raid5.c 167.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include <linux/slab.h>
54
#include "md.h"
55
#include "raid5.h"
56
#include "raid0.h"
57
#include "bitmap.h"
58

L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
68
#define BYPASS_THRESHOLD	1
69
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
70 71
#define HASH_MASK		(NR_HASH - 1)

72
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

94
#ifdef DEBUG
L
Linus Torvalds 已提交
95 96 97 98
#define inline
#define __inline__
#endif

99 100
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

101
/*
102 103
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 105 106
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
107
	return bio->bi_phys_segments & 0xffff;
108 109 110 111
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
112
	return (bio->bi_phys_segments >> 16) & 0xffff;
113 114 115 116 117 118 119 120 121 122 123 124 125
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
126
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 128 129 130 131
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
132
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 134
}

135 136 137
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
138 139 140 141
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
142 143 144 145 146
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
147 148 149 150 151
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
152

153 154 155 156 157
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
158 159
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
160
{
161
	int slot = *count;
162

163
	if (sh->ddf_layout)
164
		(*count)++;
165
	if (idx == sh->pd_idx)
166
		return syndrome_disks;
167
	if (idx == sh->qd_idx)
168
		return syndrome_disks + 1;
169
	if (!sh->ddf_layout)
170
		(*count)++;
171 172 173
	return slot;
}

174 175 176 177 178 179 180 181
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
182
		bio_endio(bi, 0);
183 184 185 186
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
187 188
static void print_raid5_conf (raid5_conf_t *conf);

189 190 191 192 193 194 195
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

196
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
197 198
{
	if (atomic_dec_and_test(&sh->count)) {
199 200
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
201
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
202
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
203
				list_add_tail(&sh->lru, &conf->delayed_list);
204 205
				blk_plug_device(conf->mddev->queue);
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206
				   sh->bm_seq - conf->seq_write > 0) {
207
				list_add_tail(&sh->lru, &conf->bitmap_list);
208 209
				blk_plug_device(conf->mddev->queue);
			} else {
210
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
211
				list_add_tail(&sh->lru, &conf->handle_list);
212
			}
L
Linus Torvalds 已提交
213 214
			md_wakeup_thread(conf->mddev->thread);
		} else {
215
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
216 217 218 219 220 221
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
222 223
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
224
				wake_up(&conf->wait_for_stripe);
225 226
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
227
			}
L
Linus Torvalds 已提交
228 229 230
		}
	}
}
231

L
Linus Torvalds 已提交
232 233 234 235
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
236

L
Linus Torvalds 已提交
237 238 239 240 241
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

242
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
243
{
244 245
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
246

247
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
248 249
}

250
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
251
{
252
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
253

254 255
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
256 257

	CHECK_DEVLOCK();
258
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

280
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
281 282 283
{
	struct page *p;
	int i;
284
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
285

286
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
287 288 289 290
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
291
		put_page(p);
L
Linus Torvalds 已提交
292 293 294
	}
}

295
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
296 297
{
	int i;
298
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
299

300
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
301 302 303 304 305 306 307 308 309 310
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

311
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 313
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
314

315
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
316 317
{
	raid5_conf_t *conf = sh->raid_conf;
318
	int i;
L
Linus Torvalds 已提交
319

320 321
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322
	BUG_ON(stripe_operations_active(sh));
323

L
Linus Torvalds 已提交
324
	CHECK_DEVLOCK();
325
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
326 327 328
		(unsigned long long)sh->sector);

	remove_hash(sh);
329

330
	sh->generation = conf->generation - previous;
331
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
332
	sh->sector = sector;
333
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
334 335
	sh->state = 0;

336 337

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
338 339
		struct r5dev *dev = &sh->dev[i];

340
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
341
		    test_bit(R5_LOCKED, &dev->flags)) {
342
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
343
			       (unsigned long long)sh->sector, i, dev->toread,
344
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
345 346 347 348
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
349
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
350 351 352 353
	}
	insert_hash(conf, sh);
}

354 355
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
356 357
{
	struct stripe_head *sh;
358
	struct hlist_node *hn;
L
Linus Torvalds 已提交
359 360

	CHECK_DEVLOCK();
361
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
364
			return sh;
365
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
366 367 368
	return NULL;
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
static int has_failed(raid5_conf_t *conf)
{
	int degraded;
	int i;
	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

L
Linus Torvalds 已提交
436
static void unplug_slaves(mddev_t *mddev);
437
static void raid5_unplug_device(struct request_queue *q);
L
Linus Torvalds 已提交
438

439 440
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
441
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
442 443 444
{
	struct stripe_head *sh;

445
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
446 447 448 449

	spin_lock_irq(&conf->device_lock);

	do {
450
		wait_event_lock_irq(conf->wait_for_stripe,
451
				    conf->quiesce == 0 || noquiesce,
452
				    conf->device_lock, /* nothing */);
453
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
454 455 456 457 458 459 460 461 462
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
463 464
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
465 466
						     || !conf->inactive_blocked),
						    conf->device_lock,
467
						    raid5_unplug_device(conf->mddev->queue)
L
Linus Torvalds 已提交
468 469 470
					);
				conf->inactive_blocked = 0;
			} else
471
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
472 473
		} else {
			if (atomic_read(&sh->count)) {
474 475
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
476 477 478
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
479 480
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
481 482
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
483 484 485 486 487 488 489 490 491 492 493
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

494 495 496 497
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
498

499
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
			rw = WRITE;
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
534
			if (s->syncing || s->expanding || s->expanded)
535 536
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
537 538
			set_bit(STRIPE_IO_STARTED, &sh->state);

539 540
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
541
				__func__, (unsigned long long)sh->sector,
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
578
	struct async_submit_ctl submit;
D
Dan Williams 已提交
579
	enum async_tx_flags flags = 0;
580 581 582 583 584

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
585

D
Dan Williams 已提交
586 587 588 589
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
611
						  b_offset, clen, &submit);
612 613
			else
				tx = async_memcpy(bio_page, page, b_offset,
614
						  page_offset, clen, &submit);
615
		}
616 617 618
		/* chain the operations */
		submit.depend_tx = tx;

619 620 621 622 623 624 625 626 627 628 629 630 631
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
632
	int i;
633

634
	pr_debug("%s: stripe %llu\n", __func__,
635 636 637
		(unsigned long long)sh->sector);

	/* clear completed biofills */
638
	spin_lock_irq(&conf->device_lock);
639 640 641 642
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
643 644
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
645
		 * !STRIPE_BIOFILL_RUN
646 647
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
648 649 650 651 652 653 654 655
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
656
				if (!raid5_dec_bi_phys_segments(rbi)) {
657 658 659 660 661 662 663
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
664 665
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
666 667 668

	return_io(return_bi);

669
	set_bit(STRIPE_HANDLE, &sh->state);
670 671 672 673 674 675 676
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
677
	struct async_submit_ctl submit;
678 679
	int i;

680
	pr_debug("%s: stripe %llu\n", __func__,
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
701 702
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
703 704
}

705
static void mark_target_uptodate(struct stripe_head *sh, int target)
706
{
707
	struct r5dev *tgt;
708

709 710
	if (target < 0)
		return;
711

712
	tgt = &sh->dev[target];
713 714 715
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
716 717
}

718
static void ops_complete_compute(void *stripe_head_ref)
719 720 721
{
	struct stripe_head *sh = stripe_head_ref;

722
	pr_debug("%s: stripe %llu\n", __func__,
723 724
		(unsigned long long)sh->sector);

725
	/* mark the computed target(s) as uptodate */
726
	mark_target_uptodate(sh, sh->ops.target);
727
	mark_target_uptodate(sh, sh->ops.target2);
728

729 730 731
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
732 733 734 735
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

736 737 738 739 740 741 742 743 744
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
745 746
{
	int disks = sh->disks;
747
	struct page **xor_srcs = percpu->scribble;
748 749 750 751 752
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
753
	struct async_submit_ctl submit;
754 755 756
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
757
		__func__, (unsigned long long)sh->sector, target);
758 759 760 761 762 763 764 765
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
766
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
767
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
768
	if (unlikely(count == 1))
769
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
770
	else
771
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
772 773 774 775

	return tx;
}

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
794
		srcs[i] = NULL;
795 796 797 798 799 800 801 802 803 804

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

805
	return syndrome_disks;
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
826
	else
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
843 844
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
845 846 847 848 849 850 851 852 853 854 855
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
856 857
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
858 859 860
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
861 862 863 864

	return tx;
}

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

886
	/* we need to open-code set_syndrome_sources to handle the
887 888 889
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
890
		blocks[i] = NULL;
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
917 918 919
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
920
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
940 941 942 943
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
944 945 946 947
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
948 949 950
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
951 952 953 954
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
955 956 957 958 959 960 961 962 963 964 965 966 967 968
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
969 970 971 972
	}
}


973 974 975 976
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

977
	pr_debug("%s: stripe %llu\n", __func__,
978 979 980 981
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
982 983
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
984 985
{
	int disks = sh->disks;
986
	struct page **xor_srcs = percpu->scribble;
987
	int count = 0, pd_idx = sh->pd_idx, i;
988
	struct async_submit_ctl submit;
989 990 991 992

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

993
	pr_debug("%s: stripe %llu\n", __func__,
994 995 996 997 998
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
999
		if (test_bit(R5_Wantdrain, &dev->flags))
1000 1001 1002
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1003
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1004
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1005
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1006 1007 1008 1009 1010

	return tx;
}

static struct dma_async_tx_descriptor *
1011
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1012 1013
{
	int disks = sh->disks;
1014
	int i;
1015

1016
	pr_debug("%s: stripe %llu\n", __func__,
1017 1018 1019 1020 1021 1022
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1023
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1045
static void ops_complete_reconstruct(void *stripe_head_ref)
1046 1047
{
	struct stripe_head *sh = stripe_head_ref;
1048 1049 1050 1051
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
1052

1053
	pr_debug("%s: stripe %llu\n", __func__,
1054 1055 1056 1057
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1058 1059

		if (dev->written || i == pd_idx || i == qd_idx)
1060 1061 1062
			set_bit(R5_UPTODATE, &dev->flags);
	}

1063 1064 1065 1066 1067 1068 1069 1070
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1071 1072 1073 1074 1075 1076

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1077 1078
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1079 1080
{
	int disks = sh->disks;
1081
	struct page **xor_srcs = percpu->scribble;
1082
	struct async_submit_ctl submit;
1083 1084
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1085
	int prexor = 0;
1086 1087
	unsigned long flags;

1088
	pr_debug("%s: stripe %llu\n", __func__,
1089 1090 1091 1092 1093
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1094 1095
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1116
	flags = ASYNC_TX_ACK |
1117 1118 1119 1120
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1121
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1122
			  to_addr_conv(sh, percpu));
1123 1124 1125 1126
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1127 1128
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1146 1147 1148 1149 1150 1151
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1152
	pr_debug("%s: stripe %llu\n", __func__,
1153 1154
		(unsigned long long)sh->sector);

1155
	sh->check_state = check_state_check_result;
1156 1157 1158 1159
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1160
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1161 1162
{
	int disks = sh->disks;
1163 1164 1165
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1166
	struct page **xor_srcs = percpu->scribble;
1167
	struct dma_async_tx_descriptor *tx;
1168
	struct async_submit_ctl submit;
1169 1170
	int count;
	int i;
1171

1172
	pr_debug("%s: stripe %llu\n", __func__,
1173 1174
		(unsigned long long)sh->sector);

1175 1176 1177
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1178
	for (i = disks; i--; ) {
1179 1180 1181
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1182 1183
	}

1184 1185
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1186
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1187
			   &sh->ops.zero_sum_result, &submit);
1188 1189

	atomic_inc(&sh->count);
1190 1191
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1192 1193
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1206 1207

	atomic_inc(&sh->count);
1208 1209 1210 1211
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1212 1213
}

1214
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1215 1216 1217
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1218
	raid5_conf_t *conf = sh->raid_conf;
1219
	int level = conf->level;
1220 1221
	struct raid5_percpu *percpu;
	unsigned long cpu;
1222

1223 1224
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1225
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1226 1227 1228 1229
		ops_run_biofill(sh);
		overlap_clear++;
	}

1230
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1241 1242
			async_tx_ack(tx);
	}
1243

1244
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1245
		tx = ops_run_prexor(sh, percpu, tx);
1246

1247
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1248
		tx = ops_run_biodrain(sh, tx);
1249 1250 1251
		overlap_clear++;
	}

1252 1253 1254 1255 1256 1257
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1269 1270 1271 1272 1273 1274 1275

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1276
	put_cpu();
1277 1278
}

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1309
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1310 1311
{
	struct stripe_head *sh;
1312 1313 1314
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
1315
	memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1316 1317
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);
1318 1319 1320
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1321

1322 1323
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1337
	struct kmem_cache *sc;
1338
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1339

1340 1341 1342 1343
	sprintf(conf->cache_name[0],
		"raid%d-%s", conf->level, mdname(conf->mddev));
	sprintf(conf->cache_name[1],
		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
1344 1345
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1346
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1347
			       0, 0, NULL);
L
Linus Torvalds 已提交
1348 1349 1350
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1351
	conf->pool_size = devs;
1352
	while (num--)
1353
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1354 1355 1356
			return 1;
	return 0;
}
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1408
	unsigned long cpu;
1409
	int err;
1410
	struct kmem_cache *sc;
1411 1412 1413 1414 1415
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1416 1417 1418
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1419

1420 1421 1422
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1423
			       0, 0, NULL);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);
1436 1437 1438
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1461
				    unplug_slaves(conf->mddev)
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1477
	 * conf->disks and the scribble region
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1507 1508 1509 1510
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1528

1529
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1530 1531 1532
{
	struct stripe_head *sh;

1533 1534 1535 1536 1537
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1538
	BUG_ON(atomic_read(&sh->count));
1539
	shrink_buffers(sh);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1550 1551
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1552 1553 1554
	conf->slab_cache = NULL;
}

1555
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1556
{
1557
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1558
	raid5_conf_t *conf = sh->raid_conf;
1559
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1560
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1561 1562
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1563 1564 1565 1566 1567 1568


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1569 1570
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1571 1572 1573
		uptodate);
	if (i == disks) {
		BUG();
1574
		return;
L
Linus Torvalds 已提交
1575 1576 1577 1578
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1579
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1580
			rdev = conf->disks[i].rdev;
1581
			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1582 1583 1584 1585 1586
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1587 1588 1589
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1590 1591
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1592
	} else {
1593
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1594
		int retry = 0;
1595 1596
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1597
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1598
		atomic_inc(&rdev->read_errors);
1599
		if (conf->mddev->degraded >= conf->max_degraded)
1600
			printk_rl(KERN_WARNING
1601
				  "md/raid:%s: read error not correctable "
1602 1603 1604 1605 1606
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1607
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1608
			/* Oh, no!!! */
1609
			printk_rl(KERN_WARNING
1610
				  "md/raid:%s: read error NOT corrected!! "
1611 1612 1613 1614 1615
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1616
		else if (atomic_read(&rdev->read_errors)
1617
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1618
			printk(KERN_WARNING
1619
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1620
			       mdname(conf->mddev), bdn);
1621 1622 1623 1624 1625
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1626 1627
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1628
			md_error(conf->mddev, rdev);
1629
		}
L
Linus Torvalds 已提交
1630 1631 1632 1633 1634 1635 1636
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1637
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1638
{
1639
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1640
	raid5_conf_t *conf = sh->raid_conf;
1641
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1642 1643 1644 1645 1646 1647
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1648
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1649 1650 1651 1652
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1653
		return;
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1663
	release_stripe(sh);
L
Linus Torvalds 已提交
1664 1665 1666
}


1667
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1668
	
1669
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1685
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1686 1687 1688 1689 1690
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
1691
	raid5_conf_t *conf = mddev->private;
1692
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1693

1694
	if (!test_bit(Faulty, &rdev->flags)) {
1695
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1696 1697 1698
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1699
			mddev->degraded++;
1700
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1701 1702 1703
			/*
			 * if recovery was running, make sure it aborts.
			 */
1704
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1705
		}
1706
		set_bit(Faulty, &rdev->flags);
1707
		printk(KERN_ALERT
1708 1709 1710 1711 1712 1713 1714
		       "md/raid:%s: Disk failure on %s, disabling device.\n"
		       KERN_ALERT
		       "md/raid:%s: Operation continuing on %d devices.\n",
		       mdname(mddev),
		       bdevname(rdev->bdev, b),
		       mdname(mddev),
		       conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1715
	}
1716
}
L
Linus Torvalds 已提交
1717 1718 1719 1720 1721

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1722
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1723 1724
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1725
{
N
NeilBrown 已提交
1726
	sector_t stripe, stripe2;
1727
	sector_t chunk_number;
L
Linus Torvalds 已提交
1728
	unsigned int chunk_offset;
1729
	int pd_idx, qd_idx;
1730
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1731
	sector_t new_sector;
1732 1733
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1734 1735
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1736 1737 1738
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1751 1752
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1753
	stripe2 = stripe;
L
Linus Torvalds 已提交
1754 1755 1756
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1757
	pd_idx = qd_idx = ~0;
1758 1759
	switch(conf->level) {
	case 4:
1760
		pd_idx = data_disks;
1761 1762
		break;
	case 5:
1763
		switch (algorithm) {
L
Linus Torvalds 已提交
1764
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1765
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1766
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1767 1768 1769
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1770
			pd_idx = sector_div(stripe2, raid_disks);
1771
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1772 1773 1774
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1775
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1776
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1777 1778
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1779
			pd_idx = sector_div(stripe2, raid_disks);
1780
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1781
			break;
1782 1783 1784 1785 1786 1787 1788
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1789
		default:
1790
			BUG();
1791 1792 1793 1794
		}
		break;
	case 6:

1795
		switch (algorithm) {
1796
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1797
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1798 1799
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1800
				(*dd_idx)++;	/* Q D D D P */
1801 1802
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1803 1804 1805
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1806
			pd_idx = sector_div(stripe2, raid_disks);
1807 1808
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1809
				(*dd_idx)++;	/* Q D D D P */
1810 1811
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1812 1813 1814
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1815
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1816 1817
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1818 1819
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1820
			pd_idx = sector_div(stripe2, raid_disks);
1821 1822
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1823
			break;
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
1839
			pd_idx = sector_div(stripe2, raid_disks);
1840 1841 1842 1843 1844 1845
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1846
			ddf_layout = 1;
1847 1848 1849 1850 1851 1852 1853
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
1854 1855
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1856 1857 1858 1859 1860 1861
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1862
			ddf_layout = 1;
1863 1864 1865 1866
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
1867
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1868 1869
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1870
			ddf_layout = 1;
1871 1872 1873 1874
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
1875
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1876 1877 1878 1879 1880 1881
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
1882
			pd_idx = sector_div(stripe2, raid_disks-1);
1883 1884 1885 1886 1887 1888
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
1889
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1890 1891 1892 1893 1894
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
1895
			pd_idx = sector_div(stripe2, raid_disks-1);
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

1906
		default:
1907
			BUG();
1908 1909
		}
		break;
L
Linus Torvalds 已提交
1910 1911
	}

1912 1913 1914
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1915
		sh->ddf_layout = ddf_layout;
1916
	}
L
Linus Torvalds 已提交
1917 1918 1919 1920 1921 1922 1923 1924
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1925
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1926 1927
{
	raid5_conf_t *conf = sh->raid_conf;
1928 1929
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1930
	sector_t new_sector = sh->sector, check;
1931 1932
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1933 1934
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1935 1936
	sector_t stripe;
	int chunk_offset;
1937 1938
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1939
	sector_t r_sector;
1940
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1941

1942

L
Linus Torvalds 已提交
1943 1944 1945
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

1946 1947 1948 1949 1950
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1951
		switch (algorithm) {
L
Linus Torvalds 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1963 1964 1965 1966 1967
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1968
		default:
1969
			BUG();
1970 1971 1972
		}
		break;
	case 6:
1973
		if (i == sh->qd_idx)
1974
			return 0; /* It is the Q disk */
1975
		switch (algorithm) {
1976 1977
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1978 1979 1980 1981
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1996 1997 1998 1999 2000 2001
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2002
			/* Like left_symmetric, but P is before Q */
2003 2004
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2005 2006 2007 2008 2009 2010
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2026
		default:
2027
			BUG();
2028 2029
		}
		break;
L
Linus Torvalds 已提交
2030 2031 2032
	}

	chunk_number = stripe * data_disks + i;
2033
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2034

2035
	check = raid5_compute_sector(conf, r_sector,
2036
				     previous, &dummy1, &sh2);
2037 2038
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2039 2040
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2041 2042 2043 2044 2045 2046
		return 0;
	}
	return r_sector;
}


2047
static void
2048
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2049
			 int rcw, int expand)
2050 2051
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2052 2053
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
2054 2055 2056 2057 2058 2059 2060

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2061 2062 2063 2064
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2065

2066
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2067 2068 2069 2070 2071 2072

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2073
				set_bit(R5_Wantdrain, &dev->flags);
2074 2075
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2076
				s->locked++;
2077 2078
			}
		}
2079
		if (s->locked + conf->max_degraded == disks)
2080
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2081
				atomic_inc(&conf->pending_full_writes);
2082
	} else {
2083
		BUG_ON(level == 6);
2084 2085 2086
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2087
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2088 2089
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2090
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2091 2092 2093 2094 2095 2096 2097 2098

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2099 2100
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2101 2102
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2103
				s->locked++;
2104 2105 2106 2107
			}
		}
	}

2108
	/* keep the parity disk(s) locked while asynchronous operations
2109 2110 2111 2112
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2113
	s->locked++;
2114

2115 2116 2117 2118 2119 2120 2121 2122 2123
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2124
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2125
		__func__, (unsigned long long)sh->sector,
2126
		s->locked, s->ops_request);
2127
}
2128

L
Linus Torvalds 已提交
2129 2130
/*
 * Each stripe/dev can have one or more bion attached.
2131
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2132 2133 2134 2135 2136 2137
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2138
	int firstwrite=0;
L
Linus Torvalds 已提交
2139

2140
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2141 2142 2143 2144 2145 2146
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
2147
	if (forwrite) {
L
Linus Torvalds 已提交
2148
		bip = &sh->dev[dd_idx].towrite;
2149 2150 2151
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2161
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2162 2163 2164
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2165
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
2166 2167 2168
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

2169
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
2170 2171 2172
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

2173 2174 2175
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
2176
		sh->bm_seq = conf->seq_flush+1;
2177 2178 2179
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

2202 2203
static void end_reshape(raid5_conf_t *conf);

2204 2205
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2206
{
2207
	int sectors_per_chunk =
2208
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2209
	int dd_idx;
2210
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2211
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2212

2213 2214
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2215
			     *sectors_per_chunk + chunk_offset,
2216
			     previous,
2217
			     &dd_idx, sh);
2218 2219
}

2220
static void
2221
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2255
			if (!raid5_dec_bi_phys_segments(bi)) {
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2270
			if (!raid5_dec_bi_phys_segments(bi)) {
2271 2272 2273 2274 2275 2276 2277
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2278 2279 2280 2281 2282 2283
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2294
				if (!raid5_dec_bi_phys_segments(bi)) {
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2307 2308 2309
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2310 2311
}

2312 2313 2314 2315 2316
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2317
 */
2318 2319
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2320 2321 2322 2323 2324 2325
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2326 2327 2328 2329 2330 2331 2332 2333
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2334 2335
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2336 2337
		 */
		if ((s->uptodate == disks - 1) &&
2338
		    (s->failed && disk_idx == s->failed_num)) {
2339 2340
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2341 2342
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
2343
			sh->ops.target2 = -1;
2344 2345
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
2346
			 * of raid_run_ops which services 'compute' operations
2347 2348 2349 2350 2351
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2352
			return 1; /* uptodate + compute == disks */
2353
		} else if (test_bit(R5_Insync, &dev->flags)) {
2354 2355 2356 2357 2358 2359 2360 2361
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2362
	return 0;
2363 2364
}

2365 2366 2367 2368
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2369 2370 2371
			struct stripe_head_state *s, int disks)
{
	int i;
2372 2373 2374 2375 2376

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2377
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2378
	    !sh->reconstruct_state)
2379
		for (i = disks; i--; )
2380
			if (fetch_block5(sh, s, i, disks))
2381
				break;
2382 2383 2384
	set_bit(STRIPE_HANDLE, &sh->state);
}

2385 2386 2387 2388 2389 2390 2391 2392
/* fetch_block6 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill6 to continue
 */
static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
			 struct r6_state *r6s, int disk_idx, int disks)
2393
{
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
				  &sh->dev[r6s->failed_num[1]] };

	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed >= 1 &&
	      (fdev[0]->toread || s->to_write)) ||
	     (s->failed >= 2 &&
	      (fdev[1]->toread || s->to_write)))) {
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
		    (s->failed && (disk_idx == r6s->failed_num[0] ||
				   disk_idx == r6s->failed_num[1]))) {
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2417
			 */
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2439
			}
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2459 2460
		}
	}
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482

	return 0;
}

/**
 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill6(struct stripe_head *sh,
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
			if (fetch_block6(sh, s, r6s, i, disks))
				break;
2483 2484 2485 2486
	set_bit(STRIPE_HANDLE, &sh->state);
}


2487
/* handle_stripe_clean_event
2488 2489 2490 2491
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2492
static void handle_stripe_clean_event(raid5_conf_t *conf,
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2506
				pr_debug("Return write for disc %d\n", i);
2507 2508 2509 2510 2511 2512
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2513
					if (!raid5_dec_bi_phys_segments(wbi)) {
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2531 2532 2533 2534

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2535 2536
}

2537
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2538 2539 2540 2541 2542 2543 2544 2545
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2546 2547
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2548 2549 2550 2551 2552 2553 2554 2555
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2556 2557 2558
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2559 2560 2561 2562
			else
				rcw += 2*disks;
		}
	}
2563
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2564 2565 2566 2567 2568 2569 2570 2571
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2572 2573
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2574 2575 2576
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2577
					pr_debug("Read_old block "
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2595 2596
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2597 2598 2599
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2600
					pr_debug("Read_old block "
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2614 2615
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2616 2617
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2618 2619 2620
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2621 2622 2623
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2624
		schedule_reconstruction(sh, s, rcw == 0, 0);
2625 2626
}

2627
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2628 2629 2630
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
2631
	int rcw = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2632
	int qd_idx = sh->qd_idx;
2633 2634

	set_bit(STRIPE_HANDLE, &sh->state);
2635 2636
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
		/* check if we haven't enough data */
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != pd_idx && i != qd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
			rcw++;
			if (!test_bit(R5_Insync, &dev->flags))
				continue; /* it's a failed drive */

			if (
			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				pr_debug("Read_old stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
			} else {
				pr_debug("Request delayed stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(STRIPE_DELAYED, &sh->state);
				set_bit(STRIPE_HANDLE, &sh->state);
2661 2662 2663 2664 2665 2666
			}
		}
	}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
2667 2668
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    s->locked == 0 && rcw == 0 &&
2669
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2670
		schedule_reconstruction(sh, s, 1, 0);
2671 2672 2673 2674 2675 2676
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2677
	struct r5dev *dev = NULL;
2678

2679
	set_bit(STRIPE_HANDLE, &sh->state);
2680

2681 2682 2683
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2684 2685
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2686 2687
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2688 2689
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2690
			break;
2691
		}
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2702

2703 2704 2705 2706 2707
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2708
		s->locked++;
2709
		set_bit(R5_Wantwrite, &dev->flags);
2710

2711 2712
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2729
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2741
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2742 2743 2744 2745
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2746
				sh->ops.target2 = -1;
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2758 2759 2760 2761 2762
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2763 2764
				  struct stripe_head_state *s,
				  struct r6_state *r6s, int disks)
2765 2766
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2767
	int qd_idx = sh->qd_idx;
2768
	struct r5dev *dev;
2769 2770 2771 2772

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2773

2774 2775 2776 2777 2778 2779
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2780 2781 2782
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2783
		if (s->failed == r6s->q_failed) {
2784
			/* The only possible failed device holds Q, so it
2785 2786 2787
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2788
			sh->check_state = check_state_run;
2789 2790
		}
		if (!r6s->q_failed && s->failed < 2) {
2791
			/* Q is not failed, and we didn't use it to generate
2792 2793
			 * anything, so it makes sense to check it
			 */
2794 2795 2796 2797
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2798 2799
		}

2800 2801
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2802

2803 2804 2805 2806
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2807
		}
2808 2809 2810 2811 2812 2813 2814
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2815 2816
		}

2817 2818 2819 2820 2821
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2822

2823 2824 2825
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2826 2827

		/* now write out any block on a failed drive,
2828
		 * or P or Q if they were recomputed
2829
		 */
2830
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2843
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2844 2845 2846 2847 2848
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2849
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2850 2851 2852 2853 2854 2855 2856 2857
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2933
	struct dma_async_tx_descriptor *tx = NULL;
2934 2935
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2936
		if (i != sh->pd_idx && i != sh->qd_idx) {
2937
			int dd_idx, j;
2938
			struct stripe_head *sh2;
2939
			struct async_submit_ctl submit;
2940

2941
			sector_t bn = compute_blocknr(sh, i, 1);
2942 2943
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2944
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2957 2958

			/* place all the copies on one channel */
2959
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2960
			tx = async_memcpy(sh2->dev[dd_idx].page,
2961
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2962
					  &submit);
2963

2964 2965 2966 2967
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2968
				    (!r6s || j != sh2->qd_idx) &&
2969 2970 2971 2972 2973 2974 2975
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2976

2977
		}
2978 2979 2980 2981 2982
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2983
}
L
Linus Torvalds 已提交
2984

2985

L
Linus Torvalds 已提交
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
3002

3003
static void handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
3004 3005
{
	raid5_conf_t *conf = sh->raid_conf;
3006 3007 3008
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
3009
	struct r5dev *dev;
3010
	mdk_rdev_t *blocked_rdev = NULL;
3011
	int prexor;
3012
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
3013

3014
	memset(&s, 0, sizeof(s));
3015 3016 3017 3018
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
3019 3020 3021 3022 3023

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3024 3025 3026
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
3027

3028
	/* Now to look around and see what can be done */
3029
	rcu_read_lock();
L
Linus Torvalds 已提交
3030 3031
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
3032 3033

		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3034

3035 3036 3037 3038 3039 3040 3041
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
3042
		 * ops_complete_biofill is guaranteed to be inactive
3043 3044
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3045
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3046
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3047 3048

		/* now count some things */
3049 3050
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3051
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
3052

3053 3054 3055
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
3056
			s.to_read++;
L
Linus Torvalds 已提交
3057
		if (dev->towrite) {
3058
			s.to_write++;
L
Linus Torvalds 已提交
3059
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3060
				s.non_overwrite++;
L
Linus Torvalds 已提交
3061
		}
3062 3063
		if (dev->written)
			s.written++;
3064
		rdev = rcu_dereference(conf->disks[i].rdev);
3065 3066
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3067 3068 3069
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* could be in-sync depending on recovery/reshape status */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
N
NeilBrown 已提交
3081
			/* The ReadError flag will just be confusing now */
3082 3083 3084
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
3085 3086 3087
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3088 3089
			s.failed++;
			s.failed_num = i;
3090
		}
L
Linus Torvalds 已提交
3091
	}
3092
	rcu_read_unlock();
3093

3094
	if (unlikely(blocked_rdev)) {
3095 3096 3097 3098 3099 3100 3101 3102
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3103 3104
	}

3105 3106 3107 3108
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
3109

3110
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
3111
		" to_write=%d failed=%d failed_num=%d\n",
3112 3113
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
3114 3115 3116
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
3117
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3118
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3119
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
3120 3121
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3122
		s.syncing = 0;
L
Linus Torvalds 已提交
3123 3124 3125 3126 3127 3128
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
3129 3130 3131 3132 3133
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3134
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
3135 3136 3137 3138 3139

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3140
	if (s.to_read || s.non_overwrite ||
3141
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3142
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
3143

3144 3145 3146
	/* Now we check to see if any write operations have recently
	 * completed
	 */
3147
	prexor = 0;
3148
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3149
		prexor = 1;
3150 3151
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3152
		sh->reconstruct_state = reconstruct_state_idle;
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
3164 3165
				if (prexor)
					continue;
3166 3167 3168 3169 3170
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3171 3172
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3173 3174 3175 3176 3177 3178 3179 3180
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3181
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3182
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
3183 3184

	/* maybe we need to check and possibly fix the parity for this stripe
3185 3186 3187
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
3188
	 */
3189 3190
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
3191
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3192
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3193
		handle_parity_checks5(conf, sh, &s, disks);
3194

3195
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
3196 3197 3198
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
3199 3200 3201 3202

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
3203 3204 3205 3206
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3207
		) {
3208
		dev = &sh->dev[s.failed_num];
3209 3210 3211 3212
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3213
			s.locked++;
3214 3215 3216 3217
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3218
			s.locked++;
3219 3220 3221
		}
	}

3222 3223
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
3224
		struct stripe_head *sh2
3225
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3241
		sh->reconstruct_state = reconstruct_state_idle;
3242
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
3243
		for (i = conf->raid_disks; i--; ) {
3244
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
3245
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3246
			s.locked++;
D
Dan Williams 已提交
3247
		}
3248 3249 3250
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3251
	    !sh->reconstruct_state) {
3252 3253
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
3254
		stripe_set_idx(sh->sector, conf, 0, sh);
3255
		schedule_reconstruction(sh, &s, 1, 1);
3256
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3257
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3258
		atomic_dec(&conf->reshape_stripes);
3259 3260 3261 3262
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3263
	if (s.expanding && s.locked == 0 &&
3264
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3265
		handle_stripe_expansion(conf, sh, NULL);
3266

3267
 unlock:
L
Linus Torvalds 已提交
3268 3269
	spin_unlock(&sh->lock);

3270 3271 3272 3273
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3274
	if (s.ops_request)
3275
		raid_run_ops(sh, s.ops_request);
3276

3277
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
3278

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
		 * is waiting on a barrier, it won't continue until the writes
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}
3289
	return_io(return_bi);
L
Linus Torvalds 已提交
3290 3291
}

3292
static void handle_stripe6(struct stripe_head *sh)
L
Linus Torvalds 已提交
3293
{
3294
	raid5_conf_t *conf = sh->raid_conf;
3295
	int disks = sh->disks;
3296
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
3297
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3298 3299
	struct stripe_head_state s;
	struct r6_state r6s;
3300
	struct r5dev *dev, *pdev, *qdev;
3301
	mdk_rdev_t *blocked_rdev = NULL;
3302
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
3303

3304
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3305
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3306
	       (unsigned long long)sh->sector, sh->state,
3307 3308
	       atomic_read(&sh->count), pd_idx, qd_idx,
	       sh->check_state, sh->reconstruct_state);
3309
	memset(&s, 0, sizeof(s));
3310

3311 3312 3313 3314
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3315 3316 3317
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3318
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3319 3320

	rcu_read_lock();
3321 3322 3323
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3324

3325
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3326
			i, dev->flags, dev->toread, dev->towrite, dev->written);
3327 3328 3329 3330 3331 3332 3333 3334
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3335

3336
		/* now count some things */
3337 3338
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3339 3340 3341 3342
		if (test_bit(R5_Wantcompute, &dev->flags)) {
			s.compute++;
			BUG_ON(s.compute > 2);
		}
L
Linus Torvalds 已提交
3343

3344 3345 3346
		if (test_bit(R5_Wantfill, &dev->flags)) {
			s.to_fill++;
		} else if (dev->toread)
3347
			s.to_read++;
3348
		if (dev->towrite) {
3349
			s.to_write++;
3350
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3351
				s.non_overwrite++;
3352
		}
3353 3354
		if (dev->written)
			s.written++;
3355
		rdev = rcu_dereference(conf->disks[i].rdev);
3356 3357
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3358 3359 3360
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* in sync if before recovery_offset */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
3372 3373 3374
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3375
		}
3376 3377 3378
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3379 3380 3381
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3382
		}
L
Linus Torvalds 已提交
3383 3384
	}
	rcu_read_unlock();
3385 3386

	if (unlikely(blocked_rdev)) {
3387 3388 3389 3390 3391 3392 3393 3394
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3395
	}
3396

3397 3398 3399 3400 3401
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

3402
	pr_debug("locked=%d uptodate=%d to_read=%d"
3403
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3404 3405 3406 3407
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3408
	 */
3409
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3410
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3411
	if (s.failed > 2 && s.syncing) {
3412 3413
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3414
		s.syncing = 0;
3415 3416 3417 3418 3419 3420 3421
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3422 3423
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3424 3425 3426
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3427 3428 3429

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3430
			     && !test_bit(R5_LOCKED, &pdev->flags)
3431 3432
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3433
			     && !test_bit(R5_LOCKED, &qdev->flags)
3434
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3435
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3436 3437 3438 3439 3440

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3441
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3442
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3443
		handle_stripe_fill6(sh, &s, &r6s, disks);
3444

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	if (sh->reconstruct_state == reconstruct_state_drain_result) {

		sh->reconstruct_state = reconstruct_state_idle;
		/* All the 'written' buffers and the parity blocks are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
			    (i == sh->pd_idx || i == qd_idx ||
			     dev->written)) {
				pr_debug("Writing block %d\n", i);
				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
				set_bit(R5_Wantwrite, &dev->flags);
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == qd_idx) &&
				      s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3470 3471
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3472 3473
	}

3474 3475 3476 3477 3478 3479 3480
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3481
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3482 3483

	/* maybe we need to check and possibly fix the parity for this stripe
3484
	 * Any reads will already have been scheduled, so we just see if enough
3485 3486
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
3487
	 */
3488 3489 3490 3491
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3492
		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3493

3494
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3495 3496 3497 3498 3499 3500 3501
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3502 3503 3504
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3505 3506 3507 3508 3509 3510 3511 3512
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3513
					s.locked++;
3514 3515 3516 3517
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3518
					s.locked++;
3519 3520 3521
				}
			}
		}
3522

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
3536
		struct stripe_head *sh2
3537
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3553 3554
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3555
		stripe_set_idx(sh->sector, conf, 0, sh);
3556 3557
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3558 3559 3560 3561 3562 3563
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3564
	if (s.expanding && s.locked == 0 &&
3565
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3566
		handle_stripe_expansion(conf, sh, &r6s);
3567

3568
 unlock:
3569 3570
	spin_unlock(&sh->lock);

3571 3572 3573 3574
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3575 3576 3577
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3578
	ops_run_io(sh, &s);
3579

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591

	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
		 * is waiting on a barrier, it won't continue until the writes
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

D
Dan Williams 已提交
3592
	return_io(return_bi);
3593 3594
}

3595
static void handle_stripe(struct stripe_head *sh)
3596 3597
{
	if (sh->raid_conf->level == 6)
3598
		handle_stripe6(sh);
3599
	else
3600
		handle_stripe5(sh);
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3614
			list_add_tail(&sh->lru, &conf->hold_list);
3615
		}
3616 3617
	} else
		blk_plug_device(conf->mddev->queue);
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
3636
	raid5_conf_t *conf = mddev->private;
3637
	int i;
3638
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
3639 3640

	rcu_read_lock();
3641
	for (i = 0; i < devs; i++) {
3642 3643
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3644
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3645 3646 3647 3648

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3649
			blk_unplug(r_queue);
3650 3651 3652 3653 3654 3655 3656 3657

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3658
static void raid5_unplug_device(struct request_queue *q)
3659 3660
{
	mddev_t *mddev = q->queuedata;
3661
	raid5_conf_t *conf = mddev->private;
3662 3663 3664 3665 3666 3667 3668
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	if (blk_remove_plug(q)) {
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3669
	}
L
Linus Torvalds 已提交
3670 3671 3672 3673 3674 3675 3676
	md_wakeup_thread(mddev->thread);

	spin_unlock_irqrestore(&conf->device_lock, flags);

	unplug_slaves(mddev);
}

3677 3678 3679
static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;
3680
	raid5_conf_t *conf = mddev->private;
3681 3682 3683 3684

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3685 3686 3687

	if (mddev_congested(mddev, bits))
		return 1;
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}

3698 3699 3700
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3701 3702 3703
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3704 3705
{
	mddev_t *mddev = q->queuedata;
3706
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3707
	int max;
3708
	unsigned int chunk_sectors = mddev->chunk_sectors;
3709
	unsigned int bio_sectors = bvm->bi_size >> 9;
3710

3711
	if ((bvm->bi_rw & 1) == WRITE)
3712 3713
		return biovec->bv_len; /* always allow writes to be mergeable */

3714 3715
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3716 3717 3718 3719 3720 3721 3722 3723
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3724 3725 3726 3727

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3728
	unsigned int chunk_sectors = mddev->chunk_sectors;
3729 3730
	unsigned int bio_sectors = bio->bi_size >> 9;

3731 3732
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3733 3734 3735 3736
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3766
		conf->retry_read_aligned_list = bi->bi_next;
3767
		bi->bi_next = NULL;
3768 3769 3770 3771
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3772 3773 3774 3775 3776 3777 3778
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3779 3780 3781 3782 3783 3784
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3785
static void raid5_align_endio(struct bio *bi, int error)
3786 3787
{
	struct bio* raid_bi  = bi->bi_private;
3788 3789 3790 3791 3792
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3793
	bio_put(bi);
3794 3795 3796

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3797 3798
	mddev = rdev->mddev;
	conf = mddev->private;
3799 3800 3801 3802

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3803
		bio_endio(raid_bi, 0);
3804 3805
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3806
		return;
3807 3808 3809
	}


3810
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3811 3812

	add_bio_to_retry(raid_bi, conf);
3813 3814
}

3815 3816
static int bio_fits_rdev(struct bio *bi)
{
3817
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3818

3819
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3820 3821
		return 0;
	blk_recount_segments(q, bi);
3822
	if (bi->bi_phys_segments > queue_max_segments(q))
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3835
static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3836
{
3837
	raid5_conf_t *conf = mddev->private;
N
NeilBrown 已提交
3838
	int dd_idx;
3839 3840 3841 3842
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3843
		pr_debug("chunk_aligned_read : non aligned\n");
3844 3845 3846
		return 0;
	}
	/*
3847
	 * use bio_clone to make a copy of the bio
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3861 3862
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3863
						    &dd_idx, NULL);
3864 3865 3866 3867 3868 3869

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3870 3871 3872 3873 3874
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3875 3876 3877 3878 3879 3880 3881
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3882 3883 3884 3885 3886 3887 3888
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3889 3890 3891 3892
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3893
		bio_put(align_bi);
3894 3895 3896 3897
		return 0;
	}
}

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3950

3951
static int make_request(mddev_t *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3952
{
3953
	raid5_conf_t *conf = mddev->private;
3954
	int dd_idx;
L
Linus Torvalds 已提交
3955 3956 3957
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3958
	const int rw = bio_data_dir(bi);
3959
	int remaining;
L
Linus Torvalds 已提交
3960

3961
	if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3962 3963 3964 3965 3966 3967 3968
		/* Drain all pending writes.  We only really need
		 * to ensure they have been submitted, but this is
		 * easier.
		 */
		mddev->pers->quiesce(mddev, 1);
		mddev->pers->quiesce(mddev, 0);
		md_barrier_request(mddev, bi);
3969 3970 3971
		return 0;
	}

3972
	md_write_start(mddev, bi);
3973

3974
	if (rw == READ &&
3975
	     mddev->reshape_position == MaxSector &&
3976
	     chunk_aligned_read(mddev,bi))
3977
		return 0;
3978

L
Linus Torvalds 已提交
3979 3980 3981 3982
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3983

L
Linus Torvalds 已提交
3984 3985
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3986
		int disks, data_disks;
3987
		int previous;
3988

3989
	retry:
3990
		previous = 0;
3991
		disks = conf->raid_disks;
3992
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3993
		if (unlikely(conf->reshape_progress != MaxSector)) {
3994
			/* spinlock is needed as reshape_progress may be
3995 3996
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3997
			 * Ofcourse reshape_progress could change after
3998 3999 4000 4001
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
4002
			spin_lock_irq(&conf->device_lock);
4003 4004 4005
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
4006
				disks = conf->previous_raid_disks;
4007 4008
				previous = 1;
			} else {
4009 4010 4011
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
4012 4013 4014 4015 4016
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
4017 4018
			spin_unlock_irq(&conf->device_lock);
		}
4019 4020
		data_disks = disks - conf->max_degraded;

4021 4022
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
4023
						  &dd_idx, NULL);
4024
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
4025 4026 4027
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

4028
		sh = get_active_stripe(conf, new_sector, previous,
4029
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
4030
		if (sh) {
4031
			if (unlikely(previous)) {
4032
				/* expansion might have moved on while waiting for a
4033 4034 4035 4036 4037 4038
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4039 4040 4041
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4042 4043 4044
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4045 4046 4047 4048 4049
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4050
					schedule();
4051 4052 4053
					goto retry;
				}
			}
4054

4055 4056
			if (bio_data_dir(bi) == WRITE &&
			    logical_sector >= mddev->suspend_lo &&
4057 4058
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4069 4070
				goto retry;
			}
4071 4072 4073 4074 4075

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4076 4077 4078 4079 4080 4081 4082 4083
				 * and wait a while
				 */
				raid5_unplug_device(mddev->queue);
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4084 4085
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
4086 4087 4088
			if (mddev->barrier && 
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
4099
	remaining = raid5_dec_bi_phys_segments(bi);
4100 4101
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
4102

4103
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4104
			md_write_end(mddev);
4105

4106
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4107
	}
4108 4109 4110 4111 4112 4113 4114 4115

	if (mddev->barrier) {
		/* We need to wait for the stripes to all be handled.
		 * So: wait for preread_active_stripes to drop to 0.
		 */
		wait_event(mddev->thread->wqueue,
			   atomic_read(&conf->preread_active_stripes) == 0);
	}
L
Linus Torvalds 已提交
4116 4117 4118
	return 0;
}

D
Dan Williams 已提交
4119 4120
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

4121
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4122
{
4123 4124 4125 4126 4127 4128 4129 4130 4131
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4132
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4133
	struct stripe_head *sh;
4134
	sector_t first_sector, last_sector;
4135 4136 4137
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4138 4139
	int i;
	int dd_idx;
4140
	sector_t writepos, readpos, safepos;
4141
	sector_t stripe_addr;
4142
	int reshape_sectors;
4143
	struct list_head stripes;
4144

4145 4146 4147 4148 4149 4150
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4151
		} else if (mddev->delta_disks >= 0 &&
4152 4153
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4154
		sector_div(sector_nr, new_data_disks);
4155
		if (sector_nr) {
4156 4157
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4158 4159 4160
			*skipped = 1;
			return sector_nr;
		}
4161 4162
	}

4163 4164 4165 4166
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4167 4168
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4169
	else
4170
		reshape_sectors = mddev->chunk_sectors;
4171

4172 4173 4174 4175 4176
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
4177 4178
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
4179
	 */
4180
	writepos = conf->reshape_progress;
4181
	sector_div(writepos, new_data_disks);
4182 4183
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4184
	safepos = conf->reshape_safe;
4185
	sector_div(safepos, data_disks);
4186
	if (mddev->delta_disks < 0) {
4187
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4188
		readpos += reshape_sectors;
4189
		safepos += reshape_sectors;
4190
	} else {
4191
		writepos += reshape_sectors;
4192 4193
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4194
	}
4195

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4213
	if ((mddev->delta_disks < 0
4214 4215 4216
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4217 4218 4219
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4220
		mddev->reshape_position = conf->reshape_progress;
4221
		mddev->curr_resync_completed = mddev->curr_resync;
4222
		conf->reshape_checkpoint = jiffies;
4223
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4224
		md_wakeup_thread(mddev->thread);
4225
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4226 4227
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4228
		conf->reshape_safe = mddev->reshape_position;
4229 4230
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4231
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4232 4233
	}

4234 4235 4236 4237
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4238 4239
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4240 4241
		       != sector_nr);
	} else {
4242
		BUG_ON(writepos != sector_nr + reshape_sectors);
4243 4244
		stripe_addr = sector_nr;
	}
4245
	INIT_LIST_HEAD(&stripes);
4246
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4247
		int j;
4248
		int skipped_disk = 0;
4249
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4250 4251 4252 4253 4254 4255 4256 4257 4258
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4259
			if (conf->level == 6 &&
4260
			    j == sh->qd_idx)
4261
				continue;
4262
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4263
			if (s < raid5_size(mddev, 0, 0)) {
4264
				skipped_disk = 1;
4265 4266 4267 4268 4269 4270
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4271
		if (!skipped_disk) {
4272 4273 4274
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4275
		list_add(&sh->lru, &stripes);
4276 4277
	}
	spin_lock_irq(&conf->device_lock);
4278
	if (mddev->delta_disks < 0)
4279
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4280
	else
4281
		conf->reshape_progress += reshape_sectors * new_data_disks;
4282 4283 4284 4285 4286 4287 4288
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4289
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4290
				     1, &dd_idx, NULL);
4291
	last_sector =
4292
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4293
					    * new_data_disks - 1),
4294
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4295 4296
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4297
	while (first_sector <= last_sector) {
4298
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4299 4300 4301 4302 4303
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4304 4305 4306 4307 4308 4309 4310 4311
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4312 4313 4314
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4315
	sector_nr += reshape_sectors;
4316 4317
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4318 4319 4320
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4321
		mddev->reshape_position = conf->reshape_progress;
4322
		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4323
		conf->reshape_checkpoint = jiffies;
4324 4325 4326 4327 4328 4329
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4330
		conf->reshape_safe = mddev->reshape_position;
4331 4332
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4333
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4334
	}
4335
	return reshape_sectors;
4336 4337 4338 4339 4340
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
4341
	raid5_conf_t *conf = mddev->private;
4342
	struct stripe_head *sh;
A
Andre Noll 已提交
4343
	sector_t max_sector = mddev->dev_sectors;
4344
	int sync_blocks;
4345 4346
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4347

4348
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4349 4350
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
4351

4352 4353 4354 4355
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4356 4357 4358 4359

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4360
		else /* completed sync */
4361 4362 4363
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4364 4365
		return 0;
	}
4366

4367 4368 4369
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4370 4371
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4372

4373 4374 4375 4376 4377 4378
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4379
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4380 4381 4382
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4383
	if (mddev->degraded >= conf->max_degraded &&
4384
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4385
		sector_t rv = mddev->dev_sectors - sector_nr;
4386
		*skipped = 1;
L
Linus Torvalds 已提交
4387 4388
		return rv;
	}
4389
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4390
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4391 4392 4393 4394 4395 4396
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4397

N
NeilBrown 已提交
4398 4399 4400

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4401
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4402
	if (sh == NULL) {
4403
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4404
		/* make sure we don't swamp the stripe cache if someone else
4405
		 * is trying to get access
L
Linus Torvalds 已提交
4406
		 */
4407
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4408
	}
4409 4410 4411 4412
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4413
	for (i = 0; i < conf->raid_disks; i++)
4414 4415 4416 4417 4418 4419
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
4420 4421 4422 4423
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

4424
	handle_stripe(sh);
L
Linus Torvalds 已提交
4425 4426 4427 4428 4429
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4443
	int dd_idx;
4444 4445 4446 4447 4448 4449
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4450
	sector = raid5_compute_sector(conf, logical_sector,
4451
				      0, &dd_idx, NULL);
4452 4453 4454
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4455 4456 4457
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4458

4459
		if (scnt < raid5_bi_hw_segments(raid_bio))
4460 4461 4462
			/* already done this stripe */
			continue;

4463
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4464 4465 4466

		if (!sh) {
			/* failed to get a stripe - must wait */
4467
			raid5_set_bi_hw_segments(raid_bio, scnt);
4468 4469 4470 4471 4472
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4473 4474
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4475
			raid5_set_bi_hw_segments(raid_bio, scnt);
4476 4477 4478 4479
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4480
		handle_stripe(sh);
4481 4482 4483 4484
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4485
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4486
	spin_unlock_irq(&conf->device_lock);
4487 4488
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4489 4490 4491 4492 4493 4494
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4495 4496 4497 4498 4499 4500 4501
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4502
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4503 4504
{
	struct stripe_head *sh;
4505
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4506 4507
	int handled;

4508
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4509 4510 4511 4512 4513 4514

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4515
		struct bio *bio;
L
Linus Torvalds 已提交
4516

4517
		if (conf->seq_flush != conf->seq_write) {
4518
			int seq = conf->seq_flush;
4519
			spin_unlock_irq(&conf->device_lock);
4520
			bitmap_unplug(mddev->bitmap);
4521
			spin_lock_irq(&conf->device_lock);
4522 4523 4524 4525
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4536 4537
		sh = __get_priority_stripe(conf);

4538
		if (!sh)
L
Linus Torvalds 已提交
4539 4540 4541 4542
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4543 4544 4545
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4546 4547 4548

		spin_lock_irq(&conf->device_lock);
	}
4549
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4550 4551 4552

	spin_unlock_irq(&conf->device_lock);

4553
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4554 4555
	unplug_slaves(mddev);

4556
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4557 4558
}

4559
static ssize_t
4560
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4561
{
4562
	raid5_conf_t *conf = mddev->private;
4563 4564 4565 4566
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4567 4568 4569
}

static ssize_t
4570
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4571
{
4572
	raid5_conf_t *conf = mddev->private;
4573
	unsigned long new;
4574 4575
	int err;

4576 4577
	if (len >= PAGE_SIZE)
		return -EINVAL;
4578 4579
	if (!conf)
		return -ENODEV;
4580

4581
	if (strict_strtoul(page, 10, &new))
4582 4583 4584 4585 4586 4587 4588 4589 4590
		return -EINVAL;
	if (new <= 16 || new > 32768)
		return -EINVAL;
	while (new < conf->max_nr_stripes) {
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4591 4592 4593
	err = md_allow_write(mddev);
	if (err)
		return err;
4594 4595 4596 4597 4598 4599 4600
	while (new > conf->max_nr_stripes) {
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
	return len;
}
4601

4602 4603 4604 4605
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4606

4607 4608 4609
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4610
	raid5_conf_t *conf = mddev->private;
4611 4612 4613 4614 4615 4616 4617 4618 4619
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4620
	raid5_conf_t *conf = mddev->private;
4621
	unsigned long new;
4622 4623 4624 4625 4626
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4627
	if (strict_strtoul(page, 10, &new))
4628
		return -EINVAL;
4629
	if (new > conf->max_nr_stripes)
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4641
static ssize_t
4642
stripe_cache_active_show(mddev_t *mddev, char *page)
4643
{
4644
	raid5_conf_t *conf = mddev->private;
4645 4646 4647 4648
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4649 4650
}

4651 4652
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4653

4654
static struct attribute *raid5_attrs[] =  {
4655 4656
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4657
	&raid5_preread_bypass_threshold.attr,
4658 4659
	NULL,
};
4660 4661 4662
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4663 4664
};

4665 4666 4667
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4668
	raid5_conf_t *conf = mddev->private;
4669 4670 4671

	if (!sectors)
		sectors = mddev->dev_sectors;
4672
	if (!raid_disks)
4673
		/* size is defined by the smallest of previous and new size */
4674
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4675

4676
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4677
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4678 4679 4680
	return sectors * (raid_disks - conf->max_degraded);
}

4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4693
		kfree(percpu->scribble);
4694 4695 4696 4697 4698 4699 4700 4701 4702
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4703 4704 4705
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4706
	raid5_free_percpu(conf);
4707 4708 4709 4710 4711
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4723
		if (conf->level == 6 && !percpu->spare_page)
4724
			percpu->spare_page = alloc_page(GFP_KERNEL);
4725 4726 4727 4728 4729 4730 4731
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4732 4733
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4734
			return notifier_from_errno(-ENOMEM);
4735 4736 4737 4738 4739
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4740
		kfree(percpu->scribble);
4741
		percpu->spare_page = NULL;
4742
		percpu->scribble = NULL;
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
4755
	struct raid5_percpu __percpu *allcpus;
4756
	void *scribble;
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4767 4768 4769 4770 4771 4772 4773 4774
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4775
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4776
		if (!scribble) {
4777 4778 4779
			err = -ENOMEM;
			break;
		}
4780
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4793
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4794 4795
{
	raid5_conf_t *conf;
4796
	int raid_disk, memory, max_disks;
L
Linus Torvalds 已提交
4797 4798 4799
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4800 4801 4802
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4803
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4804 4805
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4806
	}
N
NeilBrown 已提交
4807 4808 4809 4810
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4811
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4812 4813
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4814
	}
N
NeilBrown 已提交
4815
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4816
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4817 4818
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4819 4820
	}

4821 4822 4823
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4824 4825
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4826
		return ERR_PTR(-EINVAL);
4827 4828
	}

N
NeilBrown 已提交
4829 4830
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4831
		goto abort;
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
N
NeilBrown 已提交
4844 4845 4846 4847 4848

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4849
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4850 4851
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4852

4853
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4854 4855 4856
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4857

L
Linus Torvalds 已提交
4858 4859
	conf->mddev = mddev;

4860
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4861 4862
		goto abort;

4863 4864 4865 4866
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4867
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4868

4869
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4870
		raid_disk = rdev->raid_disk;
4871
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4872 4873 4874 4875 4876 4877
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4878
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4879
			char b[BDEVNAME_SIZE];
4880 4881 4882
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4883 4884 4885
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4886 4887
	}

4888
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4889
	conf->level = mddev->new_level;
4890 4891 4892 4893
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4894
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4895
	conf->max_nr_stripes = NR_STRIPES;
4896
	conf->reshape_progress = mddev->reshape_position;
4897
	if (conf->reshape_progress != MaxSector) {
4898
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4899 4900
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4901

N
NeilBrown 已提交
4902
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4903
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4904 4905
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4906 4907
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4908 4909
		goto abort;
	} else
4910 4911
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4912

4913
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4914 4915
	if (!conf->thread) {
		printk(KERN_ERR
4916
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4917
		       mdname(mddev));
4918 4919
		goto abort;
	}
N
NeilBrown 已提交
4920 4921 4922 4923 4924

	return conf;

 abort:
	if (conf) {
4925
		free_conf(conf);
N
NeilBrown 已提交
4926 4927 4928 4929 4930
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

N
NeilBrown 已提交
4958 4959 4960
static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4961
	int working_disks = 0, chunk_size;
4962
	int dirty_parity_disks = 0;
N
NeilBrown 已提交
4963
	mdk_rdev_t *rdev;
4964
	sector_t reshape_offset = 0;
N
NeilBrown 已提交
4965

4966
	if (mddev->recovery_cp != MaxSector)
4967
		printk(KERN_NOTICE "md/raid:%s: not clean"
4968 4969
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4970 4971 4972 4973 4974 4975 4976 4977
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4978
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4979

4980
		if (mddev->new_level != mddev->level) {
4981
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4992
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4993
			       (mddev->raid_disks - max_degraded))) {
4994 4995
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
4996 4997
			return -EINVAL;
		}
4998
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
4999 5000
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
5001
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
5002 5003 5004
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
5016 5017 5018
				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
				       " in read-only mode - aborting\n",
				       mdname(mddev));
5019 5020 5021 5022 5023 5024 5025
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
5026
			/* Reading from the same stripe as writing to - bad */
5027 5028 5029
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
5030 5031
			return -EINVAL;
		}
5032 5033
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
5034 5035 5036 5037
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
5038
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
5039
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
5040
	}
N
NeilBrown 已提交
5041

5042 5043 5044 5045 5046
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5057 5058 5059
	list_for_each_entry(rdev, &mddev->disks, same_set) {
		if (rdev->raid_disk < 0)
			continue;
5060
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5061
			working_disks++;
5062 5063
			continue;
		}
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5092

5093 5094
	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
			   - working_disks);
N
NeilBrown 已提交
5095

5096
	if (has_failed(conf)) {
5097
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5098
			" (%d/%d failed)\n",
5099
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5100 5101 5102
		goto abort;
	}

N
NeilBrown 已提交
5103
	/* device size must be a multiple of chunk size */
5104
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5105 5106
	mddev->resync_max_sectors = mddev->dev_sectors;

5107
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5108
	    mddev->recovery_cp != MaxSector) {
5109 5110
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5111 5112
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5113 5114 5115
			       mdname(mddev));
		else {
			printk(KERN_ERR
5116
			       "md/raid:%s: cannot start dirty degraded array.\n",
5117 5118 5119
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5120 5121 5122
	}

	if (mddev->degraded == 0)
5123 5124
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5125 5126
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5127
	else
5128 5129 5130 5131 5132
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5133 5134 5135

	print_raid5_conf(conf);

5136 5137
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5138 5139 5140 5141 5142 5143
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5144
							"reshape");
5145 5146
	}

L
Linus Torvalds 已提交
5147
	/* read-ahead size must cover two whole stripes, which is
5148
	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
L
Linus Torvalds 已提交
5149 5150
	 */
	{
5151 5152
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
5153
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
L
Linus Torvalds 已提交
5154 5155 5156 5157 5158
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
	}

	/* Ok, everything is just fine now */
5159 5160 5161
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
	else if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5162
		printk(KERN_WARNING
5163
		       "md/raid:%s: failed to create sysfs attributes.\n",
5164
		       mdname(mddev));
5165

N
NeilBrown 已提交
5166 5167
	mddev->queue->queue_lock = &conf->device_lock;

5168
	mddev->queue->unplug_fn = raid5_unplug_device;
5169
	mddev->queue->backing_dev_info.congested_data = mddev;
5170
	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5171

5172
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5173

5174
	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5175 5176 5177 5178 5179 5180 5181 5182
	chunk_size = mddev->chunk_sectors << 9;
	blk_queue_io_min(mddev->queue, chunk_size);
	blk_queue_io_opt(mddev->queue, chunk_size *
			 (conf->raid_disks - conf->max_degraded));

	list_for_each_entry(rdev, &mddev->disks, same_set)
		disk_stack_limits(mddev->gendisk, rdev->bdev,
				  rdev->data_offset << 9);
5183

L
Linus Torvalds 已提交
5184 5185
	return 0;
abort:
5186
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
5187
	mddev->thread = NULL;
L
Linus Torvalds 已提交
5188 5189
	if (conf) {
		print_raid5_conf(conf);
5190
		free_conf(conf);
L
Linus Torvalds 已提交
5191 5192
	}
	mddev->private = NULL;
5193
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5194 5195 5196
	return -EIO;
}

5197
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
5198
{
5199
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5200 5201 5202

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
5203
	mddev->queue->backing_dev_info.congested_fn = NULL;
L
Linus Torvalds 已提交
5204
	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5205
	free_conf(conf);
5206 5207
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5208 5209 5210
	return 0;
}

5211
#ifdef DEBUG
5212
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
5213 5214 5215
{
	int i;

5216 5217 5218 5219 5220
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5221
	for (i = 0; i < sh->disks; i++) {
5222 5223
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
5224
	}
5225
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
5226 5227
}

5228
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
5229 5230
{
	struct stripe_head *sh;
5231
	struct hlist_node *hn;
L
Linus Torvalds 已提交
5232 5233 5234 5235
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
5236
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
5237 5238
			if (sh->raid_conf != conf)
				continue;
5239
			print_sh(seq, sh);
L
Linus Torvalds 已提交
5240 5241 5242 5243 5244 5245
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

5246
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
5247
{
5248
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5249 5250
	int i;

5251 5252
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5253
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5254 5255 5256
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5257
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5258
	seq_printf (seq, "]");
5259
#ifdef DEBUG
5260 5261
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
5262 5263 5264 5265 5266 5267 5268 5269
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

5270
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5271 5272 5273 5274
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5275 5276 5277
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5278 5279 5280 5281 5282

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5283 5284 5285
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
5298
		    && tmp->rdev->recovery_offset == MaxSector
5299
		    && !test_bit(Faulty, &tmp->rdev->flags)
5300 5301 5302
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5303
			mddev->degraded--;
5304
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
		}
	}
	print_raid5_conf(conf);
	return 0;
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
5321 5322 5323 5324
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

5325
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
5326 5327 5328 5329
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
5330 5331 5332 5333
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
5334
		    !has_failed(conf) &&
5335
		    number < conf->raid_disks) {
5336 5337 5338
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
5339
		p->rdev = NULL;
5340
		synchronize_rcu();
L
Linus Torvalds 已提交
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
5356
	int err = -EEXIST;
L
Linus Torvalds 已提交
5357 5358
	int disk;
	struct disk_info *p;
5359 5360
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5361

5362
	if (has_failed(conf))
L
Linus Torvalds 已提交
5363
		/* no point adding a device */
5364
		return -EINVAL;
L
Linus Torvalds 已提交
5365

5366 5367
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5368 5369

	/*
5370 5371
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5372
	 */
5373
	if (rdev->saved_raid_disk >= 0 &&
5374
	    rdev->saved_raid_disk >= first &&
5375 5376 5377
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5378 5379
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5380
		if ((p=conf->disks + disk)->rdev == NULL) {
5381
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5382
			rdev->raid_disk = disk;
5383
			err = 0;
5384 5385
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5386
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5387 5388 5389
			break;
		}
	print_raid5_conf(conf);
5390
	return err;
L
Linus Torvalds 已提交
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5402
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5403 5404
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5405 5406 5407
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5408
	set_capacity(mddev->gendisk, mddev->array_sectors);
5409
	revalidate_disk(mddev->gendisk);
A
Andre Noll 已提交
5410 5411
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5412 5413
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5414
	mddev->dev_sectors = sectors;
5415
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5416 5417 5418
	return 0;
}

5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5434 5435
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5436 5437 5438 5439 5440 5441 5442
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5443
static int check_reshape(mddev_t *mddev)
5444
{
5445
	raid5_conf_t *conf = mddev->private;
5446

5447 5448
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5449
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5450
		return 0; /* nothing to do */
5451 5452 5453
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5454
	if (has_failed(conf))
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5468

5469
	if (!check_stripe_cache(mddev))
5470 5471
		return -ENOSPC;

5472
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5473 5474 5475 5476
}

static int raid5_start_reshape(mddev_t *mddev)
{
5477
	raid5_conf_t *conf = mddev->private;
5478 5479 5480
	mdk_rdev_t *rdev;
	int spares = 0;
	int added_devices = 0;
5481
	unsigned long flags;
5482

5483
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5484 5485
		return -EBUSY;

5486 5487 5488
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5489
	list_for_each_entry(rdev, &mddev->disks, same_set)
5490 5491 5492
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
5493

5494
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5495 5496 5497 5498 5499
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5500 5501 5502 5503 5504 5505
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5506
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5507 5508 5509 5510
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5511
	atomic_set(&conf->reshape_stripes, 0);
5512 5513
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5514
	conf->raid_disks += mddev->delta_disks;
5515 5516
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5517 5518
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5519 5520 5521 5522 5523
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5524
	conf->generation++;
5525 5526 5527 5528 5529
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
	 */
5530
	list_for_each_entry(rdev, &mddev->disks, same_set)
5531 5532
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
5533
			if (raid5_add_disk(mddev, rdev) == 0) {
5534
				char nm[20];
5535
				if (rdev->raid_disk >= conf->previous_raid_disks) {
5536
					set_bit(In_sync, &rdev->flags);
5537 5538
					added_devices++;
				} else
5539
					rdev->recovery_offset = 0;
5540
				sprintf(nm, "rd%d", rdev->raid_disk);
5541 5542 5543
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
					printk(KERN_WARNING
5544 5545 5546
					       "md/raid:%s: failed to create "
					       " link %s\n",
					       mdname(mddev), nm);
5547 5548 5549 5550
			} else
				break;
		}

5551 5552 5553
	/* When a reshape changes the number of devices, ->degraded
	 * is measured against the large of the pre and post number of
	 * devices.*/
5554 5555
	if (mddev->delta_disks > 0) {
		spin_lock_irqsave(&conf->device_lock, flags);
5556
		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5557 5558 5559
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5560
	mddev->raid_disks = conf->raid_disks;
5561
	mddev->reshape_position = conf->reshape_progress;
5562
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5563

5564 5565 5566 5567 5568
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5569
						"reshape");
5570 5571 5572 5573
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5574
		conf->reshape_progress = MaxSector;
5575 5576 5577
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5578
	conf->reshape_checkpoint = jiffies;
5579 5580 5581 5582 5583
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5584 5585 5586
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5587 5588 5589
static void end_reshape(raid5_conf_t *conf)
{

5590 5591 5592
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5593
		conf->previous_raid_disks = conf->raid_disks;
5594
		conf->reshape_progress = MaxSector;
5595
		spin_unlock_irq(&conf->device_lock);
5596
		wake_up(&conf->wait_for_overlap);
5597 5598 5599 5600 5601

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
		{
5602
			int data_disks = conf->raid_disks - conf->max_degraded;
5603
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5604
						   / PAGE_SIZE);
5605 5606 5607
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5608 5609 5610
	}
}

5611 5612 5613
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5614 5615
static void raid5_finish_reshape(mddev_t *mddev)
{
5616
	raid5_conf_t *conf = mddev->private;
5617 5618 5619

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5620 5621 5622
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5623
			revalidate_disk(mddev->gendisk);
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5634 5635 5636 5637 5638 5639 5640 5641 5642
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
					char nm[20];
					sprintf(nm, "rd%d", rdev->raid_disk);
					sysfs_remove_link(&mddev->kobj, nm);
					rdev->raid_disk = -1;
				}
			}
5643
		}
5644
		mddev->layout = conf->algorithm;
5645
		mddev->chunk_sectors = conf->chunk_sectors;
5646 5647
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5648 5649 5650
	}
}

5651 5652
static void raid5_quiesce(mddev_t *mddev, int state)
{
5653
	raid5_conf_t *conf = mddev->private;
5654 5655

	switch(state) {
5656 5657 5658 5659
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5660 5661
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5662 5663 5664 5665
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5666
		wait_event_lock_irq(conf->wait_for_stripe,
5667 5668
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5669
				    conf->device_lock, /* nothing */);
5670
		conf->quiesce = 1;
5671
		spin_unlock_irq(&conf->device_lock);
5672 5673
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5674 5675 5676 5677 5678 5679
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5680
		wake_up(&conf->wait_for_overlap);
5681 5682 5683 5684
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5685

5686

D
Dan Williams 已提交
5687
static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5688
{
D
Dan Williams 已提交
5689
	struct raid0_private_data *raid0_priv = mddev->private;
5690

D
Dan Williams 已提交
5691 5692
	/* for raid0 takeover only one zone is supported */
	if (raid0_priv->nr_strip_zones > 1) {
5693 5694
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5695 5696 5697 5698
		return ERR_PTR(-EINVAL);
	}

	mddev->new_level = level;
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5732
	mddev->new_chunk_sectors = chunksect;
5733 5734 5735 5736

	return setup_conf(mddev);
}

5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5770

5771
static int raid5_check_reshape(mddev_t *mddev)
5772
{
5773 5774 5775 5776
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5777
	 */
5778
	raid5_conf_t *conf = mddev->private;
5779
	int new_chunk = mddev->new_chunk_sectors;
5780

5781
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5782 5783
		return -EINVAL;
	if (new_chunk > 0) {
5784
		if (!is_power_of_2(new_chunk))
5785
			return -EINVAL;
5786
		if (new_chunk < (PAGE_SIZE>>9))
5787
			return -EINVAL;
5788
		if (mddev->array_sectors & (new_chunk-1))
5789 5790 5791 5792 5793 5794
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5795
	if (mddev->raid_disks == 2) {
5796 5797 5798 5799
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5800 5801
		}
		if (new_chunk > 0) {
5802 5803
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5804 5805 5806
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5807
	}
5808
	return check_reshape(mddev);
5809 5810
}

5811
static int raid6_check_reshape(mddev_t *mddev)
5812
{
5813
	int new_chunk = mddev->new_chunk_sectors;
5814

5815
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5816
		return -EINVAL;
5817
	if (new_chunk > 0) {
5818
		if (!is_power_of_2(new_chunk))
5819
			return -EINVAL;
5820
		if (new_chunk < (PAGE_SIZE >> 9))
5821
			return -EINVAL;
5822
		if (mddev->array_sectors & (new_chunk-1))
5823 5824
			/* not factor of array size */
			return -EINVAL;
5825
	}
5826 5827

	/* They look valid */
5828
	return check_reshape(mddev);
5829 5830
}

5831 5832 5833
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
D
Dan Williams 已提交
5834
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5835 5836 5837 5838
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5839 5840
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5841 5842
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5843 5844 5845 5846 5847
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5848 5849
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5850 5851 5852 5853

	return ERR_PTR(-EINVAL);
}

5854 5855
static void *raid4_takeover(mddev_t *mddev)
{
D
Dan Williams 已提交
5856 5857 5858
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5859
	 */
D
Dan Williams 已提交
5860 5861
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5862 5863 5864 5865 5866 5867 5868 5869
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5870

5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5935
	.size		= raid5_size,
5936
	.check_reshape	= raid6_check_reshape,
5937
	.start_reshape  = raid5_start_reshape,
5938
	.finish_reshape = raid5_finish_reshape,
5939
	.quiesce	= raid5_quiesce,
5940
	.takeover	= raid6_takeover,
5941
};
5942
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5943 5944
{
	.name		= "raid5",
5945
	.level		= 5,
L
Linus Torvalds 已提交
5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5957
	.size		= raid5_size,
5958 5959
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5960
	.finish_reshape = raid5_finish_reshape,
5961
	.quiesce	= raid5_quiesce,
5962
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5963 5964
};

5965
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5966
{
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5980
	.size		= raid5_size,
5981 5982
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5983
	.finish_reshape = raid5_finish_reshape,
5984
	.quiesce	= raid5_quiesce,
5985
	.takeover	= raid4_takeover,
5986 5987 5988 5989
};

static int __init raid5_init(void)
{
5990
	register_md_personality(&raid6_personality);
5991 5992 5993
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5994 5995
}

5996
static void raid5_exit(void)
L
Linus Torvalds 已提交
5997
{
5998
	unregister_md_personality(&raid6_personality);
5999 6000
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
6001 6002 6003 6004 6005
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
6006
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
6007
MODULE_ALIAS("md-personality-4"); /* RAID5 */
6008 6009
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
6010 6011
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
6012 6013 6014 6015 6016 6017 6018
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");