raid5.c 167.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
 * conf->bm_write is the number of the last batch successfully written.
 * conf->bm_flush is the number of the last batch that was closed to
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
 * the number of the batch it will be in. This is bm_flush+1.
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include <linux/slab.h>
54
#include "md.h"
55
#include "raid5.h"
56
#include "raid0.h"
57
#include "bitmap.h"
58

L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
68
#define BYPASS_THRESHOLD	1
69
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
70 71
#define HASH_MASK		(NR_HASH - 1)

72
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

94
#ifdef DEBUG
L
Linus Torvalds 已提交
95 96 97 98
#define inline
#define __inline__
#endif

99 100
#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))

101
/*
102 103
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 105 106
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
107
	return bio->bi_phys_segments & 0xffff;
108 109 110 111
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
112
	return (bio->bi_phys_segments >> 16) & 0xffff;
113 114 115 116 117 118 119 120 121 122 123 124 125
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
126
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 128 129 130 131
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
132
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 134
}

135 136 137
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
138 139 140 141
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
142 143 144 145 146
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
147 148 149 150 151
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
152

153 154 155 156 157
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
158 159
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
160
{
161
	int slot = *count;
162

163
	if (sh->ddf_layout)
164
		(*count)++;
165
	if (idx == sh->pd_idx)
166
		return syndrome_disks;
167
	if (idx == sh->qd_idx)
168
		return syndrome_disks + 1;
169
	if (!sh->ddf_layout)
170
		(*count)++;
171 172 173
	return slot;
}

174 175 176 177 178 179 180 181
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
182
		bio_endio(bi, 0);
183 184 185 186
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
187 188
static void print_raid5_conf (raid5_conf_t *conf);

189 190 191 192 193 194 195
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

196
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
197 198
{
	if (atomic_dec_and_test(&sh->count)) {
199 200
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
201
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
202
			if (test_bit(STRIPE_DELAYED, &sh->state)) {
L
Linus Torvalds 已提交
203
				list_add_tail(&sh->lru, &conf->delayed_list);
204
				plugger_set_plug(&conf->plug);
205
			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206
				   sh->bm_seq - conf->seq_write > 0) {
207
				list_add_tail(&sh->lru, &conf->bitmap_list);
208
				plugger_set_plug(&conf->plug);
209
			} else {
210
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
211
				list_add_tail(&sh->lru, &conf->handle_list);
212
			}
L
Linus Torvalds 已提交
213 214
			md_wakeup_thread(conf->mddev->thread);
		} else {
215
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
216 217 218 219 220 221
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
222 223
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
224
				wake_up(&conf->wait_for_stripe);
225 226
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
227
			}
L
Linus Torvalds 已提交
228 229 230
		}
	}
}
231

L
Linus Torvalds 已提交
232 233 234 235
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
236

L
Linus Torvalds 已提交
237 238 239 240 241
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

242
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
243
{
244 245
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
246

247
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
248 249
}

250
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
251
{
252
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
253

254 255
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
256 257

	CHECK_DEVLOCK();
258
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

280
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
281 282 283
{
	struct page *p;
	int i;
284
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
285

286
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
287 288 289 290
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
291
		put_page(p);
L
Linus Torvalds 已提交
292 293 294
	}
}

295
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
296 297
{
	int i;
298
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
299

300
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
301 302 303 304 305 306 307 308 309 310
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

311
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 313
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
314

315
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
316 317
{
	raid5_conf_t *conf = sh->raid_conf;
318
	int i;
L
Linus Torvalds 已提交
319

320 321
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322
	BUG_ON(stripe_operations_active(sh));
323

L
Linus Torvalds 已提交
324
	CHECK_DEVLOCK();
325
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
326 327 328
		(unsigned long long)sh->sector);

	remove_hash(sh);
329

330
	sh->generation = conf->generation - previous;
331
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
332
	sh->sector = sector;
333
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
334 335
	sh->state = 0;

336 337

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
338 339
		struct r5dev *dev = &sh->dev[i];

340
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
341
		    test_bit(R5_LOCKED, &dev->flags)) {
342
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
343
			       (unsigned long long)sh->sector, i, dev->toread,
344
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
345 346 347 348
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
349
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
350 351 352 353
	}
	insert_hash(conf, sh);
}

354 355
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
356 357
{
	struct stripe_head *sh;
358
	struct hlist_node *hn;
L
Linus Torvalds 已提交
359 360

	CHECK_DEVLOCK();
361
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
364
			return sh;
365
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
366 367 368
	return NULL;
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
static int has_failed(raid5_conf_t *conf)
{
	int degraded;
	int i;
	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

436 437
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
438
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
439 440 441
{
	struct stripe_head *sh;

442
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
443 444 445 446

	spin_lock_irq(&conf->device_lock);

	do {
447
		wait_event_lock_irq(conf->wait_for_stripe,
448
				    conf->quiesce == 0 || noquiesce,
449
				    conf->device_lock, /* nothing */);
450
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
451 452 453 454 455 456 457 458 459
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
460 461
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
462 463
						     || !conf->inactive_blocked),
						    conf->device_lock,
J
Jens Axboe 已提交
464
						    md_raid5_kick_device(conf));
L
Linus Torvalds 已提交
465 466
				conf->inactive_blocked = 0;
			} else
467
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
468 469
		} else {
			if (atomic_read(&sh->count)) {
470 471
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
472 473 474
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
475 476
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
477 478
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
479 480 481 482 483 484 485 486 487 488 489
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

490 491 492 493
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
494

495
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
496 497 498 499 500 501 502 503 504 505
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
T
Tejun Heo 已提交
506 507 508 509 510 511
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
		if (rw == WRITE)
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
533
			if (s->syncing || s->expanding || s->expanded)
534 535
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
536 537
			set_bit(STRIPE_IO_STARTED, &sh->state);

538 539
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
540
				__func__, (unsigned long long)sh->sector,
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
			if (rw == WRITE &&
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
			if (rw == WRITE)
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
577
	struct async_submit_ctl submit;
D
Dan Williams 已提交
578
	enum async_tx_flags flags = 0;
579 580 581 582 583

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
584

D
Dan Williams 已提交
585 586 587 588
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	bio_for_each_segment(bvl, bio, i) {
		int len = bio_iovec_idx(bio, i)->bv_len;
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
			b_offset += bio_iovec_idx(bio, i)->bv_offset;
			bio_page = bio_iovec_idx(bio, i)->bv_page;
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
610
						  b_offset, clen, &submit);
611 612
			else
				tx = async_memcpy(bio_page, page, b_offset,
613
						  page_offset, clen, &submit);
614
		}
615 616 617
		/* chain the operations */
		submit.depend_tx = tx;

618 619 620 621 622 623 624 625 626 627 628 629 630
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
631
	int i;
632

633
	pr_debug("%s: stripe %llu\n", __func__,
634 635 636
		(unsigned long long)sh->sector);

	/* clear completed biofills */
637
	spin_lock_irq(&conf->device_lock);
638 639 640 641
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
642 643
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
644
		 * !STRIPE_BIOFILL_RUN
645 646
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
647 648 649 650 651 652 653 654
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
655
				if (!raid5_dec_bi_phys_segments(rbi)) {
656 657 658 659 660 661 662
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
663 664
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
665 666 667

	return_io(return_bi);

668
	set_bit(STRIPE_HANDLE, &sh->state);
669 670 671 672 673 674 675
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
676
	struct async_submit_ctl submit;
677 678
	int i;

679
	pr_debug("%s: stripe %llu\n", __func__,
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
700 701
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
702 703
}

704
static void mark_target_uptodate(struct stripe_head *sh, int target)
705
{
706
	struct r5dev *tgt;
707

708 709
	if (target < 0)
		return;
710

711
	tgt = &sh->dev[target];
712 713 714
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
715 716
}

717
static void ops_complete_compute(void *stripe_head_ref)
718 719 720
{
	struct stripe_head *sh = stripe_head_ref;

721
	pr_debug("%s: stripe %llu\n", __func__,
722 723
		(unsigned long long)sh->sector);

724
	/* mark the computed target(s) as uptodate */
725
	mark_target_uptodate(sh, sh->ops.target);
726
	mark_target_uptodate(sh, sh->ops.target2);
727

728 729 730
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
731 732 733 734
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

735 736 737 738 739 740 741 742 743
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
744 745
{
	int disks = sh->disks;
746
	struct page **xor_srcs = percpu->scribble;
747 748 749 750 751
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
752
	struct async_submit_ctl submit;
753 754 755
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
756
		__func__, (unsigned long long)sh->sector, target);
757 758 759 760 761 762 763 764
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
765
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
766
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
767
	if (unlikely(count == 1))
768
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
769
	else
770
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
771 772 773 774

	return tx;
}

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
793
		srcs[i] = NULL;
794 795 796 797 798 799 800 801 802 803

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

804
	return syndrome_disks;
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
825
	else
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
842 843
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
844 845 846 847 848 849 850 851 852 853 854
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
855 856
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
857 858 859
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
860 861 862 863

	return tx;
}

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

885
	/* we need to open-code set_syndrome_sources to handle the
886 887 888
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
889
		blocks[i] = NULL;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
916 917 918
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
919
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
939 940 941 942
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
943 944 945 946
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
947 948 949
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
950 951 952 953
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
954 955 956 957 958 959 960 961 962 963 964 965 966 967
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
968 969 970 971
	}
}


972 973 974 975
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

976
	pr_debug("%s: stripe %llu\n", __func__,
977 978 979 980
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
981 982
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
983 984
{
	int disks = sh->disks;
985
	struct page **xor_srcs = percpu->scribble;
986
	int count = 0, pd_idx = sh->pd_idx, i;
987
	struct async_submit_ctl submit;
988 989 990 991

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

992
	pr_debug("%s: stripe %llu\n", __func__,
993 994 995 996 997
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
998
		if (test_bit(R5_Wantdrain, &dev->flags))
999 1000 1001
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1002
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1003
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1004
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1005 1006 1007 1008 1009

	return tx;
}

static struct dma_async_tx_descriptor *
1010
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1011 1012
{
	int disks = sh->disks;
1013
	int i;
1014

1015
	pr_debug("%s: stripe %llu\n", __func__,
1016 1017 1018 1019 1020 1021
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1022
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
			struct bio *wbi;

			spin_lock(&sh->lock);
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
			spin_unlock(&sh->lock);

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1034 1035
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1046
static void ops_complete_reconstruct(void *stripe_head_ref)
1047 1048
{
	struct stripe_head *sh = stripe_head_ref;
1049 1050 1051 1052
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
T
Tejun Heo 已提交
1053
	bool fua = false;
1054

1055
	pr_debug("%s: stripe %llu\n", __func__,
1056 1057
		(unsigned long long)sh->sector);

T
Tejun Heo 已提交
1058 1059 1060
	for (i = disks; i--; )
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);

1061 1062
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1063

T
Tejun Heo 已提交
1064
		if (dev->written || i == pd_idx || i == qd_idx) {
1065
			set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1066 1067 1068
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
		}
1069 1070
	}

1071 1072 1073 1074 1075 1076 1077 1078
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1079 1080 1081 1082 1083 1084

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1085 1086
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1087 1088
{
	int disks = sh->disks;
1089
	struct page **xor_srcs = percpu->scribble;
1090
	struct async_submit_ctl submit;
1091 1092
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1093
	int prexor = 0;
1094 1095
	unsigned long flags;

1096
	pr_debug("%s: stripe %llu\n", __func__,
1097 1098 1099 1100 1101
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1102 1103
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1124
	flags = ASYNC_TX_ACK |
1125 1126 1127 1128
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1129
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1130
			  to_addr_conv(sh, percpu));
1131 1132 1133 1134
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1154 1155 1156 1157 1158 1159
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1160
	pr_debug("%s: stripe %llu\n", __func__,
1161 1162
		(unsigned long long)sh->sector);

1163
	sh->check_state = check_state_check_result;
1164 1165 1166 1167
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1168
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1169 1170
{
	int disks = sh->disks;
1171 1172 1173
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1174
	struct page **xor_srcs = percpu->scribble;
1175
	struct dma_async_tx_descriptor *tx;
1176
	struct async_submit_ctl submit;
1177 1178
	int count;
	int i;
1179

1180
	pr_debug("%s: stripe %llu\n", __func__,
1181 1182
		(unsigned long long)sh->sector);

1183 1184 1185
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1186
	for (i = disks; i--; ) {
1187 1188 1189
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1190 1191
	}

1192 1193
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1194
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1195
			   &sh->ops.zero_sum_result, &submit);
1196 1197

	atomic_inc(&sh->count);
1198 1199
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1200 1201
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1214 1215

	atomic_inc(&sh->count);
1216 1217 1218 1219
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1220 1221
}

1222
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1223 1224 1225
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1226
	raid5_conf_t *conf = sh->raid_conf;
1227
	int level = conf->level;
1228 1229
	struct raid5_percpu *percpu;
	unsigned long cpu;
1230

1231 1232
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1233
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1234 1235 1236 1237
		ops_run_biofill(sh);
		overlap_clear++;
	}

1238
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1249 1250
			async_tx_ack(tx);
	}
1251

1252
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1253
		tx = ops_run_prexor(sh, percpu, tx);
1254

1255
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1256
		tx = ops_run_biodrain(sh, tx);
1257 1258 1259
		overlap_clear++;
	}

1260 1261 1262 1263 1264 1265
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1266

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1277 1278 1279 1280 1281 1282 1283

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1284
	put_cpu();
1285 1286
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1317
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1318 1319
{
	struct stripe_head *sh;
1320 1321 1322
	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
	if (!sh)
		return 0;
1323
	memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1324 1325
	sh->raid_conf = conf;
	spin_lock_init(&sh->lock);
1326 1327 1328
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1329

1330 1331
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1345
	struct kmem_cache *sc;
1346
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1347

1348 1349 1350 1351 1352 1353 1354 1355
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1356 1357
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1358
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1359
			       0, 0, NULL);
L
Linus Torvalds 已提交
1360 1361 1362
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1363
	conf->pool_size = devs;
1364
	while (num--)
1365
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1366 1367 1368
			return 1;
	return 0;
}
1369

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1420
	unsigned long cpu;
1421
	int err;
1422
	struct kmem_cache *sc;
1423 1424 1425 1426 1427
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1428 1429 1430
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1431

1432 1433 1434
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1435
			       0, 0, NULL);
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
		if (!nsh)
			break;

		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));

		nsh->raid_conf = conf;
		spin_lock_init(&nsh->lock);
1448 1449 1450
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
J
Jens Axboe 已提交
1473
				    blk_flush_plug(current));
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1488
	 * conf->disks and the scribble region
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1518 1519 1520 1521
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1522

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1539

1540
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1541 1542 1543
{
	struct stripe_head *sh;

1544 1545 1546 1547 1548
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1549
	BUG_ON(atomic_read(&sh->count));
1550
	shrink_buffers(sh);
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1561 1562
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1563 1564 1565
	conf->slab_cache = NULL;
}

1566
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1567
{
1568
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1569
	raid5_conf_t *conf = sh->raid_conf;
1570
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1571
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1572 1573
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1574 1575 1576 1577 1578 1579


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1580 1581
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1582 1583 1584
		uptodate);
	if (i == disks) {
		BUG();
1585
		return;
L
Linus Torvalds 已提交
1586 1587 1588 1589
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1590
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1591
			rdev = conf->disks[i].rdev;
1592
			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1593 1594 1595 1596 1597
				  " (%lu sectors at %llu on %s)\n",
				  mdname(conf->mddev), STRIPE_SECTORS,
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdevname(rdev->bdev, b));
1598 1599 1600
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1601 1602
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1603
	} else {
1604
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1605
		int retry = 0;
1606 1607
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1608
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1609
		atomic_inc(&rdev->read_errors);
1610
		if (conf->mddev->degraded >= conf->max_degraded)
1611
			printk_rl(KERN_WARNING
1612
				  "md/raid:%s: read error not correctable "
1613 1614 1615 1616 1617
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1618
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1619
			/* Oh, no!!! */
1620
			printk_rl(KERN_WARNING
1621
				  "md/raid:%s: read error NOT corrected!! "
1622 1623 1624 1625 1626
				  "(sector %llu on %s).\n",
				  mdname(conf->mddev),
				  (unsigned long long)(sh->sector
						       + rdev->data_offset),
				  bdn);
1627
		else if (atomic_read(&rdev->read_errors)
1628
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1629
			printk(KERN_WARNING
1630
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1631
			       mdname(conf->mddev), bdn);
1632 1633 1634 1635 1636
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1637 1638
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1639
			md_error(conf->mddev, rdev);
1640
		}
L
Linus Torvalds 已提交
1641 1642 1643 1644 1645 1646 1647
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1648
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1649
{
1650
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1651
	raid5_conf_t *conf = sh->raid_conf;
1652
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1653 1654 1655 1656 1657 1658
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1659
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1660 1661 1662 1663
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1664
		return;
L
Linus Torvalds 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1674
	release_stripe(sh);
L
Linus Torvalds 已提交
1675 1676 1677
}


1678
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1679
	
1680
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1696
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1697 1698 1699 1700 1701
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
1702
	raid5_conf_t *conf = mddev->private;
1703
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1704

1705
	if (!test_bit(Faulty, &rdev->flags)) {
1706
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1707 1708 1709
		if (test_and_clear_bit(In_sync, &rdev->flags)) {
			unsigned long flags;
			spin_lock_irqsave(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1710
			mddev->degraded++;
1711
			spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
1712 1713 1714
			/*
			 * if recovery was running, make sure it aborts.
			 */
1715
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1716
		}
1717
		set_bit(Faulty, &rdev->flags);
1718
		printk(KERN_ALERT
1719 1720 1721 1722 1723 1724
		       "md/raid:%s: Disk failure on %s, disabling device.\n"
		       "md/raid:%s: Operation continuing on %d devices.\n",
		       mdname(mddev),
		       bdevname(rdev->bdev, b),
		       mdname(mddev),
		       conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
1725
	}
1726
}
L
Linus Torvalds 已提交
1727 1728 1729 1730 1731

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1732
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1733 1734
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1735
{
N
NeilBrown 已提交
1736
	sector_t stripe, stripe2;
1737
	sector_t chunk_number;
L
Linus Torvalds 已提交
1738
	unsigned int chunk_offset;
1739
	int pd_idx, qd_idx;
1740
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1741
	sector_t new_sector;
1742 1743
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1744 1745
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1746 1747 1748
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1761 1762
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1763
	stripe2 = stripe;
L
Linus Torvalds 已提交
1764 1765 1766
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1767
	pd_idx = qd_idx = ~0;
1768 1769
	switch(conf->level) {
	case 4:
1770
		pd_idx = data_disks;
1771 1772
		break;
	case 5:
1773
		switch (algorithm) {
L
Linus Torvalds 已提交
1774
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1775
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1776
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1777 1778 1779
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1780
			pd_idx = sector_div(stripe2, raid_disks);
1781
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1782 1783 1784
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1785
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1786
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1787 1788
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1789
			pd_idx = sector_div(stripe2, raid_disks);
1790
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1791
			break;
1792 1793 1794 1795 1796 1797 1798
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1799
		default:
1800
			BUG();
1801 1802 1803 1804
		}
		break;
	case 6:

1805
		switch (algorithm) {
1806
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1807
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1808 1809
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1810
				(*dd_idx)++;	/* Q D D D P */
1811 1812
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1813 1814 1815
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1816
			pd_idx = sector_div(stripe2, raid_disks);
1817 1818
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1819
				(*dd_idx)++;	/* Q D D D P */
1820 1821
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1822 1823 1824
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1825
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1826 1827
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1828 1829
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1830
			pd_idx = sector_div(stripe2, raid_disks);
1831 1832
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1833
			break;
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
1849
			pd_idx = sector_div(stripe2, raid_disks);
1850 1851 1852 1853 1854 1855
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1856
			ddf_layout = 1;
1857 1858 1859 1860 1861 1862 1863
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
1864 1865
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1866 1867 1868 1869 1870 1871
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1872
			ddf_layout = 1;
1873 1874 1875 1876
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
1877
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1878 1879
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1880
			ddf_layout = 1;
1881 1882 1883 1884
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
1885
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1886 1887 1888 1889 1890 1891
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
1892
			pd_idx = sector_div(stripe2, raid_disks-1);
1893 1894 1895 1896 1897 1898
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
1899
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1900 1901 1902 1903 1904
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
1905
			pd_idx = sector_div(stripe2, raid_disks-1);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

1916
		default:
1917
			BUG();
1918 1919
		}
		break;
L
Linus Torvalds 已提交
1920 1921
	}

1922 1923 1924
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1925
		sh->ddf_layout = ddf_layout;
1926
	}
L
Linus Torvalds 已提交
1927 1928 1929 1930 1931 1932 1933 1934
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1935
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1936 1937
{
	raid5_conf_t *conf = sh->raid_conf;
1938 1939
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1940
	sector_t new_sector = sh->sector, check;
1941 1942
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1943 1944
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1945 1946
	sector_t stripe;
	int chunk_offset;
1947 1948
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1949
	sector_t r_sector;
1950
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1951

1952

L
Linus Torvalds 已提交
1953 1954 1955
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

1956 1957 1958 1959 1960
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1961
		switch (algorithm) {
L
Linus Torvalds 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1973 1974 1975 1976 1977
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1978
		default:
1979
			BUG();
1980 1981 1982
		}
		break;
	case 6:
1983
		if (i == sh->qd_idx)
1984
			return 0; /* It is the Q disk */
1985
		switch (algorithm) {
1986 1987
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1988 1989 1990 1991
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2006 2007 2008 2009 2010 2011
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2012
			/* Like left_symmetric, but P is before Q */
2013 2014
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2015 2016 2017 2018 2019 2020
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2036
		default:
2037
			BUG();
2038 2039
		}
		break;
L
Linus Torvalds 已提交
2040 2041 2042
	}

	chunk_number = stripe * data_disks + i;
2043
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2044

2045
	check = raid5_compute_sector(conf, r_sector,
2046
				     previous, &dummy1, &sh2);
2047 2048
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2049 2050
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2051 2052 2053 2054 2055 2056
		return 0;
	}
	return r_sector;
}


2057
static void
2058
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2059
			 int rcw, int expand)
2060 2061
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2062 2063
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
2064 2065 2066 2067 2068 2069 2070

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2071 2072 2073 2074
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2075

2076
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2077 2078 2079 2080 2081 2082

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2083
				set_bit(R5_Wantdrain, &dev->flags);
2084 2085
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2086
				s->locked++;
2087 2088
			}
		}
2089
		if (s->locked + conf->max_degraded == disks)
2090
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2091
				atomic_inc(&conf->pending_full_writes);
2092
	} else {
2093
		BUG_ON(level == 6);
2094 2095 2096
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2097
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2098 2099
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2100
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2101 2102 2103 2104 2105 2106 2107 2108

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2109 2110
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2111 2112
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2113
				s->locked++;
2114 2115 2116 2117
			}
		}
	}

2118
	/* keep the parity disk(s) locked while asynchronous operations
2119 2120 2121 2122
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2123
	s->locked++;
2124

2125 2126 2127 2128 2129 2130 2131 2132 2133
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2134
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2135
		__func__, (unsigned long long)sh->sector,
2136
		s->locked, s->ops_request);
2137
}
2138

L
Linus Torvalds 已提交
2139 2140
/*
 * Each stripe/dev can have one or more bion attached.
2141
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2142 2143 2144 2145 2146 2147
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2148
	int firstwrite=0;
L
Linus Torvalds 已提交
2149

2150
	pr_debug("adding bh b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2151 2152 2153 2154 2155 2156
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock(&sh->lock);
	spin_lock_irq(&conf->device_lock);
2157
	if (forwrite) {
L
Linus Torvalds 已提交
2158
		bip = &sh->dev[dd_idx].towrite;
2159 2160 2161
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2171
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2172 2173 2174
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2175
	bi->bi_phys_segments++;
L
Linus Torvalds 已提交
2176 2177 2178
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);

2179
	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
L
Linus Torvalds 已提交
2180 2181 2182
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

2183 2184 2185
	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
2186
		sh->bm_seq = conf->seq_flush+1;
2187 2188 2189
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}

L
Linus Torvalds 已提交
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	spin_unlock(&sh->lock);
	return 0;
}

2212 2213
static void end_reshape(raid5_conf_t *conf);

2214 2215
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2216
{
2217
	int sectors_per_chunk =
2218
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2219
	int dd_idx;
2220
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2221
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2222

2223 2224
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2225
			     *sectors_per_chunk + chunk_offset,
2226
			     previous,
2227
			     &dd_idx, sh);
2228 2229
}

2230
static void
2231
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2265
			if (!raid5_dec_bi_phys_segments(bi)) {
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2280
			if (!raid5_dec_bi_phys_segments(bi)) {
2281 2282 2283 2284 2285 2286 2287
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2288 2289 2290 2291 2292 2293
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2304
				if (!raid5_dec_bi_phys_segments(bi)) {
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2317 2318 2319
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2320 2321
}

2322 2323 2324 2325 2326
/* fetch_block5 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill5 to continue
2327
 */
2328 2329
static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
			int disk_idx, int disks)
2330 2331 2332 2333 2334 2335
{
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *failed_dev = &sh->dev[s->failed_num];

	/* is the data in this block needed, and can we get it? */
	if (!test_bit(R5_LOCKED, &dev->flags) &&
2336 2337 2338 2339 2340 2341 2342 2343
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed &&
	      (failed_dev->toread ||
	       (failed_dev->towrite &&
		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2344 2345
		/* We would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
2346 2347
		 */
		if ((s->uptodate == disks - 1) &&
2348
		    (s->failed && disk_idx == s->failed_num)) {
2349 2350
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2351 2352
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
2353
			sh->ops.target2 = -1;
2354 2355
			s->req_compute = 1;
			/* Careful: from this point on 'uptodate' is in the eye
2356
			 * of raid_run_ops which services 'compute' operations
2357 2358 2359 2360 2361
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
			s->uptodate++;
2362
			return 1; /* uptodate + compute == disks */
2363
		} else if (test_bit(R5_Insync, &dev->flags)) {
2364 2365 2366 2367 2368 2369 2370 2371
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
				s->syncing);
		}
	}

2372
	return 0;
2373 2374
}

2375 2376 2377 2378
/**
 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill5(struct stripe_head *sh,
2379 2380 2381
			struct stripe_head_state *s, int disks)
{
	int i;
2382 2383 2384 2385 2386

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
2387
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2388
	    !sh->reconstruct_state)
2389
		for (i = disks; i--; )
2390
			if (fetch_block5(sh, s, i, disks))
2391
				break;
2392 2393 2394
	set_bit(STRIPE_HANDLE, &sh->state);
}

2395 2396 2397 2398 2399 2400 2401 2402
/* fetch_block6 - checks the given member device to see if its data needs
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
 * 0 to tell the loop in handle_stripe_fill6 to continue
 */
static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
			 struct r6_state *r6s, int disk_idx, int disks)
2403
{
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	struct r5dev *dev = &sh->dev[disk_idx];
	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
				  &sh->dev[r6s->failed_num[1]] };

	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
	     (s->failed >= 1 &&
	      (fdev[0]->toread || s->to_write)) ||
	     (s->failed >= 2 &&
	      (fdev[1]->toread || s->to_write)))) {
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
		    (s->failed && (disk_idx == r6s->failed_num[0] ||
				   disk_idx == r6s->failed_num[1]))) {
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2427
			 */
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2449
			}
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2469 2470
		}
	}
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

	return 0;
}

/**
 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
 */
static void handle_stripe_fill6(struct stripe_head *sh,
			struct stripe_head_state *s, struct r6_state *r6s,
			int disks)
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
			if (fetch_block6(sh, s, r6s, i, disks))
				break;
2493 2494 2495 2496
	set_bit(STRIPE_HANDLE, &sh->state);
}


2497
/* handle_stripe_clean_event
2498 2499 2500 2501
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2502
static void handle_stripe_clean_event(raid5_conf_t *conf,
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2516
				pr_debug("Return write for disc %d\n", i);
2517 2518 2519 2520 2521 2522
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2523
					if (!raid5_dec_bi_phys_segments(wbi)) {
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2541 2542 2543 2544

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2545 2546
}

2547
static void handle_stripe_dirtying5(raid5_conf_t *conf,
2548 2549 2550 2551 2552 2553 2554 2555
		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
{
	int rmw = 0, rcw = 0, i;
	for (i = disks; i--; ) {
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2556 2557
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2558 2559 2560 2561 2562 2563 2564 2565
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2566 2567 2568
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2569 2570 2571 2572
			else
				rcw += 2*disks;
		}
	}
2573
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2574 2575 2576 2577 2578 2579 2580 2581
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2582 2583
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2584 2585 2586
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2587
					pr_debug("Read_old block "
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	if (rcw <= rmw && rcw > 0)
		/* want reconstruct write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
			    i != sh->pd_idx &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2605 2606
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2607 2608 2609
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2610
					pr_debug("Read_old block "
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2624 2625
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2626 2627
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2628 2629 2630
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2631 2632 2633
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2634
		schedule_reconstruction(sh, s, rcw == 0, 0);
2635 2636
}

2637
static void handle_stripe_dirtying6(raid5_conf_t *conf,
2638 2639 2640
		struct stripe_head *sh,	struct stripe_head_state *s,
		struct r6_state *r6s, int disks)
{
2641
	int rcw = 0, pd_idx = sh->pd_idx, i;
N
NeilBrown 已提交
2642
	int qd_idx = sh->qd_idx;
2643 2644

	set_bit(STRIPE_HANDLE, &sh->state);
2645 2646
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
		/* check if we haven't enough data */
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != pd_idx && i != qd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
			rcw++;
			if (!test_bit(R5_Insync, &dev->flags))
				continue; /* it's a failed drive */

			if (
			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				pr_debug("Read_old stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(R5_LOCKED, &dev->flags);
				set_bit(R5_Wantread, &dev->flags);
				s->locked++;
			} else {
				pr_debug("Request delayed stripe %llu "
					"block %d for Reconstruct\n",
				     (unsigned long long)sh->sector, i);
				set_bit(STRIPE_DELAYED, &sh->state);
				set_bit(STRIPE_HANDLE, &sh->state);
2671 2672 2673 2674 2675 2676
			}
		}
	}
	/* now if nothing is locked, and if we have enough data, we can start a
	 * write request
	 */
2677 2678
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    s->locked == 0 && rcw == 0 &&
2679
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2680
		schedule_reconstruction(sh, s, 1, 0);
2681 2682 2683 2684 2685 2686
	}
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2687
	struct r5dev *dev = NULL;
2688

2689
	set_bit(STRIPE_HANDLE, &sh->state);
2690

2691 2692 2693
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2694 2695
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2696 2697
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2698 2699
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2700
			break;
2701
		}
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
		dev = &sh->dev[s->failed_num];
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2712

2713 2714 2715 2716 2717
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2718
		s->locked++;
2719
		set_bit(R5_Wantwrite, &dev->flags);
2720

2721 2722
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2739
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2751
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2752 2753 2754 2755
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2756
				sh->ops.target2 = -1;
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2768 2769 2770 2771 2772
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2773 2774
				  struct stripe_head_state *s,
				  struct r6_state *r6s, int disks)
2775 2776
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2777
	int qd_idx = sh->qd_idx;
2778
	struct r5dev *dev;
2779 2780 2781 2782

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2783

2784 2785 2786 2787 2788 2789
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2790 2791 2792
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2793
		if (s->failed == r6s->q_failed) {
2794
			/* The only possible failed device holds Q, so it
2795 2796 2797
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2798
			sh->check_state = check_state_run;
2799 2800
		}
		if (!r6s->q_failed && s->failed < 2) {
2801
			/* Q is not failed, and we didn't use it to generate
2802 2803
			 * anything, so it makes sense to check it
			 */
2804 2805 2806 2807
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2808 2809
		}

2810 2811
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2812

2813 2814 2815 2816
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2817
		}
2818 2819 2820 2821 2822 2823 2824
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2825 2826
		}

2827 2828 2829 2830 2831
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2832

2833 2834 2835
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2836 2837

		/* now write out any block on a failed drive,
2838
		 * or P or Q if they were recomputed
2839
		 */
2840
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
		if (s->failed == 2) {
			dev = &sh->dev[r6s->failed_num[1]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
			dev = &sh->dev[r6s->failed_num[0]];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2853
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2854 2855 2856 2857 2858
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2859
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2860 2861 2862 2863 2864 2865 2866 2867
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	}
}

static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
				struct r6_state *r6s)
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2943
	struct dma_async_tx_descriptor *tx = NULL;
2944 2945
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2946
		if (i != sh->pd_idx && i != sh->qd_idx) {
2947
			int dd_idx, j;
2948
			struct stripe_head *sh2;
2949
			struct async_submit_ctl submit;
2950

2951
			sector_t bn = compute_blocknr(sh, i, 1);
2952 2953
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2954
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2967 2968

			/* place all the copies on one channel */
2969
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2970
			tx = async_memcpy(sh2->dev[dd_idx].page,
2971
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2972
					  &submit);
2973

2974 2975 2976 2977
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2978
				    (!r6s || j != sh2->qd_idx) &&
2979 2980 2981 2982 2983 2984 2985
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2986

2987
		}
2988 2989 2990 2991 2992
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2993
}
L
Linus Torvalds 已提交
2994

2995

L
Linus Torvalds 已提交
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
3012

3013
static void handle_stripe5(struct stripe_head *sh)
L
Linus Torvalds 已提交
3014 3015
{
	raid5_conf_t *conf = sh->raid_conf;
3016 3017 3018
	int disks = sh->disks, i;
	struct bio *return_bi = NULL;
	struct stripe_head_state s;
L
Linus Torvalds 已提交
3019
	struct r5dev *dev;
3020
	mdk_rdev_t *blocked_rdev = NULL;
3021
	int prexor;
3022
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
3023

3024
	memset(&s, 0, sizeof(s));
3025 3026 3027 3028
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
		 sh->reconstruct_state);
L
Linus Torvalds 已提交
3029 3030 3031 3032 3033

	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3034 3035 3036
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
N
Neil Brown 已提交
3037

3038
	/* Now to look around and see what can be done */
3039
	rcu_read_lock();
L
Linus Torvalds 已提交
3040 3041
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
3042 3043

		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3044

3045 3046 3047 3048 3049 3050 3051
		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
			"written %p\n",	i, dev->flags, dev->toread, dev->read,
			dev->towrite, dev->written);

		/* maybe we can request a biofill operation
		 *
		 * new wantfill requests are only permitted while
3052
		 * ops_complete_biofill is guaranteed to be inactive
3053 3054
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3055
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3056
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3057 3058

		/* now count some things */
3059 3060
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3061
		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
L
Linus Torvalds 已提交
3062

3063 3064 3065
		if (test_bit(R5_Wantfill, &dev->flags))
			s.to_fill++;
		else if (dev->toread)
3066
			s.to_read++;
L
Linus Torvalds 已提交
3067
		if (dev->towrite) {
3068
			s.to_write++;
L
Linus Torvalds 已提交
3069
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3070
				s.non_overwrite++;
L
Linus Torvalds 已提交
3071
		}
3072 3073
		if (dev->written)
			s.written++;
3074
		rdev = rcu_dereference(conf->disks[i].rdev);
3075 3076
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3077 3078 3079
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* could be in-sync depending on recovery/reshape status */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
N
NeilBrown 已提交
3091
			/* The ReadError flag will just be confusing now */
3092 3093 3094
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
		}
3095 3096 3097
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3098 3099
			s.failed++;
			s.failed_num = i;
3100
		}
L
Linus Torvalds 已提交
3101
	}
3102
	rcu_read_unlock();
3103

3104
	if (unlikely(blocked_rdev)) {
3105 3106 3107 3108 3109 3110 3111 3112
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3113 3114
	}

3115 3116 3117 3118
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}
3119

3120
	pr_debug("locked=%d uptodate=%d to_read=%d"
L
Linus Torvalds 已提交
3121
		" to_write=%d failed=%d failed_num=%d\n",
3122 3123
		s.locked, s.uptodate, s.to_read, s.to_write,
		s.failed, s.failed_num);
L
Linus Torvalds 已提交
3124 3125 3126
	/* check if the array has lost two devices and, if so, some requests might
	 * need to be failed
	 */
3127
	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3128
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3129
	if (s.failed > 1 && s.syncing) {
L
Linus Torvalds 已提交
3130 3131
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3132
		s.syncing = 0;
L
Linus Torvalds 已提交
3133 3134 3135 3136 3137 3138
	}

	/* might be able to return some write requests if the parity block
	 * is safe, or on a failed drive
	 */
	dev = &sh->dev[sh->pd_idx];
3139 3140 3141 3142 3143
	if ( s.written &&
	     ((test_bit(R5_Insync, &dev->flags) &&
	       !test_bit(R5_LOCKED, &dev->flags) &&
	       test_bit(R5_UPTODATE, &dev->flags)) ||
	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3144
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
L
Linus Torvalds 已提交
3145 3146 3147 3148 3149

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3150
	if (s.to_read || s.non_overwrite ||
3151
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3152
		handle_stripe_fill5(sh, &s, disks);
L
Linus Torvalds 已提交
3153

3154 3155 3156
	/* Now we check to see if any write operations have recently
	 * completed
	 */
3157
	prexor = 0;
3158
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3159
		prexor = 1;
3160 3161
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3162
		sh->reconstruct_state = reconstruct_state_idle;
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
3174 3175
				if (prexor)
					continue;
3176 3177 3178 3179 3180
				if (!test_bit(R5_Insync, &dev->flags) ||
				    (i == sh->pd_idx && s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3181 3182
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3183 3184 3185 3186 3187 3188 3189 3190
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
3191
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3192
		handle_stripe_dirtying5(conf, sh, &s, disks);
L
Linus Torvalds 已提交
3193 3194

	/* maybe we need to check and possibly fix the parity for this stripe
3195 3196 3197
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
L
Linus Torvalds 已提交
3198
	 */
3199 3200
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
3201
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3202
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3203
		handle_parity_checks5(conf, sh, &s, disks);
3204

3205
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
L
Linus Torvalds 已提交
3206 3207 3208
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}
3209 3210 3211 3212

	/* If the failed drive is just a ReadError, then we might need to progress
	 * the repair/check process
	 */
3213 3214 3215 3216
	if (s.failed == 1 && !conf->mddev->ro &&
	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3217
		) {
3218
		dev = &sh->dev[s.failed_num];
3219 3220 3221 3222
		if (!test_bit(R5_ReWrite, &dev->flags)) {
			set_bit(R5_Wantwrite, &dev->flags);
			set_bit(R5_ReWrite, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3223
			s.locked++;
3224 3225 3226 3227
		} else {
			/* let's read it back */
			set_bit(R5_Wantread, &dev->flags);
			set_bit(R5_LOCKED, &dev->flags);
3228
			s.locked++;
3229 3230 3231
		}
	}

3232 3233
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
3234
		struct stripe_head *sh2
3235
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3251
		sh->reconstruct_state = reconstruct_state_idle;
3252
		clear_bit(STRIPE_EXPANDING, &sh->state);
D
Dan Williams 已提交
3253
		for (i = conf->raid_disks; i--; ) {
3254
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
D
Dan Williams 已提交
3255
			set_bit(R5_LOCKED, &sh->dev[i].flags);
3256
			s.locked++;
D
Dan Williams 已提交
3257
		}
3258 3259 3260
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3261
	    !sh->reconstruct_state) {
3262 3263
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
3264
		stripe_set_idx(sh->sector, conf, 0, sh);
3265
		schedule_reconstruction(sh, &s, 1, 1);
3266
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3267
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3268
		atomic_dec(&conf->reshape_stripes);
3269 3270 3271 3272
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3273
	if (s.expanding && s.locked == 0 &&
3274
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3275
		handle_stripe_expansion(conf, sh, NULL);
3276

3277
 unlock:
L
Linus Torvalds 已提交
3278 3279
	spin_unlock(&sh->lock);

3280 3281 3282 3283
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3284
	if (s.ops_request)
3285
		raid_run_ops(sh, s.ops_request);
3286

3287
	ops_run_io(sh, &s);
L
Linus Torvalds 已提交
3288

3289 3290
	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3291
		 * is waiting on a flush, it won't continue until the writes
3292 3293 3294 3295 3296 3297 3298
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}
3299
	return_io(return_bi);
L
Linus Torvalds 已提交
3300 3301
}

3302
static void handle_stripe6(struct stripe_head *sh)
L
Linus Torvalds 已提交
3303
{
3304
	raid5_conf_t *conf = sh->raid_conf;
3305
	int disks = sh->disks;
3306
	struct bio *return_bi = NULL;
N
NeilBrown 已提交
3307
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3308 3309
	struct stripe_head_state s;
	struct r6_state r6s;
3310
	struct r5dev *dev, *pdev, *qdev;
3311
	mdk_rdev_t *blocked_rdev = NULL;
3312
	int dec_preread_active = 0;
L
Linus Torvalds 已提交
3313

3314
	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3315
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3316
	       (unsigned long long)sh->sector, sh->state,
3317 3318
	       atomic_read(&sh->count), pd_idx, qd_idx,
	       sh->check_state, sh->reconstruct_state);
3319
	memset(&s, 0, sizeof(s));
3320

3321 3322 3323 3324
	spin_lock(&sh->lock);
	clear_bit(STRIPE_HANDLE, &sh->state);
	clear_bit(STRIPE_DELAYED, &sh->state);

3325 3326 3327
	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3328
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
3329 3330

	rcu_read_lock();
3331 3332 3333
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
3334

3335
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3336
			i, dev->flags, dev->toread, dev->towrite, dev->written);
3337 3338 3339 3340 3341 3342 3343 3344
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
3345

3346
		/* now count some things */
3347 3348
		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3349 3350 3351 3352
		if (test_bit(R5_Wantcompute, &dev->flags)) {
			s.compute++;
			BUG_ON(s.compute > 2);
		}
L
Linus Torvalds 已提交
3353

3354 3355 3356
		if (test_bit(R5_Wantfill, &dev->flags)) {
			s.to_fill++;
		} else if (dev->toread)
3357
			s.to_read++;
3358
		if (dev->towrite) {
3359
			s.to_write++;
3360
			if (!test_bit(R5_OVERWRITE, &dev->flags))
3361
				s.non_overwrite++;
3362
		}
3363 3364
		if (dev->written)
			s.written++;
3365
		rdev = rcu_dereference(conf->disks[i].rdev);
3366 3367
		if (blocked_rdev == NULL &&
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3368 3369 3370
			blocked_rdev = rdev;
			atomic_inc(&rdev->nr_pending);
		}
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* in sync if before recovery_offset */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
3382 3383 3384
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
3385
		}
3386 3387 3388
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
3389 3390 3391
			if (s.failed < 2)
				r6s.failed_num[s.failed] = i;
			s.failed++;
3392
		}
L
Linus Torvalds 已提交
3393 3394
	}
	rcu_read_unlock();
3395 3396

	if (unlikely(blocked_rdev)) {
3397 3398 3399 3400 3401 3402 3403 3404
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto unlock;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(blocked_rdev, conf->mddev);
		blocked_rdev = NULL;
3405
	}
3406

3407 3408 3409 3410 3411
	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

3412
	pr_debug("locked=%d uptodate=%d to_read=%d"
3413
	       " to_write=%d failed=%d failed_num=%d,%d\n",
3414 3415 3416 3417
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       r6s.failed_num[0], r6s.failed_num[1]);
	/* check if the array has lost >2 devices and, if so, some requests
	 * might need to be failed
3418
	 */
3419
	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3420
		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3421
	if (s.failed > 2 && s.syncing) {
3422 3423
		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
		clear_bit(STRIPE_SYNCING, &sh->state);
3424
		s.syncing = 0;
3425 3426 3427 3428 3429 3430 3431
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[pd_idx];
3432 3433
	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
N
NeilBrown 已提交
3434 3435 3436
	qdev = &sh->dev[qd_idx];
	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3437 3438 3439

	if ( s.written &&
	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3440
			     && !test_bit(R5_LOCKED, &pdev->flags)
3441 3442
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3443
			     && !test_bit(R5_LOCKED, &qdev->flags)
3444
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3445
		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3446 3447 3448 3449 3450

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
3451
	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3452
	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3453
		handle_stripe_fill6(sh, &s, &r6s, disks);
3454

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	if (sh->reconstruct_state == reconstruct_state_drain_result) {

		sh->reconstruct_state = reconstruct_state_idle;
		/* All the 'written' buffers and the parity blocks are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
		for (i = disks; i--; ) {
			dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
			    (i == sh->pd_idx || i == qd_idx ||
			     dev->written)) {
				pr_debug("Writing block %d\n", i);
				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
				set_bit(R5_Wantwrite, &dev->flags);
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == qd_idx) &&
				      s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
3480 3481
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			dec_preread_active = 1;
3482 3483
	}

3484 3485 3486 3487 3488 3489 3490
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3491
		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3492 3493

	/* maybe we need to check and possibly fix the parity for this stripe
3494
	 * Any reads will already have been scheduled, so we just see if enough
3495 3496
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
3497
	 */
3498 3499 3500 3501
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state)))
3502
		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3503

3504
	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3505 3506 3507 3508 3509 3510 3511
		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
3512 3513 3514
	if (s.failed <= 2 && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			dev = &sh->dev[r6s.failed_num[i]];
3515 3516 3517 3518 3519 3520 3521 3522
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3523
					s.locked++;
3524 3525 3526 3527
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
3528
					s.locked++;
3529 3530 3531
				}
			}
		}
3532

3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}

	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
3546
		struct stripe_head *sh2
3547
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
			/* sh cannot be written until sh2 has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh2->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh2);
			goto unlock;
		}
		if (sh2)
			release_stripe(sh2);

3563 3564
		/* Need to write out all blocks after computing P&Q */
		sh->disks = conf->raid_disks;
3565
		stripe_set_idx(sh->sector, conf, 0, sh);
3566 3567
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3568 3569 3570 3571 3572 3573
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

3574
	if (s.expanding && s.locked == 0 &&
3575
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3576
		handle_stripe_expansion(conf, sh, &r6s);
3577

3578
 unlock:
3579 3580
	spin_unlock(&sh->lock);

3581 3582 3583 3584
	/* wait for this device to become unblocked */
	if (unlikely(blocked_rdev))
		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);

3585 3586 3587
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3588
	ops_run_io(sh, &s);
3589

3590 3591 3592

	if (dec_preread_active) {
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3593
		 * is waiting on a flush, it won't continue until the writes
3594 3595 3596 3597 3598 3599 3600 3601
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

D
Dan Williams 已提交
3602
	return_io(return_bi);
3603 3604
}

3605
static void handle_stripe(struct stripe_head *sh)
3606 3607
{
	if (sh->raid_conf->level == 6)
3608
		handle_stripe6(sh);
3609
	else
3610
		handle_stripe5(sh);
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3624
			list_add_tail(&sh->lru, &conf->hold_list);
3625
		}
3626
	} else
3627
		plugger_set_plug(&conf->plug);
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

J
Jens Axboe 已提交
3644
void md_raid5_kick_device(raid5_conf_t *conf)
3645
{
J
Jens Axboe 已提交
3646 3647
	blk_flush_plug(current);
	raid5_activate_delayed(conf);
3648
	md_wakeup_thread(conf->mddev->thread);
L
Linus Torvalds 已提交
3649
}
J
Jens Axboe 已提交
3650
EXPORT_SYMBOL_GPL(md_raid5_kick_device);
L
Linus Torvalds 已提交
3651

3652 3653 3654 3655
static void raid5_unplug(struct plug_handle *plug)
{
	raid5_conf_t *conf = container_of(plug, raid5_conf_t, plug);

J
Jens Axboe 已提交
3656
	md_raid5_kick_device(conf);
L
Linus Torvalds 已提交
3657 3658
}

N
NeilBrown 已提交
3659
int md_raid5_congested(mddev_t *mddev, int bits)
3660
{
3661
	raid5_conf_t *conf = mddev->private;
3662 3663 3664 3665

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3666

3667 3668 3669 3670 3671 3672 3673 3674 3675
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3676 3677 3678 3679 3680 3681 3682 3683 3684
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3685

3686 3687 3688
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3689 3690 3691
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3692 3693
{
	mddev_t *mddev = q->queuedata;
3694
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3695
	int max;
3696
	unsigned int chunk_sectors = mddev->chunk_sectors;
3697
	unsigned int bio_sectors = bvm->bi_size >> 9;
3698

3699
	if ((bvm->bi_rw & 1) == WRITE)
3700 3701
		return biovec->bv_len; /* always allow writes to be mergeable */

3702 3703
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3704 3705 3706 3707 3708 3709 3710 3711
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3712 3713 3714 3715

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3716
	unsigned int chunk_sectors = mddev->chunk_sectors;
3717 3718
	unsigned int bio_sectors = bio->bi_size >> 9;

3719 3720
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3721 3722 3723 3724
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3754
		conf->retry_read_aligned_list = bi->bi_next;
3755
		bi->bi_next = NULL;
3756 3757 3758 3759
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3760 3761 3762 3763 3764 3765 3766
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3767 3768 3769 3770 3771 3772
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3773
static void raid5_align_endio(struct bio *bi, int error)
3774 3775
{
	struct bio* raid_bi  = bi->bi_private;
3776 3777 3778 3779 3780
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3781
	bio_put(bi);
3782 3783 3784

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3785 3786
	mddev = rdev->mddev;
	conf = mddev->private;
3787 3788 3789 3790

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3791
		bio_endio(raid_bi, 0);
3792 3793
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3794
		return;
3795 3796 3797
	}


3798
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3799 3800

	add_bio_to_retry(raid_bi, conf);
3801 3802
}

3803 3804
static int bio_fits_rdev(struct bio *bi)
{
3805
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3806

3807
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3808 3809
		return 0;
	blk_recount_segments(q, bi);
3810
	if (bi->bi_phys_segments > queue_max_segments(q))
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3823
static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3824
{
3825
	raid5_conf_t *conf = mddev->private;
N
NeilBrown 已提交
3826
	int dd_idx;
3827 3828 3829 3830
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3831
		pr_debug("chunk_aligned_read : non aligned\n");
3832 3833 3834
		return 0;
	}
	/*
3835
	 * use bio_clone_mddev to make a copy of the bio
3836
	 */
3837
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3849 3850
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3851
						    &dd_idx, NULL);
3852 3853 3854 3855 3856 3857

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3858 3859 3860 3861 3862
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3863 3864 3865 3866 3867 3868 3869
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3870 3871 3872 3873 3874 3875 3876
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3877 3878 3879 3880
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3881
		bio_put(align_bi);
3882 3883 3884 3885
		return 0;
	}
}

3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3938

3939
static int make_request(mddev_t *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3940
{
3941
	raid5_conf_t *conf = mddev->private;
3942
	int dd_idx;
L
Linus Torvalds 已提交
3943 3944 3945
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3946
	const int rw = bio_data_dir(bi);
3947
	int remaining;
L
Linus Torvalds 已提交
3948

T
Tejun Heo 已提交
3949 3950
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
3951 3952 3953
		return 0;
	}

3954
	md_write_start(mddev, bi);
3955

3956
	if (rw == READ &&
3957
	     mddev->reshape_position == MaxSector &&
3958
	     chunk_aligned_read(mddev,bi))
3959
		return 0;
3960

L
Linus Torvalds 已提交
3961 3962 3963 3964
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3965

L
Linus Torvalds 已提交
3966 3967
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3968
		int disks, data_disks;
3969
		int previous;
3970

3971
	retry:
3972
		previous = 0;
3973
		disks = conf->raid_disks;
3974
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3975
		if (unlikely(conf->reshape_progress != MaxSector)) {
3976
			/* spinlock is needed as reshape_progress may be
3977 3978
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3979
			 * Ofcourse reshape_progress could change after
3980 3981 3982 3983
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3984
			spin_lock_irq(&conf->device_lock);
3985 3986 3987
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3988
				disks = conf->previous_raid_disks;
3989 3990
				previous = 1;
			} else {
3991 3992 3993
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3994 3995 3996 3997 3998
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3999 4000
			spin_unlock_irq(&conf->device_lock);
		}
4001 4002
		data_disks = disks - conf->max_degraded;

4003 4004
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
4005
						  &dd_idx, NULL);
4006
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
4007 4008 4009
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

4010
		sh = get_active_stripe(conf, new_sector, previous,
4011
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
4012
		if (sh) {
4013
			if (unlikely(previous)) {
4014
				/* expansion might have moved on while waiting for a
4015 4016 4017 4018 4019 4020
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
4021 4022 4023
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
4024 4025 4026
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
4027 4028 4029 4030 4031
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
4032
					schedule();
4033 4034 4035
					goto retry;
				}
			}
4036

4037 4038
			if (bio_data_dir(bi) == WRITE &&
			    logical_sector >= mddev->suspend_lo &&
4039 4040
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
4051 4052
				goto retry;
			}
4053 4054 4055 4056 4057

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
4058 4059
				 * and wait a while
				 */
J
Jens Axboe 已提交
4060
				md_raid5_kick_device(conf);
L
Linus Torvalds 已提交
4061 4062 4063 4064 4065
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
4066 4067
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
T
Tejun Heo 已提交
4068
			if ((bi->bi_rw & REQ_SYNC) &&
4069 4070
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
	spin_lock_irq(&conf->device_lock);
4081
	remaining = raid5_dec_bi_phys_segments(bi);
4082 4083
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
4084

4085
		if ( rw == WRITE )
L
Linus Torvalds 已提交
4086
			md_write_end(mddev);
4087

4088
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
4089
	}
4090

L
Linus Torvalds 已提交
4091 4092 4093
	return 0;
}

D
Dan Williams 已提交
4094 4095
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

4096
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
4097
{
4098 4099 4100 4101 4102 4103 4104 4105 4106
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
4107
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4108
	struct stripe_head *sh;
4109
	sector_t first_sector, last_sector;
4110 4111 4112
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
4113 4114
	int i;
	int dd_idx;
4115
	sector_t writepos, readpos, safepos;
4116
	sector_t stripe_addr;
4117
	int reshape_sectors;
4118
	struct list_head stripes;
4119

4120 4121 4122 4123 4124 4125
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
4126
		} else if (mddev->delta_disks >= 0 &&
4127 4128
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
4129
		sector_div(sector_nr, new_data_disks);
4130
		if (sector_nr) {
4131 4132
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4133 4134 4135
			*skipped = 1;
			return sector_nr;
		}
4136 4137
	}

4138 4139 4140 4141
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
4142 4143
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
4144
	else
4145
		reshape_sectors = mddev->chunk_sectors;
4146

4147 4148 4149 4150 4151
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
4152 4153
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
4154
	 */
4155
	writepos = conf->reshape_progress;
4156
	sector_div(writepos, new_data_disks);
4157 4158
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
4159
	safepos = conf->reshape_safe;
4160
	sector_div(safepos, data_disks);
4161
	if (mddev->delta_disks < 0) {
4162
		writepos -= min_t(sector_t, reshape_sectors, writepos);
4163
		readpos += reshape_sectors;
4164
		safepos += reshape_sectors;
4165
	} else {
4166
		writepos += reshape_sectors;
4167 4168
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
4169
	}
4170

4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
4188
	if ((mddev->delta_disks < 0
4189 4190 4191
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4192 4193 4194
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
4195
		mddev->reshape_position = conf->reshape_progress;
4196
		mddev->curr_resync_completed = sector_nr;
4197
		conf->reshape_checkpoint = jiffies;
4198
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4199
		md_wakeup_thread(mddev->thread);
4200
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4201 4202
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4203
		conf->reshape_safe = mddev->reshape_position;
4204 4205
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4206
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4207 4208
	}

4209 4210 4211 4212
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
4213 4214
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
4215 4216
		       != sector_nr);
	} else {
4217
		BUG_ON(writepos != sector_nr + reshape_sectors);
4218 4219
		stripe_addr = sector_nr;
	}
4220
	INIT_LIST_HEAD(&stripes);
4221
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4222
		int j;
4223
		int skipped_disk = 0;
4224
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4225 4226 4227 4228 4229 4230 4231 4232 4233
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
4234
			if (conf->level == 6 &&
4235
			    j == sh->qd_idx)
4236
				continue;
4237
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
4238
			if (s < raid5_size(mddev, 0, 0)) {
4239
				skipped_disk = 1;
4240 4241 4242 4243 4244 4245
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
4246
		if (!skipped_disk) {
4247 4248 4249
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
4250
		list_add(&sh->lru, &stripes);
4251 4252
	}
	spin_lock_irq(&conf->device_lock);
4253
	if (mddev->delta_disks < 0)
4254
		conf->reshape_progress -= reshape_sectors * new_data_disks;
4255
	else
4256
		conf->reshape_progress += reshape_sectors * new_data_disks;
4257 4258 4259 4260 4261 4262 4263
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
4264
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4265
				     1, &dd_idx, NULL);
4266
	last_sector =
4267
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4268
					    * new_data_disks - 1),
4269
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
4270 4271
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
4272
	while (first_sector <= last_sector) {
4273
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4274 4275 4276 4277 4278
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
4279 4280 4281 4282 4283 4284 4285 4286
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
4287 4288 4289
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
4290
	sector_nr += reshape_sectors;
4291 4292
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
4293 4294 4295
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
4296
		mddev->reshape_position = conf->reshape_progress;
4297
		mddev->curr_resync_completed = sector_nr;
4298
		conf->reshape_checkpoint = jiffies;
4299 4300 4301 4302 4303 4304
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
4305
		conf->reshape_safe = mddev->reshape_position;
4306 4307
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
4308
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4309
	}
4310
	return reshape_sectors;
4311 4312 4313 4314 4315
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
4316
	raid5_conf_t *conf = mddev->private;
4317
	struct stripe_head *sh;
A
Andre Noll 已提交
4318
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
4319
	sector_t sync_blocks;
4320 4321
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
4322

4323
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
4324
		/* just being told to finish up .. nothing much to do */
4325

4326 4327 4328 4329
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
4330 4331 4332 4333

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
4334
		else /* completed sync */
4335 4336 4337
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
4338 4339
		return 0;
	}
4340

4341 4342 4343
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

4344 4345
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
4346

4347 4348 4349 4350 4351 4352
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

4353
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
4354 4355 4356
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
4357
	if (mddev->degraded >= conf->max_degraded &&
4358
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
4359
		sector_t rv = mddev->dev_sectors - sector_nr;
4360
		*skipped = 1;
L
Linus Torvalds 已提交
4361 4362
		return rv;
	}
4363
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4364
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4365 4366 4367 4368 4369 4370
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
4371

N
NeilBrown 已提交
4372 4373 4374

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

4375
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
4376
	if (sh == NULL) {
4377
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
4378
		/* make sure we don't swamp the stripe cache if someone else
4379
		 * is trying to get access
L
Linus Torvalds 已提交
4380
		 */
4381
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4382
	}
4383 4384 4385 4386
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4387
	for (i = 0; i < conf->raid_disks; i++)
4388 4389 4390 4391 4392 4393
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

	spin_lock(&sh->lock);
L
Linus Torvalds 已提交
4394 4395 4396 4397
	set_bit(STRIPE_SYNCING, &sh->state);
	clear_bit(STRIPE_INSYNC, &sh->state);
	spin_unlock(&sh->lock);

4398
	handle_stripe(sh);
L
Linus Torvalds 已提交
4399 4400 4401 4402 4403
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4417
	int dd_idx;
4418 4419 4420 4421 4422 4423
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4424
	sector = raid5_compute_sector(conf, logical_sector,
4425
				      0, &dd_idx, NULL);
4426 4427 4428
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4429 4430 4431
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4432

4433
		if (scnt < raid5_bi_hw_segments(raid_bio))
4434 4435 4436
			/* already done this stripe */
			continue;

4437
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4438 4439 4440

		if (!sh) {
			/* failed to get a stripe - must wait */
4441
			raid5_set_bi_hw_segments(raid_bio, scnt);
4442 4443 4444 4445 4446
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4447 4448
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4449
			raid5_set_bi_hw_segments(raid_bio, scnt);
4450 4451 4452 4453
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4454
		handle_stripe(sh);
4455 4456 4457 4458
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4459
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4460
	spin_unlock_irq(&conf->device_lock);
4461 4462
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4463 4464 4465 4466 4467 4468
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4469 4470 4471 4472 4473 4474 4475
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4476
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4477 4478
{
	struct stripe_head *sh;
4479
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4480 4481
	int handled;

4482
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4483 4484 4485 4486 4487 4488

	md_check_recovery(mddev);

	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4489
		struct bio *bio;
L
Linus Torvalds 已提交
4490

4491
		if (conf->seq_flush != conf->seq_write) {
4492
			int seq = conf->seq_flush;
4493
			spin_unlock_irq(&conf->device_lock);
4494
			bitmap_unplug(mddev->bitmap);
4495
			spin_lock_irq(&conf->device_lock);
4496 4497 4498 4499
			conf->seq_write = seq;
			activate_bit_delay(conf);
		}

4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4510 4511
		sh = __get_priority_stripe(conf);

4512
		if (!sh)
L
Linus Torvalds 已提交
4513 4514 4515 4516
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4517 4518 4519
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4520 4521 4522

		spin_lock_irq(&conf->device_lock);
	}
4523
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4524 4525 4526

	spin_unlock_irq(&conf->device_lock);

4527
	async_tx_issue_pending_all();
L
Linus Torvalds 已提交
4528

4529
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4530 4531
}

4532
static ssize_t
4533
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4534
{
4535
	raid5_conf_t *conf = mddev->private;
4536 4537 4538 4539
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4540 4541
}

4542 4543
int
raid5_set_cache_size(mddev_t *mddev, int size)
4544
{
4545
	raid5_conf_t *conf = mddev->private;
4546 4547
	int err;

4548
	if (size <= 16 || size > 32768)
4549
		return -EINVAL;
4550
	while (size < conf->max_nr_stripes) {
4551 4552 4553 4554 4555
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4556 4557 4558
	err = md_allow_write(mddev);
	if (err)
		return err;
4559
	while (size > conf->max_nr_stripes) {
4560 4561 4562 4563
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev->private;
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4585 4586
	return len;
}
4587

4588 4589 4590 4591
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4592

4593 4594 4595
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4596
	raid5_conf_t *conf = mddev->private;
4597 4598 4599 4600 4601 4602 4603 4604 4605
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4606
	raid5_conf_t *conf = mddev->private;
4607
	unsigned long new;
4608 4609 4610 4611 4612
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4613
	if (strict_strtoul(page, 10, &new))
4614
		return -EINVAL;
4615
	if (new > conf->max_nr_stripes)
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4627
static ssize_t
4628
stripe_cache_active_show(mddev_t *mddev, char *page)
4629
{
4630
	raid5_conf_t *conf = mddev->private;
4631 4632 4633 4634
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4635 4636
}

4637 4638
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4639

4640
static struct attribute *raid5_attrs[] =  {
4641 4642
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4643
	&raid5_preread_bypass_threshold.attr,
4644 4645
	NULL,
};
4646 4647 4648
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4649 4650
};

4651 4652 4653
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4654
	raid5_conf_t *conf = mddev->private;
4655 4656 4657

	if (!sectors)
		sectors = mddev->dev_sectors;
4658
	if (!raid_disks)
4659
		/* size is defined by the smallest of previous and new size */
4660
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4661

4662
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4663
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4664 4665 4666
	return sectors * (raid_disks - conf->max_degraded);
}

4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4679
		kfree(percpu->scribble);
4680 4681 4682 4683 4684 4685 4686 4687 4688
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4689 4690 4691
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4692
	raid5_free_percpu(conf);
4693 4694 4695 4696 4697
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4709
		if (conf->level == 6 && !percpu->spare_page)
4710
			percpu->spare_page = alloc_page(GFP_KERNEL);
4711 4712 4713 4714 4715 4716 4717
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4718 4719
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4720
			return notifier_from_errno(-ENOMEM);
4721 4722 4723 4724 4725
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4726
		kfree(percpu->scribble);
4727
		percpu->spare_page = NULL;
4728
		percpu->scribble = NULL;
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
4741
	struct raid5_percpu __percpu *allcpus;
4742
	void *scribble;
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4753 4754 4755 4756 4757 4758 4759 4760
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4761
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4762
		if (!scribble) {
4763 4764 4765
			err = -ENOMEM;
			break;
		}
4766
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4779
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4780 4781
{
	raid5_conf_t *conf;
4782
	int raid_disk, memory, max_disks;
L
Linus Torvalds 已提交
4783 4784 4785
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4786 4787 4788
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4789
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4790 4791
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4792
	}
N
NeilBrown 已提交
4793 4794 4795 4796
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4797
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4798 4799
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4800
	}
N
NeilBrown 已提交
4801
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4802
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4803 4804
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4805 4806
	}

4807 4808 4809
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4810 4811
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4812
		return ERR_PTR(-EINVAL);
4813 4814
	}

N
NeilBrown 已提交
4815 4816
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4817
		goto abort;
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
N
NeilBrown 已提交
4830 4831 4832 4833 4834

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4835
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4836 4837
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4838

4839
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4840 4841 4842
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4843

L
Linus Torvalds 已提交
4844 4845
	conf->mddev = mddev;

4846
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4847 4848
		goto abort;

4849 4850 4851 4852
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4853
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4854

4855
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4856
		raid_disk = rdev->raid_disk;
4857
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4858 4859 4860 4861 4862 4863
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4864
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4865
			char b[BDEVNAME_SIZE];
4866 4867 4868
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4869 4870 4871
		} else
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4872 4873
	}

4874
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4875
	conf->level = mddev->new_level;
4876 4877 4878 4879
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4880
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4881
	conf->max_nr_stripes = NR_STRIPES;
4882
	conf->reshape_progress = mddev->reshape_position;
4883
	if (conf->reshape_progress != MaxSector) {
4884
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4885 4886
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4887

N
NeilBrown 已提交
4888
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4889
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4890 4891
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4892 4893
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4894 4895
		goto abort;
	} else
4896 4897
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4898

4899
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4900 4901
	if (!conf->thread) {
		printk(KERN_ERR
4902
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4903
		       mdname(mddev));
4904 4905
		goto abort;
	}
N
NeilBrown 已提交
4906 4907 4908 4909 4910

	return conf;

 abort:
	if (conf) {
4911
		free_conf(conf);
N
NeilBrown 已提交
4912 4913 4914 4915 4916
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

N
NeilBrown 已提交
4944 4945 4946
static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4947
	int working_disks = 0;
4948
	int dirty_parity_disks = 0;
N
NeilBrown 已提交
4949
	mdk_rdev_t *rdev;
4950
	sector_t reshape_offset = 0;
N
NeilBrown 已提交
4951

4952
	if (mddev->recovery_cp != MaxSector)
4953
		printk(KERN_NOTICE "md/raid:%s: not clean"
4954 4955
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4956 4957 4958 4959 4960 4961 4962 4963
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4964
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4965

4966
		if (mddev->new_level != mddev->level) {
4967
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4978
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4979
			       (mddev->raid_disks - max_degraded))) {
4980 4981
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
4982 4983
			return -EINVAL;
		}
4984
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
4985 4986
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4987
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4988 4989 4990
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
5002 5003 5004
				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
				       " in read-only mode - aborting\n",
				       mdname(mddev));
5005 5006 5007 5008 5009 5010 5011
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
5012
			/* Reading from the same stripe as writing to - bad */
5013 5014 5015
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
5016 5017
			return -EINVAL;
		}
5018 5019
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
5020 5021 5022 5023
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
5024
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
5025
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
5026
	}
N
NeilBrown 已提交
5027

5028 5029 5030 5031 5032
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
5043 5044 5045
	list_for_each_entry(rdev, &mddev->disks, same_set) {
		if (rdev->raid_disk < 0)
			continue;
5046
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
5047
			working_disks++;
5048 5049
			continue;
		}
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
5078

5079 5080
	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
			   - working_disks);
N
NeilBrown 已提交
5081

5082
	if (has_failed(conf)) {
5083
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
5084
			" (%d/%d failed)\n",
5085
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
5086 5087 5088
		goto abort;
	}

N
NeilBrown 已提交
5089
	/* device size must be a multiple of chunk size */
5090
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
5091 5092
	mddev->resync_max_sectors = mddev->dev_sectors;

5093
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
5094
	    mddev->recovery_cp != MaxSector) {
5095 5096
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
5097 5098
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
5099 5100 5101
			       mdname(mddev));
		else {
			printk(KERN_ERR
5102
			       "md/raid:%s: cannot start dirty degraded array.\n",
5103 5104 5105
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
5106 5107 5108
	}

	if (mddev->degraded == 0)
5109 5110
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5111 5112
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
5113
	else
5114 5115 5116 5117 5118
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
5119 5120 5121

	print_raid5_conf(conf);

5122 5123
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
5124 5125 5126 5127 5128 5129
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5130
							"reshape");
5131 5132
	}

L
Linus Torvalds 已提交
5133 5134

	/* Ok, everything is just fine now */
5135 5136
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
5137 5138
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5139
		printk(KERN_WARNING
5140
		       "raid5: failed to create sysfs attributes for %s\n",
5141
		       mdname(mddev));
5142
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5143

5144
	plugger_init(&conf->plug, raid5_unplug);
5145
	mddev->plug = &conf->plug;
5146
	if (mddev->queue) {
5147
		int chunk_size;
5148 5149 5150 5151 5152 5153 5154 5155 5156
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
5157

5158
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5159

N
NeilBrown 已提交
5160 5161
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5162
		mddev->queue->queue_lock = &conf->device_lock;
5163

5164 5165 5166 5167
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
5168

5169 5170 5171 5172
		list_for_each_entry(rdev, &mddev->disks, same_set)
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
	}
5173

L
Linus Torvalds 已提交
5174 5175
	return 0;
abort:
5176
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
5177
	mddev->thread = NULL;
L
Linus Torvalds 已提交
5178 5179
	if (conf) {
		print_raid5_conf(conf);
5180
		free_conf(conf);
L
Linus Torvalds 已提交
5181 5182
	}
	mddev->private = NULL;
5183
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
5184 5185 5186
	return -EIO;
}

5187
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
5188
{
5189
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5190 5191 5192

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
N
NeilBrown 已提交
5193 5194
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
5195
	plugger_flush(&conf->plug); /* the unplug fn references 'conf'*/
5196
	free_conf(conf);
5197 5198
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
5199 5200 5201
	return 0;
}

5202
#ifdef DEBUG
5203
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
5204 5205 5206
{
	int i;

5207 5208 5209 5210 5211
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5212
	for (i = 0; i < sh->disks; i++) {
5213 5214
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
5215
	}
5216
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
5217 5218
}

5219
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
5220 5221
{
	struct stripe_head *sh;
5222
	struct hlist_node *hn;
L
Linus Torvalds 已提交
5223 5224 5225 5226
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
5227
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
5228 5229
			if (sh->raid_conf != conf)
				continue;
5230
			print_sh(seq, sh);
L
Linus Torvalds 已提交
5231 5232 5233 5234 5235 5236
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

5237
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
5238
{
5239
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
5240 5241
	int i;

5242 5243
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
5244
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
5245 5246 5247
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
5248
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
5249
	seq_printf (seq, "]");
5250
#ifdef DEBUG
5251 5252
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
5253 5254 5255 5256 5257 5258 5259 5260
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

5261
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
5262 5263 5264 5265
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
5266 5267 5268
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
5269 5270 5271 5272 5273

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
5274 5275 5276
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
5277 5278 5279 5280 5281 5282 5283 5284
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;
5285 5286
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
5287 5288 5289 5290

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
5291
		    && tmp->rdev->recovery_offset == MaxSector
5292
		    && !test_bit(Faulty, &tmp->rdev->flags)
5293
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5294
			count++;
5295
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
5296 5297
		}
	}
5298 5299 5300
	spin_lock_irqsave(&conf->device_lock, flags);
	mddev->degraded -= count;
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
5301
	print_raid5_conf(conf);
5302
	return count;
L
Linus Torvalds 已提交
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
5315 5316 5317 5318
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

5319
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
5320 5321 5322 5323
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
5324 5325 5326 5327
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
5328
		    !has_failed(conf) &&
5329
		    number < conf->raid_disks) {
5330 5331 5332
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
5333
		p->rdev = NULL;
5334
		synchronize_rcu();
L
Linus Torvalds 已提交
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
5350
	int err = -EEXIST;
L
Linus Torvalds 已提交
5351 5352
	int disk;
	struct disk_info *p;
5353 5354
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
5355

5356
	if (has_failed(conf))
L
Linus Torvalds 已提交
5357
		/* no point adding a device */
5358
		return -EINVAL;
L
Linus Torvalds 已提交
5359

5360 5361
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
5362 5363

	/*
5364 5365
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
5366
	 */
5367
	if (rdev->saved_raid_disk >= 0 &&
5368
	    rdev->saved_raid_disk >= first &&
5369 5370 5371
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
5372 5373
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
5374
		if ((p=conf->disks + disk)->rdev == NULL) {
5375
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
5376
			rdev->raid_disk = disk;
5377
			err = 0;
5378 5379
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5380
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5381 5382 5383
			break;
		}
	print_raid5_conf(conf);
5384
	return err;
L
Linus Torvalds 已提交
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5396
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5397 5398
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5399 5400 5401
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5402
	set_capacity(mddev->gendisk, mddev->array_sectors);
5403
	revalidate_disk(mddev->gendisk);
A
Andre Noll 已提交
5404 5405
	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5406 5407
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5408
	mddev->dev_sectors = sectors;
5409
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5410 5411 5412
	return 0;
}

5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5428 5429
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5430 5431 5432 5433 5434 5435 5436
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5437
static int check_reshape(mddev_t *mddev)
5438
{
5439
	raid5_conf_t *conf = mddev->private;
5440

5441 5442
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5443
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5444
		return 0; /* nothing to do */
5445 5446 5447
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5448
	if (has_failed(conf))
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5462

5463
	if (!check_stripe_cache(mddev))
5464 5465
		return -ENOSPC;

5466
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5467 5468 5469 5470
}

static int raid5_start_reshape(mddev_t *mddev)
{
5471
	raid5_conf_t *conf = mddev->private;
5472 5473
	mdk_rdev_t *rdev;
	int spares = 0;
5474
	unsigned long flags;
5475

5476
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5477 5478
		return -EBUSY;

5479 5480 5481
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5482
	list_for_each_entry(rdev, &mddev->disks, same_set)
5483 5484
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5485
			spares++;
5486

5487
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5488 5489 5490 5491 5492
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5493 5494 5495 5496 5497 5498
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5499
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5500 5501 5502 5503
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5504
	atomic_set(&conf->reshape_stripes, 0);
5505 5506
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5507
	conf->raid_disks += mddev->delta_disks;
5508 5509
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5510 5511
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5512 5513 5514 5515 5516
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5517
	conf->generation++;
5518 5519 5520 5521
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5522 5523 5524 5525
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5526
	 */
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
	if (mddev->delta_disks >= 0) {
		int added_devices = 0;
		list_for_each_entry(rdev, &mddev->disks, same_set)
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					char nm[20];
					if (rdev->raid_disk
					    >= conf->previous_raid_disks) {
						set_bit(In_sync, &rdev->flags);
						added_devices++;
					} else
						rdev->recovery_offset = 0;
					sprintf(nm, "rd%d", rdev->raid_disk);
					if (sysfs_create_link(&mddev->kobj,
							      &rdev->kobj, nm))
						/* Failure here is OK */;
5544
				}
5545 5546 5547 5548 5549 5550
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
				added_devices++;
			}
5551

5552 5553 5554 5555
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
5556
		spin_lock_irqsave(&conf->device_lock, flags);
5557
		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5558 5559 5560
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5561
	mddev->raid_disks = conf->raid_disks;
5562
	mddev->reshape_position = conf->reshape_progress;
5563
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5564

5565 5566 5567 5568 5569
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5570
						"reshape");
5571 5572 5573 5574
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5575
		conf->reshape_progress = MaxSector;
5576 5577 5578
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5579
	conf->reshape_checkpoint = jiffies;
5580 5581 5582 5583 5584
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5585 5586 5587
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5588 5589 5590
static void end_reshape(raid5_conf_t *conf)
{

5591 5592 5593
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5594
		conf->previous_raid_disks = conf->raid_disks;
5595
		conf->reshape_progress = MaxSector;
5596
		spin_unlock_irq(&conf->device_lock);
5597
		wake_up(&conf->wait_for_overlap);
5598 5599 5600 5601

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5602
		if (conf->mddev->queue) {
5603
			int data_disks = conf->raid_disks - conf->max_degraded;
5604
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5605
						   / PAGE_SIZE);
5606 5607 5608
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5609 5610 5611
	}
}

5612 5613 5614
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5615 5616
static void raid5_finish_reshape(mddev_t *mddev)
{
5617
	raid5_conf_t *conf = mddev->private;
5618 5619 5620

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5621 5622 5623
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5624
			revalidate_disk(mddev->gendisk);
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5635 5636 5637 5638 5639 5640 5641 5642 5643
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
					char nm[20];
					sprintf(nm, "rd%d", rdev->raid_disk);
					sysfs_remove_link(&mddev->kobj, nm);
					rdev->raid_disk = -1;
				}
			}
5644
		}
5645
		mddev->layout = conf->algorithm;
5646
		mddev->chunk_sectors = conf->chunk_sectors;
5647 5648
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5649 5650 5651
	}
}

5652 5653
static void raid5_quiesce(mddev_t *mddev, int state)
{
5654
	raid5_conf_t *conf = mddev->private;
5655 5656

	switch(state) {
5657 5658 5659 5660
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5661 5662
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5663 5664 5665 5666
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5667
		wait_event_lock_irq(conf->wait_for_stripe,
5668 5669
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5670
				    conf->device_lock, /* nothing */);
5671
		conf->quiesce = 1;
5672
		spin_unlock_irq(&conf->device_lock);
5673 5674
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5675 5676 5677 5678 5679 5680
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5681
		wake_up(&conf->wait_for_overlap);
5682 5683 5684 5685
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5686

5687

D
Dan Williams 已提交
5688
static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5689
{
D
Dan Williams 已提交
5690
	struct raid0_private_data *raid0_priv = mddev->private;
5691

D
Dan Williams 已提交
5692 5693
	/* for raid0 takeover only one zone is supported */
	if (raid0_priv->nr_strip_zones > 1) {
5694 5695
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5696 5697 5698 5699
		return ERR_PTR(-EINVAL);
	}

	mddev->new_level = level;
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5733
	mddev->new_chunk_sectors = chunksect;
5734 5735 5736 5737

	return setup_conf(mddev);
}

5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5771

5772
static int raid5_check_reshape(mddev_t *mddev)
5773
{
5774 5775 5776 5777
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5778
	 */
5779
	raid5_conf_t *conf = mddev->private;
5780
	int new_chunk = mddev->new_chunk_sectors;
5781

5782
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5783 5784
		return -EINVAL;
	if (new_chunk > 0) {
5785
		if (!is_power_of_2(new_chunk))
5786
			return -EINVAL;
5787
		if (new_chunk < (PAGE_SIZE>>9))
5788
			return -EINVAL;
5789
		if (mddev->array_sectors & (new_chunk-1))
5790 5791 5792 5793 5794 5795
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5796
	if (mddev->raid_disks == 2) {
5797 5798 5799 5800
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5801 5802
		}
		if (new_chunk > 0) {
5803 5804
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5805 5806 5807
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5808
	}
5809
	return check_reshape(mddev);
5810 5811
}

5812
static int raid6_check_reshape(mddev_t *mddev)
5813
{
5814
	int new_chunk = mddev->new_chunk_sectors;
5815

5816
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5817
		return -EINVAL;
5818
	if (new_chunk > 0) {
5819
		if (!is_power_of_2(new_chunk))
5820
			return -EINVAL;
5821
		if (new_chunk < (PAGE_SIZE >> 9))
5822
			return -EINVAL;
5823
		if (mddev->array_sectors & (new_chunk-1))
5824 5825
			/* not factor of array size */
			return -EINVAL;
5826
	}
5827 5828

	/* They look valid */
5829
	return check_reshape(mddev);
5830 5831
}

5832 5833 5834
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
D
Dan Williams 已提交
5835
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5836 5837 5838 5839
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5840 5841
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5842 5843
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5844 5845 5846 5847 5848
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5849 5850
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5851 5852 5853 5854

	return ERR_PTR(-EINVAL);
}

5855 5856
static void *raid4_takeover(mddev_t *mddev)
{
D
Dan Williams 已提交
5857 5858 5859
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5860
	 */
D
Dan Williams 已提交
5861 5862
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5863 5864 5865 5866 5867 5868 5869 5870
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5871

5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5936
	.size		= raid5_size,
5937
	.check_reshape	= raid6_check_reshape,
5938
	.start_reshape  = raid5_start_reshape,
5939
	.finish_reshape = raid5_finish_reshape,
5940
	.quiesce	= raid5_quiesce,
5941
	.takeover	= raid6_takeover,
5942
};
5943
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5944 5945
{
	.name		= "raid5",
5946
	.level		= 5,
L
Linus Torvalds 已提交
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5958
	.size		= raid5_size,
5959 5960
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5961
	.finish_reshape = raid5_finish_reshape,
5962
	.quiesce	= raid5_quiesce,
5963
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5964 5965
};

5966
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5967
{
5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5981
	.size		= raid5_size,
5982 5983
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5984
	.finish_reshape = raid5_finish_reshape,
5985
	.quiesce	= raid5_quiesce,
5986
	.takeover	= raid4_takeover,
5987 5988 5989 5990
};

static int __init raid5_init(void)
{
5991
	register_md_personality(&raid6_personality);
5992 5993 5994
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5995 5996
}

5997
static void raid5_exit(void)
L
Linus Torvalds 已提交
5998
{
5999
	unregister_md_personality(&raid6_personality);
6000 6001
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
6002 6003 6004 6005 6006
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
6007
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
6008
MODULE_ALIAS("md-personality-4"); /* RAID5 */
6009 6010
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
6011 6012
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
6013 6014 6015 6016 6017 6018 6019
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");