raid5.c 165.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include "md.h"
54
#include "raid5.h"
55
#include "raid0.h"
56
#include "bitmap.h"
57

L
Linus Torvalds 已提交
58 59 60 61 62 63 64 65 66
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
67
#define BYPASS_THRESHOLD	1
68
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
69 70
#define HASH_MASK		(NR_HASH - 1)

71
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

93
#ifdef DEBUG
L
Linus Torvalds 已提交
94 95 96 97
#define inline
#define __inline__
#endif

98 99
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

100
/*
101 102
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 104 105
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
106
	return bio->bi_phys_segments & 0xffff;
107 108 109 110
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
111
	return (bio->bi_phys_segments >> 16) & 0xffff;
112 113 114 115 116 117 118 119 120 121 122 123 124
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
125
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126 127 128 129 130
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
131
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
132 133
}

134 135 136
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
137 138 139 140
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
141 142 143 144 145
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
146 147 148 149 150
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
151

152 153 154 155 156
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
157 158
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
159
{
160
	int slot = *count;
161

162
	if (sh->ddf_layout)
163
		(*count)++;
164
	if (idx == sh->pd_idx)
165
		return syndrome_disks;
166
	if (idx == sh->qd_idx)
167
		return syndrome_disks + 1;
168
	if (!sh->ddf_layout)
169
		(*count)++;
170 171 172
	return slot;
}

173 174 175 176 177 178 179 180
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
181
		bio_endio(bi, 0);
182 183 184 185
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
186 187
static void print_raid5_conf (raid5_conf_t *conf);

188 189 190 191 192 193 194
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

195
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
196 197
{
	if (atomic_dec_and_test(&sh->count)) {
198 199
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
200
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
201
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
202
				list_add_tail(&sh->lru, &conf->delayed_list);
203 204
				blk_plug_device(conf->mddev->queue);
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205
				   sh->bm_seq - conf->seq_write > 0) {
206
				list_add_tail(&sh->lru, &conf->bitmap_list);
207 208
				blk_plug_device(conf->mddev->queue);
			} else {
209
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
210
				list_add_tail(&sh->lru, &conf->handle_list);
211
			}
L
Linus Torvalds 已提交
212 213
			md_wakeup_thread(conf->mddev->thread);
		} else {
214
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
215 216 217 218 219 220
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
221 222
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
223
				wake_up(&conf->wait_for_stripe);
224 225
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
226
			}
L
Linus Torvalds 已提交
227 228 229
		}
	}
}
230

L
Linus Torvalds 已提交
231 232 233 234
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
235

L
Linus Torvalds 已提交
236 237 238 239 240
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

241
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
242
{
243 244
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
245

246
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
247 248
}

249
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
250
{
251
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
252

253 254
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
255 256

	CHECK_DEVLOCK();
257
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

static void shrink_buffers(struct stripe_head *sh, int num)
{
	struct page *p;
	int i;

	for (i=0; i<num ; i++) {
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
289
		put_page(p);
L
Linus Torvalds 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	}
}

static int grow_buffers(struct stripe_head *sh, int num)
{
	int i;

	for (i=0; i<num; i++) {
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

308
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309 310
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
311

312
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
313 314
{
	raid5_conf_t *conf = sh->raid_conf;
315
	int i;
L
Linus Torvalds 已提交
316

317 318
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319
	BUG_ON(stripe_operations_active(sh));
320

L
Linus Torvalds 已提交
321
	CHECK_DEVLOCK();
322
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
323 324 325
		(unsigned long long)sh->sector);

	remove_hash(sh);
326

327
	sh->generation = conf->generation - previous;
328
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
329
	sh->sector = sector;
330
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
331 332
	sh->state = 0;

333 334

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
335 336
		struct r5dev *dev = &sh->dev[i];

337
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
338
		    test_bit(R5_LOCKED, &dev->flags)) {
339
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
340
			       (unsigned long long)sh->sector, i, dev->toread,
341
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
342 343 344 345
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
346
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
347 348 349 350
	}
	insert_hash(conf, sh);
}

351 352
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
353 354
{
	struct stripe_head *sh;
355
	struct hlist_node *hn;
L
Linus Torvalds 已提交
356 357

	CHECK_DEVLOCK();
358
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
361
			return sh;
362
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
363 364 365 366
	return NULL;
}

static void unplug_slaves(mddev_t *mddev);
367
static void raid5_unplug_device(struct request_queue *q);
L
Linus Torvalds 已提交
368

369 370
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
371
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
372 373 374
{
	struct stripe_head *sh;

375
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
376 377 378 379

	spin_lock_irq(&conf->device_lock);

	do {
380
		wait_event_lock_irq(conf->wait_for_stripe,
381
				    conf->quiesce == 0 || noquiesce,
382
				    conf->device_lock, /* nothing */);
383
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
384 385 386 387 388 389 390 391 392
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
393 394
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
395 396
						     || !conf->inactive_blocked),
						    conf->device_lock,
397
						    raid5_unplug_device(conf->mddev->queue)
L
Linus Torvalds 已提交
398 399 400
					);
				conf->inactive_blocked = 0;
			} else
401
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
402 403
		} else {
			if (atomic_read(&sh->count)) {
404 405
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
406 407 408
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
409 410
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
411 412
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
413 414 415 416 417 418 419 420 421 422 423
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

424 425 426 427
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
428

429
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
			rw = WRITE;
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
464
			if (s->syncing || s->expanding || s->expanded)
465 466
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
467 468
			set_bit(STRIPE_IO_STARTED, &sh->state);

469 470
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
471
				__func__, (unsigned long long)sh->sector,
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
508
	struct async_submit_ctl submit;
D
Dan Williams 已提交
509
	enum async_tx_flags flags = 0;
510 511 512 513 514

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
515

D
Dan Williams 已提交
516 517 518 519
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
541
						  b_offset, clen, &submit);
542 543
			else
				tx = async_memcpy(bio_page, page, b_offset,
544
						  page_offset, clen, &submit);
545
		}
546 547 548
		/* chain the operations */
		submit.depend_tx = tx;

549 550 551 552 553 554 555 556 557 558 559 560 561
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
562
	int i;
563

564
	pr_debug("%s: stripe %llu\n", __func__,
565 566 567
		(unsigned long long)sh->sector);

	/* clear completed biofills */
568
	spin_lock_irq(&conf->device_lock);
569 570 571 572
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
573 574
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
575
		 * !STRIPE_BIOFILL_RUN
576 577
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
578 579 580 581 582 583 584 585
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
586
				if (!raid5_dec_bi_phys_segments(rbi)) {
587 588 589 590 591 592 593
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
594 595
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
596 597 598

	return_io(return_bi);

599
	set_bit(STRIPE_HANDLE, &sh->state);
600 601 602 603 604 605 606
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
607
	struct async_submit_ctl submit;
608 609
	int i;

610
	pr_debug("%s: stripe %llu\n", __func__,
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
631 632
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
633 634
}

635
static void mark_target_uptodate(struct stripe_head *sh, int target)
636
{
637
	struct r5dev *tgt;
638

639 640
	if (target < 0)
		return;
641

642
	tgt = &sh->dev[target];
643 644 645
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
646 647
}

648
static void ops_complete_compute(void *stripe_head_ref)
649 650 651
{
	struct stripe_head *sh = stripe_head_ref;

652
	pr_debug("%s: stripe %llu\n", __func__,
653 654
		(unsigned long long)sh->sector);

655
	/* mark the computed target(s) as uptodate */
656
	mark_target_uptodate(sh, sh->ops.target);
657
	mark_target_uptodate(sh, sh->ops.target2);
658

659 660 661
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
662 663 664 665
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

666 667 668 669 670 671 672 673 674
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
675 676
{
	int disks = sh->disks;
677
	struct page **xor_srcs = percpu->scribble;
678 679 680 681 682
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
683
	struct async_submit_ctl submit;
684 685 686
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
687
		__func__, (unsigned long long)sh->sector, target);
688 689 690 691 692 693 694 695
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
696
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
697
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
698
	if (unlikely(count == 1))
699
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
700
	else
701
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
702 703 704 705

	return tx;
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
724
		srcs[i] = NULL;
725 726 727 728 729 730 731 732 733 734

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

735
	return syndrome_disks;
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
756
	else
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
773 774
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
775 776 777 778 779 780 781 782 783 784 785
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
786 787
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
788 789 790
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
791 792 793 794

	return tx;
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

816
	/* we need to open-code set_syndrome_sources to handle the
817 818 819
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
820
		blocks[i] = NULL;
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
847 848 849
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
850
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
870 871 872 873
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
874 875 876 877
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
878 879 880
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
881 882 883 884
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
885 886 887 888 889 890 891 892 893 894 895 896 897 898
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
899 900 901 902
	}
}


903 904 905 906
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

907
	pr_debug("%s: stripe %llu\n", __func__,
908 909 910 911
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
912 913
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
914 915
{
	int disks = sh->disks;
916
	struct page **xor_srcs = percpu->scribble;
917
	int count = 0, pd_idx = sh->pd_idx, i;
918
	struct async_submit_ctl submit;
919 920 921 922

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

923
	pr_debug("%s: stripe %llu\n", __func__,
924 925 926 927 928
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
929
		if (test_bit(R5_Wantdrain, &dev->flags))
930 931 932
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
933
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
934
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
935
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
936 937 938 939 940

	return tx;
}

static struct dma_async_tx_descriptor *
941
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
942 943
{
	int disks = sh->disks;
944
	int i;
945

946
	pr_debug("%s: stripe %llu\n", __func__,
947 948 949 950 951 952
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

953
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

975
static void ops_complete_reconstruct(void *stripe_head_ref)
976 977
{
	struct stripe_head *sh = stripe_head_ref;
978 979 980 981
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
982

983
	pr_debug("%s: stripe %llu\n", __func__,
984 985 986 987
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
988 989

		if (dev->written || i == pd_idx || i == qd_idx)
990 991 992
			set_bit(R5_UPTODATE, &dev->flags);
	}

993 994 995 996 997 998 999 1000
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1001 1002 1003 1004 1005 1006

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1007 1008
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1009 1010
{
	int disks = sh->disks;
1011
	struct page **xor_srcs = percpu->scribble;
1012
	struct async_submit_ctl submit;
1013 1014
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1015
	int prexor = 0;
1016 1017
	unsigned long flags;

1018
	pr_debug("%s: stripe %llu\n", __func__,
1019 1020 1021 1022 1023
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1024 1025
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1046
	flags = ASYNC_TX_ACK |
1047 1048 1049 1050
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1051
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1052
			  to_addr_conv(sh, percpu));
1053 1054 1055 1056
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1057 1058
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1076 1077 1078 1079 1080 1081
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1082
	pr_debug("%s: stripe %llu\n", __func__,
1083 1084
		(unsigned long long)sh->sector);

1085
	sh->check_state = check_state_check_result;
1086 1087 1088 1089
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1090
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1091 1092
{
	int disks = sh->disks;
1093 1094 1095
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1096
	struct page **xor_srcs = percpu->scribble;
1097
	struct dma_async_tx_descriptor *tx;
1098
	struct async_submit_ctl submit;
1099 1100
	int count;
	int i;
1101

1102
	pr_debug("%s: stripe %llu\n", __func__,
1103 1104
		(unsigned long long)sh->sector);

1105 1106 1107
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1108
	for (i = disks; i--; ) {
1109 1110 1111
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1112 1113
	}

1114 1115
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1116
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1117
			   &sh->ops.zero_sum_result, &submit);
1118 1119

	atomic_inc(&sh->count);
1120 1121
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1122 1123
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1136 1137

	atomic_inc(&sh->count);
1138 1139 1140 1141
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1142 1143
}

1144
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1145 1146 1147
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1148
	raid5_conf_t *conf = sh->raid_conf;
1149
	int level = conf->level;
1150 1151
	struct raid5_percpu *percpu;
	unsigned long cpu;
1152

1153 1154
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1155
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1156 1157 1158 1159
		ops_run_biofill(sh);
		overlap_clear++;
	}

1160
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1171 1172
			async_tx_ack(tx);
	}
1173

1174
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1175
		tx = ops_run_prexor(sh, percpu, tx);
1176

1177
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1178
		tx = ops_run_biodrain(sh, tx);
1179 1180 1181
		overlap_clear++;
	}

1182 1183 1184 1185 1186 1187
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1199 1200 1201 1202 1203 1204 1205

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1206
	put_cpu();
1207 1208
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1239
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1240 1241
{
	struct stripe_head *sh;
1242
	int disks = max(conf->raid_disks, conf->previous_raid_disks);
1243 1244 1245
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
1246
	memset(sh, 0, sizeof(*sh) + (disks-1)*sizeof(struct r5dev));
1247 1248
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);
1249 1250 1251
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1252

1253 1254
	if (grow_buffers(sh, disks)) {
		shrink_buffers(sh, disks);
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1268
	struct kmem_cache *sc;
1269
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1270

1271 1272 1273 1274
	sprintf(conf->cache_name[0],
		"raid%d-%s", conf->level, mdname(conf->mddev));
	sprintf(conf->cache_name[1],
		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
1275 1276
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1277
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1278
			       0, 0, NULL);
L
Linus Torvalds 已提交
1279 1280 1281
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1282
	conf->pool_size = devs;
1283
	while (num--)
1284
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1285 1286 1287
			return 1;
	return 0;
}
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1339
	unsigned long cpu;
1340
	int err;
1341
	struct kmem_cache *sc;
1342 1343 1344 1345 1346
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1347 1348 1349
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1350

1351 1352 1353
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1354
			       0, 0, NULL);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);
1367 1368 1369
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1392
				    unplug_slaves(conf->mddev)
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1408
	 * conf->disks and the scribble region
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1438 1439 1440 1441
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1459

1460
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1461 1462 1463
{
	struct stripe_head *sh;

1464 1465 1466 1467 1468
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1469
	BUG_ON(atomic_read(&sh->count));
1470
	shrink_buffers(sh, conf->pool_size);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1481 1482
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1483 1484 1485
	conf->slab_cache = NULL;
}

1486
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1487
{
1488
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1489
	raid5_conf_t *conf = sh->raid_conf;
1490
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1491
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1492 1493
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1494 1495 1496 1497 1498 1499


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1500 1501
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1502 1503 1504
		uptodate);
	if (i == disks) {
		BUG();
1505
		return;
L
Linus Torvalds 已提交
1506 1507 1508 1509
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1510
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1511
			rdev = conf->disks[i].rdev;
1512 1513 1514 1515 1516 1517
			printk_rl(KERN_INFO "raid5:%s: read error corrected"
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1518 1519 1520
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1521 1522
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1523
	} else {
1524
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1525
		int retry = 0;
1526 1527
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1528
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1529
		atomic_inc(&rdev->read_errors);
1530
		if (conf->mddev->degraded)
1531 1532 1533 1534 1535 1536 1537
			printk_rl(KERN_WARNING
				  "raid5:%s: read error not correctable "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1538
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1539
			/* Oh, no!!! */
1540 1541 1542 1543 1544 1545 1546
			printk_rl(KERN_WARNING
				  "raid5:%s: read error NOT corrected!! "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1547
		else if (atomic_read(&rdev->read_errors)
1548
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1549
			printk(KERN_WARNING
1550 1551
			       "raid5:%s: Too many read errors, failing device %s.\n",
			       mdname(conf->mddev), bdn);
1552 1553 1554 1555 1556
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1557 1558
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1559
			md_error(conf->mddev, rdev);
1560
		}
L
Linus Torvalds 已提交
1561 1562 1563 1564 1565 1566 1567
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1568
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1569
{
1570
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1571
	raid5_conf_t *conf = sh->raid_conf;
1572
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1573 1574 1575 1576 1577 1578
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1579
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1580 1581 1582 1583
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1584
		return;
L
Linus Torvalds 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1594
	release_stripe(sh);
L
Linus Torvalds 已提交
1595 1596 1597
}


1598
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1599
	
1600
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1616
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1617 1618 1619 1620 1621
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
1622
	raid5_conf_t *conf = mddev->private;
1623
	pr_debug("raid5: error called\n");
L
Linus Torvalds 已提交
1624

1625
	if (!test_bit(Faulty, &rdev->flags)) {
1626
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1627 1628 1629
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1630
			mddev->degraded++;
1631
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1632 1633 1634
			/*
			 * if recovery was running, make sure it aborts.
			 */
1635
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1636
		}
1637
		set_bit(Faulty, &rdev->flags);
1638 1639 1640 1641
		printk(KERN_ALERT
		       "raid5: Disk failure on %s, disabling device.\n"
		       "raid5: Operation continuing on %d devices.\n",
		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1642
	}
1643
}
L
Linus Torvalds 已提交
1644 1645 1646 1647 1648

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1649
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1650 1651
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1652 1653 1654 1655
{
	long stripe;
	unsigned long chunk_number;
	unsigned int chunk_offset;
1656
	int pd_idx, qd_idx;
1657
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1658
	sector_t new_sector;
1659 1660
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1661 1662
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1663 1664 1665
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;
	BUG_ON(r_sector != chunk_number);

	/*
	 * Compute the stripe number
	 */
	stripe = chunk_number / data_disks;

	/*
	 * Compute the data disk and parity disk indexes inside the stripe
	 */
	*dd_idx = chunk_number % data_disks;

	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1689
	pd_idx = qd_idx = ~0;
1690 1691
	switch(conf->level) {
	case 4:
1692
		pd_idx = data_disks;
1693 1694
		break;
	case 5:
1695
		switch (algorithm) {
L
Linus Torvalds 已提交
1696
		case ALGORITHM_LEFT_ASYMMETRIC:
1697 1698
			pd_idx = data_disks - stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1699 1700 1701
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1702 1703
			pd_idx = stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1704 1705 1706
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1707 1708
			pd_idx = data_disks - stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1709 1710
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1711 1712
			pd_idx = stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1713
			break;
1714 1715 1716 1717 1718 1719 1720
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1721
		default:
N
NeilBrown 已提交
1722
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1723
				algorithm);
1724
			BUG();
1725 1726 1727 1728
		}
		break;
	case 6:

1729
		switch (algorithm) {
1730
		case ALGORITHM_LEFT_ASYMMETRIC:
1731 1732 1733
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1734
				(*dd_idx)++;	/* Q D D D P */
1735 1736
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1737 1738 1739
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1740 1741 1742
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1743
				(*dd_idx)++;	/* Q D D D P */
1744 1745
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1746 1747 1748
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1749 1750 1751
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1752 1753
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1754 1755 1756
			pd_idx = stripe % raid_disks;
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1757
			break;
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1780
			ddf_layout = 1;
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1795
			ddf_layout = 1;
1796 1797 1798 1799 1800 1801 1802
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1803
			ddf_layout = 1;
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
			pd_idx = data_disks - stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
			pd_idx = data_disks - stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;


1840
		default:
1841
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1842
			       algorithm);
1843
			BUG();
1844 1845
		}
		break;
L
Linus Torvalds 已提交
1846 1847
	}

1848 1849 1850
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1851
		sh->ddf_layout = ddf_layout;
1852
	}
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857 1858 1859 1860
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1861
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1862 1863
{
	raid5_conf_t *conf = sh->raid_conf;
1864 1865
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1866
	sector_t new_sector = sh->sector, check;
1867 1868
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1869 1870
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1871 1872
	sector_t stripe;
	int chunk_offset;
1873
	int chunk_number, dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1874
	sector_t r_sector;
1875
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1876

1877

L
Linus Torvalds 已提交
1878 1879 1880 1881
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;
	BUG_ON(new_sector != stripe);

1882 1883 1884 1885 1886
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1887
		switch (algorithm) {
L
Linus Torvalds 已提交
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1899 1900 1901 1902 1903
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1904
		default:
N
NeilBrown 已提交
1905
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1906
			       algorithm);
1907
			BUG();
1908 1909 1910
		}
		break;
	case 6:
1911
		if (i == sh->qd_idx)
1912
			return 0; /* It is the Q disk */
1913
		switch (algorithm) {
1914 1915
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1916 1917 1918 1919
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1934 1935 1936 1937 1938 1939
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
1940
			/* Like left_symmetric, but P is before Q */
1941 1942
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
1943 1944 1945 1946 1947 1948
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
1964
		default:
1965
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1966
			       algorithm);
1967
			BUG();
1968 1969
		}
		break;
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974
	}

	chunk_number = stripe * data_disks + i;
	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;

1975
	check = raid5_compute_sector(conf, r_sector,
1976
				     previous, &dummy1, &sh2);
1977 1978
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
N
NeilBrown 已提交
1979
		printk(KERN_ERR "compute_blocknr: map not correct\n");
L
Linus Torvalds 已提交
1980 1981 1982 1983 1984 1985
		return 0;
	}
	return r_sector;
}


1986
static void
1987
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1988
			 int rcw, int expand)
1989 1990
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1991 1992
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
1993 1994 1995 1996 1997 1998 1999

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2000 2001 2002 2003
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2004

2005
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2006 2007 2008 2009 2010 2011

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2012
				set_bit(R5_Wantdrain, &dev->flags);
2013 2014
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2015
				s->locked++;
2016 2017
			}
		}
2018
		if (s->locked + conf->max_degraded == disks)
2019
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2020
				atomic_inc(&conf->pending_full_writes);
2021
	} else {
2022
		BUG_ON(level == 6);
2023 2024 2025
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2026
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2027 2028
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2029
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2030 2031 2032 2033 2034 2035 2036 2037

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2038 2039
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2040 2041
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2042
				s->locked++;
2043 2044 2045 2046
			}
		}
	}

2047
	/* keep the parity disk(s) locked while asynchronous operations
2048 2049 2050 2051
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2052
	s->locked++;
2053

2054 2055 2056 2057 2058 2059 2060 2061 2062
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2063
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2064
		__func__, (unsigned long long)sh->sector,
2065
		s->locked, s->ops_request);
2066
}
2067

L
Linus Torvalds 已提交
2068 2069
/*
 * Each stripe/dev can have one or more bion attached.
2070
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2071 2072 2073 2074 2075 2076
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2077
	int firstwrite=0;
L
Linus Torvalds 已提交
2078

2079
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2080 2081 2082 2083 2084 2085
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
2086
	if (forwrite) {
L
Linus Torvalds 已提交
2087
		bip = &sh->dev[dd_idx].towrite;
2088 2089 2090
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2100
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2101 2102 2103
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2104
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
2105 2106 2107
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

2108
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
2109 2110 2111
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

2112 2113 2114
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
2115
		sh->bm_seq = conf->seq_flush+1;
2116 2117 2118
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

2141 2142
static void end_reshape(raid5_conf_t *conf);

2143 2144
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2145
{
2146
	int sectors_per_chunk =
2147
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2148
	int dd_idx;
2149
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2150
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2151

2152 2153
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2154
			     *sectors_per_chunk + chunk_offset,
2155
			     previous,
2156
			     &dd_idx, sh);
2157 2158
}

2159
static void
2160
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2194
			if (!raid5_dec_bi_phys_segments(bi)) {
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2209
			if (!raid5_dec_bi_phys_segments(bi)) {
2210 2211 2212 2213 2214 2215 2216
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2217 2218 2219 2220 2221 2222
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2233
				if (!raid5_dec_bi_phys_segments(bi)) {
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2246 2247 2248
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2249 2250
}

2251 2252 2253 2254 2255
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2256
 */
2257 2258
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2259 2260 2261 2262 2263 2264
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2265 2266 2267 2268 2269 2270 2271 2272
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2273 2274
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2275 2276
		 */
		if ((s->uptodate == disks - 1) &&
2277
		    (s->failed && disk_idx == s->failed_num)) {
2278 2279
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2280 2281
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
2282
			sh->ops.target2 = -1;
2283 2284
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
2285
			 * of raid_run_ops which services 'compute' operations
2286 2287 2288 2289 2290
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2291
			return 1; /* uptodate + compute == disks */
2292
		} else if (test_bit(R5_Insync, &dev->flags)) {
2293 2294 2295 2296 2297 2298 2299 2300
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2301
	return 0;
2302 2303
}

2304 2305 2306 2307
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2308 2309 2310
			struct stripe_head_state *s, int disks)
{
	int i;
2311 2312 2313 2314 2315

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2316
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2317
	    !sh->reconstruct_state)
2318
		for (i = disks; i--; )
2319
			if (fetch_block5(sh, s, i, disks))
2320
				break;
2321 2322 2323
	set_bit(STRIPE_HANDLE, &sh->state);
}

2324 2325 2326 2327 2328 2329 2330 2331
/* fetch_block6 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill6 to continue
 */
static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
			 struct r6_state *r6s, int disk_idx, int disks)
2332
{
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
				  &sh->dev[r6s->failed_num[1]] };

	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed >= 1 &&
	      (fdev[0]->toread || s->to_write)) ||
	     (s->failed >= 2 &&
	      (fdev[1]->toread || s->to_write)))) {
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
		    (s->failed && (disk_idx == r6s->failed_num[0] ||
				   disk_idx == r6s->failed_num[1]))) {
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2356
			 */
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2378
			}
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2398 2399
		}
	}
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421

	return 0;
}

/**
 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill6(struct stripe_head *sh,
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
			if (fetch_block6(sh, s, r6s, i, disks))
				break;
2422 2423 2424 2425
	set_bit(STRIPE_HANDLE, &sh->state);
}


2426
/* handle_stripe_clean_event
2427 2428 2429 2430
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2431
static void handle_stripe_clean_event(raid5_conf_t *conf,
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2445
				pr_debug("Return write for disc %d\n", i);
2446 2447 2448 2449 2450 2451
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2452
					if (!raid5_dec_bi_phys_segments(wbi)) {
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2470 2471 2472 2473

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2474 2475
}

2476
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2477 2478 2479 2480 2481 2482 2483 2484
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2485 2486
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2487 2488 2489 2490 2491 2492 2493 2494
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2495 2496 2497
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2498 2499 2500 2501
			else
				rcw += 2*disks;
		}
	}
2502
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2503 2504 2505 2506 2507 2508 2509 2510
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2511 2512
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2513 2514 2515
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2516
					pr_debug("Read_old block "
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2534 2535
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2536 2537 2538
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2539
					pr_debug("Read_old block "
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2553 2554
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2555 2556
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2557 2558 2559
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2560 2561 2562
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2563
		schedule_reconstruction(sh, s, rcw == 0, 0);
2564 2565
}

2566
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2567 2568 2569
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
2570
	int rcw = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2571
	int qd_idx = sh->qd_idx;
2572 2573

	set_bit(STRIPE_HANDLE, &sh->state);
2574 2575
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
		/* check if we haven't enough data */
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != pd_idx && i != qd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
			rcw++;
			if (!test_bit(R5_Insync, &dev->flags))
				continue; /* it's a failed drive */

			if (
			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				pr_debug("Read_old stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
			} else {
				pr_debug("Request delayed stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(STRIPE_DELAYED, &sh->state);
				set_bit(STRIPE_HANDLE, &sh->state);
2600 2601 2602 2603 2604 2605
			}
		}
	}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
2606 2607
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    s->locked == 0 && rcw == 0 &&
2608
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2609
		schedule_reconstruction(sh, s, 1, 0);
2610 2611 2612 2613 2614 2615
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2616
	struct r5dev *dev = NULL;
2617

2618
	set_bit(STRIPE_HANDLE, &sh->state);
2619

2620 2621 2622
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2623 2624
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2625 2626
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2627 2628
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2629
			break;
2630
		}
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2641

2642 2643 2644 2645 2646
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2647
		s->locked++;
2648
		set_bit(R5_Wantwrite, &dev->flags);
2649

2650 2651
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2668
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2680
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2681 2682 2683 2684
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2685
				sh->ops.target2 = -1;
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2697 2698 2699 2700 2701
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2702 2703
				  struct stripe_head_state *s,
				  struct r6_state *r6s, int disks)
2704 2705
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2706
	int qd_idx = sh->qd_idx;
2707
	struct r5dev *dev;
2708 2709 2710 2711

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2712

2713 2714 2715 2716 2717 2718
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2719 2720 2721
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2722
		if (s->failed == r6s->q_failed) {
2723
			/* The only possible failed device holds Q, so it
2724 2725 2726
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2727
			sh->check_state = check_state_run;
2728 2729
		}
		if (!r6s->q_failed && s->failed < 2) {
2730
			/* Q is not failed, and we didn't use it to generate
2731 2732
			 * anything, so it makes sense to check it
			 */
2733 2734 2735 2736
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2737 2738
		}

2739 2740
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2741

2742 2743 2744 2745
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2746
		}
2747 2748 2749 2750 2751 2752 2753
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2754 2755
		}

2756 2757 2758 2759 2760
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2761

2762 2763 2764
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2765 2766

		/* now write out any block on a failed drive,
2767
		 * or P or Q if they were recomputed
2768
		 */
2769
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2782
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2783 2784 2785 2786 2787
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2788
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2789 2790 2791 2792 2793 2794 2795 2796
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2872
	struct dma_async_tx_descriptor *tx = NULL;
2873 2874
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2875
		if (i != sh->pd_idx && i != sh->qd_idx) {
2876
			int dd_idx, j;
2877
			struct stripe_head *sh2;
2878
			struct async_submit_ctl submit;
2879

2880
			sector_t bn = compute_blocknr(sh, i, 1);
2881 2882
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2883
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2896 2897

			/* place all the copies on one channel */
2898
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2899
			tx = async_memcpy(sh2->dev[dd_idx].page,
2900
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2901
					  &submit);
2902

2903 2904 2905 2906
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2907
				    (!r6s || j != sh2->qd_idx) &&
2908 2909 2910 2911 2912 2913 2914
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2915

2916
		}
2917 2918 2919 2920 2921
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2922
}
L
Linus Torvalds 已提交
2923

2924

L
Linus Torvalds 已提交
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2941

2942
static void handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
2943 2944
{
	raid5_conf_t *conf = sh->raid_conf;
2945 2946 2947
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
2948
	struct r5dev *dev;
2949
	mdk_rdev_t *blocked_rdev = NULL;
2950
	int prexor;
2951
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
2952

2953
	memset(&s, 0, sizeof(s));
2954 2955 2956 2957
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
2958 2959 2960 2961 2962

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

2963 2964 2965
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
2966

2967
	/* Now to look around and see what can be done */
2968
	rcu_read_lock();
L
Linus Torvalds 已提交
2969 2970
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2971 2972

		dev = &sh->dev[i];
L
Linus Torvalds 已提交
2973 2974
		clear_bit(R5_Insync, &dev->flags);

2975 2976 2977 2978 2979 2980 2981
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
2982
		 * ops_complete_biofill is guaranteed to be inactive
2983 2984
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2985
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2986
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2987 2988

		/* now count some things */
2989 2990
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2991
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
2992

2993 2994 2995
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
2996
			s.to_read++;
L
Linus Torvalds 已提交
2997
		if (dev->towrite) {
2998
			s.to_write++;
L
Linus Torvalds 已提交
2999
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3000
				s.non_overwrite++;
L
Linus Torvalds 已提交
3001
		}
3002 3003
		if (dev->written)
			s.written++;
3004
		rdev = rcu_dereference(conf->disks[i].rdev);
3005 3006
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3007 3008 3009
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3010
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
3011
			/* The ReadError flag will just be confusing now */
3012 3013 3014
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
3015
		if (!rdev || !test_bit(In_sync, &rdev->flags)
3016
		    || test_bit(R5_ReadError, &dev->flags)) {
3017 3018
			s.failed++;
			s.failed_num = i;
L
Linus Torvalds 已提交
3019 3020 3021
		} else
			set_bit(R5_Insync, &dev->flags);
	}
3022
	rcu_read_unlock();
3023

3024
	if (unlikely(blocked_rdev)) {
3025 3026 3027 3028 3029 3030 3031 3032
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3033 3034
	}

3035 3036 3037 3038
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
3039

3040
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
3041
		" to_write=%d failed=%d failed_num=%d\n",
3042 3043
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
3044 3045 3046
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
3047
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3048
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3049
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
3050 3051
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3052
		s.syncing = 0;
L
Linus Torvalds 已提交
3053 3054 3055 3056 3057 3058
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
3059 3060 3061 3062 3063
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3064
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
3065 3066 3067 3068 3069

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3070
	if (s.to_read || s.non_overwrite ||
3071
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3072
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
3073

3074 3075 3076
	/* Now we check to see if any write operations have recently
	 * completed
	 */
3077
	prexor = 0;
3078
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3079
		prexor = 1;
3080 3081
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3082
		sh->reconstruct_state = reconstruct_state_idle;
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
3094 3095
				if (prexor)
					continue;
3096 3097 3098 3099 3100
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3101 3102
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3103 3104 3105 3106 3107 3108 3109 3110
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3111
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3112
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
3113 3114

	/* maybe we need to check and possibly fix the parity for this stripe
3115 3116 3117
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
3118
	 */
3119 3120
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
3121
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3122
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3123
		handle_parity_checks5(conf, sh, &s, disks);
3124

3125
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
3126 3127 3128
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
3129 3130 3131 3132

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
3133 3134 3135 3136
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3137
		) {
3138
		dev = &sh->dev[s.failed_num];
3139 3140 3141 3142
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3143
			s.locked++;
3144 3145 3146 3147
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3148
			s.locked++;
3149 3150 3151
		}
	}

3152 3153
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
3154
		struct stripe_head *sh2
3155
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3171
		sh->reconstruct_state = reconstruct_state_idle;
3172
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
3173
		for (i = conf->raid_disks; i--; ) {
3174
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
3175
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3176
			s.locked++;
D
Dan Williams 已提交
3177
		}
3178 3179 3180
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3181
	    !sh->reconstruct_state) {
3182 3183
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
3184
		stripe_set_idx(sh->sector, conf, 0, sh);
3185
		schedule_reconstruction(sh, &s, 1, 1);
3186
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3187
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3188
		atomic_dec(&conf->reshape_stripes);
3189 3190 3191 3192
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3193
	if (s.expanding && s.locked == 0 &&
3194
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3195
		handle_stripe_expansion(conf, sh, NULL);
3196

3197
 unlock:
L
Linus Torvalds 已提交
3198 3199
	spin_unlock(&sh->lock);

3200 3201 3202 3203
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3204
	if (s.ops_request)
3205
		raid_run_ops(sh, s.ops_request);
3206

3207
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
3208

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
		 * is waiting on a barrier, it won't continue until the writes
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}
3219
	return_io(return_bi);
L
Linus Torvalds 已提交
3220 3221
}

3222
static void handle_stripe6(struct stripe_head *sh)
L
Linus Torvalds 已提交
3223
{
3224
	raid5_conf_t *conf = sh->raid_conf;
3225
	int disks = sh->disks;
3226
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
3227
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3228 3229
	struct stripe_head_state s;
	struct r6_state r6s;
3230
	struct r5dev *dev, *pdev, *qdev;
3231
	mdk_rdev_t *blocked_rdev = NULL;
3232
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
3233

3234
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3235
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3236
	       (unsigned long long)sh->sector, sh->state,
3237 3238
	       atomic_read(&sh->count), pd_idx, qd_idx,
	       sh->check_state, sh->reconstruct_state);
3239
	memset(&s, 0, sizeof(s));
3240

3241 3242 3243 3244
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3245 3246 3247
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3248
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3249 3250

	rcu_read_lock();
3251 3252 3253 3254
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
		clear_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3255

3256
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3257
			i, dev->flags, dev->toread, dev->towrite, dev->written);
3258 3259 3260 3261 3262 3263 3264 3265
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3266

3267
		/* now count some things */
3268 3269
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3270 3271 3272 3273
		if (test_bit(R5_Wantcompute, &dev->flags)) {
			s.compute++;
			BUG_ON(s.compute > 2);
		}
L
Linus Torvalds 已提交
3274

3275 3276 3277
		if (test_bit(R5_Wantfill, &dev->flags)) {
			s.to_fill++;
		} else if (dev->toread)
3278
			s.to_read++;
3279
		if (dev->towrite) {
3280
			s.to_write++;
3281
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3282
				s.non_overwrite++;
3283
		}
3284 3285
		if (dev->written)
			s.written++;
3286
		rdev = rcu_dereference(conf->disks[i].rdev);
3287 3288
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3289 3290 3291
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3292 3293 3294 3295
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3296
		}
3297 3298
		if (!rdev || !test_bit(In_sync, &rdev->flags)
		    || test_bit(R5_ReadError, &dev->flags)) {
3299 3300 3301
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3302 3303
		} else
			set_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3304 3305
	}
	rcu_read_unlock();
3306 3307

	if (unlikely(blocked_rdev)) {
3308 3309 3310 3311 3312 3313 3314 3315
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3316
	}
3317

3318 3319 3320 3321 3322
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

3323
	pr_debug("locked=%d uptodate=%d to_read=%d"
3324
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3325 3326 3327 3328
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3329
	 */
3330
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3331
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3332
	if (s.failed > 2 && s.syncing) {
3333 3334
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3335
		s.syncing = 0;
3336 3337 3338 3339 3340 3341 3342
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3343 3344
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3345 3346 3347
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3348 3349 3350

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3351
			     && !test_bit(R5_LOCKED, &pdev->flags)
3352 3353
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3354
			     && !test_bit(R5_LOCKED, &qdev->flags)
3355
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3356
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3357 3358 3359 3360 3361

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3362
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3363
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3364
		handle_stripe_fill6(sh, &s, &r6s, disks);
3365

3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	if (sh->reconstruct_state == reconstruct_state_drain_result) {

		sh->reconstruct_state = reconstruct_state_idle;
		/* All the 'written' buffers and the parity blocks are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
			    (i == sh->pd_idx || i == qd_idx ||
			     dev->written)) {
				pr_debug("Writing block %d\n", i);
				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
				set_bit(R5_Wantwrite, &dev->flags);
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == qd_idx) &&
				      s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3391 3392
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3393 3394
	}

3395 3396 3397 3398 3399 3400 3401
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3402
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3403 3404

	/* maybe we need to check and possibly fix the parity for this stripe
3405
	 * Any reads will already have been scheduled, so we just see if enough
3406 3407
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
3408
	 */
3409 3410 3411 3412
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3413
		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3414

3415
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3416 3417 3418 3419 3420 3421 3422
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3423 3424 3425
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3426 3427 3428 3429 3430 3431 3432 3433
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3434
					s.locked++;
3435 3436 3437 3438
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3439
					s.locked++;
3440 3441 3442
				}
			}
		}
3443

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
3457
		struct stripe_head *sh2
3458
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3474 3475
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3476
		stripe_set_idx(sh->sector, conf, 0, sh);
3477 3478
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3479 3480 3481 3482 3483 3484
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3485
	if (s.expanding && s.locked == 0 &&
3486
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3487
		handle_stripe_expansion(conf, sh, &r6s);
3488

3489
 unlock:
3490 3491
	spin_unlock(&sh->lock);

3492 3493 3494 3495
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3496 3497 3498
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3499
	ops_run_io(sh, &s);
3500

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512

	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
		 * is waiting on a barrier, it won't continue until the writes
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

D
Dan Williams 已提交
3513
	return_io(return_bi);
3514 3515
}

3516
static void handle_stripe(struct stripe_head *sh)
3517 3518
{
	if (sh->raid_conf->level == 6)
3519
		handle_stripe6(sh);
3520
	else
3521
		handle_stripe5(sh);
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3535
			list_add_tail(&sh->lru, &conf->hold_list);
3536
		}
3537 3538
	} else
		blk_plug_device(conf->mddev->queue);
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
3557
	raid5_conf_t *conf = mddev->private;
3558
	int i;
3559
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
3560 3561

	rcu_read_lock();
3562
	for (i = 0; i < devs; i++) {
3563 3564
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3565
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3566 3567 3568 3569

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3570
			blk_unplug(r_queue);
3571 3572 3573 3574 3575 3576 3577 3578

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3579
static void raid5_unplug_device(struct request_queue *q)
3580 3581
{
	mddev_t *mddev = q->queuedata;
3582
	raid5_conf_t *conf = mddev->private;
3583 3584 3585 3586 3587 3588 3589
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	if (blk_remove_plug(q)) {
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3590
	}
L
Linus Torvalds 已提交
3591 3592 3593 3594 3595 3596 3597
	md_wakeup_thread(mddev->thread);

	spin_unlock_irqrestore(&conf->device_lock, flags);

	unplug_slaves(mddev);
}

3598 3599 3600
static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;
3601
	raid5_conf_t *conf = mddev->private;
3602 3603 3604 3605

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3606 3607 3608

	if (mddev_congested(mddev, bits))
		return 1;
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}

3619 3620 3621
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3622 3623 3624
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3625 3626
{
	mddev_t *mddev = q->queuedata;
3627
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3628
	int max;
3629
	unsigned int chunk_sectors = mddev->chunk_sectors;
3630
	unsigned int bio_sectors = bvm->bi_size >> 9;
3631

3632
	if ((bvm->bi_rw & 1) == WRITE)
3633 3634
		return biovec->bv_len; /* always allow writes to be mergeable */

3635 3636
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3637 3638 3639 3640 3641 3642 3643 3644
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3645 3646 3647 3648

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3649
	unsigned int chunk_sectors = mddev->chunk_sectors;
3650 3651
	unsigned int bio_sectors = bio->bi_size >> 9;

3652 3653
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3654 3655 3656 3657
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3687
		conf->retry_read_aligned_list = bi->bi_next;
3688
		bi->bi_next = NULL;
3689 3690 3691 3692
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3693 3694 3695 3696 3697 3698 3699
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3700 3701 3702 3703 3704 3705
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3706
static void raid5_align_endio(struct bio *bi, int error)
3707 3708
{
	struct bio* raid_bi  = bi->bi_private;
3709 3710 3711 3712 3713
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3714
	bio_put(bi);
3715 3716 3717

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3718 3719
	mddev = rdev->mddev;
	conf = mddev->private;
3720 3721 3722 3723

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3724
		bio_endio(raid_bi, 0);
3725 3726
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3727
		return;
3728 3729 3730
	}


3731
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3732 3733

	add_bio_to_retry(raid_bi, conf);
3734 3735
}

3736 3737
static int bio_fits_rdev(struct bio *bi)
{
3738
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3739

3740
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3741 3742
		return 0;
	blk_recount_segments(q, bi);
3743
	if (bi->bi_phys_segments > queue_max_segments(q))
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3756
static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3757 3758
{
	mddev_t *mddev = q->queuedata;
3759
	raid5_conf_t *conf = mddev->private;
N
NeilBrown 已提交
3760
	int dd_idx;
3761 3762 3763 3764
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3765
		pr_debug("chunk_aligned_read : non aligned\n");
3766 3767 3768
		return 0;
	}
	/*
3769
	 * use bio_clone to make a copy of the bio
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3783 3784
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3785
						    &dd_idx, NULL);
3786 3787 3788 3789 3790 3791

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3792 3793 3794 3795 3796
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3797 3798 3799 3800 3801 3802 3803
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3804 3805 3806 3807 3808 3809 3810
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3811 3812 3813 3814
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3815
		bio_put(align_bi);
3816 3817 3818 3819
		return 0;
	}
}

3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3872

3873
static int make_request(struct request_queue *q, struct bio * bi)
L
Linus Torvalds 已提交
3874 3875
{
	mddev_t *mddev = q->queuedata;
3876
	raid5_conf_t *conf = mddev->private;
3877
	int dd_idx;
L
Linus Torvalds 已提交
3878 3879 3880
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3881
	const int rw = bio_data_dir(bi);
T
Tejun Heo 已提交
3882
	int cpu, remaining;
L
Linus Torvalds 已提交
3883

3884
	if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3885 3886 3887 3888 3889 3890 3891
		/* Drain all pending writes.  We only really need
		 * to ensure they have been submitted, but this is
		 * easier.
		 */
		mddev->pers->quiesce(mddev, 1);
		mddev->pers->quiesce(mddev, 0);
		md_barrier_request(mddev, bi);
3892 3893 3894
		return 0;
	}

3895
	md_write_start(mddev, bi);
3896

T
Tejun Heo 已提交
3897 3898 3899 3900 3901
	cpu = part_stat_lock();
	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
		      bio_sectors(bi));
	part_stat_unlock();
L
Linus Torvalds 已提交
3902

3903
	if (rw == READ &&
3904 3905
	     mddev->reshape_position == MaxSector &&
	     chunk_aligned_read(q,bi))
3906
		return 0;
3907

L
Linus Torvalds 已提交
3908 3909 3910 3911
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3912

L
Linus Torvalds 已提交
3913 3914
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3915
		int disks, data_disks;
3916
		int previous;
3917

3918
	retry:
3919
		previous = 0;
3920
		disks = conf->raid_disks;
3921
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3922
		if (unlikely(conf->reshape_progress != MaxSector)) {
3923
			/* spinlock is needed as reshape_progress may be
3924 3925
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3926
			 * Ofcourse reshape_progress could change after
3927 3928 3929 3930
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3931
			spin_lock_irq(&conf->device_lock);
3932 3933 3934
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3935
				disks = conf->previous_raid_disks;
3936 3937
				previous = 1;
			} else {
3938 3939 3940
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3941 3942 3943 3944 3945
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3946 3947
			spin_unlock_irq(&conf->device_lock);
		}
3948 3949
		data_disks = disks - conf->max_degraded;

3950 3951
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3952
						  &dd_idx, NULL);
3953
		pr_debug("raid5: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3954 3955 3956
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3957
		sh = get_active_stripe(conf, new_sector, previous,
3958
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
3959
		if (sh) {
3960
			if (unlikely(previous)) {
3961
				/* expansion might have moved on while waiting for a
3962 3963 3964 3965 3966 3967
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3968 3969 3970
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3971 3972 3973
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
3974 3975 3976 3977 3978
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
3979
					schedule();
3980 3981 3982
					goto retry;
				}
			}
3983

3984 3985
			if (bio_data_dir(bi) == WRITE &&
			    logical_sector >= mddev->suspend_lo &&
3986 3987
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
3998 3999
				goto retry;
			}
4000 4001 4002 4003 4004

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4005 4006 4007 4008 4009 4010 4011 4012
				 * and wait a while
				 */
				raid5_unplug_device(mddev->queue);
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4013 4014
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
4015 4016 4017
			if (mddev->barrier && 
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
4028
	remaining = raid5_dec_bi_phys_segments(bi);
4029 4030
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
4031

4032
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4033
			md_write_end(mddev);
4034

4035
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4036
	}
4037 4038 4039 4040 4041 4042 4043 4044

	if (mddev->barrier) {
		/* We need to wait for the stripes to all be handled.
		 * So: wait for preread_active_stripes to drop to 0.
		 */
		wait_event(mddev->thread->wqueue,
			   atomic_read(&conf->preread_active_stripes) == 0);
	}
L
Linus Torvalds 已提交
4045 4046 4047
	return 0;
}

D
Dan Williams 已提交
4048 4049
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

4050
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4051
{
4052 4053 4054 4055 4056 4057 4058 4059 4060
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4061
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4062
	struct stripe_head *sh;
4063
	sector_t first_sector, last_sector;
4064 4065 4066
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4067 4068
	int i;
	int dd_idx;
4069
	sector_t writepos, readpos, safepos;
4070
	sector_t stripe_addr;
4071
	int reshape_sectors;
4072
	struct list_head stripes;
4073

4074 4075 4076 4077 4078 4079
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4080
		} else if (mddev->delta_disks >= 0 &&
4081 4082
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4083
		sector_div(sector_nr, new_data_disks);
4084
		if (sector_nr) {
4085 4086
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4087 4088 4089
			*skipped = 1;
			return sector_nr;
		}
4090 4091
	}

4092 4093 4094 4095
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4096 4097
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4098
	else
4099
		reshape_sectors = mddev->chunk_sectors;
4100

4101 4102 4103 4104 4105
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
4106 4107
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
4108
	 */
4109
	writepos = conf->reshape_progress;
4110
	sector_div(writepos, new_data_disks);
4111 4112
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4113
	safepos = conf->reshape_safe;
4114
	sector_div(safepos, data_disks);
4115
	if (mddev->delta_disks < 0) {
4116
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4117
		readpos += reshape_sectors;
4118
		safepos += reshape_sectors;
4119
	} else {
4120
		writepos += reshape_sectors;
4121 4122
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4123
	}
4124

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4142
	if ((mddev->delta_disks < 0
4143 4144 4145
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4146 4147 4148
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4149
		mddev->reshape_position = conf->reshape_progress;
4150
		mddev->curr_resync_completed = mddev->curr_resync;
4151
		conf->reshape_checkpoint = jiffies;
4152
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4153
		md_wakeup_thread(mddev->thread);
4154
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4155 4156
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4157
		conf->reshape_safe = mddev->reshape_position;
4158 4159
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4160
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4161 4162
	}

4163 4164 4165 4166
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4167 4168
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4169 4170
		       != sector_nr);
	} else {
4171
		BUG_ON(writepos != sector_nr + reshape_sectors);
4172 4173
		stripe_addr = sector_nr;
	}
4174
	INIT_LIST_HEAD(&stripes);
4175
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4176
		int j;
4177
		int skipped_disk = 0;
4178
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4179 4180 4181 4182 4183 4184 4185 4186 4187
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4188
			if (conf->level == 6 &&
4189
			    j == sh->qd_idx)
4190
				continue;
4191
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4192
			if (s < raid5_size(mddev, 0, 0)) {
4193
				skipped_disk = 1;
4194 4195 4196 4197 4198 4199
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4200
		if (!skipped_disk) {
4201 4202 4203
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4204
		list_add(&sh->lru, &stripes);
4205 4206
	}
	spin_lock_irq(&conf->device_lock);
4207
	if (mddev->delta_disks < 0)
4208
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4209
	else
4210
		conf->reshape_progress += reshape_sectors * new_data_disks;
4211 4212 4213 4214 4215 4216 4217
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4218
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4219
				     1, &dd_idx, NULL);
4220
	last_sector =
4221
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4222
					    * new_data_disks - 1),
4223
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4224 4225
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4226
	while (first_sector <= last_sector) {
4227
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4228 4229 4230 4231 4232
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4233 4234 4235 4236 4237 4238 4239 4240
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4241 4242 4243
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4244
	sector_nr += reshape_sectors;
4245 4246
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4247 4248 4249
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4250
		mddev->reshape_position = conf->reshape_progress;
4251
		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4252
		conf->reshape_checkpoint = jiffies;
4253 4254 4255 4256 4257 4258
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4259
		conf->reshape_safe = mddev->reshape_position;
4260 4261
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4262
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4263
	}
4264
	return reshape_sectors;
4265 4266 4267 4268 4269
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
4270
	raid5_conf_t *conf = mddev->private;
4271
	struct stripe_head *sh;
A
Andre Noll 已提交
4272
	sector_t max_sector = mddev->dev_sectors;
4273
	int sync_blocks;
4274 4275
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4276

4277
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4278 4279
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
4280

4281 4282 4283 4284
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4285 4286 4287 4288

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4289
		else /* completed sync */
4290 4291 4292
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4293 4294
		return 0;
	}
4295

4296 4297 4298
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4299 4300
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4301

4302 4303 4304 4305 4306 4307
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4308
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4309 4310 4311
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4312
	if (mddev->degraded >= conf->max_degraded &&
4313
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4314
		sector_t rv = mddev->dev_sectors - sector_nr;
4315
		*skipped = 1;
L
Linus Torvalds 已提交
4316 4317
		return rv;
	}
4318
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4319
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4320 4321 4322 4323 4324 4325
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4326

N
NeilBrown 已提交
4327 4328 4329

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4330
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4331
	if (sh == NULL) {
4332
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4333
		/* make sure we don't swamp the stripe cache if someone else
4334
		 * is trying to get access
L
Linus Torvalds 已提交
4335
		 */
4336
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4337
	}
4338 4339 4340 4341
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4342
	for (i = 0; i < conf->raid_disks; i++)
4343 4344 4345 4346 4347 4348
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
4349 4350 4351 4352
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

4353
	handle_stripe(sh);
L
Linus Torvalds 已提交
4354 4355 4356 4357 4358
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4372
	int dd_idx;
4373 4374 4375 4376 4377 4378
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4379
	sector = raid5_compute_sector(conf, logical_sector,
4380
				      0, &dd_idx, NULL);
4381 4382 4383
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4384 4385 4386
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4387

4388
		if (scnt < raid5_bi_hw_segments(raid_bio))
4389 4390 4391
			/* already done this stripe */
			continue;

4392
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4393 4394 4395

		if (!sh) {
			/* failed to get a stripe - must wait */
4396
			raid5_set_bi_hw_segments(raid_bio, scnt);
4397 4398 4399 4400 4401
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4402 4403
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4404
			raid5_set_bi_hw_segments(raid_bio, scnt);
4405 4406 4407 4408
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4409
		handle_stripe(sh);
4410 4411 4412 4413
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4414
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4415
	spin_unlock_irq(&conf->device_lock);
4416 4417
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4418 4419 4420 4421 4422 4423
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4424 4425 4426 4427 4428 4429 4430
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4431
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4432 4433
{
	struct stripe_head *sh;
4434
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4435 4436
	int handled;

4437
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4438 4439 4440 4441 4442 4443

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4444
		struct bio *bio;
L
Linus Torvalds 已提交
4445

4446
		if (conf->seq_flush != conf->seq_write) {
4447
			int seq = conf->seq_flush;
4448
			spin_unlock_irq(&conf->device_lock);
4449
			bitmap_unplug(mddev->bitmap);
4450
			spin_lock_irq(&conf->device_lock);
4451 4452 4453 4454
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4465 4466
		sh = __get_priority_stripe(conf);

4467
		if (!sh)
L
Linus Torvalds 已提交
4468 4469 4470 4471
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4472 4473 4474
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4475 4476 4477

		spin_lock_irq(&conf->device_lock);
	}
4478
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4479 4480 4481

	spin_unlock_irq(&conf->device_lock);

4482
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4483 4484
	unplug_slaves(mddev);

4485
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4486 4487
}

4488
static ssize_t
4489
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4490
{
4491
	raid5_conf_t *conf = mddev->private;
4492 4493 4494 4495
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4496 4497 4498
}

static ssize_t
4499
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4500
{
4501
	raid5_conf_t *conf = mddev->private;
4502
	unsigned long new;
4503 4504
	int err;

4505 4506
	if (len >= PAGE_SIZE)
		return -EINVAL;
4507 4508
	if (!conf)
		return -ENODEV;
4509

4510
	if (strict_strtoul(page, 10, &new))
4511 4512 4513 4514 4515 4516 4517 4518 4519
		return -EINVAL;
	if (new <= 16 || new > 32768)
		return -EINVAL;
	while (new < conf->max_nr_stripes) {
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4520 4521 4522
	err = md_allow_write(mddev);
	if (err)
		return err;
4523 4524 4525 4526 4527 4528 4529
	while (new > conf->max_nr_stripes) {
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
	return len;
}
4530

4531 4532 4533 4534
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4535

4536 4537 4538
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4539
	raid5_conf_t *conf = mddev->private;
4540 4541 4542 4543 4544 4545 4546 4547 4548
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4549
	raid5_conf_t *conf = mddev->private;
4550
	unsigned long new;
4551 4552 4553 4554 4555
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4556
	if (strict_strtoul(page, 10, &new))
4557
		return -EINVAL;
4558
	if (new > conf->max_nr_stripes)
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4570
static ssize_t
4571
stripe_cache_active_show(mddev_t *mddev, char *page)
4572
{
4573
	raid5_conf_t *conf = mddev->private;
4574 4575 4576 4577
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4578 4579
}

4580 4581
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4582

4583
static struct attribute *raid5_attrs[] =  {
4584 4585
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4586
	&raid5_preread_bypass_threshold.attr,
4587 4588
	NULL,
};
4589 4590 4591
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4592 4593
};

4594 4595 4596
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4597
	raid5_conf_t *conf = mddev->private;
4598 4599 4600

	if (!sectors)
		sectors = mddev->dev_sectors;
4601
	if (!raid_disks)
4602
		/* size is defined by the smallest of previous and new size */
4603
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4604

4605
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4606
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4607 4608 4609
	return sectors * (raid_disks - conf->max_degraded);
}

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4622
		kfree(percpu->scribble);
4623 4624 4625 4626 4627 4628 4629 4630 4631
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4632 4633 4634
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4635
	raid5_free_percpu(conf);
4636 4637 4638 4639 4640
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4652
		if (conf->level == 6 && !percpu->spare_page)
4653
			percpu->spare_page = alloc_page(GFP_KERNEL);
4654 4655 4656 4657 4658 4659 4660
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4661 4662 4663 4664 4665 4666 4667 4668
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
			return NOTIFY_BAD;
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4669
		kfree(percpu->scribble);
4670
		percpu->spare_page = NULL;
4671
		percpu->scribble = NULL;
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
4684
	struct raid5_percpu __percpu *allcpus;
4685
	void *scribble;
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4696 4697 4698 4699 4700 4701 4702 4703
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4704
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4705
		if (!scribble) {
4706 4707 4708
			err = -ENOMEM;
			break;
		}
4709
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4722
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4723 4724
{
	raid5_conf_t *conf;
4725
	int raid_disk, memory, max_disks;
L
Linus Torvalds 已提交
4726 4727 4728
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4729 4730 4731
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4732
		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4733 4734
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4735
	}
N
NeilBrown 已提交
4736 4737 4738 4739
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4740
		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
N
NeilBrown 已提交
4741 4742
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4743
	}
N
NeilBrown 已提交
4744 4745 4746 4747
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4748 4749
	}

4750 4751 4752
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
N
NeilBrown 已提交
4753
		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4754
		       mddev->new_chunk_sectors << 9, mdname(mddev));
N
NeilBrown 已提交
4755
		return ERR_PTR(-EINVAL);
4756 4757
	}

N
NeilBrown 已提交
4758 4759
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4760
		goto abort;
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
N
NeilBrown 已提交
4773 4774 4775 4776 4777

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4778
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4779 4780
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4781

4782
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4783 4784 4785
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4786

L
Linus Torvalds 已提交
4787 4788
	conf->mddev = mddev;

4789
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4790 4791
		goto abort;

4792 4793 4794 4795
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4796
	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4797

4798
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4799
		raid_disk = rdev->raid_disk;
4800
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4801 4802 4803 4804 4805 4806
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4807
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4808 4809 4810 4811
			char b[BDEVNAME_SIZE];
			printk(KERN_INFO "raid5: device %s operational as raid"
				" disk %d\n", bdevname(rdev->bdev,b),
				raid_disk);
4812 4813 4814
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4815 4816
	}

4817
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4818
	conf->level = mddev->new_level;
4819 4820 4821 4822
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4823
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4824
	conf->max_nr_stripes = NR_STRIPES;
4825
	conf->reshape_progress = mddev->reshape_position;
4826
	if (conf->reshape_progress != MaxSector) {
4827
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4828 4829
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4830

N
NeilBrown 已提交
4831
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4832
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4833 4834 4835 4836 4837 4838 4839
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
			"raid5: couldn't allocate %dkB for buffers\n", memory);
		goto abort;
	} else
		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
			memory, mdname(mddev));
L
Linus Torvalds 已提交
4840

4841
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4842 4843 4844 4845
	if (!conf->thread) {
		printk(KERN_ERR
		       "raid5: couldn't allocate thread for %s\n",
		       mdname(mddev));
4846 4847
		goto abort;
	}
N
NeilBrown 已提交
4848 4849 4850 4851 4852

	return conf;

 abort:
	if (conf) {
4853
		free_conf(conf);
N
NeilBrown 已提交
4854 4855 4856 4857 4858
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

N
NeilBrown 已提交
4886 4887 4888
static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4889
	int working_disks = 0, chunk_size;
4890
	int dirty_parity_disks = 0;
N
NeilBrown 已提交
4891
	mdk_rdev_t *rdev;
4892
	sector_t reshape_offset = 0;
N
NeilBrown 已提交
4893

4894 4895 4896 4897
	if (mddev->recovery_cp != MaxSector)
		printk(KERN_NOTICE "raid5: %s is not clean"
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4898 4899 4900 4901 4902 4903 4904 4905
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4906
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4907

4908
		if (mddev->new_level != mddev->level) {
N
NeilBrown 已提交
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
			printk(KERN_ERR "raid5: %s: unsupported reshape "
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4920
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4921 4922 4923 4924 4925
			       (mddev->raid_disks - max_degraded))) {
			printk(KERN_ERR "raid5: reshape_position not "
			       "on a stripe boundary\n");
			return -EINVAL;
		}
4926
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
4927 4928
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4929
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4930 4931 4932
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
				printk(KERN_ERR "raid5: in-place reshape must be started"
				       " in read-only mode - aborting\n");
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
			/* Reading from the same stripe as writing to - bad */
			printk(KERN_ERR "raid5: reshape_position too early for "
			       "auto-recovery - aborting.\n");
			return -EINVAL;
		}
		printk(KERN_INFO "raid5: reshape will continue\n");
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
4963
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
4964
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4965
	}
N
NeilBrown 已提交
4966

4967 4968 4969 4970 4971
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
4982 4983 4984 4985
	list_for_each_entry(rdev, &mddev->disks, same_set) {
		if (rdev->raid_disk < 0)
			continue;
		if (test_bit(In_sync, &rdev->flags))
N
NeilBrown 已提交
4986
			working_disks++;
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		printk("%d: w=%d pa=%d pr=%d m=%d a=%d r=%d op1=%d op2=%d\n",
		       rdev->raid_disk, working_disks, conf->prev_algo,
		       conf->previous_raid_disks, conf->max_degraded,
		       conf->algorithm, conf->raid_disks, 
		       only_parity(rdev->raid_disk,
				   conf->prev_algo,
				   conf->previous_raid_disks,
				   conf->max_degraded),
		       only_parity(rdev->raid_disk,
				   conf->algorithm,
				   conf->raid_disks,
				   conf->max_degraded));
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5027

5028 5029
	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
			   - working_disks);
N
NeilBrown 已提交
5030

5031
	if (mddev->degraded > conf->max_degraded) {
L
Linus Torvalds 已提交
5032 5033
		printk(KERN_ERR "raid5: not enough operational devices for %s"
			" (%d/%d failed)\n",
5034
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5035 5036 5037
		goto abort;
	}

N
NeilBrown 已提交
5038
	/* device size must be a multiple of chunk size */
5039
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5040 5041
	mddev->resync_max_sectors = mddev->dev_sectors;

5042
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5043
	    mddev->recovery_cp != MaxSector) {
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
			       "raid5: starting dirty degraded array: %s"
			       "- data corruption possible.\n",
			       mdname(mddev));
		else {
			printk(KERN_ERR
			       "raid5: cannot start dirty degraded array for %s\n",
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5055 5056 5057 5058
	}

	if (mddev->degraded == 0)
		printk("raid5: raid level %d set %s active with %d out of %d"
5059 5060 5061
		       " devices, algorithm %d\n", conf->level, mdname(mddev),
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5062 5063 5064 5065
	else
		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
			" out of %d devices, algorithm %d\n", conf->level,
			mdname(mddev), mddev->raid_disks - mddev->degraded,
5066
			mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5067 5068 5069

	print_raid5_conf(conf);

5070
	if (conf->reshape_progress != MaxSector) {
5071
		printk("...ok start reshape thread\n");
5072
		conf->reshape_safe = conf->reshape_progress;
5073 5074 5075 5076 5077 5078
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5079
							"reshape");
5080 5081
	}

L
Linus Torvalds 已提交
5082
	/* read-ahead size must cover two whole stripes, which is
5083
	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
L
Linus Torvalds 已提交
5084 5085
	 */
	{
5086 5087
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
5088
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
L
Linus Torvalds 已提交
5089 5090 5091 5092 5093
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
	}

	/* Ok, everything is just fine now */
5094 5095 5096
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
	else if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5097 5098 5099
		printk(KERN_WARNING
		       "raid5: failed to create sysfs attributes for %s\n",
		       mdname(mddev));
5100

N
NeilBrown 已提交
5101 5102
	mddev->queue->queue_lock = &conf->device_lock;

5103
	mddev->queue->unplug_fn = raid5_unplug_device;
5104
	mddev->queue->backing_dev_info.congested_data = mddev;
5105
	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5106

5107
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5108

5109
	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5110 5111 5112 5113 5114 5115 5116 5117
	chunk_size = mddev->chunk_sectors << 9;
	blk_queue_io_min(mddev->queue, chunk_size);
	blk_queue_io_opt(mddev->queue, chunk_size *
			 (conf->raid_disks - conf->max_degraded));

	list_for_each_entry(rdev, &mddev->disks, same_set)
		disk_stack_limits(mddev->gendisk, rdev->bdev,
				  rdev->data_offset << 9);
5118

L
Linus Torvalds 已提交
5119 5120
	return 0;
abort:
5121
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
5122
	mddev->thread = NULL;
L
Linus Torvalds 已提交
5123 5124
	if (conf) {
		print_raid5_conf(conf);
5125
		free_conf(conf);
L
Linus Torvalds 已提交
5126 5127 5128 5129 5130 5131 5132 5133
	}
	mddev->private = NULL;
	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
	return -EIO;
}



5134
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
5135
{
5136
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5137 5138 5139

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
5140
	mddev->queue->backing_dev_info.congested_fn = NULL;
L
Linus Torvalds 已提交
5141
	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5142
	free_conf(conf);
5143 5144
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5145 5146 5147
	return 0;
}

5148
#ifdef DEBUG
5149
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
5150 5151 5152
{
	int i;

5153 5154 5155 5156 5157
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5158
	for (i = 0; i < sh->disks; i++) {
5159 5160
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
5161
	}
5162
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
5163 5164
}

5165
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
5166 5167
{
	struct stripe_head *sh;
5168
	struct hlist_node *hn;
L
Linus Torvalds 已提交
5169 5170 5171 5172
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
5173
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
5174 5175
			if (sh->raid_conf != conf)
				continue;
5176
			print_sh(seq, sh);
L
Linus Torvalds 已提交
5177 5178 5179 5180 5181 5182
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

5183
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
5184
{
5185
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5186 5187
	int i;

5188 5189
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5190
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5191 5192 5193
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5194
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5195
	seq_printf (seq, "]");
5196
#ifdef DEBUG
5197 5198
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

	printk("RAID5 conf printout:\n");
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5212 5213
	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
		 conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5214 5215 5216 5217 5218 5219

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
		printk(" disk %d, o:%d, dev:%s\n",
5220
			i, !test_bit(Faulty, &tmp->rdev->flags),
L
Linus Torvalds 已提交
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
			bdevname(tmp->rdev->bdev,b));
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
5234
		    && !test_bit(Faulty, &tmp->rdev->flags)
5235 5236 5237
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5238
			mddev->degraded--;
5239
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
		}
	}
	print_raid5_conf(conf);
	return 0;
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
5256 5257 5258 5259
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

5260
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
5261 5262 5263 5264
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
5265 5266 5267 5268
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
5269 5270
		    mddev->degraded <= conf->max_degraded &&
		    number < conf->raid_disks) {
5271 5272 5273
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
5274
		p->rdev = NULL;
5275
		synchronize_rcu();
L
Linus Torvalds 已提交
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
5291
	int err = -EEXIST;
L
Linus Torvalds 已提交
5292 5293
	int disk;
	struct disk_info *p;
5294 5295
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5296

5297
	if (mddev->degraded > conf->max_degraded)
L
Linus Torvalds 已提交
5298
		/* no point adding a device */
5299
		return -EINVAL;
L
Linus Torvalds 已提交
5300

5301 5302
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5303 5304

	/*
5305 5306
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5307
	 */
5308
	if (rdev->saved_raid_disk >= 0 &&
5309
	    rdev->saved_raid_disk >= first &&
5310 5311 5312
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5313 5314
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5315
		if ((p=conf->disks + disk)->rdev == NULL) {
5316
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5317
			rdev->raid_disk = disk;
5318
			err = 0;
5319 5320
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5321
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5322 5323 5324
			break;
		}
	print_raid5_conf(conf);
5325
	return err;
L
Linus Torvalds 已提交
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5337
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5338 5339
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5340 5341 5342
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5343
	set_capacity(mddev->gendisk, mddev->array_sectors);
5344
	mddev->changed = 1;
5345
	revalidate_disk(mddev->gendisk);
A
Andre Noll 已提交
5346 5347
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5348 5349
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5350
	mddev->dev_sectors = sectors;
5351
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5352 5353 5354
	return 0;
}

5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5378
static int check_reshape(mddev_t *mddev)
5379
{
5380
	raid5_conf_t *conf = mddev->private;
5381

5382 5383
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5384
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5385
		return 0; /* nothing to do */
5386 5387 5388
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
	if (mddev->degraded > conf->max_degraded)
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5403

5404
	if (!check_stripe_cache(mddev))
5405 5406
		return -ENOSPC;

5407
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5408 5409 5410 5411
}

static int raid5_start_reshape(mddev_t *mddev)
{
5412
	raid5_conf_t *conf = mddev->private;
5413 5414 5415
	mdk_rdev_t *rdev;
	int spares = 0;
	int added_devices = 0;
5416
	unsigned long flags;
5417

5418
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5419 5420
		return -EBUSY;

5421 5422 5423
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5424
	list_for_each_entry(rdev, &mddev->disks, same_set)
5425 5426 5427
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
5428

5429
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5430 5431 5432 5433 5434
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
		printk(KERN_ERR "md: %s: array size must be reduced "
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5446
	atomic_set(&conf->reshape_stripes, 0);
5447 5448
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5449
	conf->raid_disks += mddev->delta_disks;
5450 5451
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5452 5453
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5454 5455 5456 5457 5458
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5459
	conf->generation++;
5460 5461 5462 5463 5464
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
	 */
5465
	list_for_each_entry(rdev, &mddev->disks, same_set)
5466 5467
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
5468
			if (raid5_add_disk(mddev, rdev) == 0) {
5469
				char nm[20];
5470
				if (rdev->raid_disk >= conf->previous_raid_disks) {
5471
					set_bit(In_sync, &rdev->flags);
5472 5473
					added_devices++;
				} else
5474
					rdev->recovery_offset = 0;
5475
				sprintf(nm, "rd%d", rdev->raid_disk);
5476 5477 5478 5479 5480 5481
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
					printk(KERN_WARNING
					       "raid5: failed to create "
					       " link %s for %s\n",
					       nm, mdname(mddev));
5482 5483 5484 5485
			} else
				break;
		}

5486 5487 5488
	/* When a reshape changes the number of devices, ->degraded
	 * is measured against the large of the pre and post number of
	 * devices.*/
5489 5490
	if (mddev->delta_disks > 0) {
		spin_lock_irqsave(&conf->device_lock, flags);
5491
		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5492 5493 5494
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5495
	mddev->raid_disks = conf->raid_disks;
5496
	mddev->reshape_position = conf->reshape_progress;
5497
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5498

5499 5500 5501 5502 5503
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5504
						"reshape");
5505 5506 5507 5508
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5509
		conf->reshape_progress = MaxSector;
5510 5511 5512
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5513
	conf->reshape_checkpoint = jiffies;
5514 5515 5516 5517 5518
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5519 5520 5521
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5522 5523 5524
static void end_reshape(raid5_conf_t *conf)
{

5525 5526 5527
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5528
		conf->previous_raid_disks = conf->raid_disks;
5529
		conf->reshape_progress = MaxSector;
5530
		spin_unlock_irq(&conf->device_lock);
5531
		wake_up(&conf->wait_for_overlap);
5532 5533 5534 5535 5536

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
		{
5537
			int data_disks = conf->raid_disks - conf->max_degraded;
5538
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5539
						   / PAGE_SIZE);
5540 5541 5542
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5543 5544 5545
	}
}

5546 5547 5548
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5549 5550
static void raid5_finish_reshape(mddev_t *mddev)
{
5551
	raid5_conf_t *conf = mddev->private;
5552 5553 5554

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5555 5556 5557 5558
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
			mddev->changed = 1;
5559
			revalidate_disk(mddev->gendisk);
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5570 5571 5572 5573 5574 5575 5576 5577 5578
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
					char nm[20];
					sprintf(nm, "rd%d", rdev->raid_disk);
					sysfs_remove_link(&mddev->kobj, nm);
					rdev->raid_disk = -1;
				}
			}
5579
		}
5580
		mddev->layout = conf->algorithm;
5581
		mddev->chunk_sectors = conf->chunk_sectors;
5582 5583
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5584 5585 5586
	}
}

5587 5588
static void raid5_quiesce(mddev_t *mddev, int state)
{
5589
	raid5_conf_t *conf = mddev->private;
5590 5591

	switch(state) {
5592 5593 5594 5595
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5596 5597
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5598 5599 5600 5601
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5602
		wait_event_lock_irq(conf->wait_for_stripe,
5603 5604
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5605
				    conf->device_lock, /* nothing */);
5606
		conf->quiesce = 1;
5607
		spin_unlock_irq(&conf->device_lock);
5608 5609
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5610 5611 5612 5613 5614 5615
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5616
		wake_up(&conf->wait_for_overlap);
5617 5618 5619 5620
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5621

5622

5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
static void *raid5_takeover_raid0(mddev_t *mddev)
{

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5660
	mddev->new_chunk_sectors = chunksect;
5661 5662 5663 5664

	return setup_conf(mddev);
}

5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5698

5699
static int raid5_check_reshape(mddev_t *mddev)
5700
{
5701 5702 5703 5704
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5705
	 */
5706
	raid5_conf_t *conf = mddev->private;
5707
	int new_chunk = mddev->new_chunk_sectors;
5708

5709
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5710 5711
		return -EINVAL;
	if (new_chunk > 0) {
5712
		if (!is_power_of_2(new_chunk))
5713
			return -EINVAL;
5714
		if (new_chunk < (PAGE_SIZE>>9))
5715
			return -EINVAL;
5716
		if (mddev->array_sectors & (new_chunk-1))
5717 5718 5719 5720 5721 5722
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5723
	if (mddev->raid_disks == 2) {
5724 5725 5726 5727
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5728 5729
		}
		if (new_chunk > 0) {
5730 5731
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5732 5733 5734
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5735
	}
5736
	return check_reshape(mddev);
5737 5738
}

5739
static int raid6_check_reshape(mddev_t *mddev)
5740
{
5741
	int new_chunk = mddev->new_chunk_sectors;
5742

5743
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5744
		return -EINVAL;
5745
	if (new_chunk > 0) {
5746
		if (!is_power_of_2(new_chunk))
5747
			return -EINVAL;
5748
		if (new_chunk < (PAGE_SIZE >> 9))
5749
			return -EINVAL;
5750
		if (mddev->array_sectors & (new_chunk-1))
5751 5752
			/* not factor of array size */
			return -EINVAL;
5753
	}
5754 5755

	/* They look valid */
5756
	return check_reshape(mddev);
5757 5758
}

5759 5760 5761 5762 5763 5764 5765 5766
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
	 *  raid0 - if all devices are the same - make it a raid4 layout
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
	if (mddev->level == 0) {
		/* for raid0 takeover only one zone is supported */
		struct raid0_private_data *raid0_priv
			= mddev->private;
		if (raid0_priv->nr_strip_zones > 1) {
			printk(KERN_ERR "md: cannot takeover raid 0 with more than one zone.\n");
			return ERR_PTR(-EINVAL);
		}
		return raid5_takeover_raid0(mddev);
	}
5777 5778 5779

	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5780 5781 5782 5783 5784
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5785 5786
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5787 5788 5789 5790

	return ERR_PTR(-EINVAL);
}

5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
static void *raid4_takeover(mddev_t *mddev)
{
	/* raid4 can take over raid5 if layout is right.
	 */
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5803

5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5868
	.size		= raid5_size,
5869
	.check_reshape	= raid6_check_reshape,
5870
	.start_reshape  = raid5_start_reshape,
5871
	.finish_reshape = raid5_finish_reshape,
5872
	.quiesce	= raid5_quiesce,
5873
	.takeover	= raid6_takeover,
5874
};
5875
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5876 5877
{
	.name		= "raid5",
5878
	.level		= 5,
L
Linus Torvalds 已提交
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5890
	.size		= raid5_size,
5891 5892
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5893
	.finish_reshape = raid5_finish_reshape,
5894
	.quiesce	= raid5_quiesce,
5895
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5896 5897
};

5898
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5899
{
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5913
	.size		= raid5_size,
5914 5915
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5916
	.finish_reshape = raid5_finish_reshape,
5917
	.quiesce	= raid5_quiesce,
5918
	.takeover	= raid4_takeover,
5919 5920 5921 5922
};

static int __init raid5_init(void)
{
5923
	register_md_personality(&raid6_personality);
5924 5925 5926
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5927 5928
}

5929
static void raid5_exit(void)
L
Linus Torvalds 已提交
5930
{
5931
	unregister_md_personality(&raid6_personality);
5932 5933
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5934 5935 5936 5937 5938
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
5939
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
5940
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5941 5942
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5943 5944
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5945 5946 5947 5948 5949 5950 5951
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");