raid5.c 160.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include "md.h"
54
#include "raid5.h"
55
#include "bitmap.h"
56

L
Linus Torvalds 已提交
57 58 59 60 61 62 63 64 65
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
66
#define BYPASS_THRESHOLD	1
67
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
68 69
#define HASH_MASK		(NR_HASH - 1)

70
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

92
#ifdef DEBUG
L
Linus Torvalds 已提交
93 94 95 96
#define inline
#define __inline__
#endif

97 98
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

99
/*
100 101
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
102 103 104
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
105
	return bio->bi_phys_segments & 0xffff;
106 107 108 109
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
110
	return (bio->bi_phys_segments >> 16) & 0xffff;
111 112 113 114 115 116 117 118 119 120 121 122 123
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
124
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
125 126 127 128 129
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
130
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
131 132
}

133 134 135
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
136 137 138 139
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
140 141 142 143 144
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
145 146 147 148 149
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
150

151 152 153 154 155
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
156 157
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
158 159
{
	int slot;
160

161
	if (idx == sh->pd_idx)
162
		return syndrome_disks;
163
	if (idx == sh->qd_idx)
164
		return syndrome_disks + 1;
165 166 167 168
	slot = (*count)++;
	return slot;
}

169 170 171 172 173 174 175 176
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
177
		bio_endio(bi, 0);
178 179 180 181
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
182 183
static void print_raid5_conf (raid5_conf_t *conf);

184 185 186 187 188 189 190
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

191
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
192 193
{
	if (atomic_dec_and_test(&sh->count)) {
194 195
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
196
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
197
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
198
				list_add_tail(&sh->lru, &conf->delayed_list);
199 200
				blk_plug_device(conf->mddev->queue);
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
201
				   sh->bm_seq - conf->seq_write > 0) {
202
				list_add_tail(&sh->lru, &conf->bitmap_list);
203 204
				blk_plug_device(conf->mddev->queue);
			} else {
205
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
206
				list_add_tail(&sh->lru, &conf->handle_list);
207
			}
L
Linus Torvalds 已提交
208 209
			md_wakeup_thread(conf->mddev->thread);
		} else {
210
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
211 212 213 214 215 216
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
217 218
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
219
				wake_up(&conf->wait_for_stripe);
220 221
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
222
			}
L
Linus Torvalds 已提交
223 224 225
		}
	}
}
226

L
Linus Torvalds 已提交
227 228 229 230
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
231

L
Linus Torvalds 已提交
232 233 234 235 236
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

237
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
238
{
239 240
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
241

242
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
243 244
}

245
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
246
{
247
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
248

249 250
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
251 252

	CHECK_DEVLOCK();
253
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

static void shrink_buffers(struct stripe_head *sh, int num)
{
	struct page *p;
	int i;

	for (i=0; i<num ; i++) {
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
285
		put_page(p);
L
Linus Torvalds 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	}
}

static int grow_buffers(struct stripe_head *sh, int num)
{
	int i;

	for (i=0; i<num; i++) {
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

304
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
305 306
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
307

308
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
309 310
{
	raid5_conf_t *conf = sh->raid_conf;
311
	int i;
L
Linus Torvalds 已提交
312

313 314
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
315
	BUG_ON(stripe_operations_active(sh));
316

L
Linus Torvalds 已提交
317
	CHECK_DEVLOCK();
318
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
319 320 321
		(unsigned long long)sh->sector);

	remove_hash(sh);
322

323
	sh->generation = conf->generation - previous;
324
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
325
	sh->sector = sector;
326
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
327 328
	sh->state = 0;

329 330

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
331 332
		struct r5dev *dev = &sh->dev[i];

333
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
334
		    test_bit(R5_LOCKED, &dev->flags)) {
335
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
336
			       (unsigned long long)sh->sector, i, dev->toread,
337
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
338 339 340 341
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
342
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
343 344 345 346
	}
	insert_hash(conf, sh);
}

347 348
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
349 350
{
	struct stripe_head *sh;
351
	struct hlist_node *hn;
L
Linus Torvalds 已提交
352 353

	CHECK_DEVLOCK();
354
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
355
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
356
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
357
			return sh;
358
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
359 360 361 362
	return NULL;
}

static void unplug_slaves(mddev_t *mddev);
363
static void raid5_unplug_device(struct request_queue *q);
L
Linus Torvalds 已提交
364

365 366
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
367
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
368 369 370
{
	struct stripe_head *sh;

371
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
372 373 374 375

	spin_lock_irq(&conf->device_lock);

	do {
376
		wait_event_lock_irq(conf->wait_for_stripe,
377
				    conf->quiesce == 0 || noquiesce,
378
				    conf->device_lock, /* nothing */);
379
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
380 381 382 383 384 385 386 387 388
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
389 390
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
391 392
						     || !conf->inactive_blocked),
						    conf->device_lock,
393
						    raid5_unplug_device(conf->mddev->queue)
L
Linus Torvalds 已提交
394 395 396
					);
				conf->inactive_blocked = 0;
			} else
397
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
398 399
		} else {
			if (atomic_read(&sh->count)) {
400 401
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
402 403 404
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
405 406
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
407 408
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
409 410 411 412 413 414 415 416 417 418 419
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

420 421 422 423
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
424

425
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
			rw = WRITE;
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
460
			if (s->syncing || s->expanding || s->expanded)
461 462
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
463 464
			set_bit(STRIPE_IO_STARTED, &sh->state);

465 466
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
467
				__func__, (unsigned long long)sh->sector,
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
504
	struct async_submit_ctl submit;
D
Dan Williams 已提交
505
	enum async_tx_flags flags = 0;
506 507 508 509 510

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
511

D
Dan Williams 已提交
512 513 514 515
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
537
						  b_offset, clen, &submit);
538 539
			else
				tx = async_memcpy(bio_page, page, b_offset,
540
						  page_offset, clen, &submit);
541
		}
542 543 544
		/* chain the operations */
		submit.depend_tx = tx;

545 546 547 548 549 550 551 552 553 554 555 556 557
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
558
	int i;
559

560
	pr_debug("%s: stripe %llu\n", __func__,
561 562 563
		(unsigned long long)sh->sector);

	/* clear completed biofills */
564
	spin_lock_irq(&conf->device_lock);
565 566 567 568
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
569 570
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
571
		 * !STRIPE_BIOFILL_RUN
572 573
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
574 575 576 577 578 579 580 581
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
582
				if (!raid5_dec_bi_phys_segments(rbi)) {
583 584 585 586 587 588 589
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
590 591
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
592 593 594

	return_io(return_bi);

595
	set_bit(STRIPE_HANDLE, &sh->state);
596 597 598 599 600 601 602
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
603
	struct async_submit_ctl submit;
604 605
	int i;

606
	pr_debug("%s: stripe %llu\n", __func__,
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
627 628
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
629 630
}

631
static void mark_target_uptodate(struct stripe_head *sh, int target)
632
{
633
	struct r5dev *tgt;
634

635 636
	if (target < 0)
		return;
637

638
	tgt = &sh->dev[target];
639 640 641
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
642 643
}

644
static void ops_complete_compute(void *stripe_head_ref)
645 646 647
{
	struct stripe_head *sh = stripe_head_ref;

648
	pr_debug("%s: stripe %llu\n", __func__,
649 650
		(unsigned long long)sh->sector);

651
	/* mark the computed target(s) as uptodate */
652
	mark_target_uptodate(sh, sh->ops.target);
653
	mark_target_uptodate(sh, sh->ops.target2);
654

655 656 657
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
658 659 660 661
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

662 663 664 665 666 667 668 669 670
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
671 672
{
	int disks = sh->disks;
673
	struct page **xor_srcs = percpu->scribble;
674 675 676 677 678
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
679
	struct async_submit_ctl submit;
680 681 682
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
683
		__func__, (unsigned long long)sh->sector, target);
684 685 686 687 688 689 690 691
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
692
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
693
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
694
	if (unlikely(count == 1))
695
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
696
	else
697
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
698 699 700 701

	return tx;
}

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
		srcs[i] = (void *)raid6_empty_zero_page;

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
	BUG_ON(count != syndrome_disks);

	return count;
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
753
	else
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
770 771
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
772 773 774 775 776 777 778 779 780 781 782
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
783 784
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
785 786 787
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
788 789 790 791

	return tx;
}

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

	/* we need to open-code set_syndrome_sources to handle to the
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
		blocks[i] = (void *)raid6_empty_zero_page;
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
	BUG_ON(count != syndrome_disks);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
845 846 847
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
868 869 870 871
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
872 873 874 875
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
876 877 878
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
879 880 881 882 883
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	}

D
Dan Williams 已提交
884 885
	init_async_submit(&submit, ASYNC_TX_FENCE, NULL, ops_complete_compute,
			  sh, to_addr_conv(sh, percpu));
886 887 888 889 890 891 892 893 894 895 896 897
	if (failb == syndrome_disks) {
		/* We're missing D+P. */
		return async_raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE,
					       faila, blocks, &submit);
	} else {
		/* We're missing D+D. */
		return async_raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE,
					       faila, failb, blocks, &submit);
	}
}


898 899 900 901
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

902
	pr_debug("%s: stripe %llu\n", __func__,
903 904 905 906
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
907 908
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
909 910
{
	int disks = sh->disks;
911
	struct page **xor_srcs = percpu->scribble;
912
	int count = 0, pd_idx = sh->pd_idx, i;
913
	struct async_submit_ctl submit;
914 915 916 917

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

918
	pr_debug("%s: stripe %llu\n", __func__,
919 920 921 922 923
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
924
		if (test_bit(R5_Wantdrain, &dev->flags))
925 926 927
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
928
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
929
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
930
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
931 932 933 934 935

	return tx;
}

static struct dma_async_tx_descriptor *
936
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
937 938
{
	int disks = sh->disks;
939
	int i;
940

941
	pr_debug("%s: stripe %llu\n", __func__,
942 943 944 945 946 947
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

948
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

970
static void ops_complete_reconstruct(void *stripe_head_ref)
971 972
{
	struct stripe_head *sh = stripe_head_ref;
973 974 975 976
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
977

978
	pr_debug("%s: stripe %llu\n", __func__,
979 980 981 982
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
983 984

		if (dev->written || i == pd_idx || i == qd_idx)
985 986 987
			set_bit(R5_UPTODATE, &dev->flags);
	}

988 989 990 991 992 993 994 995
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
996 997 998 999 1000 1001

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1002 1003
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1004 1005
{
	int disks = sh->disks;
1006
	struct page **xor_srcs = percpu->scribble;
1007
	struct async_submit_ctl submit;
1008 1009
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1010
	int prexor = 0;
1011 1012
	unsigned long flags;

1013
	pr_debug("%s: stripe %llu\n", __func__,
1014 1015 1016 1017 1018
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1019 1020
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1041
	flags = ASYNC_TX_ACK |
1042 1043 1044 1045
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1046
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1047
			  to_addr_conv(sh, percpu));
1048 1049 1050 1051
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1052 1053
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1071 1072 1073 1074 1075 1076
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1077
	pr_debug("%s: stripe %llu\n", __func__,
1078 1079
		(unsigned long long)sh->sector);

1080
	sh->check_state = check_state_check_result;
1081 1082 1083 1084
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1085
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1086 1087
{
	int disks = sh->disks;
1088 1089 1090
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1091
	struct page **xor_srcs = percpu->scribble;
1092
	struct dma_async_tx_descriptor *tx;
1093
	struct async_submit_ctl submit;
1094 1095
	int count;
	int i;
1096

1097
	pr_debug("%s: stripe %llu\n", __func__,
1098 1099
		(unsigned long long)sh->sector);

1100 1101 1102
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1103
	for (i = disks; i--; ) {
1104 1105 1106
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1107 1108
	}

1109 1110
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1111
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1112
			   &sh->ops.zero_sum_result, &submit);
1113 1114

	atomic_inc(&sh->count);
1115 1116
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;

	atomic_inc(&sh->count);
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1140 1141 1142
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1143
	raid5_conf_t *conf = sh->raid_conf;
1144
	int level = conf->level;
1145 1146
	struct raid5_percpu *percpu;
	unsigned long cpu;
1147

1148 1149
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1150
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1151 1152 1153 1154
		ops_run_biofill(sh);
		overlap_clear++;
	}

1155
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1166 1167
			async_tx_ack(tx);
	}
1168

1169
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1170
		tx = ops_run_prexor(sh, percpu, tx);
1171

1172
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1173
		tx = ops_run_biodrain(sh, tx);
1174 1175 1176
		overlap_clear++;
	}

1177 1178 1179 1180 1181 1182
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1194 1195 1196 1197 1198 1199 1200

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1201
	put_cpu();
1202 1203
}

1204
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1205 1206
{
	struct stripe_head *sh;
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);

	if (grow_buffers(sh, conf->raid_disks)) {
		shrink_buffers(sh, conf->raid_disks);
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
1219
	sh->disks = conf->raid_disks;
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1230
	struct kmem_cache *sc;
L
Linus Torvalds 已提交
1231 1232
	int devs = conf->raid_disks;

1233 1234 1235 1236
	sprintf(conf->cache_name[0],
		"raid%d-%s", conf->level, mdname(conf->mddev));
	sprintf(conf->cache_name[1],
		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
1237 1238
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1239
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1240
			       0, 0, NULL);
L
Linus Torvalds 已提交
1241 1242 1243
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1244
	conf->pool_size = devs;
1245
	while (num--)
1246
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1247 1248 1249
			return 1;
	return 0;
}
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1301
	unsigned long cpu;
1302
	int err;
1303
	struct kmem_cache *sc;
1304 1305 1306 1307 1308
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1309 1310 1311
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1312

1313 1314 1315
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1316
			       0, 0, NULL);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1351
				    unplug_slaves(conf->mddev)
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1367
	 * conf->disks and the scribble region
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1397 1398 1399 1400
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1401

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1418

1419
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1420 1421 1422
{
	struct stripe_head *sh;

1423 1424 1425 1426 1427
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1428
	BUG_ON(atomic_read(&sh->count));
1429
	shrink_buffers(sh, conf->pool_size);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1440 1441
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1442 1443 1444
	conf->slab_cache = NULL;
}

1445
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1446
{
1447
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1448
	raid5_conf_t *conf = sh->raid_conf;
1449
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1450
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1451 1452
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1453 1454 1455 1456 1457 1458


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1459 1460
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1461 1462 1463
		uptodate);
	if (i == disks) {
		BUG();
1464
		return;
L
Linus Torvalds 已提交
1465 1466 1467 1468
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1469
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1470
			rdev = conf->disks[i].rdev;
1471 1472 1473 1474 1475 1476
			printk_rl(KERN_INFO "raid5:%s: read error corrected"
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1477 1478 1479
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1480 1481
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1482
	} else {
1483
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1484
		int retry = 0;
1485 1486
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1487
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1488
		atomic_inc(&rdev->read_errors);
1489
		if (conf->mddev->degraded)
1490 1491 1492 1493 1494 1495 1496
			printk_rl(KERN_WARNING
				  "raid5:%s: read error not correctable "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1497
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1498
			/* Oh, no!!! */
1499 1500 1501 1502 1503 1504 1505
			printk_rl(KERN_WARNING
				  "raid5:%s: read error NOT corrected!! "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1506
		else if (atomic_read(&rdev->read_errors)
1507
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1508
			printk(KERN_WARNING
1509 1510
			       "raid5:%s: Too many read errors, failing device %s.\n",
			       mdname(conf->mddev), bdn);
1511 1512 1513 1514 1515
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1516 1517
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1518
			md_error(conf->mddev, rdev);
1519
		}
L
Linus Torvalds 已提交
1520 1521 1522 1523 1524 1525 1526
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1527
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1528
{
1529
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1530
	raid5_conf_t *conf = sh->raid_conf;
1531
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1532 1533 1534 1535 1536 1537
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1538
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1539 1540 1541 1542
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1543
		return;
L
Linus Torvalds 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1553
	release_stripe(sh);
L
Linus Torvalds 已提交
1554 1555 1556
}


1557
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1558
	
1559
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1575
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1576 1577 1578 1579 1580 1581
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1582
	pr_debug("raid5: error called\n");
L
Linus Torvalds 已提交
1583

1584
	if (!test_bit(Faulty, &rdev->flags)) {
1585
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1586 1587 1588
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1589
			mddev->degraded++;
1590
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1591 1592 1593
			/*
			 * if recovery was running, make sure it aborts.
			 */
1594
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1595
		}
1596
		set_bit(Faulty, &rdev->flags);
1597 1598 1599 1600
		printk(KERN_ALERT
		       "raid5: Disk failure on %s, disabling device.\n"
		       "raid5: Operation continuing on %d devices.\n",
		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1601
	}
1602
}
L
Linus Torvalds 已提交
1603 1604 1605 1606 1607

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1608
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1609 1610
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1611 1612 1613 1614
{
	long stripe;
	unsigned long chunk_number;
	unsigned int chunk_offset;
1615
	int pd_idx, qd_idx;
1616
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1617
	sector_t new_sector;
1618 1619
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1620 1621
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1622 1623 1624
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;
	BUG_ON(r_sector != chunk_number);

	/*
	 * Compute the stripe number
	 */
	stripe = chunk_number / data_disks;

	/*
	 * Compute the data disk and parity disk indexes inside the stripe
	 */
	*dd_idx = chunk_number % data_disks;

	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1648
	pd_idx = qd_idx = ~0;
1649 1650
	switch(conf->level) {
	case 4:
1651
		pd_idx = data_disks;
1652 1653
		break;
	case 5:
1654
		switch (algorithm) {
L
Linus Torvalds 已提交
1655
		case ALGORITHM_LEFT_ASYMMETRIC:
1656 1657
			pd_idx = data_disks - stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1658 1659 1660
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1661 1662
			pd_idx = stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1663 1664 1665
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1666 1667
			pd_idx = data_disks - stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1668 1669
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1670 1671
			pd_idx = stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1672
			break;
1673 1674 1675 1676 1677 1678 1679
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1680
		default:
N
NeilBrown 已提交
1681
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1682
				algorithm);
1683
			BUG();
1684 1685 1686 1687
		}
		break;
	case 6:

1688
		switch (algorithm) {
1689
		case ALGORITHM_LEFT_ASYMMETRIC:
1690 1691 1692
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1693
				(*dd_idx)++;	/* Q D D D P */
1694 1695
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1696 1697 1698
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1699 1700 1701
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1702
				(*dd_idx)++;	/* Q D D D P */
1703 1704
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1705 1706 1707
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1708 1709 1710
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1711 1712
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1713 1714 1715
			pd_idx = stripe % raid_disks;
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1716
			break;
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1739
			ddf_layout = 1;
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1754
			ddf_layout = 1;
1755 1756 1757 1758 1759 1760 1761
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1762
			ddf_layout = 1;
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
			pd_idx = data_disks - stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
			pd_idx = data_disks - stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;


1799
		default:
1800
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1801
			       algorithm);
1802
			BUG();
1803 1804
		}
		break;
L
Linus Torvalds 已提交
1805 1806
	}

1807 1808 1809
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1810
		sh->ddf_layout = ddf_layout;
1811
	}
L
Linus Torvalds 已提交
1812 1813 1814 1815 1816 1817 1818 1819
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1820
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1821 1822
{
	raid5_conf_t *conf = sh->raid_conf;
1823 1824
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1825
	sector_t new_sector = sh->sector, check;
1826 1827
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1828 1829
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1830 1831
	sector_t stripe;
	int chunk_offset;
1832
	int chunk_number, dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1833
	sector_t r_sector;
1834
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1835

1836

L
Linus Torvalds 已提交
1837 1838 1839 1840
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;
	BUG_ON(new_sector != stripe);

1841 1842 1843 1844 1845
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1846
		switch (algorithm) {
L
Linus Torvalds 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1858 1859 1860 1861 1862
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1863
		default:
N
NeilBrown 已提交
1864
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1865
			       algorithm);
1866
			BUG();
1867 1868 1869
		}
		break;
	case 6:
1870
		if (i == sh->qd_idx)
1871
			return 0; /* It is the Q disk */
1872
		switch (algorithm) {
1873 1874
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1875 1876 1877 1878
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
			else if (i > sh->pd_idx)
				i -= 2; /* D D Q P D */
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
1918
		default:
1919
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1920
			       algorithm);
1921
			BUG();
1922 1923
		}
		break;
L
Linus Torvalds 已提交
1924 1925 1926 1927 1928
	}

	chunk_number = stripe * data_disks + i;
	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;

1929
	check = raid5_compute_sector(conf, r_sector,
1930
				     previous, &dummy1, &sh2);
1931 1932
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
N
NeilBrown 已提交
1933
		printk(KERN_ERR "compute_blocknr: map not correct\n");
L
Linus Torvalds 已提交
1934 1935 1936 1937 1938 1939
		return 0;
	}
	return r_sector;
}


1940
static void
1941
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1942
			 int rcw, int expand)
1943 1944
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1945 1946
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
1947 1948 1949 1950 1951 1952 1953

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
1954 1955 1956 1957
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
1958

1959
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
1960 1961 1962 1963 1964 1965

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
1966
				set_bit(R5_Wantdrain, &dev->flags);
1967 1968
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
1969
				s->locked++;
1970 1971
			}
		}
1972
		if (s->locked + conf->max_degraded == disks)
1973
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1974
				atomic_inc(&conf->pending_full_writes);
1975
	} else {
1976
		BUG_ON(level == 6);
1977 1978 1979
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

1980
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1981 1982
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1983
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
1984 1985 1986 1987 1988 1989 1990 1991

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
1992 1993
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
1994 1995
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
1996
				s->locked++;
1997 1998 1999 2000
			}
		}
	}

2001
	/* keep the parity disk(s) locked while asynchronous operations
2002 2003 2004 2005
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2006
	s->locked++;
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2017
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2018
		__func__, (unsigned long long)sh->sector,
2019
		s->locked, s->ops_request);
2020
}
2021

L
Linus Torvalds 已提交
2022 2023
/*
 * Each stripe/dev can have one or more bion attached.
2024
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2025 2026 2027 2028 2029 2030
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2031
	int firstwrite=0;
L
Linus Torvalds 已提交
2032

2033
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2034 2035 2036 2037 2038 2039
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
2040
	if (forwrite) {
L
Linus Torvalds 已提交
2041
		bip = &sh->dev[dd_idx].towrite;
2042 2043 2044
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2054
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2055 2056 2057
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2058
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
2059 2060 2061
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

2062
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
2063 2064 2065
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

2066 2067 2068
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
2069
		sh->bm_seq = conf->seq_flush+1;
2070 2071 2072
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

2095 2096
static void end_reshape(raid5_conf_t *conf);

2097 2098
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2099
{
2100
	int sectors_per_chunk =
2101
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2102
	int dd_idx;
2103
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2104
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2105

2106 2107
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2108
			     *sectors_per_chunk + chunk_offset,
2109
			     previous,
2110
			     &dd_idx, sh);
2111 2112
}

2113
static void
2114
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2148
			if (!raid5_dec_bi_phys_segments(bi)) {
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2163
			if (!raid5_dec_bi_phys_segments(bi)) {
2164 2165 2166 2167 2168 2169 2170
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2171 2172 2173 2174 2175 2176
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2187
				if (!raid5_dec_bi_phys_segments(bi)) {
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2200 2201 2202
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2203 2204
}

2205 2206 2207 2208 2209
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2210
 */
2211 2212
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2213 2214 2215 2216 2217 2218
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2219 2220 2221 2222 2223 2224 2225 2226
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2227 2228
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2229 2230
		 */
		if ((s->uptodate == disks - 1) &&
2231
		    (s->failed && disk_idx == s->failed_num)) {
2232 2233
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2234 2235
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
2236
			sh->ops.target2 = -1;
2237 2238
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
2239
			 * of raid_run_ops which services 'compute' operations
2240 2241 2242 2243 2244
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2245
			return 1; /* uptodate + compute == disks */
2246
		} else if (test_bit(R5_Insync, &dev->flags)) {
2247 2248 2249 2250 2251 2252 2253 2254
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2255
	return 0;
2256 2257
}

2258 2259 2260 2261
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2262 2263 2264
			struct stripe_head_state *s, int disks)
{
	int i;
2265 2266 2267 2268 2269

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2270
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2271
	    !sh->reconstruct_state)
2272
		for (i = disks; i--; )
2273
			if (fetch_block5(sh, s, i, disks))
2274
				break;
2275 2276 2277
	set_bit(STRIPE_HANDLE, &sh->state);
}

2278 2279 2280 2281 2282 2283 2284 2285
/* fetch_block6 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill6 to continue
 */
static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
			 struct r6_state *r6s, int disk_idx, int disks)
2286
{
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
				  &sh->dev[r6s->failed_num[1]] };

	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed >= 1 &&
	      (fdev[0]->toread || s->to_write)) ||
	     (s->failed >= 2 &&
	      (fdev[1]->toread || s->to_write)))) {
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
		    (s->failed && (disk_idx == r6s->failed_num[0] ||
				   disk_idx == r6s->failed_num[1]))) {
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2310
			 */
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2332
			}
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2352 2353
		}
	}
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375

	return 0;
}

/**
 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill6(struct stripe_head *sh,
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
			if (fetch_block6(sh, s, r6s, i, disks))
				break;
2376 2377 2378 2379
	set_bit(STRIPE_HANDLE, &sh->state);
}


2380
/* handle_stripe_clean_event
2381 2382 2383 2384
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2385
static void handle_stripe_clean_event(raid5_conf_t *conf,
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2399
				pr_debug("Return write for disc %d\n", i);
2400 2401 2402 2403 2404 2405
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2406
					if (!raid5_dec_bi_phys_segments(wbi)) {
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2424 2425 2426 2427

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2428 2429
}

2430
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2431 2432 2433 2434 2435 2436 2437 2438
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2439 2440
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2441 2442 2443 2444 2445 2446 2447 2448
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2449 2450 2451
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2452 2453 2454 2455
			else
				rcw += 2*disks;
		}
	}
2456
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2457 2458 2459 2460 2461 2462 2463 2464
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2465 2466
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2467 2468 2469
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2470
					pr_debug("Read_old block "
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2488 2489
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2490 2491 2492
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2493
					pr_debug("Read_old block "
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2507 2508
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2509 2510
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2511 2512 2513
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2514 2515 2516
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2517
		schedule_reconstruction(sh, s, rcw == 0, 0);
2518 2519
}

2520
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2521 2522 2523
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
2524
	int rcw = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2525
	int qd_idx = sh->qd_idx;
2526 2527

	set_bit(STRIPE_HANDLE, &sh->state);
2528 2529
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
		/* check if we haven't enough data */
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != pd_idx && i != qd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
			rcw++;
			if (!test_bit(R5_Insync, &dev->flags))
				continue; /* it's a failed drive */

			if (
			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				pr_debug("Read_old stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
			} else {
				pr_debug("Request delayed stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(STRIPE_DELAYED, &sh->state);
				set_bit(STRIPE_HANDLE, &sh->state);
2554 2555 2556 2557 2558 2559
			}
		}
	}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
2560 2561
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    s->locked == 0 && rcw == 0 &&
2562
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2563
		schedule_reconstruction(sh, s, 1, 0);
2564 2565 2566 2567 2568 2569
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2570
	struct r5dev *dev = NULL;
2571

2572
	set_bit(STRIPE_HANDLE, &sh->state);
2573

2574 2575 2576
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2577 2578
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2579 2580
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2581 2582
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2583
			break;
2584
		}
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2595

2596 2597 2598 2599 2600
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2601
		s->locked++;
2602
		set_bit(R5_Wantwrite, &dev->flags);
2603

2604 2605
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2622
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2634
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2635 2636 2637 2638
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2639
				sh->ops.target2 = -1;
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2651 2652 2653 2654 2655
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2656 2657
				  struct stripe_head_state *s,
				  struct r6_state *r6s, int disks)
2658 2659
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2660
	int qd_idx = sh->qd_idx;
2661
	struct r5dev *dev;
2662 2663 2664 2665

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2666

2667 2668 2669 2670 2671 2672
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2673 2674 2675
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2676
		if (s->failed == r6s->q_failed) {
2677
			/* The only possible failed device holds Q, so it
2678 2679 2680
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2681
			sh->check_state = check_state_run;
2682 2683
		}
		if (!r6s->q_failed && s->failed < 2) {
2684
			/* Q is not failed, and we didn't use it to generate
2685 2686
			 * anything, so it makes sense to check it
			 */
2687 2688 2689 2690
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2691 2692
		}

2693 2694
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2695

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
		}
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2708 2709
		}

2710 2711 2712 2713 2714
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2715

2716 2717 2718
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2719

2720
		/* now write out any block on a failed drive,
2721
		 * or P or Q if they were recomputed
2722
		 */
2723
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2736
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2737 2738 2739 2740 2741
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2742
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2743 2744 2745 2746 2747 2748 2749 2750
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2826
	struct dma_async_tx_descriptor *tx = NULL;
2827 2828
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2829
		if (i != sh->pd_idx && i != sh->qd_idx) {
2830
			int dd_idx, j;
2831
			struct stripe_head *sh2;
2832
			struct async_submit_ctl submit;
2833

2834
			sector_t bn = compute_blocknr(sh, i, 1);
2835 2836
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2837
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2850 2851

			/* place all the copies on one channel */
2852
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2853
			tx = async_memcpy(sh2->dev[dd_idx].page,
2854
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2855
					  &submit);
2856

2857 2858 2859 2860
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2861
				    (!r6s || j != sh2->qd_idx) &&
2862 2863 2864 2865 2866 2867 2868
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2869

2870
		}
2871 2872 2873 2874 2875
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2876
}
L
Linus Torvalds 已提交
2877

2878

L
Linus Torvalds 已提交
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2895

2896
static bool handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
2897 2898
{
	raid5_conf_t *conf = sh->raid_conf;
2899 2900 2901
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
2902
	struct r5dev *dev;
2903
	mdk_rdev_t *blocked_rdev = NULL;
2904
	int prexor;
L
Linus Torvalds 已提交
2905

2906
	memset(&s, 0, sizeof(s));
2907 2908 2909 2910
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

2916 2917 2918
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
2919

2920
	/* Now to look around and see what can be done */
2921
	rcu_read_lock();
L
Linus Torvalds 已提交
2922 2923
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2924
		struct r5dev *dev = &sh->dev[i];
L
Linus Torvalds 已提交
2925 2926
		clear_bit(R5_Insync, &dev->flags);

2927 2928 2929 2930 2931 2932 2933
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
2934
		 * ops_complete_biofill is guaranteed to be inactive
2935 2936
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2937
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2938
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2939 2940

		/* now count some things */
2941 2942
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2943
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
2944

2945 2946 2947
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
2948
			s.to_read++;
L
Linus Torvalds 已提交
2949
		if (dev->towrite) {
2950
			s.to_write++;
L
Linus Torvalds 已提交
2951
			if (!test_bit(R5_OVERWRITE, &dev->flags))
2952
				s.non_overwrite++;
L
Linus Torvalds 已提交
2953
		}
2954 2955
		if (dev->written)
			s.written++;
2956
		rdev = rcu_dereference(conf->disks[i].rdev);
2957 2958
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2959 2960 2961
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
2962
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
2963
			/* The ReadError flag will just be confusing now */
2964 2965 2966
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
2967
		if (!rdev || !test_bit(In_sync, &rdev->flags)
2968
		    || test_bit(R5_ReadError, &dev->flags)) {
2969 2970
			s.failed++;
			s.failed_num = i;
L
Linus Torvalds 已提交
2971 2972 2973
		} else
			set_bit(R5_Insync, &dev->flags);
	}
2974
	rcu_read_unlock();
2975

2976
	if (unlikely(blocked_rdev)) {
2977 2978 2979 2980 2981 2982 2983 2984
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
2985 2986
	}

2987 2988 2989 2990
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
2991

2992
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
2993
		" to_write=%d failed=%d failed_num=%d\n",
2994 2995
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
2996 2997 2998
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
2999
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3000
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3001
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
3002 3003
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3004
		s.syncing = 0;
L
Linus Torvalds 已提交
3005 3006 3007 3008 3009 3010
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
3011 3012 3013 3014 3015
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3016
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
3017 3018 3019 3020 3021

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3022
	if (s.to_read || s.non_overwrite ||
3023
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3024
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
3025

3026 3027 3028
	/* Now we check to see if any write operations have recently
	 * completed
	 */
3029
	prexor = 0;
3030
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3031
		prexor = 1;
3032 3033
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3034
		sh->reconstruct_state = reconstruct_state_idle;
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
3046 3047
				if (prexor)
					continue;
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
				IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3067
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3068
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
3069 3070

	/* maybe we need to check and possibly fix the parity for this stripe
3071 3072 3073
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
3074
	 */
3075 3076
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
3077
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3078
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3079
		handle_parity_checks5(conf, sh, &s, disks);
3080

3081
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
3082 3083 3084
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
3085 3086 3087 3088

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
3089 3090 3091 3092
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3093
		) {
3094
		dev = &sh->dev[s.failed_num];
3095 3096 3097 3098
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3099
			s.locked++;
3100 3101 3102 3103
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3104
			s.locked++;
3105 3106 3107
		}
	}

3108 3109
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
3110
		struct stripe_head *sh2
3111
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3127
		sh->reconstruct_state = reconstruct_state_idle;
3128
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
3129
		for (i = conf->raid_disks; i--; ) {
3130
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
3131
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3132
			s.locked++;
D
Dan Williams 已提交
3133
		}
3134 3135 3136
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3137
	    !sh->reconstruct_state) {
3138 3139
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
3140
		stripe_set_idx(sh->sector, conf, 0, sh);
3141
		schedule_reconstruction(sh, &s, 1, 1);
3142
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3143
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3144
		atomic_dec(&conf->reshape_stripes);
3145 3146 3147 3148
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3149
	if (s.expanding && s.locked == 0 &&
3150
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3151
		handle_stripe_expansion(conf, sh, NULL);
3152

3153
 unlock:
L
Linus Torvalds 已提交
3154 3155
	spin_unlock(&sh->lock);

3156 3157 3158 3159
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3160
	if (s.ops_request)
3161
		raid_run_ops(sh, s.ops_request);
3162

3163
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
3164

3165
	return_io(return_bi);
3166 3167

	return blocked_rdev == NULL;
L
Linus Torvalds 已提交
3168 3169
}

3170
static bool handle_stripe6(struct stripe_head *sh)
L
Linus Torvalds 已提交
3171
{
3172
	raid5_conf_t *conf = sh->raid_conf;
3173
	int disks = sh->disks;
3174
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
3175
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3176 3177
	struct stripe_head_state s;
	struct r6_state r6s;
3178
	struct r5dev *dev, *pdev, *qdev;
3179
	mdk_rdev_t *blocked_rdev = NULL;
L
Linus Torvalds 已提交
3180

3181
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3182
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3183
	       (unsigned long long)sh->sector, sh->state,
3184 3185
	       atomic_read(&sh->count), pd_idx, qd_idx,
	       sh->check_state, sh->reconstruct_state);
3186
	memset(&s, 0, sizeof(s));
3187

3188 3189 3190 3191
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3192 3193 3194
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3195
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3196 3197

	rcu_read_lock();
3198 3199 3200 3201
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
		clear_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3202

3203
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3204
			i, dev->flags, dev->toread, dev->towrite, dev->written);
3205 3206 3207 3208 3209 3210 3211 3212
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3213

3214
		/* now count some things */
3215 3216
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3217 3218
		if (test_bit(R5_Wantcompute, &dev->flags))
			BUG_ON(++s.compute > 2);
L
Linus Torvalds 已提交
3219

3220 3221 3222
		if (test_bit(R5_Wantfill, &dev->flags)) {
			s.to_fill++;
		} else if (dev->toread)
3223
			s.to_read++;
3224
		if (dev->towrite) {
3225
			s.to_write++;
3226
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3227
				s.non_overwrite++;
3228
		}
3229 3230
		if (dev->written)
			s.written++;
3231
		rdev = rcu_dereference(conf->disks[i].rdev);
3232 3233
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3234 3235 3236
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3237 3238 3239 3240
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3241
		}
3242 3243
		if (!rdev || !test_bit(In_sync, &rdev->flags)
		    || test_bit(R5_ReadError, &dev->flags)) {
3244 3245 3246
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3247 3248
		} else
			set_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3249 3250
	}
	rcu_read_unlock();
3251 3252

	if (unlikely(blocked_rdev)) {
3253 3254 3255 3256 3257 3258 3259 3260
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3261
	}
3262

3263 3264 3265 3266 3267
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

3268
	pr_debug("locked=%d uptodate=%d to_read=%d"
3269
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3270 3271 3272 3273
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3274
	 */
3275
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3276
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3277
	if (s.failed > 2 && s.syncing) {
3278 3279
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3280
		s.syncing = 0;
3281 3282 3283 3284 3285 3286 3287
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3288 3289
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3290 3291 3292
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3293 3294 3295

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3296
			     && !test_bit(R5_LOCKED, &pdev->flags)
3297 3298
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3299
			     && !test_bit(R5_LOCKED, &qdev->flags)
3300
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3301
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3302 3303 3304 3305 3306

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3307
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3308
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3309
		handle_stripe_fill6(sh, &s, &r6s, disks);
3310

3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	if (sh->reconstruct_state == reconstruct_state_drain_result) {
		int qd_idx = sh->qd_idx;

		sh->reconstruct_state = reconstruct_state_idle;
		/* All the 'written' buffers and the parity blocks are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
			    (i == sh->pd_idx || i == qd_idx ||
			     dev->written)) {
				pr_debug("Writing block %d\n", i);
				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
				set_bit(R5_Wantwrite, &dev->flags);
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == qd_idx) &&
				      s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
				IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}

3345 3346 3347 3348 3349 3350 3351
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3352
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3353 3354

	/* maybe we need to check and possibly fix the parity for this stripe
3355
	 * Any reads will already have been scheduled, so we just see if enough
3356 3357
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
3358
	 */
3359 3360 3361 3362
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3363
		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3364

3365
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3366 3367 3368 3369 3370 3371 3372
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3373 3374 3375
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3376 3377 3378 3379 3380 3381 3382 3383
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3384
					s.locked++;
3385 3386 3387 3388
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3389
					s.locked++;
3390 3391 3392
				}
			}
		}
3393

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
3407
		struct stripe_head *sh2
3408
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3424 3425
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3426
		stripe_set_idx(sh->sector, conf, 0, sh);
3427 3428
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3429 3430 3431 3432 3433 3434
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3435
	if (s.expanding && s.locked == 0 &&
3436
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3437
		handle_stripe_expansion(conf, sh, &r6s);
3438

3439
 unlock:
3440 3441
	spin_unlock(&sh->lock);

3442 3443 3444 3445
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3446 3447 3448
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3449
	ops_run_io(sh, &s);
3450

D
Dan Williams 已提交
3451
	return_io(return_bi);
3452 3453

	return blocked_rdev == NULL;
3454 3455
}

3456
/* returns true if the stripe was handled */
3457
static bool handle_stripe(struct stripe_head *sh)
3458 3459
{
	if (sh->raid_conf->level == 6)
3460
		return handle_stripe6(sh);
3461
	else
3462
		return handle_stripe5(sh);
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3476
			list_add_tail(&sh->lru, &conf->hold_list);
3477
		}
3478 3479
	} else
		blk_plug_device(conf->mddev->queue);
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
3498
	raid5_conf_t *conf = mddev->private;
3499 3500 3501
	int i;

	rcu_read_lock();
3502
	for (i = 0; i < conf->raid_disks; i++) {
3503 3504
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3505
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3506 3507 3508 3509

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3510
			blk_unplug(r_queue);
3511 3512 3513 3514 3515 3516 3517 3518

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3519
static void raid5_unplug_device(struct request_queue *q)
3520 3521
{
	mddev_t *mddev = q->queuedata;
3522
	raid5_conf_t *conf = mddev->private;
3523 3524 3525 3526 3527 3528 3529
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	if (blk_remove_plug(q)) {
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3530
	}
L
Linus Torvalds 已提交
3531 3532 3533 3534 3535 3536 3537
	md_wakeup_thread(mddev->thread);

	spin_unlock_irqrestore(&conf->device_lock, flags);

	unplug_slaves(mddev);
}

3538 3539 3540
static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;
3541
	raid5_conf_t *conf = mddev->private;
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}

3556 3557 3558
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3559 3560 3561
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3562 3563
{
	mddev_t *mddev = q->queuedata;
3564
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3565
	int max;
3566
	unsigned int chunk_sectors = mddev->chunk_sectors;
3567
	unsigned int bio_sectors = bvm->bi_size >> 9;
3568

3569
	if ((bvm->bi_rw & 1) == WRITE)
3570 3571
		return biovec->bv_len; /* always allow writes to be mergeable */

3572 3573
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3574 3575 3576 3577 3578 3579 3580 3581
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3582 3583 3584 3585

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3586
	unsigned int chunk_sectors = mddev->chunk_sectors;
3587 3588
	unsigned int bio_sectors = bio->bi_size >> 9;

3589 3590
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3591 3592 3593 3594
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3624
		conf->retry_read_aligned_list = bi->bi_next;
3625
		bi->bi_next = NULL;
3626 3627 3628 3629
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3630 3631 3632 3633 3634 3635 3636
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3637 3638 3639 3640 3641 3642
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3643
static void raid5_align_endio(struct bio *bi, int error)
3644 3645
{
	struct bio* raid_bi  = bi->bi_private;
3646 3647 3648 3649 3650
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3651
	bio_put(bi);
3652 3653

	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3654
	conf = mddev->private;
3655 3656 3657 3658 3659 3660
	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3661
		bio_endio(raid_bi, 0);
3662 3663
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3664
		return;
3665 3666 3667
	}


3668
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3669 3670

	add_bio_to_retry(raid_bi, conf);
3671 3672
}

3673 3674
static int bio_fits_rdev(struct bio *bi)
{
3675
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3676

3677
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3678 3679
		return 0;
	blk_recount_segments(q, bi);
3680
	if (bi->bi_phys_segments > queue_max_phys_segments(q))
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3693
static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3694 3695
{
	mddev_t *mddev = q->queuedata;
3696
	raid5_conf_t *conf = mddev->private;
3697
	unsigned int dd_idx;
3698 3699 3700 3701
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3702
		pr_debug("chunk_aligned_read : non aligned\n");
3703 3704 3705
		return 0;
	}
	/*
3706
	 * use bio_clone to make a copy of the bio
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3720 3721
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3722
						    &dd_idx, NULL);
3723 3724 3725 3726 3727 3728

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3729 3730 3731 3732 3733
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3734 3735 3736 3737 3738 3739 3740
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3741 3742 3743 3744 3745 3746 3747
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3748 3749 3750 3751
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3752
		bio_put(align_bi);
3753 3754 3755 3756
		return 0;
	}
}

3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3809

3810
static int make_request(struct request_queue *q, struct bio * bi)
L
Linus Torvalds 已提交
3811 3812
{
	mddev_t *mddev = q->queuedata;
3813
	raid5_conf_t *conf = mddev->private;
3814
	int dd_idx;
L
Linus Torvalds 已提交
3815 3816 3817
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3818
	const int rw = bio_data_dir(bi);
T
Tejun Heo 已提交
3819
	int cpu, remaining;
L
Linus Torvalds 已提交
3820

3821
	if (unlikely(bio_barrier(bi))) {
3822
		bio_endio(bi, -EOPNOTSUPP);
3823 3824 3825
		return 0;
	}

3826
	md_write_start(mddev, bi);
3827

T
Tejun Heo 已提交
3828 3829 3830 3831 3832
	cpu = part_stat_lock();
	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
		      bio_sectors(bi));
	part_stat_unlock();
L
Linus Torvalds 已提交
3833

3834
	if (rw == READ &&
3835 3836
	     mddev->reshape_position == MaxSector &&
	     chunk_aligned_read(q,bi))
3837
		return 0;
3838

L
Linus Torvalds 已提交
3839 3840 3841 3842
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3843

L
Linus Torvalds 已提交
3844 3845
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3846
		int disks, data_disks;
3847
		int previous;
3848

3849
	retry:
3850
		previous = 0;
3851
		disks = conf->raid_disks;
3852
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3853
		if (unlikely(conf->reshape_progress != MaxSector)) {
3854
			/* spinlock is needed as reshape_progress may be
3855 3856
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3857
			 * Ofcourse reshape_progress could change after
3858 3859 3860 3861
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3862
			spin_lock_irq(&conf->device_lock);
3863 3864 3865
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3866
				disks = conf->previous_raid_disks;
3867 3868
				previous = 1;
			} else {
3869 3870 3871
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3872 3873 3874 3875 3876
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3877 3878
			spin_unlock_irq(&conf->device_lock);
		}
3879 3880
		data_disks = disks - conf->max_degraded;

3881 3882
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3883
						  &dd_idx, NULL);
3884
		pr_debug("raid5: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3885 3886 3887
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3888
		sh = get_active_stripe(conf, new_sector, previous,
3889
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
3890
		if (sh) {
3891
			if (unlikely(previous)) {
3892
				/* expansion might have moved on while waiting for a
3893 3894 3895 3896 3897 3898
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3899 3900 3901
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3902 3903 3904
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
3905 3906 3907 3908 3909
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
3910
					schedule();
3911 3912 3913
					goto retry;
				}
			}
3914

3915 3916
			if (bio_data_dir(bi) == WRITE &&
			    logical_sector >= mddev->suspend_lo &&
3917 3918
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
3929 3930
				goto retry;
			}
3931 3932 3933 3934 3935

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3936 3937 3938 3939 3940 3941 3942 3943
				 * and wait a while
				 */
				raid5_unplug_device(mddev->queue);
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3944 3945
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
L
Linus Torvalds 已提交
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
3956
	remaining = raid5_dec_bi_phys_segments(bi);
3957 3958
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
3959

3960
		if ( rw == WRITE )
L
Linus Torvalds 已提交
3961
			md_write_end(mddev);
3962

3963
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
3964 3965 3966 3967
	}
	return 0;
}

D
Dan Williams 已提交
3968 3969
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

3970
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
3971
{
3972 3973 3974 3975 3976 3977 3978 3979 3980
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
L
Linus Torvalds 已提交
3981 3982
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
3983
	sector_t first_sector, last_sector;
3984 3985 3986
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
3987 3988
	int i;
	int dd_idx;
3989
	sector_t writepos, readpos, safepos;
3990
	sector_t stripe_addr;
3991
	int reshape_sectors;
3992
	struct list_head stripes;
3993

3994 3995 3996 3997 3998 3999
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4000
		} else if (mddev->delta_disks >= 0 &&
4001 4002
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4003
		sector_div(sector_nr, new_data_disks);
4004 4005 4006 4007
		if (sector_nr) {
			*skipped = 1;
			return sector_nr;
		}
4008 4009
	}

4010 4011 4012 4013
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4014 4015
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4016
	else
4017
		reshape_sectors = mddev->chunk_sectors;
4018

4019 4020 4021 4022 4023
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
4024 4025
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
4026
	 */
4027
	writepos = conf->reshape_progress;
4028
	sector_div(writepos, new_data_disks);
4029 4030
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4031
	safepos = conf->reshape_safe;
4032
	sector_div(safepos, data_disks);
4033
	if (mddev->delta_disks < 0) {
4034
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4035
		readpos += reshape_sectors;
4036
		safepos += reshape_sectors;
4037
	} else {
4038
		writepos += reshape_sectors;
4039 4040
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4041
	}
4042

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4060
	if ((mddev->delta_disks < 0
4061 4062 4063
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4064 4065 4066
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4067
		mddev->reshape_position = conf->reshape_progress;
4068
		mddev->curr_resync_completed = mddev->curr_resync;
4069
		conf->reshape_checkpoint = jiffies;
4070
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4071
		md_wakeup_thread(mddev->thread);
4072
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4073 4074
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4075
		conf->reshape_safe = mddev->reshape_position;
4076 4077
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4078
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4079 4080
	}

4081 4082 4083 4084
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4085 4086
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4087 4088
		       != sector_nr);
	} else {
4089
		BUG_ON(writepos != sector_nr + reshape_sectors);
4090 4091
		stripe_addr = sector_nr;
	}
4092
	INIT_LIST_HEAD(&stripes);
4093
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4094 4095
		int j;
		int skipped = 0;
4096
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4097 4098 4099 4100 4101 4102 4103 4104 4105
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4106
			if (conf->level == 6 &&
4107
			    j == sh->qd_idx)
4108
				continue;
4109
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4110
			if (s < raid5_size(mddev, 0, 0)) {
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
				skipped = 1;
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
		if (!skipped) {
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4122
		list_add(&sh->lru, &stripes);
4123 4124
	}
	spin_lock_irq(&conf->device_lock);
4125
	if (mddev->delta_disks < 0)
4126
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4127
	else
4128
		conf->reshape_progress += reshape_sectors * new_data_disks;
4129 4130 4131 4132 4133 4134 4135
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4136
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4137
				     1, &dd_idx, NULL);
4138
	last_sector =
4139
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4140
					    * new_data_disks - 1),
4141
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4142 4143
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4144
	while (first_sector <= last_sector) {
4145
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4146 4147 4148 4149 4150
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4151 4152 4153 4154 4155 4156 4157 4158
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4159 4160 4161
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4162
	sector_nr += reshape_sectors;
4163 4164
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4165 4166 4167
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4168
		mddev->reshape_position = conf->reshape_progress;
4169
		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4170
		conf->reshape_checkpoint = jiffies;
4171 4172 4173 4174 4175 4176
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4177
		conf->reshape_safe = mddev->reshape_position;
4178 4179
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4180
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4181
	}
4182
	return reshape_sectors;
4183 4184 4185 4186 4187 4188 4189
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
A
Andre Noll 已提交
4190
	sector_t max_sector = mddev->dev_sectors;
4191
	int sync_blocks;
4192 4193
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4194

4195
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4196 4197
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
4198

4199 4200 4201 4202
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4203 4204 4205 4206

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4207
		else /* completed sync */
4208 4209 4210
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4211 4212
		return 0;
	}
4213

4214 4215 4216
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4217 4218
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4219

4220 4221 4222 4223 4224 4225
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4226
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4227 4228 4229
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4230
	if (mddev->degraded >= conf->max_degraded &&
4231
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4232
		sector_t rv = mddev->dev_sectors - sector_nr;
4233
		*skipped = 1;
L
Linus Torvalds 已提交
4234 4235
		return rv;
	}
4236
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4237
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4238 4239 4240 4241 4242 4243
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4244

N
NeilBrown 已提交
4245 4246 4247

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4248
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4249
	if (sh == NULL) {
4250
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4251
		/* make sure we don't swamp the stripe cache if someone else
4252
		 * is trying to get access
L
Linus Torvalds 已提交
4253
		 */
4254
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4255
	}
4256 4257 4258 4259
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4260
	for (i = 0; i < conf->raid_disks; i++)
4261 4262 4263 4264 4265 4266
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
4267 4268 4269 4270
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

4271
	/* wait for any blocked device to be handled */
4272
	while (unlikely(!handle_stripe(sh)))
4273
		;
L
Linus Torvalds 已提交
4274 4275 4276 4277 4278
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4292
	int dd_idx;
4293 4294 4295 4296 4297 4298
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4299
	sector = raid5_compute_sector(conf, logical_sector,
4300
				      0, &dd_idx, NULL);
4301 4302 4303
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4304 4305 4306
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4307

4308
		if (scnt < raid5_bi_hw_segments(raid_bio))
4309 4310 4311
			/* already done this stripe */
			continue;

4312
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4313 4314 4315

		if (!sh) {
			/* failed to get a stripe - must wait */
4316
			raid5_set_bi_hw_segments(raid_bio, scnt);
4317 4318 4319 4320 4321
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4322 4323
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4324
			raid5_set_bi_hw_segments(raid_bio, scnt);
4325 4326 4327 4328
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4329
		handle_stripe(sh);
4330 4331 4332 4333
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4334
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4335
	spin_unlock_irq(&conf->device_lock);
4336 4337
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4338 4339 4340 4341 4342
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}

4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
#ifdef CONFIG_MULTICORE_RAID456
static void __process_stripe(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;

	handle_stripe(sh);
	release_stripe(sh);
}

static void process_stripe(struct stripe_head *sh, struct list_head *domain)
{
	async_schedule_domain(__process_stripe, sh, domain);
}

static void synchronize_stripe_processing(struct list_head *domain)
{
	async_synchronize_full_domain(domain);
}
#else
static void process_stripe(struct stripe_head *sh, struct list_head *domain)
{
	handle_stripe(sh);
	release_stripe(sh);
	cond_resched();
}

static void synchronize_stripe_processing(struct list_head *domain)
{
}
#endif
4373 4374


L
Linus Torvalds 已提交
4375 4376 4377 4378 4379 4380 4381
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4382
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4383 4384
{
	struct stripe_head *sh;
4385
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4386
	int handled;
4387
	LIST_HEAD(raid_domain);
L
Linus Torvalds 已提交
4388

4389
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4390 4391 4392 4393 4394 4395

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4396
		struct bio *bio;
L
Linus Torvalds 已提交
4397

4398
		if (conf->seq_flush != conf->seq_write) {
4399
			int seq = conf->seq_flush;
4400
			spin_unlock_irq(&conf->device_lock);
4401
			bitmap_unplug(mddev->bitmap);
4402
			spin_lock_irq(&conf->device_lock);
4403 4404 4405 4406
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4417 4418
		sh = __get_priority_stripe(conf);

4419
		if (!sh)
L
Linus Torvalds 已提交
4420 4421 4422 4423
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4424
		process_stripe(sh, &raid_domain);
L
Linus Torvalds 已提交
4425 4426 4427

		spin_lock_irq(&conf->device_lock);
	}
4428
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4429 4430 4431

	spin_unlock_irq(&conf->device_lock);

4432
	synchronize_stripe_processing(&raid_domain);
4433
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4434 4435
	unplug_slaves(mddev);

4436
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4437 4438
}

4439
static ssize_t
4440
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4441
{
4442
	raid5_conf_t *conf = mddev->private;
4443 4444 4445 4446
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4447 4448 4449
}

static ssize_t
4450
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4451
{
4452
	raid5_conf_t *conf = mddev->private;
4453
	unsigned long new;
4454 4455
	int err;

4456 4457
	if (len >= PAGE_SIZE)
		return -EINVAL;
4458 4459
	if (!conf)
		return -ENODEV;
4460

4461
	if (strict_strtoul(page, 10, &new))
4462 4463 4464 4465 4466 4467 4468 4469 4470
		return -EINVAL;
	if (new <= 16 || new > 32768)
		return -EINVAL;
	while (new < conf->max_nr_stripes) {
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4471 4472 4473
	err = md_allow_write(mddev);
	if (err)
		return err;
4474 4475 4476 4477 4478 4479 4480
	while (new > conf->max_nr_stripes) {
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
	return len;
}
4481

4482 4483 4484 4485
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4486

4487 4488 4489
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4490
	raid5_conf_t *conf = mddev->private;
4491 4492 4493 4494 4495 4496 4497 4498 4499
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4500
	raid5_conf_t *conf = mddev->private;
4501
	unsigned long new;
4502 4503 4504 4505 4506
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4507
	if (strict_strtoul(page, 10, &new))
4508
		return -EINVAL;
4509
	if (new > conf->max_nr_stripes)
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4521
static ssize_t
4522
stripe_cache_active_show(mddev_t *mddev, char *page)
4523
{
4524
	raid5_conf_t *conf = mddev->private;
4525 4526 4527 4528
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4529 4530
}

4531 4532
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4533

4534
static struct attribute *raid5_attrs[] =  {
4535 4536
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4537
	&raid5_preread_bypass_threshold.attr,
4538 4539
	NULL,
};
4540 4541 4542
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4543 4544
};

4545 4546 4547
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4548
	raid5_conf_t *conf = mddev->private;
4549 4550 4551

	if (!sectors)
		sectors = mddev->dev_sectors;
4552 4553 4554 4555 4556 4557 4558
	if (!raid_disks) {
		/* size is defined by the smallest of previous and new size */
		if (conf->raid_disks < conf->previous_raid_disks)
			raid_disks = conf->raid_disks;
		else
			raid_disks = conf->previous_raid_disks;
	}
4559

4560
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4561
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4562 4563 4564
	return sectors * (raid_disks - conf->max_degraded);
}

4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4577
		kfree(percpu->scribble);
4578 4579 4580 4581 4582 4583 4584 4585 4586
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4587 4588 4589
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4590
	raid5_free_percpu(conf);
4591 4592 4593 4594 4595
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4607
		if (conf->level == 6 && !percpu->spare_page)
4608
			percpu->spare_page = alloc_page(GFP_KERNEL);
4609 4610 4611 4612 4613 4614 4615
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4616 4617 4618 4619 4620 4621 4622 4623
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
			return NOTIFY_BAD;
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4624
		kfree(percpu->scribble);
4625
		percpu->spare_page = NULL;
4626
		percpu->scribble = NULL;
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
	struct raid5_percpu *allcpus;
4640
	void *scribble;
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
		scribble = kmalloc(scribble_len(conf->raid_disks), GFP_KERNEL);
		if (!scribble) {
4661 4662 4663
			err = -ENOMEM;
			break;
		}
4664
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4677
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4678 4679 4680 4681 4682 4683
{
	raid5_conf_t *conf;
	int raid_disk, memory;
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4684 4685 4686
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4687
		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4688 4689
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4690
	}
N
NeilBrown 已提交
4691 4692 4693 4694
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4695
		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
N
NeilBrown 已提交
4696 4697
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4698
	}
N
NeilBrown 已提交
4699 4700 4701 4702
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4703 4704
	}

4705 4706 4707
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
N
NeilBrown 已提交
4708
		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4709
		       mddev->new_chunk_sectors << 9, mdname(mddev));
N
NeilBrown 已提交
4710
		return ERR_PTR(-EINVAL);
4711 4712
	}

N
NeilBrown 已提交
4713 4714
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4715
		goto abort;
N
NeilBrown 已提交
4716 4717

	conf->raid_disks = mddev->raid_disks;
4718
	conf->scribble_len = scribble_len(conf->raid_disks);
N
NeilBrown 已提交
4719 4720 4721
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4722 4723 4724
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;

	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4725 4726 4727
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4728

L
Linus Torvalds 已提交
4729 4730
	conf->mddev = mddev;

4731
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4732 4733
		goto abort;

4734 4735 4736 4737
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

L
Linus Torvalds 已提交
4738 4739 4740 4741
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
4742
	INIT_LIST_HEAD(&conf->hold_list);
L
Linus Torvalds 已提交
4743
	INIT_LIST_HEAD(&conf->delayed_list);
4744
	INIT_LIST_HEAD(&conf->bitmap_list);
L
Linus Torvalds 已提交
4745 4746 4747
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
4748
	atomic_set(&conf->active_aligned_reads, 0);
4749
	conf->bypass_threshold = BYPASS_THRESHOLD;
L
Linus Torvalds 已提交
4750

4751
	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4752

4753
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4754
		raid_disk = rdev->raid_disk;
4755
		if (raid_disk >= conf->raid_disks
L
Linus Torvalds 已提交
4756 4757 4758 4759 4760 4761
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4762
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4763 4764 4765 4766
			char b[BDEVNAME_SIZE];
			printk(KERN_INFO "raid5: device %s operational as raid"
				" disk %d\n", bdevname(rdev->bdev,b),
				raid_disk);
4767 4768 4769
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4770 4771
	}

4772
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4773
	conf->level = mddev->new_level;
4774 4775 4776 4777
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4778
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4779
	conf->max_nr_stripes = NR_STRIPES;
4780
	conf->reshape_progress = mddev->reshape_position;
4781
	if (conf->reshape_progress != MaxSector) {
4782
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4783 4784
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4785

N
NeilBrown 已提交
4786 4787 4788 4789 4790 4791 4792 4793 4794
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
			"raid5: couldn't allocate %dkB for buffers\n", memory);
		goto abort;
	} else
		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
			memory, mdname(mddev));
L
Linus Torvalds 已提交
4795

N
NeilBrown 已提交
4796 4797 4798 4799 4800
	conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
	if (!conf->thread) {
		printk(KERN_ERR
		       "raid5: couldn't allocate thread for %s\n",
		       mdname(mddev));
4801 4802
		goto abort;
	}
N
NeilBrown 已提交
4803 4804 4805 4806 4807

	return conf;

 abort:
	if (conf) {
4808
		free_conf(conf);
N
NeilBrown 已提交
4809 4810 4811 4812 4813 4814 4815 4816
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4817
	int working_disks = 0, chunk_size;
N
NeilBrown 已提交
4818 4819
	mdk_rdev_t *rdev;

4820 4821 4822 4823
	if (mddev->recovery_cp != MaxSector)
		printk(KERN_NOTICE "raid5: %s is not clean"
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4824 4825 4826 4827 4828 4829 4830 4831
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4832
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4833

4834
		if (mddev->new_level != mddev->level) {
N
NeilBrown 已提交
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
			printk(KERN_ERR "raid5: %s: unsupported reshape "
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4846
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4847 4848 4849 4850 4851 4852 4853
			       (mddev->raid_disks - max_degraded))) {
			printk(KERN_ERR "raid5: reshape_position not "
			       "on a stripe boundary\n");
			return -EINVAL;
		}
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4854
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4855 4856 4857
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
				printk(KERN_ERR "raid5: in-place reshape must be started"
				       " in read-only mode - aborting\n");
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
			/* Reading from the same stripe as writing to - bad */
			printk(KERN_ERR "raid5: reshape_position too early for "
			       "auto-recovery - aborting.\n");
			return -EINVAL;
		}
		printk(KERN_INFO "raid5: reshape will continue\n");
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
4888
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
4889
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4890
	}
N
NeilBrown 已提交
4891

4892 4893 4894 4895 4896
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
	list_for_each_entry(rdev, &mddev->disks, same_set)
		if (rdev->raid_disk >= 0 &&
		    test_bit(In_sync, &rdev->flags))
			working_disks++;

	mddev->degraded = conf->raid_disks - working_disks;

4914
	if (mddev->degraded > conf->max_degraded) {
L
Linus Torvalds 已提交
4915 4916
		printk(KERN_ERR "raid5: not enough operational devices for %s"
			" (%d/%d failed)\n",
4917
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
4918 4919 4920
		goto abort;
	}

N
NeilBrown 已提交
4921
	/* device size must be a multiple of chunk size */
4922
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
4923 4924
	mddev->resync_max_sectors = mddev->dev_sectors;

4925
	if (mddev->degraded > 0 &&
L
Linus Torvalds 已提交
4926
	    mddev->recovery_cp != MaxSector) {
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
			       "raid5: starting dirty degraded array: %s"
			       "- data corruption possible.\n",
			       mdname(mddev));
		else {
			printk(KERN_ERR
			       "raid5: cannot start dirty degraded array for %s\n",
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
4938 4939 4940 4941
	}

	if (mddev->degraded == 0)
		printk("raid5: raid level %d set %s active with %d out of %d"
4942 4943 4944
		       " devices, algorithm %d\n", conf->level, mdname(mddev),
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
4945 4946 4947 4948
	else
		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
			" out of %d devices, algorithm %d\n", conf->level,
			mdname(mddev), mddev->raid_disks - mddev->degraded,
4949
			mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
4950 4951 4952

	print_raid5_conf(conf);

4953
	if (conf->reshape_progress != MaxSector) {
4954
		printk("...ok start reshape thread\n");
4955
		conf->reshape_safe = conf->reshape_progress;
4956 4957 4958 4959 4960 4961 4962 4963 4964
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
							"%s_reshape");
	}

L
Linus Torvalds 已提交
4965
	/* read-ahead size must cover two whole stripes, which is
4966
	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
L
Linus Torvalds 已提交
4967 4968
	 */
	{
4969 4970
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
4971
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
L
Linus Torvalds 已提交
4972 4973 4974 4975 4976
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
	}

	/* Ok, everything is just fine now */
4977 4978 4979 4980
	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
		printk(KERN_WARNING
		       "raid5: failed to create sysfs attributes for %s\n",
		       mdname(mddev));
4981

N
NeilBrown 已提交
4982 4983
	mddev->queue->queue_lock = &conf->device_lock;

4984
	mddev->queue->unplug_fn = raid5_unplug_device;
4985
	mddev->queue->backing_dev_info.congested_data = mddev;
4986
	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4987

4988
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4989

4990
	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4991 4992 4993 4994 4995 4996 4997 4998
	chunk_size = mddev->chunk_sectors << 9;
	blk_queue_io_min(mddev->queue, chunk_size);
	blk_queue_io_opt(mddev->queue, chunk_size *
			 (conf->raid_disks - conf->max_degraded));

	list_for_each_entry(rdev, &mddev->disks, same_set)
		disk_stack_limits(mddev->gendisk, rdev->bdev,
				  rdev->data_offset << 9);
4999

L
Linus Torvalds 已提交
5000 5001
	return 0;
abort:
5002
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
5003
	mddev->thread = NULL;
L
Linus Torvalds 已提交
5004 5005
	if (conf) {
		print_raid5_conf(conf);
5006
		free_conf(conf);
L
Linus Torvalds 已提交
5007 5008 5009 5010 5011 5012 5013 5014
	}
	mddev->private = NULL;
	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
	return -EIO;
}



5015
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
5016 5017 5018 5019 5020
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
5021
	mddev->queue->backing_dev_info.congested_fn = NULL;
L
Linus Torvalds 已提交
5022
	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5023
	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
5024
	free_conf(conf);
L
Linus Torvalds 已提交
5025 5026 5027 5028
	mddev->private = NULL;
	return 0;
}

5029
#ifdef DEBUG
5030
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
5031 5032 5033
{
	int i;

5034 5035 5036 5037 5038
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5039
	for (i = 0; i < sh->disks; i++) {
5040 5041
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
5042
	}
5043
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
5044 5045
}

5046
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
5047 5048
{
	struct stripe_head *sh;
5049
	struct hlist_node *hn;
L
Linus Torvalds 已提交
5050 5051 5052 5053
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
5054
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
5055 5056
			if (sh->raid_conf != conf)
				continue;
5057
			print_sh(seq, sh);
L
Linus Torvalds 已提交
5058 5059 5060 5061 5062 5063
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

5064
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
5065 5066 5067 5068
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	int i;

5069 5070
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5071
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5072 5073 5074
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5075
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5076
	seq_printf (seq, "]");
5077
#ifdef DEBUG
5078 5079
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

	printk("RAID5 conf printout:\n");
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5093 5094
	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
		 conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5095 5096 5097 5098 5099 5100

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
		printk(" disk %d, o:%d, dev:%s\n",
5101
			i, !test_bit(Faulty, &tmp->rdev->flags),
L
Linus Torvalds 已提交
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
			bdevname(tmp->rdev->bdev,b));
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
5115
		    && !test_bit(Faulty, &tmp->rdev->flags)
5116 5117 5118
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5119
			mddev->degraded--;
5120
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
		}
	}
	print_raid5_conf(conf);
	return 0;
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
5137 5138 5139 5140
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

5141
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
5142 5143 5144 5145
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
5146 5147 5148 5149
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
5150 5151
		    mddev->degraded <= conf->max_degraded &&
		    number < conf->raid_disks) {
5152 5153 5154
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
5155
		p->rdev = NULL;
5156
		synchronize_rcu();
L
Linus Torvalds 已提交
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
5172
	int err = -EEXIST;
L
Linus Torvalds 已提交
5173 5174
	int disk;
	struct disk_info *p;
5175 5176
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5177

5178
	if (mddev->degraded > conf->max_degraded)
L
Linus Torvalds 已提交
5179
		/* no point adding a device */
5180
		return -EINVAL;
L
Linus Torvalds 已提交
5181

5182 5183
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5184 5185

	/*
5186 5187
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5188
	 */
5189
	if (rdev->saved_raid_disk >= 0 &&
5190
	    rdev->saved_raid_disk >= first &&
5191 5192 5193
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5194 5195
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5196
		if ((p=conf->disks + disk)->rdev == NULL) {
5197
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5198
			rdev->raid_disk = disk;
5199
			err = 0;
5200 5201
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5202
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5203 5204 5205
			break;
		}
	print_raid5_conf(conf);
5206
	return err;
L
Linus Torvalds 已提交
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5218
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5219 5220
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5221 5222 5223
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5224
	set_capacity(mddev->gendisk, mddev->array_sectors);
5225
	mddev->changed = 1;
5226
	revalidate_disk(mddev->gendisk);
A
Andre Noll 已提交
5227 5228
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5229 5230
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5231
	mddev->dev_sectors = sectors;
5232
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5233 5234 5235
	return 0;
}

5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5259
static int check_reshape(mddev_t *mddev)
5260
{
5261
	raid5_conf_t *conf = mddev->private;
5262

5263 5264
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5265
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5266
		return 0; /* nothing to do */
5267 5268 5269
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
	if (mddev->degraded > conf->max_degraded)
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5284

5285
	if (!check_stripe_cache(mddev))
5286 5287
		return -ENOSPC;

5288
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5289 5290 5291 5292
}

static int raid5_start_reshape(mddev_t *mddev)
{
5293
	raid5_conf_t *conf = mddev->private;
5294 5295 5296
	mdk_rdev_t *rdev;
	int spares = 0;
	int added_devices = 0;
5297
	unsigned long flags;
5298

5299
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5300 5301
		return -EBUSY;

5302 5303 5304
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5305
	list_for_each_entry(rdev, &mddev->disks, same_set)
5306 5307 5308
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
5309

5310
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5311 5312 5313 5314 5315
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
		printk(KERN_ERR "md: %s: array size must be reduced "
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5327
	atomic_set(&conf->reshape_stripes, 0);
5328 5329
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5330
	conf->raid_disks += mddev->delta_disks;
5331 5332
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5333 5334
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5335 5336 5337 5338 5339
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5340
	conf->generation++;
5341 5342 5343 5344 5345
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
	 */
5346
	list_for_each_entry(rdev, &mddev->disks, same_set)
5347 5348
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
5349
			if (raid5_add_disk(mddev, rdev) == 0) {
5350 5351 5352
				char nm[20];
				set_bit(In_sync, &rdev->flags);
				added_devices++;
5353
				rdev->recovery_offset = 0;
5354
				sprintf(nm, "rd%d", rdev->raid_disk);
5355 5356 5357 5358 5359 5360
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
					printk(KERN_WARNING
					       "raid5: failed to create "
					       " link %s for %s\n",
					       nm, mdname(mddev));
5361 5362 5363 5364
			} else
				break;
		}

5365 5366 5367 5368 5369 5370
	if (mddev->delta_disks > 0) {
		spin_lock_irqsave(&conf->device_lock, flags);
		mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5371
	mddev->raid_disks = conf->raid_disks;
5372
	mddev->reshape_position = conf->reshape_progress;
5373
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5374

5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
						"%s_reshape");
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5385
		conf->reshape_progress = MaxSector;
5386 5387 5388
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5389
	conf->reshape_checkpoint = jiffies;
5390 5391 5392 5393 5394
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5395 5396 5397
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5398 5399 5400
static void end_reshape(raid5_conf_t *conf)
{

5401 5402 5403
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5404
		conf->previous_raid_disks = conf->raid_disks;
5405
		conf->reshape_progress = MaxSector;
5406
		spin_unlock_irq(&conf->device_lock);
5407
		wake_up(&conf->wait_for_overlap);
5408 5409 5410 5411 5412

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
		{
5413
			int data_disks = conf->raid_disks - conf->max_degraded;
5414
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5415
						   / PAGE_SIZE);
5416 5417 5418
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5419 5420 5421
	}
}

5422 5423 5424
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5425 5426
static void raid5_finish_reshape(mddev_t *mddev)
{
5427
	raid5_conf_t *conf = mddev->private;
5428 5429 5430

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5431 5432 5433 5434
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
			mddev->changed = 1;
5435
			revalidate_disk(mddev->gendisk);
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5446 5447 5448 5449 5450 5451 5452 5453 5454
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
					char nm[20];
					sprintf(nm, "rd%d", rdev->raid_disk);
					sysfs_remove_link(&mddev->kobj, nm);
					rdev->raid_disk = -1;
				}
			}
5455
		}
5456
		mddev->layout = conf->algorithm;
5457
		mddev->chunk_sectors = conf->chunk_sectors;
5458 5459
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5460 5461 5462
	}
}

5463 5464
static void raid5_quiesce(mddev_t *mddev, int state)
{
5465
	raid5_conf_t *conf = mddev->private;
5466 5467

	switch(state) {
5468 5469 5470 5471
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5472 5473
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5474 5475 5476 5477
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5478
		wait_event_lock_irq(conf->wait_for_stripe,
5479 5480
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5481
				    conf->device_lock, /* nothing */);
5482
		conf->quiesce = 1;
5483
		spin_unlock_irq(&conf->device_lock);
5484 5485
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5486 5487 5488 5489 5490 5491
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5492
		wake_up(&conf->wait_for_overlap);
5493 5494 5495 5496
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5497

5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520

static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5521
	mddev->new_chunk_sectors = chunksect;
5522 5523 5524 5525

	return setup_conf(mddev);
}

5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5559

5560
static int raid5_check_reshape(mddev_t *mddev)
5561
{
5562 5563 5564 5565
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5566
	 */
5567
	raid5_conf_t *conf = mddev->private;
5568
	int new_chunk = mddev->new_chunk_sectors;
5569

5570
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5571 5572
		return -EINVAL;
	if (new_chunk > 0) {
5573
		if (!is_power_of_2(new_chunk))
5574
			return -EINVAL;
5575
		if (new_chunk < (PAGE_SIZE>>9))
5576
			return -EINVAL;
5577
		if (mddev->array_sectors & (new_chunk-1))
5578 5579 5580 5581 5582 5583
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5584
	if (mddev->raid_disks == 2) {
5585 5586 5587 5588
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5589 5590
		}
		if (new_chunk > 0) {
5591 5592
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5593 5594 5595
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5596
	}
5597
	return check_reshape(mddev);
5598 5599
}

5600
static int raid6_check_reshape(mddev_t *mddev)
5601
{
5602
	int new_chunk = mddev->new_chunk_sectors;
5603

5604
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5605
		return -EINVAL;
5606
	if (new_chunk > 0) {
5607
		if (!is_power_of_2(new_chunk))
5608
			return -EINVAL;
5609
		if (new_chunk < (PAGE_SIZE >> 9))
5610
			return -EINVAL;
5611
		if (mddev->array_sectors & (new_chunk-1))
5612 5613
			/* not factor of array size */
			return -EINVAL;
5614
	}
5615 5616

	/* They look valid */
5617
	return check_reshape(mddev);
5618 5619
}

5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
	 *  raid0 - if all devices are the same - make it a raid4 layout
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */

	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5631 5632 5633 5634 5635
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5636 5637
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5638 5639 5640 5641 5642

	return ERR_PTR(-EINVAL);
}


5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5707
	.size		= raid5_size,
5708
	.check_reshape	= raid6_check_reshape,
5709
	.start_reshape  = raid5_start_reshape,
5710
	.finish_reshape = raid5_finish_reshape,
5711
	.quiesce	= raid5_quiesce,
5712
	.takeover	= raid6_takeover,
5713
};
5714
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5715 5716
{
	.name		= "raid5",
5717
	.level		= 5,
L
Linus Torvalds 已提交
5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5729
	.size		= raid5_size,
5730 5731
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5732
	.finish_reshape = raid5_finish_reshape,
5733
	.quiesce	= raid5_quiesce,
5734
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5735 5736
};

5737
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5738
{
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5752
	.size		= raid5_size,
5753 5754
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5755
	.finish_reshape = raid5_finish_reshape,
5756 5757 5758 5759 5760
	.quiesce	= raid5_quiesce,
};

static int __init raid5_init(void)
{
5761
	register_md_personality(&raid6_personality);
5762 5763 5764
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5765 5766
}

5767
static void raid5_exit(void)
L
Linus Torvalds 已提交
5768
{
5769
	unregister_md_personality(&raid6_personality);
5770 5771
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5772 5773 5774 5775 5776 5777
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5778 5779
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5780 5781
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5782 5783 5784 5785 5786 5787 5788
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");