raid5.c 146.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/seq_file.h>
51
#include "md.h"
52
#include "raid5.h"
53
#include "bitmap.h"
54

L
Linus Torvalds 已提交
55 56 57 58 59 60 61 62 63
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
64
#define BYPASS_THRESHOLD	1
65
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
66 67
#define HASH_MASK		(NR_HASH - 1)

68
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

90
#ifdef DEBUG
L
Linus Torvalds 已提交
91 92 93 94
#define inline
#define __inline__
#endif

95 96
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

97
/*
98 99
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
100 101 102
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
103
	return bio->bi_phys_segments & 0xffff;
104 105 106 107
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
108
	return (bio->bi_phys_segments >> 16) & 0xffff;
109 110 111 112 113 114 115 116 117 118 119 120 121
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
122
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
123 124 125 126 127
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
128
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
129 130
}

131 132 133
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
134 135 136 137
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
138 139 140 141 142
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
143 144 145 146 147
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
148

149 150 151 152 153
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
154 155
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
156 157
{
	int slot;
158

159
	if (idx == sh->pd_idx)
160
		return syndrome_disks;
161
	if (idx == sh->qd_idx)
162
		return syndrome_disks + 1;
163 164 165 166
	slot = (*count)++;
	return slot;
}

167 168 169 170 171 172 173 174
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
175
		bio_endio(bi, 0);
176 177 178 179
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
180 181
static void print_raid5_conf (raid5_conf_t *conf);

182 183 184 185 186 187 188
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

189
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
190 191
{
	if (atomic_dec_and_test(&sh->count)) {
192 193
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
194
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
195
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
196
				list_add_tail(&sh->lru, &conf->delayed_list);
197 198
				blk_plug_device(conf->mddev->queue);
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
199
				   sh->bm_seq - conf->seq_write > 0) {
200
				list_add_tail(&sh->lru, &conf->bitmap_list);
201 202
				blk_plug_device(conf->mddev->queue);
			} else {
203
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
204
				list_add_tail(&sh->lru, &conf->handle_list);
205
			}
L
Linus Torvalds 已提交
206 207
			md_wakeup_thread(conf->mddev->thread);
		} else {
208
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
209 210 211 212 213 214
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
215 216
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
217
				wake_up(&conf->wait_for_stripe);
218 219
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
220
			}
L
Linus Torvalds 已提交
221 222 223
		}
	}
}
224

L
Linus Torvalds 已提交
225 226 227 228
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
229

L
Linus Torvalds 已提交
230 231 232 233 234
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

235
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
236
{
237 238
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
239

240
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
241 242
}

243
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
244
{
245
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
246

247 248
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
249 250

	CHECK_DEVLOCK();
251
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

static void shrink_buffers(struct stripe_head *sh, int num)
{
	struct page *p;
	int i;

	for (i=0; i<num ; i++) {
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
283
		put_page(p);
L
Linus Torvalds 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	}
}

static int grow_buffers(struct stripe_head *sh, int num)
{
	int i;

	for (i=0; i<num; i++) {
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

302
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
303 304
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
305

306
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
307 308
{
	raid5_conf_t *conf = sh->raid_conf;
309
	int i;
L
Linus Torvalds 已提交
310

311 312
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
313
	BUG_ON(stripe_operations_active(sh));
314

L
Linus Torvalds 已提交
315
	CHECK_DEVLOCK();
316
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
317 318 319
		(unsigned long long)sh->sector);

	remove_hash(sh);
320

321
	sh->generation = conf->generation - previous;
322
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
323
	sh->sector = sector;
324
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
325 326
	sh->state = 0;

327 328

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
329 330
		struct r5dev *dev = &sh->dev[i];

331
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
332
		    test_bit(R5_LOCKED, &dev->flags)) {
333
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
334
			       (unsigned long long)sh->sector, i, dev->toread,
335
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
336 337 338 339
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
340
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
341 342 343 344
	}
	insert_hash(conf, sh);
}

345 346
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
347 348
{
	struct stripe_head *sh;
349
	struct hlist_node *hn;
L
Linus Torvalds 已提交
350 351

	CHECK_DEVLOCK();
352
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
355
			return sh;
356
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
357 358 359 360
	return NULL;
}

static void unplug_slaves(mddev_t *mddev);
361
static void raid5_unplug_device(struct request_queue *q);
L
Linus Torvalds 已提交
362

363 364 365
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
		  int previous, int noblock)
L
Linus Torvalds 已提交
366 367 368
{
	struct stripe_head *sh;

369
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
370 371 372 373

	spin_lock_irq(&conf->device_lock);

	do {
374 375 376
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
377
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
378 379 380 381 382 383 384 385 386
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
387 388
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
389 390
						     || !conf->inactive_blocked),
						    conf->device_lock,
391
						    raid5_unplug_device(conf->mddev->queue)
L
Linus Torvalds 已提交
392 393 394
					);
				conf->inactive_blocked = 0;
			} else
395
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
396 397
		} else {
			if (atomic_read(&sh->count)) {
398
			  BUG_ON(!list_empty(&sh->lru));
L
Linus Torvalds 已提交
399 400 401
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
402 403
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
404 405
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
406 407 408 409 410 411 412 413 414 415 416
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

417 418 419 420
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
421

422
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
			rw = WRITE;
		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
457
			if (s->syncing || s->expanding || s->expanded)
458 459
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
460 461
			set_bit(STRIPE_IO_STARTED, &sh->state);

462 463
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
464
				__func__, (unsigned long long)sh->sector,
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
					b_offset, clen,
528
					ASYNC_TX_DEP_ACK,
529 530 531 532
					tx, NULL, NULL);
			else
				tx = async_memcpy(bio_page, page, b_offset,
					page_offset, clen,
533
					ASYNC_TX_DEP_ACK,
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
					tx, NULL, NULL);
		}
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
549
	int i;
550

551
	pr_debug("%s: stripe %llu\n", __func__,
552 553 554
		(unsigned long long)sh->sector);

	/* clear completed biofills */
555
	spin_lock_irq(&conf->device_lock);
556 557 558 559
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
560 561
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
562
		 * !STRIPE_BIOFILL_RUN
563 564
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
565 566 567 568 569 570 571 572
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
573
				if (!raid5_dec_bi_phys_segments(rbi)) {
574 575 576 577 578 579 580
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
581 582
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
583 584 585

	return_io(return_bi);

586
	set_bit(STRIPE_HANDLE, &sh->state);
587 588 589 590 591 592 593 594 595
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
	int i;

596
	pr_debug("%s: stripe %llu\n", __func__,
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
		ops_complete_biofill, sh);
}

static void ops_complete_compute5(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];

627
	pr_debug("%s: stripe %llu\n", __func__,
628 629 630 631 632
		(unsigned long long)sh->sector);

	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
633 634 635
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
636 637 638 639
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

640
static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
641 642 643 644 645 646 647 648 649 650 651 652
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
653
		__func__, (unsigned long long)sh->sector, target);
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
			0, NULL, ops_complete_compute5, sh);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
			ASYNC_TX_XOR_ZERO_DST, NULL,
			ops_complete_compute5, sh);

	return tx;
}

static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

677
	pr_debug("%s: stripe %llu\n", __func__,
678 679 680 681 682 683 684 685 686 687 688 689 690 691
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];
	int count = 0, pd_idx = sh->pd_idx, i;

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

692
	pr_debug("%s: stripe %llu\n", __func__,
693 694 695 696 697
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
698
		if (test_bit(R5_Wantdrain, &dev->flags))
699 700 701 702 703 704 705 706 707 708 709
			xor_srcs[count++] = dev->page;
	}

	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
		ops_complete_prexor, sh);

	return tx;
}

static struct dma_async_tx_descriptor *
710
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
711 712
{
	int disks = sh->disks;
713
	int i;
714

715
	pr_debug("%s: stripe %llu\n", __func__,
716 717 718 719 720 721
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

722
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

static void ops_complete_postxor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	int disks = sh->disks, i, pd_idx = sh->pd_idx;

749
	pr_debug("%s: stripe %llu\n", __func__,
750 751 752 753 754 755 756 757
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (dev->written || i == pd_idx)
			set_bit(R5_UPTODATE, &dev->flags);
	}

758 759 760 761 762 763 764 765
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
766 767 768 769 770 771

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
772
ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
773 774 775 776 777 778 779
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];

	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
780
	int prexor = 0;
781 782
	unsigned long flags;

783
	pr_debug("%s: stripe %llu\n", __func__,
784 785 786 787 788
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
789 790
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

	if (unlikely(count == 1)) {
		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
819
			flags, tx, ops_complete_postxor, sh);
820 821
	} else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
822
			flags, tx, ops_complete_postxor, sh);
823 824 825 826 827 828
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

829
	pr_debug("%s: stripe %llu\n", __func__,
830 831
		(unsigned long long)sh->sector);

832
	sh->check_state = check_state_check_result;
833 834 835 836 837 838 839 840 841 842 843 844 845 846
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void ops_run_check(struct stripe_head *sh)
{
	/* kernel stack size limits the total number of disks */
	int disks = sh->disks;
	struct page *xor_srcs[disks];
	struct dma_async_tx_descriptor *tx;

	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

847
	pr_debug("%s: stripe %llu\n", __func__,
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (i != pd_idx)
			xor_srcs[count++] = dev->page;
	}

	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);

	atomic_inc(&sh->count);
	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
		ops_complete_check, sh);
}

864
static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
865 866 867 868
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;

869
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
870 871 872 873
		ops_run_biofill(sh);
		overlap_clear++;
	}

874 875 876 877 878 879
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
		tx = ops_run_compute5(sh);
		/* terminate the chain if postxor is not set to be run */
		if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
			async_tx_ack(tx);
	}
880

881
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
882 883
		tx = ops_run_prexor(sh, tx);

884
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
885
		tx = ops_run_biodrain(sh, tx);
886 887 888
		overlap_clear++;
	}

889
	if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
890
		ops_run_postxor(sh, tx);
891

892
	if (test_bit(STRIPE_OP_CHECK, &ops_request))
893 894 895 896 897 898 899 900 901 902
		ops_run_check(sh);

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
}

903
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
904 905
{
	struct stripe_head *sh;
906 907 908 909 910 911 912 913 914 915 916 917
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);

	if (grow_buffers(sh, conf->raid_disks)) {
		shrink_buffers(sh, conf->raid_disks);
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
918
	sh->disks = conf->raid_disks;
919 920 921 922 923 924 925 926 927 928
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
929
	struct kmem_cache *sc;
L
Linus Torvalds 已提交
930 931
	int devs = conf->raid_disks;

932 933 934 935
	sprintf(conf->cache_name[0],
		"raid%d-%s", conf->level, mdname(conf->mddev));
	sprintf(conf->cache_name[1],
		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
936 937
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
938
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
939
			       0, 0, NULL);
L
Linus Torvalds 已提交
940 941 942
	if (!sc)
		return 1;
	conf->slab_cache = sc;
943
	conf->pool_size = devs;
944
	while (num--)
945
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
946 947 948
			return 1;
	return 0;
}
949 950

#ifdef CONFIG_MD_RAID5_RESHAPE
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
979
	int err;
980
	struct kmem_cache *sc;
981 982 983 984 985
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

986 987 988
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
989

990 991 992
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
993
			       0, 0, NULL);
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
1028
				    unplug_slaves(conf->mddev)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
			);
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
	 * conf->disks.
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
1075
#endif
L
Linus Torvalds 已提交
1076

1077
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1078 1079 1080
{
	struct stripe_head *sh;

1081 1082 1083 1084 1085
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1086
	BUG_ON(atomic_read(&sh->count));
1087
	shrink_buffers(sh, conf->pool_size);
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1098 1099
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1100 1101 1102
	conf->slab_cache = NULL;
}

1103
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1104
{
1105
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1106
	raid5_conf_t *conf = sh->raid_conf;
1107
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1108
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1109 1110
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1111 1112 1113 1114 1115 1116


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1117 1118
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1119 1120 1121
		uptodate);
	if (i == disks) {
		BUG();
1122
		return;
L
Linus Torvalds 已提交
1123 1124 1125 1126
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1127
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1128
			rdev = conf->disks[i].rdev;
1129 1130 1131 1132 1133 1134
			printk_rl(KERN_INFO "raid5:%s: read error corrected"
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1135 1136 1137
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1138 1139
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1140
	} else {
1141
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1142
		int retry = 0;
1143 1144
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1145
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1146
		atomic_inc(&rdev->read_errors);
1147
		if (conf->mddev->degraded)
1148 1149 1150 1151 1152 1153 1154
			printk_rl(KERN_WARNING
				  "raid5:%s: read error not correctable "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1155
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1156
			/* Oh, no!!! */
1157 1158 1159 1160 1161 1162 1163
			printk_rl(KERN_WARNING
				  "raid5:%s: read error NOT corrected!! "
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1164
		else if (atomic_read(&rdev->read_errors)
1165
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1166
			printk(KERN_WARNING
1167 1168
			       "raid5:%s: Too many read errors, failing device %s.\n",
			       mdname(conf->mddev), bdn);
1169 1170 1171 1172 1173
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1174 1175
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1176
			md_error(conf->mddev, rdev);
1177
		}
L
Linus Torvalds 已提交
1178 1179 1180 1181 1182 1183 1184
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1185
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1186
{
1187
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1188
	raid5_conf_t *conf = sh->raid_conf;
1189
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1190 1191 1192 1193 1194 1195
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1196
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1197 1198 1199 1200
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1201
		return;
L
Linus Torvalds 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1211
	release_stripe(sh);
L
Linus Torvalds 已提交
1212 1213 1214
}


1215
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1216
	
1217
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1233
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1234 1235 1236 1237 1238 1239
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1240
	pr_debug("raid5: error called\n");
L
Linus Torvalds 已提交
1241

1242
	if (!test_bit(Faulty, &rdev->flags)) {
1243
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1244 1245 1246
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1247
			mddev->degraded++;
1248
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1249 1250 1251
			/*
			 * if recovery was running, make sure it aborts.
			 */
1252
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1253
		}
1254
		set_bit(Faulty, &rdev->flags);
1255 1256 1257 1258
		printk(KERN_ALERT
		       "raid5: Disk failure on %s, disabling device.\n"
		       "raid5: Operation continuing on %d devices.\n",
		       bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1259
	}
1260
}
L
Linus Torvalds 已提交
1261 1262 1263 1264 1265

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1266
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1267 1268
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1269 1270 1271 1272
{
	long stripe;
	unsigned long chunk_number;
	unsigned int chunk_offset;
1273
	int pd_idx, qd_idx;
1274
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1275
	sector_t new_sector;
1276 1277
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1278 1279
	int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
					 : (conf->chunk_size >> 9);
1280 1281 1282
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;
	BUG_ON(r_sector != chunk_number);

	/*
	 * Compute the stripe number
	 */
	stripe = chunk_number / data_disks;

	/*
	 * Compute the data disk and parity disk indexes inside the stripe
	 */
	*dd_idx = chunk_number % data_disks;

	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1306
	pd_idx = qd_idx = ~0;
1307 1308
	switch(conf->level) {
	case 4:
1309
		pd_idx = data_disks;
1310 1311
		break;
	case 5:
1312
		switch (algorithm) {
L
Linus Torvalds 已提交
1313
		case ALGORITHM_LEFT_ASYMMETRIC:
1314 1315
			pd_idx = data_disks - stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1316 1317 1318
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1319 1320
			pd_idx = stripe % raid_disks;
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1321 1322 1323
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1324 1325
			pd_idx = data_disks - stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1326 1327
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1328 1329
			pd_idx = stripe % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1330
			break;
1331 1332 1333 1334 1335 1336 1337
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1338
		default:
N
NeilBrown 已提交
1339
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1340
				algorithm);
1341
			BUG();
1342 1343 1344 1345
		}
		break;
	case 6:

1346
		switch (algorithm) {
1347
		case ALGORITHM_LEFT_ASYMMETRIC:
1348 1349 1350
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1351
				(*dd_idx)++;	/* Q D D D P */
1352 1353
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1354 1355 1356
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
1357 1358 1359
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1360
				(*dd_idx)++;	/* Q D D D P */
1361 1362
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1363 1364 1365
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
1366 1367 1368
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1369 1370
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
1371 1372 1373
			pd_idx = stripe % raid_disks;
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1374
			break;
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
			pd_idx = stripe % raid_disks;
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1397
			ddf_layout = 1;
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
			pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1412
			ddf_layout = 1;
1413 1414 1415 1416 1417 1418 1419
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
			pd_idx = raid_disks - 1 - (stripe % raid_disks);
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1420
			ddf_layout = 1;
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
			pd_idx = data_disks - stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
			pd_idx = data_disks - stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
			pd_idx = stripe % (raid_disks-1);
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;


1457
		default:
1458
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1459
			       algorithm);
1460
			BUG();
1461 1462
		}
		break;
L
Linus Torvalds 已提交
1463 1464
	}

1465 1466 1467
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1468
		sh->ddf_layout = ddf_layout;
1469
	}
L
Linus Torvalds 已提交
1470 1471 1472 1473 1474 1475 1476 1477
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1478
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1479 1480
{
	raid5_conf_t *conf = sh->raid_conf;
1481 1482
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1483
	sector_t new_sector = sh->sector, check;
1484 1485
	int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
					 : (conf->chunk_size >> 9);
1486 1487
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1488 1489
	sector_t stripe;
	int chunk_offset;
1490
	int chunk_number, dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1491
	sector_t r_sector;
1492
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1493

1494

L
Linus Torvalds 已提交
1495 1496 1497 1498
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;
	BUG_ON(new_sector != stripe);

1499 1500 1501 1502 1503
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1504
		switch (algorithm) {
L
Linus Torvalds 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1516 1517 1518 1519 1520
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1521
		default:
N
NeilBrown 已提交
1522
			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1523
			       algorithm);
1524
			BUG();
1525 1526 1527
		}
		break;
	case 6:
1528
		if (i == sh->qd_idx)
1529
			return 0; /* It is the Q disk */
1530
		switch (algorithm) {
1531 1532
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1533 1534 1535 1536
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
			else if (i > sh->pd_idx)
				i -= 2; /* D D Q P D */
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
1576
		default:
1577
			printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1578
			       algorithm);
1579
			BUG();
1580 1581
		}
		break;
L
Linus Torvalds 已提交
1582 1583 1584 1585 1586
	}

	chunk_number = stripe * data_disks + i;
	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;

1587
	check = raid5_compute_sector(conf, r_sector,
1588
				     previous, &dummy1, &sh2);
1589 1590
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
N
NeilBrown 已提交
1591
		printk(KERN_ERR "compute_blocknr: map not correct\n");
L
Linus Torvalds 已提交
1592 1593 1594 1595 1596 1597 1598 1599
		return 0;
	}
	return r_sector;
}



/*
1600 1601 1602 1603 1604
 * Copy data between a page in the stripe cache, and one or more bion
 * The page could align with the middle of the bio, or there could be
 * several bion, each with several bio_vecs, which cover part of the page
 * Multiple bion are linked together on bi_next.  There may be extras
 * at the end of this list.  We ignore them.
L
Linus Torvalds 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
 */
static void copy_data(int frombio, struct bio *bio,
		     struct page *page,
		     sector_t sector)
{
	char *pa = page_address(page);
	struct bio_vec *bvl;
	int i;
	int page_offset;

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio,i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else clen = len;
1633

L
Linus Torvalds 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
		if (clen > 0) {
			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
			if (frombio)
				memcpy(pa+page_offset, ba+b_offset, clen);
			else
				memcpy(ba+b_offset, pa+page_offset, clen);
			__bio_kunmap_atomic(ba, KM_USER0);
		}
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}
}

D
Dan Williams 已提交
1648 1649 1650 1651 1652
#define check_xor()	do {						  \
				if (count == MAX_XOR_BLOCKS) {		  \
				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
				count = 0;				  \
			   }						  \
L
Linus Torvalds 已提交
1653 1654
			} while(0)

1655 1656
static void compute_parity6(struct stripe_head *sh, int method)
{
1657
	raid5_conf_t *conf = sh->raid_conf;
1658
	int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1659
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1660 1661
	struct bio *chosen;
	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1662
	void *ptrs[syndrome_disks+2];
1663

1664 1665 1666
	pd_idx = sh->pd_idx;
	qd_idx = sh->qd_idx;
	d0_idx = raid6_d0(sh);
1667

1668
	pr_debug("compute_parity, stripe %llu, method %d\n",
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
		(unsigned long long)sh->sector, method);

	switch(method) {
	case READ_MODIFY_WRITE:
		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
	case RECONSTRUCT_WRITE:
		for (i= disks; i-- ;)
			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
				chosen = sh->dev[i].towrite;
				sh->dev[i].towrite = NULL;

				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
					wake_up(&conf->wait_for_overlap);

E
Eric Sesterhenn 已提交
1683
				BUG_ON(sh->dev[i].written);
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
				sh->dev[i].written = chosen;
			}
		break;
	case CHECK_PARITY:
		BUG();		/* Not implemented yet */
	}

	for (i = disks; i--;)
		if (sh->dev[i].written) {
			sector_t sector = sh->dev[i].sector;
			struct bio *wbi = sh->dev[i].written;
			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
				copy_data(1, wbi, sh->dev[i].page, sector);
				wbi = r5_next_bio(wbi, sector);
			}

			set_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(R5_UPTODATE, &sh->dev[i].flags);
		}

1704
	/* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1705 1706 1707 1708

	for (i = 0; i < disks; i++)
		ptrs[i] = (void *)raid6_empty_zero_page;

1709 1710 1711
	count = 0;
	i = d0_idx;
	do {
1712 1713
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

1714
		ptrs[slot] = page_address(sh->dev[i].page);
1715
		if (slot < syndrome_disks &&
1716 1717 1718 1719 1720
		    !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
			printk(KERN_ERR "block %d/%d not uptodate "
			       "on parity calc\n", i, count);
			BUG();
		}
1721

1722 1723
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
1724
	BUG_ON(count != syndrome_disks);
1725

1726
	raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745

	switch(method) {
	case RECONSTRUCT_WRITE:
		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
		break;
	case UPDATE_PARITY:
		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
		break;
	}
}


/* Compute one missing block */
static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
{
1746
	int i, count, disks = sh->disks;
D
Dan Williams 已提交
1747
	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1748
	int qd_idx = sh->qd_idx;
1749

1750
	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1751 1752 1753 1754 1755 1756
		(unsigned long long)sh->sector, dd_idx);

	if ( dd_idx == qd_idx ) {
		/* We're actually computing the Q drive */
		compute_parity6(sh, UPDATE_PARITY);
	} else {
D
Dan Williams 已提交
1757 1758 1759
		dest = page_address(sh->dev[dd_idx].page);
		if (!nozero) memset(dest, 0, STRIPE_SIZE);
		count = 0;
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
		for (i = disks ; i--; ) {
			if (i == dd_idx || i == qd_idx)
				continue;
			p = page_address(sh->dev[i].page);
			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
				ptr[count++] = p;
			else
				printk("compute_block() %d, stripe %llu, %d"
				       " not present\n", dd_idx,
				       (unsigned long long)sh->sector, i);

			check_xor();
		}
D
Dan Williams 已提交
1773 1774
		if (count)
			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1775 1776 1777 1778 1779 1780 1781 1782
		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
	}
}

/* Compute two missing blocks */
static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
{
1783
	int i, count, disks = sh->disks;
1784
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1785 1786 1787
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1788
	void *ptrs[syndrome_disks+2];
1789

1790 1791
	for (i = 0; i < disks ; i++)
		ptrs[i] = (void *)raid6_empty_zero_page;
1792 1793 1794
	count = 0;
	i = d0_idx;
	do {
1795 1796
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

1797
		ptrs[slot] = page_address(sh->dev[i].page);
1798

1799 1800 1801 1802 1803 1804
		if (i == dd_idx1)
			faila = slot;
		if (i == dd_idx2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);
1805
	BUG_ON(count != syndrome_disks);
1806 1807 1808 1809

	BUG_ON(faila == failb);
	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }

1810
	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1811 1812
		 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
		 faila, failb);
1813

1814
	if (failb == syndrome_disks+1) {
1815
		/* Q disk is one of the missing disks */
1816
		if (faila == syndrome_disks) {
1817 1818 1819 1820 1821
			/* Missing P+Q, just recompute */
			compute_parity6(sh, UPDATE_PARITY);
			return;
		} else {
			/* We're missing D+Q; recompute D from P */
1822 1823 1824
			compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
					     dd_idx2 : dd_idx1),
					0);
1825 1826 1827 1828 1829
			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
			return;
		}
	}

1830
	/* We're missing D+P or D+D; */
1831
	if (failb == syndrome_disks) {
1832
		/* We're missing D+P. */
1833
		raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1834 1835
	} else {
		/* We're missing D+D. */
1836 1837
		raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
				  ptrs);
1838
	}
1839 1840 1841 1842

	/* Both the above update both missing blocks */
	set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
	set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1843 1844
}

1845
static void
1846
schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1847
			 int rcw, int expand)
1848 1849 1850 1851 1852 1853 1854 1855 1856
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
1857 1858 1859 1860
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
1861

1862
		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1863 1864 1865 1866 1867 1868

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
1869
				set_bit(R5_Wantdrain, &dev->flags);
1870 1871
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
1872
				s->locked++;
1873 1874
			}
		}
1875
		if (s->locked + 1 == disks)
1876 1877
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
				atomic_inc(&sh->raid_conf->pending_full_writes);
1878 1879 1880 1881
	} else {
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

1882
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1883 1884 1885
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1886 1887 1888 1889 1890 1891 1892 1893

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
1894 1895
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
1896 1897
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
1898
				s->locked++;
1899 1900 1901 1902 1903 1904 1905 1906 1907
			}
		}
	}

	/* keep the parity disk locked while asynchronous operations
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1908
	s->locked++;
1909

1910
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1911
		__func__, (unsigned long long)sh->sector,
1912
		s->locked, s->ops_request);
1913
}
1914

L
Linus Torvalds 已提交
1915 1916
/*
 * Each stripe/dev can have one or more bion attached.
1917
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
1918 1919 1920 1921 1922 1923
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
1924
	int firstwrite=0;
L
Linus Torvalds 已提交
1925

1926
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
1927 1928 1929 1930 1931 1932
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
1933
	if (forwrite) {
L
Linus Torvalds 已提交
1934
		bip = &sh->dev[dd_idx].towrite;
1935 1936 1937
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

1947
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
1948 1949 1950
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
1951
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
1952 1953 1954
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

1955
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
1956 1957 1958
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

1959 1960 1961
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
1962
		sh->bm_seq = conf->seq_flush+1;
1963 1964 1965
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

1988 1989
static void end_reshape(raid5_conf_t *conf);

1990 1991 1992 1993 1994 1995 1996
static int page_is_zero(struct page *p)
{
	char *a = page_address(p);
	return ((*(u32*)a) == 0 &&
		memcmp(a, a+4, STRIPE_SIZE-4)==0);
}

1997 1998
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
1999
{
2000 2001 2002
	int sectors_per_chunk =
		previous ? (conf->prev_chunk >> 9)
			 : (conf->chunk_size >> 9);
2003
	int dd_idx;
2004
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2005
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2006

2007 2008
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2009
			     *sectors_per_chunk + chunk_offset,
2010
			     previous,
2011
			     &dd_idx, sh);
2012 2013
}

2014
static void
2015
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2049
			if (!raid5_dec_bi_phys_segments(bi)) {
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2064
			if (!raid5_dec_bi_phys_segments(bi)) {
2065 2066 2067 2068 2069 2070 2071
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2072 2073 2074 2075 2076 2077
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2088
				if (!raid5_dec_bi_phys_segments(bi)) {
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2101 2102 2103
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2104 2105
}

2106 2107 2108 2109 2110
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2111
 */
2112 2113
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2114 2115 2116 2117 2118 2119
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2120 2121 2122 2123 2124 2125 2126 2127
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2128 2129
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2130 2131
		 */
		if ((s->uptodate == disks - 1) &&
2132
		    (s->failed && disk_idx == s->failed_num)) {
2133 2134
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid5_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2145
			return 1; /* uptodate + compute == disks */
2146
		} else if (test_bit(R5_Insync, &dev->flags)) {
2147 2148 2149 2150 2151 2152 2153 2154
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2155
	return 0;
2156 2157
}

2158 2159 2160 2161
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2162 2163 2164
			struct stripe_head_state *s, int disks)
{
	int i;
2165 2166 2167 2168 2169

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2170
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2171
	    !sh->reconstruct_state)
2172
		for (i = disks; i--; )
2173
			if (fetch_block5(sh, s, i, disks))
2174
				break;
2175 2176 2177
	set_bit(STRIPE_HANDLE, &sh->state);
}

2178
static void handle_stripe_fill6(struct stripe_head *sh,
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (!test_bit(R5_LOCKED, &dev->flags) &&
		    !test_bit(R5_UPTODATE, &dev->flags) &&
		    (dev->toread || (dev->towrite &&
		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
		     s->syncing || s->expanding ||
		     (s->failed >= 1 &&
		      (sh->dev[r6s->failed_num[0]].toread ||
		       s->to_write)) ||
		     (s->failed >= 2 &&
		      (sh->dev[r6s->failed_num[1]].toread ||
		       s->to_write)))) {
			/* we would like to get this block, possibly
			 * by computing it, but we might not be able to
			 */
2199 2200 2201
			if ((s->uptodate == disks - 1) &&
			    (s->failed && (i == r6s->failed_num[0] ||
					   i == r6s->failed_num[1]))) {
2202
				pr_debug("Computing stripe %llu block %d\n",
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
				       (unsigned long long)sh->sector, i);
				compute_block_1(sh, i, 0);
				s->uptodate++;
			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
				/* Computing 2-failure is *very* expensive; only
				 * do it if failed >= 2
				 */
				int other;
				for (other = disks; other--; ) {
					if (other == i)
						continue;
					if (!test_bit(R5_UPTODATE,
					      &sh->dev[other].flags))
						break;
				}
				BUG_ON(other < 0);
2219
				pr_debug("Computing stripe %llu blocks %d,%d\n",
2220 2221 2222 2223 2224 2225 2226 2227
				       (unsigned long long)sh->sector,
				       i, other);
				compute_block_2(sh, i, other);
				s->uptodate += 2;
			} else if (test_bit(R5_Insync, &dev->flags)) {
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
2228
				pr_debug("Reading block %d (sync=%d)\n",
2229 2230 2231 2232 2233 2234 2235 2236
					i, s->syncing);
			}
		}
	}
	set_bit(STRIPE_HANDLE, &sh->state);
}


2237
/* handle_stripe_clean_event
2238 2239 2240 2241
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2242
static void handle_stripe_clean_event(raid5_conf_t *conf,
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2256
				pr_debug("Return write for disc %d\n", i);
2257 2258 2259 2260 2261 2262
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2263
					if (!raid5_dec_bi_phys_segments(wbi)) {
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2281 2282 2283 2284

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2285 2286
}

2287
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2288 2289 2290 2291 2292 2293 2294 2295
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2296 2297
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2298 2299 2300 2301 2302 2303 2304 2305
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2306 2307 2308
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2309 2310 2311 2312
			else
				rcw += 2*disks;
		}
	}
2313
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2314 2315 2316 2317 2318 2319 2320 2321
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2322 2323
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2324 2325 2326
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2327
					pr_debug("Read_old block "
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2345 2346
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2347 2348 2349
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2350
					pr_debug("Read_old block "
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2364 2365 2366 2367 2368 2369 2370
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
	 * subsequent call wants to start a write request.  raid5_run_ops only
	 * handles the case where compute block and postxor are requested
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2371 2372 2373
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2374
		schedule_reconstruction5(sh, s, rcw == 0, 0);
2375 2376
}

2377
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2378 2379 2380 2381
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2382
	int qd_idx = sh->qd_idx;
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags)
		    && i != pd_idx && i != qd_idx
		    && (!test_bit(R5_LOCKED, &dev->flags)
			    ) &&
		    !test_bit(R5_UPTODATE, &dev->flags)) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
			else {
2393
				pr_debug("raid6: must_compute: "
2394 2395 2396 2397 2398
					"disk %d flags=%#lx\n", i, dev->flags);
				must_compute++;
			}
		}
	}
2399
	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
	       (unsigned long long)sh->sector, rcw, must_compute);
	set_bit(STRIPE_HANDLE, &sh->state);

	if (rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags)
			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
			    && !test_bit(R5_LOCKED, &dev->flags) &&
			    !test_bit(R5_UPTODATE, &dev->flags) &&
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2414
					pr_debug("Read_old stripe %llu "
2415 2416 2417 2418 2419 2420
						"block %d for Reconstruct\n",
					     (unsigned long long)sh->sector, i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
2421
					pr_debug("Request delayed stripe %llu "
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
						"block %d for Reconstruct\n",
					     (unsigned long long)sh->sector, i);
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
	if (s->locked == 0 && rcw == 0 &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
		if (must_compute > 0) {
			/* We have failed blocks and need to compute them */
			switch (s->failed) {
			case 0:
				BUG();
			case 1:
				compute_block_1(sh, r6s->failed_num[0], 0);
				break;
			case 2:
				compute_block_2(sh, r6s->failed_num[0],
						r6s->failed_num[1]);
				break;
			default: /* This request should have been failed? */
				BUG();
			}
		}

2451
		pr_debug("Computing parity for stripe %llu\n",
2452 2453 2454 2455 2456
			(unsigned long long)sh->sector);
		compute_parity6(sh, RECONSTRUCT_WRITE);
		/* now every locked buffer is ready to be written */
		for (i = disks; i--; )
			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2457
				pr_debug("Writing stripe %llu block %d\n",
2458 2459 2460 2461
				       (unsigned long long)sh->sector, i);
				s->locked++;
				set_bit(R5_Wantwrite, &sh->dev[i].flags);
			}
2462 2463 2464
		if (s->locked == disks)
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
				atomic_inc(&conf->pending_full_writes);
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
		set_bit(STRIPE_INSYNC, &sh->state);

		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
			    IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2480
	struct r5dev *dev = NULL;
2481

2482
	set_bit(STRIPE_HANDLE, &sh->state);
2483

2484 2485 2486
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2487 2488
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2489 2490
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2491 2492
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2493
			break;
2494
		}
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2505

2506 2507 2508 2509 2510
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2511
		s->locked++;
2512
		set_bit(R5_Wantwrite, &dev->flags);
2513

2514 2515
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0)
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2544
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s,
				struct r6_state *r6s, struct page *tmp_page,
				int disks)
{
	int update_p = 0, update_q = 0;
	struct r5dev *dev;
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2572
	int qd_idx = sh->qd_idx;
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
	BUG_ON(s->uptodate < disks);
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

	/* If !tmp_page, we cannot do the calculations,
	 * but as we have set STRIPE_HANDLE, we will soon be called
	 * by stripe_handle with a tmp_page - just wait until then.
	 */
	if (tmp_page) {
		if (s->failed == r6s->q_failed) {
			/* The only possible failed device holds 'Q', so it
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
			compute_block_1(sh, pd_idx, 1);
			if (!page_is_zero(sh->dev[pd_idx].page)) {
				compute_block_1(sh, pd_idx, 0);
				update_p = 1;
			}
		}
		if (!r6s->q_failed && s->failed < 2) {
			/* q is not failed, and we didn't use it to generate
			 * anything, so it makes sense to check it
			 */
			memcpy(page_address(tmp_page),
			       page_address(sh->dev[qd_idx].page),
			       STRIPE_SIZE);
			compute_parity6(sh, UPDATE_PARITY);
			if (memcmp(page_address(tmp_page),
				   page_address(sh->dev[qd_idx].page),
				   STRIPE_SIZE) != 0) {
				clear_bit(STRIPE_INSYNC, &sh->state);
				update_q = 1;
			}
		}
		if (update_p || update_q) {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				update_p = update_q = 0;
		}

		/* now write out any block on a failed drive,
		 * or P or Q if they need it
		 */

		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}

		if (update_p) {
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (update_q) {
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2665
	struct dma_async_tx_descriptor *tx = NULL;
2666 2667
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2668
		if (i != sh->pd_idx && i != sh->qd_idx) {
2669
			int dd_idx, j;
2670 2671
			struct stripe_head *sh2;

2672
			sector_t bn = compute_blocknr(sh, i, 1);
2673 2674
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2675
			sh2 = get_active_stripe(conf, s, 0, 1);
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2688 2689 2690 2691 2692 2693

			/* place all the copies on one channel */
			tx = async_memcpy(sh2->dev[dd_idx].page,
				sh->dev[i].page, 0, 0, STRIPE_SIZE,
				ASYNC_TX_DEP_ACK, tx, NULL, NULL);

2694 2695 2696 2697
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2698
				    (!r6s || j != sh2->qd_idx) &&
2699 2700 2701 2702 2703 2704 2705
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2706

2707
		}
2708 2709 2710 2711 2712
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2713
}
L
Linus Torvalds 已提交
2714

2715

L
Linus Torvalds 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2732

2733
static bool handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
2734 2735
{
	raid5_conf_t *conf = sh->raid_conf;
2736 2737 2738
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
2739
	struct r5dev *dev;
2740
	mdk_rdev_t *blocked_rdev = NULL;
2741
	int prexor;
L
Linus Torvalds 已提交
2742

2743
	memset(&s, 0, sizeof(s));
2744 2745 2746 2747
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
2748 2749 2750 2751 2752

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

2753 2754 2755
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
2756

2757
	/* Now to look around and see what can be done */
2758
	rcu_read_lock();
L
Linus Torvalds 已提交
2759 2760
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2761
		struct r5dev *dev = &sh->dev[i];
L
Linus Torvalds 已提交
2762 2763
		clear_bit(R5_Insync, &dev->flags);

2764 2765 2766 2767 2768 2769 2770
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
2771
		 * ops_complete_biofill is guaranteed to be inactive
2772 2773
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2774
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2775
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2776 2777

		/* now count some things */
2778 2779
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2780
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
2781

2782 2783 2784
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
2785
			s.to_read++;
L
Linus Torvalds 已提交
2786
		if (dev->towrite) {
2787
			s.to_write++;
L
Linus Torvalds 已提交
2788
			if (!test_bit(R5_OVERWRITE, &dev->flags))
2789
				s.non_overwrite++;
L
Linus Torvalds 已提交
2790
		}
2791 2792
		if (dev->written)
			s.written++;
2793
		rdev = rcu_dereference(conf->disks[i].rdev);
2794 2795
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2796 2797 2798
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
2799
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
2800
			/* The ReadError flag will just be confusing now */
2801 2802 2803
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
2804
		if (!rdev || !test_bit(In_sync, &rdev->flags)
2805
		    || test_bit(R5_ReadError, &dev->flags)) {
2806 2807
			s.failed++;
			s.failed_num = i;
L
Linus Torvalds 已提交
2808 2809 2810
		} else
			set_bit(R5_Insync, &dev->flags);
	}
2811
	rcu_read_unlock();
2812

2813
	if (unlikely(blocked_rdev)) {
2814 2815 2816 2817 2818 2819 2820 2821
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
2822 2823
	}

2824 2825 2826 2827
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
2828

2829
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
2830
		" to_write=%d failed=%d failed_num=%d\n",
2831 2832
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
2833 2834 2835
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
2836
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2837
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2838
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
2839 2840
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
2841
		s.syncing = 0;
L
Linus Torvalds 已提交
2842 2843 2844 2845 2846 2847
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
2848 2849 2850 2851 2852
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2853
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
2854 2855 2856 2857 2858

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
2859
	if (s.to_read || s.non_overwrite ||
2860
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2861
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
2862

2863 2864 2865
	/* Now we check to see if any write operations have recently
	 * completed
	 */
2866
	prexor = 0;
2867
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2868
		prexor = 1;
2869 2870
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2871
		sh->reconstruct_state = reconstruct_state_idle;
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
2883 2884
				if (prexor)
					continue;
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
			atomic_dec(&conf->preread_active_stripes);
			if (atomic_read(&conf->preread_active_stripes) <
				IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		}
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
2904
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2905
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
2906 2907

	/* maybe we need to check and possibly fix the parity for this stripe
2908 2909 2910
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
2911
	 */
2912 2913
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
2914
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2915
	     !test_bit(STRIPE_INSYNC, &sh->state)))
2916
		handle_parity_checks5(conf, sh, &s, disks);
2917

2918
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
2919 2920 2921
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
2922 2923 2924 2925

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
2926 2927 2928 2929
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2930
		) {
2931
		dev = &sh->dev[s.failed_num];
2932 2933 2934 2935
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
2936
			s.locked++;
2937 2938 2939 2940
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
2941
			s.locked++;
2942 2943 2944
		}
	}

2945 2946 2947
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
2948
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
2949
		for (i = conf->raid_disks; i--; ) {
2950
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
2951
			set_bit(R5_LOCKED, &sh->dev[i].flags);
2952
			s.locked++;
D
Dan Williams 已提交
2953
		}
2954 2955 2956
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2957
	    !sh->reconstruct_state) {
2958 2959
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
2960
		stripe_set_idx(sh->sector, conf, 0, sh);
2961
		schedule_reconstruction5(sh, &s, 1, 1);
2962
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2963
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2964
		atomic_dec(&conf->reshape_stripes);
2965 2966 2967 2968
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

2969
	if (s.expanding && s.locked == 0 &&
2970
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2971
		handle_stripe_expansion(conf, sh, NULL);
2972

2973
 unlock:
L
Linus Torvalds 已提交
2974 2975
	spin_unlock(&sh->lock);

2976 2977 2978 2979
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

2980 2981
	if (s.ops_request)
		raid5_run_ops(sh, s.ops_request);
2982

2983
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
2984

2985
	return_io(return_bi);
2986 2987

	return blocked_rdev == NULL;
L
Linus Torvalds 已提交
2988 2989
}

2990
static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
L
Linus Torvalds 已提交
2991
{
2992
	raid5_conf_t *conf = sh->raid_conf;
2993
	int disks = sh->disks;
2994
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
2995
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
2996 2997
	struct stripe_head_state s;
	struct r6_state r6s;
2998
	struct r5dev *dev, *pdev, *qdev;
2999
	mdk_rdev_t *blocked_rdev = NULL;
L
Linus Torvalds 已提交
3000

3001
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3002 3003
		"pd_idx=%d, qd_idx=%d\n",
	       (unsigned long long)sh->sector, sh->state,
N
NeilBrown 已提交
3004
	       atomic_read(&sh->count), pd_idx, qd_idx);
3005
	memset(&s, 0, sizeof(s));
3006

3007 3008 3009 3010
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3011 3012 3013
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3014
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3015 3016

	rcu_read_lock();
3017 3018 3019 3020
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
		clear_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3021

3022
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3023 3024 3025 3026
			i, dev->flags, dev->toread, dev->towrite, dev->written);
		/* maybe we can reply to a read */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
			struct bio *rbi, *rbi2;
3027
			pr_debug("Return read for disc %d\n", i);
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
			spin_lock_irq(&conf->device_lock);
			rbi = dev->toread;
			dev->toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&conf->wait_for_overlap);
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
				copy_data(0, rbi, dev->page, dev->sector);
				rbi2 = r5_next_bio(rbi, dev->sector);
				spin_lock_irq(&conf->device_lock);
3038
				if (!raid5_dec_bi_phys_segments(rbi)) {
3039 3040 3041 3042 3043 3044 3045
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				spin_unlock_irq(&conf->device_lock);
				rbi = rbi2;
			}
		}
L
Linus Torvalds 已提交
3046

3047
		/* now count some things */
3048 3049
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
L
Linus Torvalds 已提交
3050

3051

3052 3053
		if (dev->toread)
			s.to_read++;
3054
		if (dev->towrite) {
3055
			s.to_write++;
3056
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3057
				s.non_overwrite++;
3058
		}
3059 3060
		if (dev->written)
			s.written++;
3061
		rdev = rcu_dereference(conf->disks[i].rdev);
3062 3063
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3064 3065 3066
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3067 3068 3069 3070
		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3071
		}
3072 3073
		if (!rdev || !test_bit(In_sync, &rdev->flags)
		    || test_bit(R5_ReadError, &dev->flags)) {
3074 3075 3076
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3077 3078
		} else
			set_bit(R5_Insync, &dev->flags);
L
Linus Torvalds 已提交
3079 3080
	}
	rcu_read_unlock();
3081 3082

	if (unlikely(blocked_rdev)) {
3083 3084 3085 3086 3087 3088 3089 3090
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3091
	}
3092

3093
	pr_debug("locked=%d uptodate=%d to_read=%d"
3094
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3095 3096 3097 3098
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3099
	 */
3100
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3101
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3102
	if (s.failed > 2 && s.syncing) {
3103 3104
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3105
		s.syncing = 0;
3106 3107 3108 3109 3110 3111 3112
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3113 3114
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3115 3116 3117
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3118 3119 3120

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3121
			     && !test_bit(R5_LOCKED, &pdev->flags)
3122 3123
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3124
			     && !test_bit(R5_LOCKED, &qdev->flags)
3125
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3126
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3127 3128 3129 3130 3131

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3132 3133
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
	    (s.syncing && (s.uptodate < disks)) || s.expanding)
3134
		handle_stripe_fill6(sh, &s, &r6s, disks);
3135 3136

	/* now to consider writing and what else, if anything should be read */
3137
	if (s.to_write)
3138
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3139 3140

	/* maybe we need to check and possibly fix the parity for this stripe
3141 3142
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available
3143
	 */
3144 3145
	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3146

3147
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3148 3149 3150 3151 3152 3153 3154
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3155 3156 3157
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
				}
			}
		}
3173

3174
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3175 3176
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3177
		stripe_set_idx(sh->sector, conf, 0, sh);
3178 3179 3180
		compute_parity6(sh, RECONSTRUCT_WRITE);
		for (i = conf->raid_disks ; i-- ;  ) {
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3181
			s.locked++;
3182 3183 3184
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
		}
		clear_bit(STRIPE_EXPANDING, &sh->state);
3185
	} else if (s.expanded) {
3186 3187 3188 3189 3190 3191
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3192
	if (s.expanding && s.locked == 0 &&
3193
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3194
		handle_stripe_expansion(conf, sh, &r6s);
3195

3196
 unlock:
3197 3198
	spin_unlock(&sh->lock);

3199 3200 3201 3202
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

D
Dan Williams 已提交
3203
	ops_run_io(sh, &s);
3204

D
Dan Williams 已提交
3205
	return_io(return_bi);
3206 3207

	return blocked_rdev == NULL;
3208 3209
}

3210 3211
/* returns true if the stripe was handled */
static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3212 3213
{
	if (sh->raid_conf->level == 6)
3214
		return handle_stripe6(sh, tmp_page);
3215
	else
3216
		return handle_stripe5(sh);
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
}



static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3232
			list_add_tail(&sh->lru, &conf->hold_list);
3233
		}
3234 3235
	} else
		blk_plug_device(conf->mddev->queue);
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

static void unplug_slaves(mddev_t *mddev)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	int i;

	rcu_read_lock();
	for (i=0; i<mddev->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3261
			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3262 3263 3264 3265

			atomic_inc(&rdev->nr_pending);
			rcu_read_unlock();

3266
			blk_unplug(r_queue);
3267 3268 3269 3270 3271 3272 3273 3274

			rdev_dec_pending(rdev, mddev);
			rcu_read_lock();
		}
	}
	rcu_read_unlock();
}

3275
static void raid5_unplug_device(struct request_queue *q)
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	if (blk_remove_plug(q)) {
		conf->seq_flush++;
		raid5_activate_delayed(conf);
3286
	}
L
Linus Torvalds 已提交
3287 3288 3289 3290 3291 3292 3293
	md_wakeup_thread(mddev->thread);

	spin_unlock_irqrestore(&conf->device_lock, flags);

	unplug_slaves(mddev);
}

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;
	raid5_conf_t *conf = mddev_to_conf(mddev);

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}

3312 3313 3314
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3315 3316 3317
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3318 3319
{
	mddev_t *mddev = q->queuedata;
3320
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3321 3322
	int max;
	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3323
	unsigned int bio_sectors = bvm->bi_size >> 9;
3324

3325
	if ((bvm->bi_rw & 1) == WRITE)
3326 3327
		return biovec->bv_len; /* always allow writes to be mergeable */

3328 3329
	if (mddev->new_chunk < mddev->chunk_size)
		chunk_sectors = mddev->new_chunk >> 9;
3330 3331 3332 3333 3334 3335 3336 3337
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3338 3339 3340 3341 3342 3343 3344

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
	unsigned int chunk_sectors = mddev->chunk_size >> 9;
	unsigned int bio_sectors = bio->bi_size >> 9;

3345 3346
	if (mddev->new_chunk < mddev->chunk_size)
		chunk_sectors = mddev->new_chunk >> 9;
3347 3348 3349 3350
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3380
		conf->retry_read_aligned_list = bi->bi_next;
3381
		bi->bi_next = NULL;
3382 3383 3384 3385
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3386 3387 3388 3389 3390 3391 3392
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3393 3394 3395 3396 3397 3398
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3399
static void raid5_align_endio(struct bio *bi, int error)
3400 3401
{
	struct bio* raid_bi  = bi->bi_private;
3402 3403 3404 3405 3406
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3407
	bio_put(bi);
3408 3409 3410 3411 3412 3413 3414 3415 3416

	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
	conf = mddev_to_conf(mddev);
	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3417
		bio_endio(raid_bi, 0);
3418 3419
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3420
		return;
3421 3422 3423
	}


3424
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3425 3426

	add_bio_to_retry(raid_bi, conf);
3427 3428
}

3429 3430
static int bio_fits_rdev(struct bio *bi)
{
3431
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3432 3433 3434 3435

	if ((bi->bi_size>>9) > q->max_sectors)
		return 0;
	blk_recount_segments(q, bi);
3436
	if (bi->bi_phys_segments > q->max_phys_segments)
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3449
static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3450 3451 3452
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
3453
	unsigned int dd_idx;
3454 3455 3456 3457
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3458
		pr_debug("chunk_aligned_read : non aligned\n");
3459 3460 3461
		return 0;
	}
	/*
3462
	 * use bio_clone to make a copy of the bio
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
	 */
	align_bi = bio_clone(raid_bio, GFP_NOIO);
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3476 3477
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3478
						    &dd_idx, NULL);
3479 3480 3481 3482 3483 3484

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3485 3486 3487 3488 3489
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3490 3491 3492 3493 3494 3495 3496
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3497 3498 3499 3500 3501 3502 3503
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3504 3505 3506 3507
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3508
		bio_put(align_bi);
3509 3510 3511 3512
		return 0;
	}
}

3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3565

3566
static int make_request(struct request_queue *q, struct bio * bi)
L
Linus Torvalds 已提交
3567 3568 3569
{
	mddev_t *mddev = q->queuedata;
	raid5_conf_t *conf = mddev_to_conf(mddev);
3570
	int dd_idx;
L
Linus Torvalds 已提交
3571 3572 3573
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3574
	const int rw = bio_data_dir(bi);
T
Tejun Heo 已提交
3575
	int cpu, remaining;
L
Linus Torvalds 已提交
3576

3577
	if (unlikely(bio_barrier(bi))) {
3578
		bio_endio(bi, -EOPNOTSUPP);
3579 3580 3581
		return 0;
	}

3582
	md_write_start(mddev, bi);
3583

T
Tejun Heo 已提交
3584 3585 3586 3587 3588
	cpu = part_stat_lock();
	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
		      bio_sectors(bi));
	part_stat_unlock();
L
Linus Torvalds 已提交
3589

3590
	if (rw == READ &&
3591 3592
	     mddev->reshape_position == MaxSector &&
	     chunk_aligned_read(q,bi))
3593
		return 0;
3594

L
Linus Torvalds 已提交
3595 3596 3597 3598
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3599

L
Linus Torvalds 已提交
3600 3601
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3602
		int disks, data_disks;
3603
		int previous;
3604

3605
	retry:
3606
		previous = 0;
3607
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3608
		if (likely(conf->reshape_progress == MaxSector))
3609 3610
			disks = conf->raid_disks;
		else {
3611
			/* spinlock is needed as reshape_progress may be
3612 3613
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3614
			 * Ofcourse reshape_progress could change after
3615 3616 3617 3618
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3619 3620
			spin_lock_irq(&conf->device_lock);
			disks = conf->raid_disks;
3621 3622 3623
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3624
				disks = conf->previous_raid_disks;
3625 3626
				previous = 1;
			} else {
3627 3628 3629
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3630 3631 3632 3633 3634
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3635 3636
			spin_unlock_irq(&conf->device_lock);
		}
3637 3638
		data_disks = disks - conf->max_degraded;

3639 3640
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3641
						  &dd_idx, NULL);
3642
		pr_debug("raid5: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3643 3644 3645
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3646 3647
		sh = get_active_stripe(conf, new_sector, previous,
				       (bi->bi_rw&RWA_MASK));
L
Linus Torvalds 已提交
3648
		if (sh) {
3649
			if (unlikely(conf->reshape_progress != MaxSector)) {
3650
				/* expansion might have moved on while waiting for a
3651 3652 3653 3654 3655 3656
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3657 3658 3659
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3660 3661 3662
				if ((mddev->delta_disks < 0
				     ? logical_sector >= conf->reshape_progress
				     : logical_sector < conf->reshape_progress)
3663
				    && previous)
3664 3665 3666 3667 3668 3669 3670 3671
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
					goto retry;
				}
			}
3672 3673 3674 3675 3676 3677 3678 3679 3680
			/* FIXME what if we get a false positive because these
			 * are being updated.
			 */
			if (logical_sector >= mddev->suspend_lo &&
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
				schedule();
				goto retry;
			}
3681 3682 3683 3684 3685

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3686 3687 3688 3689 3690 3691 3692 3693
				 * and wait a while
				 */
				raid5_unplug_device(mddev->queue);
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3694 3695
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
L
Linus Torvalds 已提交
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
3706
	remaining = raid5_dec_bi_phys_segments(bi);
3707 3708
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
3709

3710
		if ( rw == WRITE )
L
Linus Torvalds 已提交
3711
			md_write_end(mddev);
3712

3713
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
3714 3715 3716 3717
	}
	return 0;
}

D
Dan Williams 已提交
3718 3719
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

3720
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
3721
{
3722 3723 3724 3725 3726 3727 3728 3729 3730
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
L
Linus Torvalds 已提交
3731 3732
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
3733
	sector_t first_sector, last_sector;
3734 3735 3736
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
3737 3738 3739
	int i;
	int dd_idx;
	sector_t writepos, safepos, gap;
3740
	sector_t stripe_addr;
3741
	int reshape_sectors;
3742

3743 3744 3745 3746 3747 3748 3749 3750 3751
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
		} else if (mddev->delta_disks > 0 &&
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
3752
		sector_div(sector_nr, new_data_disks);
3753 3754 3755 3756
		if (sector_nr) {
			*skipped = 1;
			return sector_nr;
		}
3757 3758
	}

3759 3760 3761 3762 3763 3764 3765 3766 3767
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
	if (mddev->new_chunk > mddev->chunk_size)
		reshape_sectors = mddev->new_chunk / 512;
	else
		reshape_sectors = mddev->chunk_size / 512;

3768 3769 3770 3771 3772
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
3773 3774
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
3775
	 */
3776
	writepos = conf->reshape_progress;
3777
	sector_div(writepos, new_data_disks);
3778
	safepos = conf->reshape_safe;
3779
	sector_div(safepos, data_disks);
3780
	if (mddev->delta_disks < 0) {
3781 3782
		writepos -= reshape_sectors;
		safepos += reshape_sectors;
3783 3784
		gap = conf->reshape_safe - conf->reshape_progress;
	} else {
3785 3786
		writepos += reshape_sectors;
		safepos -= reshape_sectors;
3787 3788
		gap = conf->reshape_progress - conf->reshape_safe;
	}
3789

3790 3791 3792
	if ((mddev->delta_disks < 0
	     ? writepos < safepos
	     : writepos > safepos) ||
3793
	    gap > (new_data_disks)*3000*2 /*3Meg*/) {
3794 3795 3796
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
3797
		mddev->reshape_position = conf->reshape_progress;
3798
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3799
		md_wakeup_thread(mddev->thread);
3800
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3801 3802
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
3803
		conf->reshape_safe = mddev->reshape_position;
3804 3805 3806 3807
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
	}

3808 3809 3810 3811
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
3812 3813
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
3814 3815
		       != sector_nr);
	} else {
3816
		BUG_ON(writepos != sector_nr + reshape_sectors);
3817 3818
		stripe_addr = sector_nr;
	}
3819
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3820 3821
		int j;
		int skipped = 0;
3822
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
3823 3824 3825 3826 3827 3828 3829 3830 3831
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
3832
			if (conf->level == 6 &&
3833
			    j == sh->qd_idx)
3834
				continue;
3835
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
3836
			if (s < raid5_size(mddev, 0, 0)) {
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
				skipped = 1;
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
		if (!skipped) {
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
		release_stripe(sh);
	}
	spin_lock_irq(&conf->device_lock);
3851
	if (mddev->delta_disks < 0)
3852
		conf->reshape_progress -= reshape_sectors * new_data_disks;
3853
	else
3854
		conf->reshape_progress += reshape_sectors * new_data_disks;
3855 3856 3857 3858 3859 3860 3861
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
3862
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3863
				     1, &dd_idx, NULL);
3864
	last_sector =
3865
		raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
3866
					    *(new_data_disks) - 1),
3867
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
3868 3869
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
3870
	while (first_sector <= last_sector) {
3871
		sh = get_active_stripe(conf, first_sector, 1, 0);
3872 3873 3874 3875 3876
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
3877 3878 3879
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
3880
	sector_nr += reshape_sectors;
3881 3882 3883 3884
	if (sector_nr >= mddev->resync_max) {
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
3885
		mddev->reshape_position = conf->reshape_progress;
3886 3887 3888 3889 3890 3891
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
3892
		conf->reshape_safe = mddev->reshape_position;
3893 3894 3895
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
	}
3896
	return reshape_sectors;
3897 3898 3899 3900 3901 3902 3903
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	struct stripe_head *sh;
A
Andre Noll 已提交
3904
	sector_t max_sector = mddev->dev_sectors;
3905
	int sync_blocks;
3906 3907
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
3908

3909
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
3910 3911
		/* just being told to finish up .. nothing much to do */
		unplug_slaves(mddev);
3912

3913 3914 3915 3916
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
3917 3918 3919 3920

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
3921
		else /* completed sync */
3922 3923 3924
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
3925 3926
		return 0;
	}
3927

3928 3929
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
3930

3931 3932 3933 3934 3935 3936
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

3937
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
3938 3939 3940
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
3941
	if (mddev->degraded >= conf->max_degraded &&
3942
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
3943
		sector_t rv = mddev->dev_sectors - sector_nr;
3944
		*skipped = 1;
L
Linus Torvalds 已提交
3945 3946
		return rv;
	}
3947
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3948
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3949 3950 3951 3952 3953 3954
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
3955

N
NeilBrown 已提交
3956 3957 3958

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

3959
	sh = get_active_stripe(conf, sector_nr, 0, 1);
L
Linus Torvalds 已提交
3960
	if (sh == NULL) {
3961
		sh = get_active_stripe(conf, sector_nr, 0, 0);
L
Linus Torvalds 已提交
3962
		/* make sure we don't swamp the stripe cache if someone else
3963
		 * is trying to get access
L
Linus Torvalds 已提交
3964
		 */
3965
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3966
	}
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
	for (i=0; i<mddev->raid_disks; i++)
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
3978 3979 3980 3981
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

3982 3983 3984
	/* wait for any blocked device to be handled */
	while(unlikely(!handle_stripe(sh, NULL)))
		;
L
Linus Torvalds 已提交
3985 3986 3987 3988 3989
	release_stripe(sh);

	return STRIPE_SECTORS;
}

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4003
	int dd_idx;
4004 4005 4006 4007 4008 4009
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4010
	sector = raid5_compute_sector(conf, logical_sector,
4011
				      0, &dd_idx, NULL);
4012 4013 4014
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4015 4016 4017
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4018

4019
		if (scnt < raid5_bi_hw_segments(raid_bio))
4020 4021 4022
			/* already done this stripe */
			continue;

4023
		sh = get_active_stripe(conf, sector, 0, 1);
4024 4025 4026

		if (!sh) {
			/* failed to get a stripe - must wait */
4027
			raid5_set_bi_hw_segments(raid_bio, scnt);
4028 4029 4030 4031 4032
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4033 4034
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4035
			raid5_set_bi_hw_segments(raid_bio, scnt);
4036 4037 4038 4039
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4040 4041 4042 4043 4044
		handle_stripe(sh, NULL);
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4045
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4046
	spin_unlock_irq(&conf->device_lock);
4047 4048
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4049 4050 4051 4052 4053 4054 4055
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}



L
Linus Torvalds 已提交
4056 4057 4058 4059 4060 4061 4062
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4063
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4064 4065 4066 4067 4068
{
	struct stripe_head *sh;
	raid5_conf_t *conf = mddev_to_conf(mddev);
	int handled;

4069
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4070 4071 4072 4073 4074 4075

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4076
		struct bio *bio;
L
Linus Torvalds 已提交
4077

4078
		if (conf->seq_flush != conf->seq_write) {
4079
			int seq = conf->seq_flush;
4080
			spin_unlock_irq(&conf->device_lock);
4081
			bitmap_unplug(mddev->bitmap);
4082
			spin_lock_irq(&conf->device_lock);
4083 4084 4085 4086
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4097 4098
		sh = __get_priority_stripe(conf);

4099
		if (!sh)
L
Linus Torvalds 已提交
4100 4101 4102 4103
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4104
		handle_stripe(sh, conf->spare_page);
L
Linus Torvalds 已提交
4105 4106 4107 4108
		release_stripe(sh);

		spin_lock_irq(&conf->device_lock);
	}
4109
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4110 4111 4112

	spin_unlock_irq(&conf->device_lock);

4113
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4114 4115
	unplug_slaves(mddev);

4116
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4117 4118
}

4119
static ssize_t
4120
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4121
{
4122
	raid5_conf_t *conf = mddev_to_conf(mddev);
4123 4124 4125 4126
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4127 4128 4129
}

static ssize_t
4130
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4131
{
4132
	raid5_conf_t *conf = mddev_to_conf(mddev);
4133
	unsigned long new;
4134 4135
	int err;

4136 4137
	if (len >= PAGE_SIZE)
		return -EINVAL;
4138 4139
	if (!conf)
		return -ENODEV;
4140

4141
	if (strict_strtoul(page, 10, &new))
4142 4143 4144 4145 4146 4147 4148 4149 4150
		return -EINVAL;
	if (new <= 16 || new > 32768)
		return -EINVAL;
	while (new < conf->max_nr_stripes) {
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4151 4152 4153
	err = md_allow_write(mddev);
	if (err)
		return err;
4154 4155 4156 4157 4158 4159 4160
	while (new > conf->max_nr_stripes) {
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
	return len;
}
4161

4162 4163 4164 4165
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4166

4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
4181
	unsigned long new;
4182 4183 4184 4185 4186
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4187
	if (strict_strtoul(page, 10, &new))
4188
		return -EINVAL;
4189
	if (new > conf->max_nr_stripes)
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4201
static ssize_t
4202
stripe_cache_active_show(mddev_t *mddev, char *page)
4203
{
4204
	raid5_conf_t *conf = mddev_to_conf(mddev);
4205 4206 4207 4208
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4209 4210
}

4211 4212
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4213

4214
static struct attribute *raid5_attrs[] =  {
4215 4216
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4217
	&raid5_preread_bypass_threshold.attr,
4218 4219
	NULL,
};
4220 4221 4222
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4223 4224
};

4225 4226 4227 4228 4229 4230 4231
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);

	if (!sectors)
		sectors = mddev->dev_sectors;
4232 4233 4234 4235 4236 4237 4238
	if (!raid_disks) {
		/* size is defined by the smallest of previous and new size */
		if (conf->raid_disks < conf->previous_raid_disks)
			raid_disks = conf->raid_disks;
		else
			raid_disks = conf->previous_raid_disks;
	}
4239 4240

	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4241
	sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
4242 4243 4244
	return sectors * (raid_disks - conf->max_degraded);
}

N
NeilBrown 已提交
4245
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4246 4247 4248 4249 4250 4251
{
	raid5_conf_t *conf;
	int raid_disk, memory;
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4252 4253 4254
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4255
		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4256 4257
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4258
	}
N
NeilBrown 已提交
4259 4260 4261 4262
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4263
		printk(KERN_ERR "raid5: %s: layout %d not supported\n",
N
NeilBrown 已提交
4264 4265
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4266
	}
N
NeilBrown 已提交
4267 4268 4269 4270
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4271 4272
	}

N
NeilBrown 已提交
4273 4274 4275 4276
	if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
			mddev->new_chunk, mdname(mddev));
		return ERR_PTR(-EINVAL);
4277 4278
	}

N
NeilBrown 已提交
4279 4280
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4281
		goto abort;
N
NeilBrown 已提交
4282 4283 4284 4285 4286

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4287 4288 4289
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;

	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4290 4291 4292
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4293

L
Linus Torvalds 已提交
4294 4295
	conf->mddev = mddev;

4296
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4297 4298
		goto abort;

N
NeilBrown 已提交
4299
	if (mddev->new_level == 6) {
4300 4301 4302 4303
		conf->spare_page = alloc_page(GFP_KERNEL);
		if (!conf->spare_page)
			goto abort;
	}
L
Linus Torvalds 已提交
4304 4305 4306 4307
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
4308
	INIT_LIST_HEAD(&conf->hold_list);
L
Linus Torvalds 已提交
4309
	INIT_LIST_HEAD(&conf->delayed_list);
4310
	INIT_LIST_HEAD(&conf->bitmap_list);
L
Linus Torvalds 已提交
4311 4312 4313
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
4314
	atomic_set(&conf->active_aligned_reads, 0);
4315
	conf->bypass_threshold = BYPASS_THRESHOLD;
L
Linus Torvalds 已提交
4316

4317
	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4318

4319
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4320
		raid_disk = rdev->raid_disk;
4321
		if (raid_disk >= conf->raid_disks
L
Linus Torvalds 已提交
4322 4323 4324 4325 4326 4327
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4328
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4329 4330 4331 4332
			char b[BDEVNAME_SIZE];
			printk(KERN_INFO "raid5: device %s operational as raid"
				" disk %d\n", bdevname(rdev->bdev,b),
				raid_disk);
4333 4334 4335
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4336 4337
	}

N
NeilBrown 已提交
4338 4339
	conf->chunk_size = mddev->new_chunk;
	conf->level = mddev->new_level;
4340 4341 4342 4343
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4344
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4345
	conf->max_nr_stripes = NR_STRIPES;
4346
	conf->reshape_progress = mddev->reshape_position;
4347
	if (conf->reshape_progress != MaxSector) {
4348
		conf->prev_chunk = mddev->chunk_size;
4349 4350
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4351

N
NeilBrown 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
			"raid5: couldn't allocate %dkB for buffers\n", memory);
		goto abort;
	} else
		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
			memory, mdname(mddev));
L
Linus Torvalds 已提交
4361

N
NeilBrown 已提交
4362 4363 4364 4365 4366
	conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
	if (!conf->thread) {
		printk(KERN_ERR
		       "raid5: couldn't allocate thread for %s\n",
		       mdname(mddev));
4367 4368
		goto abort;
	}
N
NeilBrown 已提交
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397

	return conf;

 abort:
	if (conf) {
		shrink_stripes(conf);
		safe_put_page(conf->spare_page);
		kfree(conf->disks);
		kfree(conf->stripe_hashtbl);
		kfree(conf);
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
	int working_disks = 0;
	mdk_rdev_t *rdev;

	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4398
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4399

4400
		if (mddev->new_level != mddev->level) {
N
NeilBrown 已提交
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
			printk(KERN_ERR "raid5: %s: unsupported reshape "
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4412
		if (sector_div(here_new, (mddev->new_chunk>>9)*
N
NeilBrown 已提交
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
			       (mddev->raid_disks - max_degraded))) {
			printk(KERN_ERR "raid5: reshape_position not "
			       "on a stripe boundary\n");
			return -EINVAL;
		}
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
		sector_div(here_old, (mddev->chunk_size>>9)*
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
		if (here_new >= here_old) {
			/* Reading from the same stripe as writing to - bad */
			printk(KERN_ERR "raid5: reshape_position too early for "
			       "auto-recovery - aborting.\n");
			return -EINVAL;
		}
		printk(KERN_INFO "raid5: reshape will continue\n");
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
		BUG_ON(mddev->chunk_size != mddev->new_chunk);
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4437
	}
N
NeilBrown 已提交
4438

4439 4440 4441 4442 4443
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
	list_for_each_entry(rdev, &mddev->disks, same_set)
		if (rdev->raid_disk >= 0 &&
		    test_bit(In_sync, &rdev->flags))
			working_disks++;

	mddev->degraded = conf->raid_disks - working_disks;

4461
	if (mddev->degraded > conf->max_degraded) {
L
Linus Torvalds 已提交
4462 4463
		printk(KERN_ERR "raid5: not enough operational devices for %s"
			" (%d/%d failed)\n",
4464
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
4465 4466 4467
		goto abort;
	}

N
NeilBrown 已提交
4468 4469 4470 4471
	/* device size must be a multiple of chunk size */
	mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
	mddev->resync_max_sectors = mddev->dev_sectors;

4472
	if (mddev->degraded > 0 &&
L
Linus Torvalds 已提交
4473
	    mddev->recovery_cp != MaxSector) {
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
			       "raid5: starting dirty degraded array: %s"
			       "- data corruption possible.\n",
			       mdname(mddev));
		else {
			printk(KERN_ERR
			       "raid5: cannot start dirty degraded array for %s\n",
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
4485 4486 4487 4488
	}

	if (mddev->degraded == 0)
		printk("raid5: raid level %d set %s active with %d out of %d"
4489 4490 4491
		       " devices, algorithm %d\n", conf->level, mdname(mddev),
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
4492 4493 4494 4495
	else
		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
			" out of %d devices, algorithm %d\n", conf->level,
			mdname(mddev), mddev->raid_disks - mddev->degraded,
4496
			mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
4497 4498 4499

	print_raid5_conf(conf);

4500
	if (conf->reshape_progress != MaxSector) {
4501
		printk("...ok start reshape thread\n");
4502
		conf->reshape_safe = conf->reshape_progress;
4503 4504 4505 4506 4507 4508 4509 4510 4511
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
							"%s_reshape");
	}

L
Linus Torvalds 已提交
4512
	/* read-ahead size must cover two whole stripes, which is
4513
	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
L
Linus Torvalds 已提交
4514 4515
	 */
	{
4516 4517
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
4518
			(mddev->chunk_size / PAGE_SIZE);
L
Linus Torvalds 已提交
4519 4520 4521 4522 4523
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
	}

	/* Ok, everything is just fine now */
4524 4525 4526 4527
	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
		printk(KERN_WARNING
		       "raid5: failed to create sysfs attributes for %s\n",
		       mdname(mddev));
4528

N
NeilBrown 已提交
4529 4530
	mddev->queue->queue_lock = &conf->device_lock;

4531
	mddev->queue->unplug_fn = raid5_unplug_device;
4532
	mddev->queue->backing_dev_info.congested_data = mddev;
4533
	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4534

4535
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4536

4537 4538
	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);

L
Linus Torvalds 已提交
4539 4540
	return 0;
abort:
4541
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
4542
	mddev->thread = NULL;
L
Linus Torvalds 已提交
4543
	if (conf) {
N
NeilBrown 已提交
4544
		shrink_stripes(conf);
L
Linus Torvalds 已提交
4545
		print_raid5_conf(conf);
4546
		safe_put_page(conf->spare_page);
4547
		kfree(conf->disks);
4548
		kfree(conf->stripe_hashtbl);
L
Linus Torvalds 已提交
4549 4550 4551 4552 4553 4554 4555 4556 4557
		kfree(conf);
	}
	mddev->private = NULL;
	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
	return -EIO;
}



4558
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
4559 4560 4561 4562 4563 4564
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
	shrink_stripes(conf);
4565
	kfree(conf->stripe_hashtbl);
4566
	mddev->queue->backing_dev_info.congested_fn = NULL;
L
Linus Torvalds 已提交
4567
	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4568
	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4569
	kfree(conf->disks);
4570
	kfree(conf);
L
Linus Torvalds 已提交
4571 4572 4573 4574
	mddev->private = NULL;
	return 0;
}

4575
#ifdef DEBUG
4576
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
4577 4578 4579
{
	int i;

4580 4581 4582 4583 4584
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4585
	for (i = 0; i < sh->disks; i++) {
4586 4587
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
4588
	}
4589
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
4590 4591
}

4592
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
4593 4594
{
	struct stripe_head *sh;
4595
	struct hlist_node *hn;
L
Linus Torvalds 已提交
4596 4597 4598 4599
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
4600
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
4601 4602
			if (sh->raid_conf != conf)
				continue;
4603
			print_sh(seq, sh);
L
Linus Torvalds 已提交
4604 4605 4606 4607 4608 4609
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

4610
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
4611 4612 4613 4614 4615
{
	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
	int i;

	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4616
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
4617 4618 4619
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
4620
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
4621
	seq_printf (seq, "]");
4622
#ifdef DEBUG
4623 4624
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

	printk("RAID5 conf printout:\n");
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
4638 4639
	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
		 conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
4640 4641 4642 4643 4644 4645

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
		printk(" disk %d, o:%d, dev:%s\n",
4646
			i, !test_bit(Faulty, &tmp->rdev->flags),
L
Linus Torvalds 已提交
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
			bdevname(tmp->rdev->bdev,b));
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
4660
		    && !test_bit(Faulty, &tmp->rdev->flags)
4661 4662 4663
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4664
			mddev->degraded--;
4665
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
		}
	}
	print_raid5_conf(conf);
	return 0;
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
4682 4683 4684 4685
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

4686
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
4687 4688 4689 4690
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
4691 4692 4693 4694
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
4695 4696
		    mddev->degraded <= conf->max_degraded &&
		    number < conf->raid_disks) {
4697 4698 4699
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
4700
		p->rdev = NULL;
4701
		synchronize_rcu();
L
Linus Torvalds 已提交
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
4717
	int err = -EEXIST;
L
Linus Torvalds 已提交
4718 4719
	int disk;
	struct disk_info *p;
4720 4721
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
4722

4723
	if (mddev->degraded > conf->max_degraded)
L
Linus Torvalds 已提交
4724
		/* no point adding a device */
4725
		return -EINVAL;
L
Linus Torvalds 已提交
4726

4727 4728
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
4729 4730

	/*
4731 4732
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
4733
	 */
4734
	if (rdev->saved_raid_disk >= 0 &&
4735
	    rdev->saved_raid_disk >= first &&
4736 4737 4738
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
4739 4740
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
4741
		if ((p=conf->disks + disk)->rdev == NULL) {
4742
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
4743
			rdev->raid_disk = disk;
4744
			err = 0;
4745 4746
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
4747
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
4748 4749 4750
			break;
		}
	print_raid5_conf(conf);
4751
	return err;
L
Linus Torvalds 已提交
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4764 4765
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
4766 4767 4768
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
4769
	set_capacity(mddev->gendisk, mddev->array_sectors);
4770
	mddev->changed = 1;
A
Andre Noll 已提交
4771 4772
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
4773 4774
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
4775
	mddev->dev_sectors = sectors;
4776
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
4777 4778 4779
	return 0;
}

4780
#ifdef CONFIG_MD_RAID5_RESHAPE
4781
static int raid5_check_reshape(mddev_t *mddev)
4782 4783 4784
{
	raid5_conf_t *conf = mddev_to_conf(mddev);

4785 4786 4787 4788
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
	    mddev->new_chunk == mddev->chunk_size)
		return -EINVAL; /* nothing to do */
4789 4790 4791
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
	if (mddev->degraded > conf->max_degraded)
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
4806 4807 4808 4809 4810 4811 4812 4813 4814

	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
4815 4816
	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4817
		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4818 4819
		       (max(mddev->chunk_size, mddev->new_chunk)
			/ STRIPE_SIZE)*4);
4820 4821 4822
		return -ENOSPC;
	}

4823
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4824 4825 4826 4827 4828 4829 4830 4831
}

static int raid5_start_reshape(mddev_t *mddev)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);
	mdk_rdev_t *rdev;
	int spares = 0;
	int added_devices = 0;
4832
	unsigned long flags;
4833

4834
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4835 4836
		return -EBUSY;

4837
	list_for_each_entry(rdev, &mddev->disks, same_set)
4838 4839 4840
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags))
			spares++;
4841

4842
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4843 4844 4845 4846 4847
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
		printk(KERN_ERR "md: %s: array size must be reduced "
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

4859
	atomic_set(&conf->reshape_stripes, 0);
4860 4861
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
4862
	conf->raid_disks += mddev->delta_disks;
4863 4864 4865 4866
	conf->prev_chunk = conf->chunk_size;
	conf->chunk_size = mddev->new_chunk;
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
4867 4868 4869 4870 4871
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
4872
	conf->generation++;
4873 4874 4875 4876 4877
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
	 */
4878
	list_for_each_entry(rdev, &mddev->disks, same_set)
4879 4880
		if (rdev->raid_disk < 0 &&
		    !test_bit(Faulty, &rdev->flags)) {
4881
			if (raid5_add_disk(mddev, rdev) == 0) {
4882 4883 4884
				char nm[20];
				set_bit(In_sync, &rdev->flags);
				added_devices++;
4885
				rdev->recovery_offset = 0;
4886
				sprintf(nm, "rd%d", rdev->raid_disk);
4887 4888 4889 4890 4891 4892
				if (sysfs_create_link(&mddev->kobj,
						      &rdev->kobj, nm))
					printk(KERN_WARNING
					       "raid5: failed to create "
					       " link %s for %s\n",
					       nm, mdname(mddev));
4893 4894 4895 4896
			} else
				break;
		}

4897 4898 4899 4900 4901 4902
	if (mddev->delta_disks > 0) {
		spin_lock_irqsave(&conf->device_lock, flags);
		mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
4903
	mddev->raid_disks = conf->raid_disks;
4904
	mddev->reshape_position = 0;
4905
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4906

4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
						"%s_reshape");
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4917
		conf->reshape_progress = MaxSector;
4918 4919 4920 4921 4922 4923 4924 4925 4926
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}
#endif

4927 4928 4929
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
4930 4931 4932
static void end_reshape(raid5_conf_t *conf)
{

4933 4934 4935
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
4936
		conf->previous_raid_disks = conf->raid_disks;
4937
		conf->reshape_progress = MaxSector;
4938
		spin_unlock_irq(&conf->device_lock);
4939 4940 4941 4942 4943

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
		{
4944 4945 4946
			int data_disks = conf->raid_disks - conf->max_degraded;
			int stripe = data_disks * (conf->chunk_size
						   / PAGE_SIZE);
4947 4948 4949
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
4950 4951 4952
	}
}

4953 4954 4955
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
4956 4957 4958
static void raid5_finish_reshape(mddev_t *mddev)
{
	struct block_device *bdev;
4959
	raid5_conf_t *conf = mddev_to_conf(mddev);
4960 4961 4962

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
			mddev->changed = 1;

			bdev = bdget_disk(mddev->gendisk, 0);
			if (bdev) {
				mutex_lock(&bdev->bd_inode->i_mutex);
				i_size_write(bdev->bd_inode,
					     (loff_t)mddev->array_sectors << 9);
				mutex_unlock(&bdev->bd_inode->i_mutex);
				bdput(bdev);
			}
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
			     d++)
				raid5_remove_disk(mddev, d);
4988
		}
4989 4990
		mddev->layout = conf->algorithm;
		mddev->chunk_size = conf->chunk_size;
4991 4992
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
4993 4994 4995
	}
}

4996 4997 4998 4999 5000
static void raid5_quiesce(mddev_t *mddev, int state)
{
	raid5_conf_t *conf = mddev_to_conf(mddev);

	switch(state) {
5001 5002 5003 5004
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5005 5006 5007 5008
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 1;
		wait_event_lock_irq(conf->wait_for_stripe,
5009 5010
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5011 5012 5013 5014 5015 5016 5017 5018
				    conf->device_lock, /* nothing */);
		spin_unlock_irq(&conf->device_lock);
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5019
		wake_up(&conf->wait_for_overlap);
5020 5021 5022 5023
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5024

5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052

static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
	mddev->new_chunk = chunksect << 9;

	return setup_conf(mddev);
}

5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5086

5087 5088
static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
{
5089 5090 5091 5092
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
	 */
	raid5_conf_t *conf = mddev_to_conf(mddev);

	if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
		return -EINVAL;
	if (new_chunk > 0) {
		if (new_chunk & (new_chunk-1))
			/* not a power of 2 */
			return -EINVAL;
		if (new_chunk < PAGE_SIZE)
			return -EINVAL;
		if (mddev->array_sectors & ((new_chunk>>9)-1))
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5111
	if (mddev->raid_disks == 2) {
5112

5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
		if (new_layout >= 0) {
			conf->algorithm = new_layout;
			mddev->layout = mddev->new_layout = new_layout;
		}
		if (new_chunk > 0) {
			conf->chunk_size = new_chunk;
			mddev->chunk_size = mddev->new_chunk = new_chunk;
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
	} else {
		if (new_layout >= 0)
			mddev->new_layout = new_layout;
		if (new_chunk > 0)
			mddev->new_chunk = new_chunk;
5128
	}
5129 5130 5131 5132 5133 5134 5135
	return 0;
}

static int raid6_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
{
	if (new_layout >= 0 && !algorithm_valid_raid6(new_layout))
		return -EINVAL;
5136
	if (new_chunk > 0) {
5137 5138 5139 5140 5141 5142 5143 5144
		if (new_chunk & (new_chunk-1))
			/* not a power of 2 */
			return -EINVAL;
		if (new_chunk < PAGE_SIZE)
			return -EINVAL;
		if (mddev->array_sectors & ((new_chunk>>9)-1))
			/* not factor of array size */
			return -EINVAL;
5145
	}
5146 5147 5148 5149 5150 5151 5152 5153

	/* They look valid */

	if (new_layout >= 0)
		mddev->new_layout = new_layout;
	if (new_chunk > 0)
		mddev->new_chunk = new_chunk;

5154 5155 5156
	return 0;
}

5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
	 *  raid0 - if all devices are the same - make it a raid4 layout
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 *
	 * For now, just do raid1
	 */

	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5170 5171 5172 5173 5174
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5175 5176
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5177 5178 5179 5180 5181

	return ERR_PTR(-EINVAL);
}


5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5246
	.size		= raid5_size,
5247 5248 5249
#ifdef CONFIG_MD_RAID5_RESHAPE
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5250
	.finish_reshape = raid5_finish_reshape,
5251
#endif
5252
	.quiesce	= raid5_quiesce,
5253
	.takeover	= raid6_takeover,
5254
	.reconfig	= raid6_reconfig,
5255
};
5256
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5257 5258
{
	.name		= "raid5",
5259
	.level		= 5,
L
Linus Torvalds 已提交
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5271
	.size		= raid5_size,
5272
#ifdef CONFIG_MD_RAID5_RESHAPE
5273 5274
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5275
	.finish_reshape = raid5_finish_reshape,
5276
#endif
5277
	.quiesce	= raid5_quiesce,
5278
	.takeover	= raid5_takeover,
5279
	.reconfig	= raid5_reconfig,
L
Linus Torvalds 已提交
5280 5281
};

5282
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5283
{
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5297
	.size		= raid5_size,
5298 5299 5300
#ifdef CONFIG_MD_RAID5_RESHAPE
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5301
	.finish_reshape = raid5_finish_reshape,
5302
#endif
5303 5304 5305 5306 5307
	.quiesce	= raid5_quiesce,
};

static int __init raid5_init(void)
{
5308
	register_md_personality(&raid6_personality);
5309 5310 5311
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5312 5313
}

5314
static void raid5_exit(void)
L
Linus Torvalds 已提交
5315
{
5316
	unregister_md_personality(&raid6_personality);
5317 5318
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5319 5320 5321 5322 5323 5324
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5325 5326
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5327 5328
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5329 5330 5331 5332 5333 5334 5335
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");