		if (!is_power_of_2(new_chunk))
5617
			return -EINVAL;
5618
		if (new_chunk < (PAGE_SIZE >> 9))
5619
			return -EINVAL;
5620
		if (mddev->array_sectors & (new_chunk-1))
5621 5622
			/* not factor of array size */
			return -EINVAL;
5623
	}
5624 5625

	/* They look valid */
5626
	return check_reshape(mddev);
5627 5628
}

5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
	 *  raid0 - if all devices are the same - make it a raid4 layout
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */

	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5640 5641 5642 5643 5644
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5645 5646
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5647 5648 5649 5650 5651

	return ERR_PTR(-EINVAL);
}


5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5716
	.size		= raid5_size,
5717
	.check_reshape	= raid6_check_reshape,
5718
	.start_reshape  = raid5_start_reshape,
5719
	.finish_reshape = raid5_finish_reshape,
5720
	.quiesce	= raid5_quiesce,
5721
	.takeover	= raid6_takeover,
5722
};
5723
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5724 5725
{
	.name		= "raid5",
5726
	.level		= 5,
L
Linus Torvalds 已提交
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5738
	.size		= raid5_size,
5739 5740
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5741
	.finish_reshape = raid5_finish_reshape,
5742
	.quiesce	= raid5_quiesce,
5743
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5744 5745
};

5746
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5747
{
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5761
	.size		= raid5_size,
5762 5763
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5764
	.finish_reshape = raid5_finish_reshape,
5765 5766 5767 5768 5769
	.quiesce	= raid5_quiesce,
};

static int __init raid5_init(void)
{
5770
	register_md_personality(&raid6_personality);
5771 5772 5773
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5774 5775
}

5776
static void raid5_exit(void)
L
Linus Torvalds 已提交
5777
{
5778
	unregister_md_personality(&raid6_personality);
5779 5780
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5781 5782 5783 5784 5785 5786
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5787 5788
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5789 5790
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5791 5792 5793 5794 5795 5796 5797
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");