raid5.c 155.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/async.h>
51
#include <linux/seq_file.h>
52
#include <linux/cpu.h>
53
#include <linux/slab.h>
54
#include <linux/ratelimit.h>
55
#include "md.h"
56
#include "raid5.h"
57
#include "raid0.h"
58
#include "bitmap.h"
59

L
Linus Torvalds 已提交
60 61 62 63 64 65 66 67 68
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
69
#define BYPASS_THRESHOLD	1
70
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
71 72
#define HASH_MASK		(NR_HASH - 1)

73
#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
L
Linus Torvalds 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This macro is used to determine the 'next' bio in the list, given the sector
 * of the current stripe+device
 */
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
 * The following can be used to debug the driver
 */
#define RAID5_PARANOIA	1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif

95
#ifdef DEBUG
L
Linus Torvalds 已提交
96 97 98 99
#define inline
#define __inline__
#endif

100
/*
101 102
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 104 105
 */
static inline int raid5_bi_phys_segments(struct bio *bio)
{
106
	return bio->bi_phys_segments & 0xffff;
107 108 109 110
}

static inline int raid5_bi_hw_segments(struct bio *bio)
{
111
	return (bio->bi_phys_segments >> 16) & 0xffff;
112 113 114 115 116 117 118 119 120 121 122 123 124
}

static inline int raid5_dec_bi_phys_segments(struct bio *bio)
{
	--bio->bi_phys_segments;
	return raid5_bi_phys_segments(bio);
}

static inline int raid5_dec_bi_hw_segments(struct bio *bio)
{
	unsigned short val = raid5_bi_hw_segments(bio);

	--val;
125
	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126 127 128 129 130
	return val;
}

static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
{
131
	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
132 133
}

134 135 136
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
137 138 139 140
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
141 142 143 144 145
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
146 147 148 149 150
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
151

152 153 154 155 156
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
157 158
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
159
{
160
	int slot = *count;
161

162
	if (sh->ddf_layout)
163
		(*count)++;
164
	if (idx == sh->pd_idx)
165
		return syndrome_disks;
166
	if (idx == sh->qd_idx)
167
		return syndrome_disks + 1;
168
	if (!sh->ddf_layout)
169
		(*count)++;
170 171 172
	return slot;
}

173 174 175 176 177 178 179 180
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
		bi->bi_size = 0;
181
		bio_endio(bi, 0);
182 183 184 185
		bi = return_bi;
	}
}

L
Linus Torvalds 已提交
186 187
static void print_raid5_conf (raid5_conf_t *conf);

188 189 190 191 192 193 194
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

195
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
196 197
{
	if (atomic_dec_and_test(&sh->count)) {
198 199
		BUG_ON(!list_empty(&sh->lru));
		BUG_ON(atomic_read(&conf->active_stripes)==0);
L
Linus Torvalds 已提交
200
		if (test_bit(STRIPE_HANDLE, &sh->state)) {
N
NeilBrown 已提交
201
			if (test_bit(STRIPE_DELAYED, &sh->state))
L
Linus Torvalds 已提交
202
				list_add_tail(&sh->lru, &conf->delayed_list);
N
NeilBrown 已提交
203 204
			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
				   sh->bm_seq - conf->seq_write > 0)
205
				list_add_tail(&sh->lru, &conf->bitmap_list);
N
NeilBrown 已提交
206
			else {
207
				clear_bit(STRIPE_BIT_DELAY, &sh->state);
L
Linus Torvalds 已提交
208
				list_add_tail(&sh->lru, &conf->handle_list);
209
			}
L
Linus Torvalds 已提交
210 211
			md_wakeup_thread(conf->mddev->thread);
		} else {
212
			BUG_ON(stripe_operations_active(sh));
L
Linus Torvalds 已提交
213 214 215 216 217 218
			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
				atomic_dec(&conf->preread_active_stripes);
				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
					md_wakeup_thread(conf->mddev->thread);
			}
			atomic_dec(&conf->active_stripes);
219 220
			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
				list_add_tail(&sh->lru, &conf->inactive_list);
L
Linus Torvalds 已提交
221
				wake_up(&conf->wait_for_stripe);
222 223
				if (conf->retry_read_aligned)
					md_wakeup_thread(conf->mddev->thread);
224
			}
L
Linus Torvalds 已提交
225 226 227
		}
	}
}
228

L
Linus Torvalds 已提交
229 230 231 232
static void release_stripe(struct stripe_head *sh)
{
	raid5_conf_t *conf = sh->raid_conf;
	unsigned long flags;
233

L
Linus Torvalds 已提交
234 235 236 237 238
	spin_lock_irqsave(&conf->device_lock, flags);
	__release_stripe(conf, sh);
	spin_unlock_irqrestore(&conf->device_lock, flags);
}

239
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
240
{
241 242
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
243

244
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
245 246
}

247
static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
248
{
249
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
250

251 252
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
253 254

	CHECK_DEVLOCK();
255
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
}


/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

	CHECK_DEVLOCK();
	if (list_empty(&conf->inactive_list))
		goto out;
	first = conf->inactive_list.next;
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
out:
	return sh;
}

277
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
278 279 280
{
	struct page *p;
	int i;
281
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
282

283
	for (i = 0; i < num ; i++) {
L
Linus Torvalds 已提交
284 285 286 287
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
288
		put_page(p);
L
Linus Torvalds 已提交
289 290 291
	}
}

292
static int grow_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
293 294
{
	int i;
295
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
296

297
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
298 299 300 301 302 303 304 305 306 307
		struct page *page;

		if (!(page = alloc_page(GFP_KERNEL))) {
			return 1;
		}
		sh->dev[i].page = page;
	}
	return 0;
}

308
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309 310
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
311

312
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
313 314
{
	raid5_conf_t *conf = sh->raid_conf;
315
	int i;
L
Linus Torvalds 已提交
316

317 318
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319
	BUG_ON(stripe_operations_active(sh));
320

L
Linus Torvalds 已提交
321
	CHECK_DEVLOCK();
322
	pr_debug("init_stripe called, stripe %llu\n",
L
Linus Torvalds 已提交
323 324 325
		(unsigned long long)sh->sector);

	remove_hash(sh);
326

327
	sh->generation = conf->generation - previous;
328
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
329
	sh->sector = sector;
330
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
331 332
	sh->state = 0;

333 334

	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
335 336
		struct r5dev *dev = &sh->dev[i];

337
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
338
		    test_bit(R5_LOCKED, &dev->flags)) {
339
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
340
			       (unsigned long long)sh->sector, i, dev->toread,
341
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
342 343 344 345
			       test_bit(R5_LOCKED, &dev->flags));
			BUG();
		}
		dev->flags = 0;
346
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
347 348 349 350
	}
	insert_hash(conf, sh);
}

351 352
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
					 short generation)
L
Linus Torvalds 已提交
353 354
{
	struct stripe_head *sh;
355
	struct hlist_node *hn;
L
Linus Torvalds 已提交
356 357

	CHECK_DEVLOCK();
358
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359
	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
361
			return sh;
362
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
363 364 365
	return NULL;
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
static int has_failed(raid5_conf_t *conf)
{
	int degraded;
	int i;
	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->raid_disks; i++) {
		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

433 434
static struct stripe_head *
get_active_stripe(raid5_conf_t *conf, sector_t sector,
435
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
436 437 438
{
	struct stripe_head *sh;

439
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
440 441 442 443

	spin_lock_irq(&conf->device_lock);

	do {
444
		wait_event_lock_irq(conf->wait_for_stripe,
445
				    conf->quiesce == 0 || noquiesce,
446
				    conf->device_lock, /* nothing */);
447
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
448 449 450 451 452 453 454 455 456
		if (!sh) {
			if (!conf->inactive_blocked)
				sh = get_free_stripe(conf);
			if (noblock && sh == NULL)
				break;
			if (!sh) {
				conf->inactive_blocked = 1;
				wait_event_lock_irq(conf->wait_for_stripe,
						    !list_empty(&conf->inactive_list) &&
457 458
						    (atomic_read(&conf->active_stripes)
						     < (conf->max_nr_stripes *3/4)
L
Linus Torvalds 已提交
459 460
						     || !conf->inactive_blocked),
						    conf->device_lock,
461
						    );
L
Linus Torvalds 已提交
462 463
				conf->inactive_blocked = 0;
			} else
464
				init_stripe(sh, sector, previous);
L
Linus Torvalds 已提交
465 466
		} else {
			if (atomic_read(&sh->count)) {
467 468
				BUG_ON(!list_empty(&sh->lru)
				    && !test_bit(STRIPE_EXPANDING, &sh->state));
L
Linus Torvalds 已提交
469 470 471
			} else {
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
472 473
				if (list_empty(&sh->lru) &&
				    !test_bit(STRIPE_EXPANDING, &sh->state))
474 475
					BUG();
				list_del_init(&sh->lru);
L
Linus Torvalds 已提交
476 477 478 479 480 481 482 483 484 485 486
			}
		}
	} while (sh == NULL);

	if (sh)
		atomic_inc(&sh->count);

	spin_unlock_irq(&conf->device_lock);
	return sh;
}

487 488 489 490
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
491

492
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
493 494 495 496 497 498 499 500 501 502
{
	raid5_conf_t *conf = sh->raid_conf;
	int i, disks = sh->disks;

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
		struct bio *bi;
		mdk_rdev_t *rdev;
T
Tejun Heo 已提交
503 504 505 506 507 508
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
509 510 511 512 513 514 515
			rw = READ;
		else
			continue;

		bi = &sh->dev[i].req;

		bi->bi_rw = rw;
516
		if (rw & WRITE)
517 518 519 520 521 522 523 524 525 526 527 528 529
			bi->bi_end_io = raid5_end_write_request;
		else
			bi->bi_end_io = raid5_end_read_request;

		rcu_read_lock();
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();

		if (rdev) {
530
			if (s->syncing || s->expanding || s->expanded)
531 532
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
533 534
			set_bit(STRIPE_IO_STARTED, &sh->state);

535 536
			bi->bi_bdev = rdev->bdev;
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
537
				__func__, (unsigned long long)sh->sector,
538 539 540 541 542 543 544 545 546 547 548 549
				bi->bi_rw, i);
			atomic_inc(&sh->count);
			bi->bi_sector = sh->sector + rdev->data_offset;
			bi->bi_flags = 1 << BIO_UPTODATE;
			bi->bi_vcnt = 1;
			bi->bi_max_vecs = 1;
			bi->bi_idx = 0;
			bi->bi_io_vec = &sh->dev[i].vec;
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
			bi->bi_size = STRIPE_SIZE;
			bi->bi_next = NULL;
550
			if ((rw & WRITE) &&
551 552 553 554 555
			    test_bit(R5_ReWrite, &sh->dev[i].flags))
				atomic_add(STRIPE_SECTORS,
					&rdev->corrected_errors);
			generic_make_request(bi);
		} else {
556
			if (rw & WRITE)
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
	}
}

static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
	sector_t sector, struct dma_async_tx_descriptor *tx)
{
	struct bio_vec *bvl;
	struct page *bio_page;
	int i;
	int page_offset;
574
	struct async_submit_ctl submit;
D
Dan Williams 已提交
575
	enum async_tx_flags flags = 0;
576 577 578 579 580

	if (bio->bi_sector >= sector)
		page_offset = (signed)(bio->bi_sector - sector) * 512;
	else
		page_offset = (signed)(sector - bio->bi_sector) * -512;
581

D
Dan Williams 已提交
582 583 584 585
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

586
	bio_for_each_segment(bvl, bio, i) {
587
		int len = bvl->bv_len;
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
603 604
			b_offset += bvl->bv_offset;
			bio_page = bvl->bv_page;
605 606
			if (frombio)
				tx = async_memcpy(page, bio_page, page_offset,
607
						  b_offset, clen, &submit);
608 609
			else
				tx = async_memcpy(bio_page, page, b_offset,
610
						  page_offset, clen, &submit);
611
		}
612 613 614
		/* chain the operations */
		submit.depend_tx = tx;

615 616 617 618 619 620 621 622 623 624 625 626 627
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
	raid5_conf_t *conf = sh->raid_conf;
628
	int i;
629

630
	pr_debug("%s: stripe %llu\n", __func__,
631 632 633
		(unsigned long long)sh->sector);

	/* clear completed biofills */
634
	spin_lock_irq(&conf->device_lock);
635 636 637 638
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
639 640
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
641
		 * !STRIPE_BIOFILL_RUN
642 643
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
644 645 646 647 648 649 650 651
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
652
				if (!raid5_dec_bi_phys_segments(rbi)) {
653 654 655 656 657 658 659
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
660 661
	spin_unlock_irq(&conf->device_lock);
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
662 663 664

	return_io(return_bi);

665
	set_bit(STRIPE_HANDLE, &sh->state);
666 667 668 669 670 671 672
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
	raid5_conf_t *conf = sh->raid_conf;
673
	struct async_submit_ctl submit;
674 675
	int i;

676
	pr_debug("%s: stripe %llu\n", __func__,
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
			spin_lock_irq(&conf->device_lock);
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
			spin_unlock_irq(&conf->device_lock);
			while (rbi && rbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
				tx = async_copy_data(0, rbi, dev->page,
					dev->sector, tx);
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
697 698
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
699 700
}

701
static void mark_target_uptodate(struct stripe_head *sh, int target)
702
{
703
	struct r5dev *tgt;
704

705 706
	if (target < 0)
		return;
707

708
	tgt = &sh->dev[target];
709 710 711
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
712 713
}

714
static void ops_complete_compute(void *stripe_head_ref)
715 716 717
{
	struct stripe_head *sh = stripe_head_ref;

718
	pr_debug("%s: stripe %llu\n", __func__,
719 720
		(unsigned long long)sh->sector);

721
	/* mark the computed target(s) as uptodate */
722
	mark_target_uptodate(sh, sh->ops.target);
723
	mark_target_uptodate(sh, sh->ops.target2);
724

725 726 727
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
728 729 730 731
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

732 733 734 735 736 737 738 739 740
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
				 struct raid5_percpu *percpu)
{
	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
741 742
{
	int disks = sh->disks;
743
	struct page **xor_srcs = percpu->scribble;
744 745 746 747 748
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
749
	struct async_submit_ctl submit;
750 751 752
	int i;

	pr_debug("%s: stripe %llu block: %d\n",
753
		__func__, (unsigned long long)sh->sector, target);
754 755 756 757 758 759 760 761
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
762
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
763
			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
764
	if (unlikely(count == 1))
765
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
766
	else
767
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
768 769 770 771

	return tx;
}

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
790
		srcs[i] = NULL;
791 792 793 794 795 796 797 798 799 800

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		srcs[slot] = sh->dev[i].page;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

801
	return syndrome_disks;
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
	struct page **blocks = percpu->scribble;
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
822
	else
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
		count = set_syndrome_sources(blocks, sh);
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
839 840
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
841 842 843 844 845 846 847 848 849 850 851
				  to_addr_conv(sh, percpu));
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
852 853
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
854 855 856
				  to_addr_conv(sh, percpu));
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
857 858 859 860

	return tx;
}

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
	struct page **blocks = percpu->scribble;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

882
	/* we need to open-code set_syndrome_sources to handle the
883 884 885
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
886
		blocks[i] = NULL;
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
913 914 915
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
916
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
936 937 938 939
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
					  to_addr_conv(sh, percpu));
940 941 942 943
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

			count = set_syndrome_sources(blocks, sh);
D
Dan Williams 已提交
944 945 946
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
					  to_addr_conv(sh, percpu));
947 948 949 950
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
951 952 953 954 955 956 957 958 959 960 961 962 963 964
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
				  to_addr_conv(sh, percpu));
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
965 966 967 968
	}
}


969 970 971 972
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

973
	pr_debug("%s: stripe %llu\n", __func__,
974 975 976 977
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
978 979
ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
	       struct dma_async_tx_descriptor *tx)
980 981
{
	int disks = sh->disks;
982
	struct page **xor_srcs = percpu->scribble;
983
	int count = 0, pd_idx = sh->pd_idx, i;
984
	struct async_submit_ctl submit;
985 986 987 988

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

989
	pr_debug("%s: stripe %llu\n", __func__,
990 991 992 993 994
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
995
		if (test_bit(R5_Wantdrain, &dev->flags))
996 997 998
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
999
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1000
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1001
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1002 1003 1004 1005 1006

	return tx;
}

static struct dma_async_tx_descriptor *
1007
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1008 1009
{
	int disks = sh->disks;
1010
	int i;
1011

1012
	pr_debug("%s: stripe %llu\n", __func__,
1013 1014 1015 1016 1017 1018
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		struct bio *chosen;

1019
		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1020 1021
			struct bio *wbi;

1022
			spin_lock_irq(&sh->raid_conf->device_lock);
1023 1024 1025 1026
			chosen = dev->towrite;
			dev->towrite = NULL;
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
1027
			spin_unlock_irq(&sh->raid_conf->device_lock);
1028 1029 1030

			while (wbi && wbi->bi_sector <
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1031 1032
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
				tx = async_copy_data(1, wbi, dev->page,
					dev->sector, tx);
				wbi = r5_next_bio(wbi, dev->sector);
			}
		}
	}

	return tx;
}

1043
static void ops_complete_reconstruct(void *stripe_head_ref)
1044 1045
{
	struct stripe_head *sh = stripe_head_ref;
1046 1047 1048 1049
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
T
Tejun Heo 已提交
1050
	bool fua = false;
1051

1052
	pr_debug("%s: stripe %llu\n", __func__,
1053 1054
		(unsigned long long)sh->sector);

T
Tejun Heo 已提交
1055 1056 1057
	for (i = disks; i--; )
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);

1058 1059
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1060

T
Tejun Heo 已提交
1061
		if (dev->written || i == pd_idx || i == qd_idx) {
1062
			set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1063 1064 1065
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
		}
1066 1067
	}

1068 1069 1070 1071 1072 1073 1074 1075
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1076 1077 1078 1079 1080 1081

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1082 1083
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1084 1085
{
	int disks = sh->disks;
1086
	struct page **xor_srcs = percpu->scribble;
1087
	struct async_submit_ctl submit;
1088 1089
	int count = 0, pd_idx = sh->pd_idx, i;
	struct page *xor_dest;
1090
	int prexor = 0;
1091 1092
	unsigned long flags;

1093
	pr_debug("%s: stripe %llu\n", __func__,
1094 1095 1096 1097 1098
		(unsigned long long)sh->sector);

	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1099 1100
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		prexor = 1;
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (dev->written)
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1121
	flags = ASYNC_TX_ACK |
1122 1123 1124 1125
		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

	atomic_inc(&sh->count);

1126
	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1127
			  to_addr_conv(sh, percpu));
1128 1129 1130 1131
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1132 1133
}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
	struct page **blocks = percpu->scribble;
	int count;

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh);

	atomic_inc(&sh->count);

	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
			  sh, to_addr_conv(sh, percpu));
	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1151 1152 1153 1154 1155 1156
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1157
	pr_debug("%s: stripe %llu\n", __func__,
1158 1159
		(unsigned long long)sh->sector);

1160
	sh->check_state = check_state_check_result;
1161 1162 1163 1164
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1165
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1166 1167
{
	int disks = sh->disks;
1168 1169 1170
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1171
	struct page **xor_srcs = percpu->scribble;
1172
	struct dma_async_tx_descriptor *tx;
1173
	struct async_submit_ctl submit;
1174 1175
	int count;
	int i;
1176

1177
	pr_debug("%s: stripe %llu\n", __func__,
1178 1179
		(unsigned long long)sh->sector);

1180 1181 1182
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1183
	for (i = disks; i--; ) {
1184 1185 1186
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1187 1188
	}

1189 1190
	init_async_submit(&submit, 0, NULL, NULL, NULL,
			  to_addr_conv(sh, percpu));
D
Dan Williams 已提交
1191
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1192
			   &sh->ops.zero_sum_result, &submit);
1193 1194

	atomic_inc(&sh->count);
1195 1196
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1197 1198
}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
	struct page **srcs = percpu->scribble;
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

	count = set_syndrome_sources(srcs, sh);
	if (!checkp)
		srcs[count] = NULL;
1211 1212

	atomic_inc(&sh->count);
1213 1214 1215 1216
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
			  sh, to_addr_conv(sh, percpu));
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1217 1218
}

1219
static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1220 1221 1222
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1223
	raid5_conf_t *conf = sh->raid_conf;
1224
	int level = conf->level;
1225 1226
	struct raid5_percpu *percpu;
	unsigned long cpu;
1227

1228 1229
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1230
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1231 1232 1233 1234
		ops_run_biofill(sh);
		overlap_clear++;
	}

1235
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1246 1247
			async_tx_ack(tx);
	}
1248

1249
	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1250
		tx = ops_run_prexor(sh, percpu, tx);
1251

1252
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1253
		tx = ops_run_biodrain(sh, tx);
1254 1255 1256
		overlap_clear++;
	}

1257 1258 1259 1260 1261 1262
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1263

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1274 1275 1276 1277 1278 1279 1280

	if (overlap_clear)
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1281
	put_cpu();
1282 1283
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
#ifdef CONFIG_MULTICORE_RAID456
static void async_run_ops(void *param, async_cookie_t cookie)
{
	struct stripe_head *sh = param;
	unsigned long ops_request = sh->ops.request;

	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
	wake_up(&sh->ops.wait_for_ops);

	__raid_run_ops(sh, ops_request);
	release_stripe(sh);
}

static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
	/* since handle_stripe can be called outside of raid5d context
	 * we need to ensure sh->ops.request is de-staged before another
	 * request arrives
	 */
	wait_event(sh->ops.wait_for_ops,
		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
	sh->ops.request = ops_request;

	atomic_inc(&sh->count);
	async_schedule(async_run_ops, sh);
}
#else
#define raid_run_ops __raid_run_ops
#endif

1314
static int grow_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1315 1316
{
	struct stripe_head *sh;
N
Namhyung Kim 已提交
1317
	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1318 1319
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
1320

1321
	sh->raid_conf = conf;
1322 1323 1324
	#ifdef CONFIG_MULTICORE_RAID456
	init_waitqueue_head(&sh->ops.wait_for_ops);
	#endif
1325

1326 1327
	if (grow_buffers(sh)) {
		shrink_buffers(sh);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
	/* we just created an active stripe so... */
	atomic_set(&sh->count, 1);
	atomic_inc(&conf->active_stripes);
	INIT_LIST_HEAD(&sh->lru);
	release_stripe(sh);
	return 1;
}

static int grow_stripes(raid5_conf_t *conf, int num)
{
1341
	struct kmem_cache *sc;
1342
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
1343

1344 1345 1346 1347 1348 1349 1350 1351
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

1352 1353
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
1354
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1355
			       0, 0, NULL);
L
Linus Torvalds 已提交
1356 1357 1358
	if (!sc)
		return 1;
	conf->slab_cache = sc;
1359
	conf->pool_size = devs;
1360
	while (num--)
1361
		if (!grow_one_stripe(conf))
L
Linus Torvalds 已提交
1362 1363 1364
			return 1;
	return 0;
}
1365

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
static size_t scribble_len(int num)
{
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);

	return len;
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
	 * 2/ gather all the old stripe_heads and tranfer the pages across
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
1416
	unsigned long cpu;
1417
	int err;
1418
	struct kmem_cache *sc;
1419 1420 1421 1422 1423
	int i;

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

1424 1425 1426
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
1427

1428 1429 1430
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1431
			       0, 0, NULL);
1432 1433 1434 1435
	if (!sc)
		return -ENOMEM;

	for (i = conf->max_nr_stripes; i; i--) {
N
Namhyung Kim 已提交
1436
		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1437 1438 1439 1440
		if (!nsh)
			break;

		nsh->raid_conf = conf;
1441 1442 1443
		#ifdef CONFIG_MULTICORE_RAID456
		init_waitqueue_head(&nsh->ops.wait_for_ops);
		#endif
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
	list_for_each_entry(nsh, &newstripes, lru) {
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    !list_empty(&conf->inactive_list),
				    conf->device_lock,
N
NeilBrown 已提交
1466
				    );
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
		osh = get_free_stripe(conf);
		spin_unlock_irq(&conf->device_lock);
		atomic_set(&nsh->count, 1);
		for(i=0; i<conf->pool_size; i++)
			nsh->dev[i].page = osh->dev[i].page;
		for( ; i<newsize; i++)
			nsh->dev[i].page = NULL;
		kmem_cache_free(conf->slab_cache, osh);
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
1481
	 * conf->disks and the scribble region
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	get_online_cpus();
	conf->scribble_len = scribble_len(newsize);
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		void *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = kmalloc(conf->scribble_len, GFP_NOIO);

		if (scribble) {
			kfree(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();

1511 1512 1513 1514
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
	conf->pool_size = newsize;
	return err;
}
L
Linus Torvalds 已提交
1532

1533
static int drop_one_stripe(raid5_conf_t *conf)
L
Linus Torvalds 已提交
1534 1535 1536
{
	struct stripe_head *sh;

1537 1538 1539 1540 1541
	spin_lock_irq(&conf->device_lock);
	sh = get_free_stripe(conf);
	spin_unlock_irq(&conf->device_lock);
	if (!sh)
		return 0;
1542
	BUG_ON(atomic_read(&sh->count));
1543
	shrink_buffers(sh);
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
	return 1;
}

static void shrink_stripes(raid5_conf_t *conf)
{
	while (drop_one_stripe(conf))
		;

N
NeilBrown 已提交
1554 1555
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
1556 1557 1558
	conf->slab_cache = NULL;
}

1559
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
1560
{
1561
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1562
	raid5_conf_t *conf = sh->raid_conf;
1563
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1564
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1565 1566
	char b[BDEVNAME_SIZE];
	mdk_rdev_t *rdev;
L
Linus Torvalds 已提交
1567 1568 1569 1570 1571 1572


	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1573 1574
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
1575 1576 1577
		uptodate);
	if (i == disks) {
		BUG();
1578
		return;
L
Linus Torvalds 已提交
1579 1580 1581 1582
	}

	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1583
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1584
			rdev = conf->disks[i].rdev;
1585 1586 1587 1588 1589 1590 1591 1592
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
				(unsigned long long)(sh->sector
						     + rdev->data_offset),
				bdevname(rdev->bdev, b));
1593 1594 1595
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
		}
1596 1597
		if (atomic_read(&conf->disks[i].rdev->read_errors))
			atomic_set(&conf->disks[i].rdev->read_errors, 0);
L
Linus Torvalds 已提交
1598
	} else {
1599
		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1600
		int retry = 0;
1601 1602
		rdev = conf->disks[i].rdev;

L
Linus Torvalds 已提交
1603
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1604
		atomic_inc(&rdev->read_errors);
1605
		if (conf->mddev->degraded >= conf->max_degraded)
1606 1607 1608 1609 1610 1611 1612 1613
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
				(unsigned long long)(sh->sector
						     + rdev->data_offset),
				bdn);
1614
		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1615
			/* Oh, no!!! */
1616 1617 1618 1619 1620 1621 1622 1623
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
				(unsigned long long)(sh->sector
						     + rdev->data_offset),
				bdn);
1624
		else if (atomic_read(&rdev->read_errors)
1625
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
1626
			printk(KERN_WARNING
1627
			       "md/raid:%s: Too many read errors, failing device %s.\n",
1628
			       mdname(conf->mddev), bdn);
1629 1630 1631 1632 1633
		else
			retry = 1;
		if (retry)
			set_bit(R5_ReadError, &sh->dev[i].flags);
		else {
1634 1635
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1636
			md_error(conf->mddev, rdev);
1637
		}
L
Linus Torvalds 已提交
1638 1639 1640 1641 1642 1643 1644
	}
	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1645
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
1646
{
1647
	struct stripe_head *sh = bi->bi_private;
L
Linus Torvalds 已提交
1648
	raid5_conf_t *conf = sh->raid_conf;
1649
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
1650 1651 1652 1653 1654 1655
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

1656
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
1657 1658 1659 1660
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
1661
		return;
L
Linus Torvalds 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670
	}

	if (!uptodate)
		md_error(conf->mddev, conf->disks[i].rdev);

	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
	
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
1671
	release_stripe(sh);
L
Linus Torvalds 已提交
1672 1673 1674
}


1675
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
L
Linus Torvalds 已提交
1676
	
1677
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
	dev->req.bi_vcnt++;
	dev->req.bi_max_vecs++;
	dev->vec.bv_page = dev->page;
	dev->vec.bv_len = STRIPE_SIZE;
	dev->vec.bv_offset = 0;

	dev->req.bi_sector = sh->sector;
	dev->req.bi_private = sh;

	dev->flags = 0;
1693
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
1694 1695 1696 1697 1698
}

static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
	char b[BDEVNAME_SIZE];
1699
	raid5_conf_t *conf = mddev->private;
1700
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
1701

1702 1703 1704 1705 1706 1707 1708 1709 1710
	if (test_and_clear_bit(In_sync, &rdev->flags)) {
		unsigned long flags;
		spin_lock_irqsave(&conf->device_lock, flags);
		mddev->degraded++;
		spin_unlock_irqrestore(&conf->device_lock, flags);
		/*
		 * if recovery was running, make sure it aborts.
		 */
		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
L
Linus Torvalds 已提交
1711
	}
1712 1713 1714 1715 1716 1717 1718 1719 1720
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
1721
}
L
Linus Torvalds 已提交
1722 1723 1724 1725 1726

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
1727
static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1728 1729
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
1730
{
N
NeilBrown 已提交
1731
	sector_t stripe, stripe2;
1732
	sector_t chunk_number;
L
Linus Torvalds 已提交
1733
	unsigned int chunk_offset;
1734
	int pd_idx, qd_idx;
1735
	int ddf_layout = 0;
L
Linus Torvalds 已提交
1736
	sector_t new_sector;
1737 1738
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
1739 1740
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1741 1742 1743
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
1756 1757
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
1758
	stripe2 = stripe;
L
Linus Torvalds 已提交
1759 1760 1761
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
1762
	pd_idx = qd_idx = -1;
1763 1764
	switch(conf->level) {
	case 4:
1765
		pd_idx = data_disks;
1766 1767
		break;
	case 5:
1768
		switch (algorithm) {
L
Linus Torvalds 已提交
1769
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1770
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1771
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1772 1773 1774
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1775
			pd_idx = sector_div(stripe2, raid_disks);
1776
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
1777 1778 1779
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1780
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1781
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1782 1783
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1784
			pd_idx = sector_div(stripe2, raid_disks);
1785
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
1786
			break;
1787 1788 1789 1790 1791 1792 1793
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
1794
		default:
1795
			BUG();
1796 1797 1798 1799
		}
		break;
	case 6:

1800
		switch (algorithm) {
1801
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
1802
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1803 1804
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1805
				(*dd_idx)++;	/* Q D D D P */
1806 1807
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1808 1809 1810
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
1811
			pd_idx = sector_div(stripe2, raid_disks);
1812 1813
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
1814
				(*dd_idx)++;	/* Q D D D P */
1815 1816
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
1817 1818 1819
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
1820
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1821 1822
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1823 1824
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
1825
			pd_idx = sector_div(stripe2, raid_disks);
1826 1827
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1828
			break;
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
1844
			pd_idx = sector_div(stripe2, raid_disks);
1845 1846 1847 1848 1849 1850
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1851
			ddf_layout = 1;
1852 1853 1854 1855 1856 1857 1858
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
1859 1860
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1861 1862 1863 1864 1865 1866
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
1867
			ddf_layout = 1;
1868 1869 1870 1871
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
1872
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1873 1874
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1875
			ddf_layout = 1;
1876 1877 1878 1879
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
1880
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1881 1882 1883 1884 1885 1886
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
1887
			pd_idx = sector_div(stripe2, raid_disks-1);
1888 1889 1890 1891 1892 1893
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
1894
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1895 1896 1897 1898 1899
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
1900
			pd_idx = sector_div(stripe2, raid_disks-1);
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

1911
		default:
1912
			BUG();
1913 1914
		}
		break;
L
Linus Torvalds 已提交
1915 1916
	}

1917 1918 1919
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
1920
		sh->ddf_layout = ddf_layout;
1921
	}
L
Linus Torvalds 已提交
1922 1923 1924 1925 1926 1927 1928 1929
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}


1930
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
1931 1932
{
	raid5_conf_t *conf = sh->raid_conf;
1933 1934
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
1935
	sector_t new_sector = sh->sector, check;
1936 1937
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
1938 1939
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
1940 1941
	sector_t stripe;
	int chunk_offset;
1942 1943
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
1944
	sector_t r_sector;
1945
	struct stripe_head sh2;
L
Linus Torvalds 已提交
1946

1947

L
Linus Torvalds 已提交
1948 1949 1950
	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

1951 1952 1953 1954 1955
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
1956
		switch (algorithm) {
L
Linus Torvalds 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
1968 1969 1970 1971 1972
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
1973
		default:
1974
			BUG();
1975 1976 1977
		}
		break;
	case 6:
1978
		if (i == sh->qd_idx)
1979
			return 0; /* It is the Q disk */
1980
		switch (algorithm) {
1981 1982
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
1983 1984 1985 1986
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2001 2002 2003 2004 2005 2006
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2007
			/* Like left_symmetric, but P is before Q */
2008 2009
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2010 2011 2012 2013 2014 2015
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2031
		default:
2032
			BUG();
2033 2034
		}
		break;
L
Linus Torvalds 已提交
2035 2036 2037
	}

	chunk_number = stripe * data_disks + i;
2038
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2039

2040
	check = raid5_compute_sector(conf, r_sector,
2041
				     previous, &dummy1, &sh2);
2042 2043
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2044 2045
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2046 2047 2048 2049 2050 2051
		return 0;
	}
	return r_sector;
}


2052
static void
2053
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2054
			 int rcw, int expand)
2055 2056
{
	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2057 2058
	raid5_conf_t *conf = sh->raid_conf;
	int level = conf->level;
2059 2060 2061 2062 2063 2064 2065

	if (rcw) {
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
2066 2067 2068 2069
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;
2070

2071
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2072 2073 2074 2075 2076 2077

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2078
				set_bit(R5_Wantdrain, &dev->flags);
2079 2080
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2081
				s->locked++;
2082 2083
			}
		}
2084
		if (s->locked + conf->max_degraded == disks)
2085
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2086
				atomic_inc(&conf->pending_full_writes);
2087
	} else {
2088
		BUG_ON(level == 6);
2089 2090 2091
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));

2092
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2093 2094
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2095
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2096 2097 2098 2099 2100 2101 2102 2103

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i == pd_idx)
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2104 2105
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2106 2107
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2108
				s->locked++;
2109 2110 2111 2112
			}
		}
	}

2113
	/* keep the parity disk(s) locked while asynchronous operations
2114 2115 2116 2117
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2118
	s->locked++;
2119

2120 2121 2122 2123 2124 2125 2126 2127 2128
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2129
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2130
		__func__, (unsigned long long)sh->sector,
2131
		s->locked, s->ops_request);
2132
}
2133

L
Linus Torvalds 已提交
2134 2135
/*
 * Each stripe/dev can have one or more bion attached.
2136
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2137 2138 2139 2140 2141 2142
 * The bi_next chain must be in order.
 */
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
	struct bio **bip;
	raid5_conf_t *conf = sh->raid_conf;
2143
	int firstwrite=0;
L
Linus Torvalds 已提交
2144

2145
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
L
Linus Torvalds 已提交
2146 2147 2148 2149 2150
		(unsigned long long)bi->bi_sector,
		(unsigned long long)sh->sector);


	spin_lock_irq(&conf->device_lock);
2151
	if (forwrite) {
L
Linus Torvalds 已提交
2152
		bip = &sh->dev[dd_idx].towrite;
2153 2154 2155
		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164
		bip = &sh->dev[dd_idx].toread;
	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
			goto overlap;
		bip = & (*bip)->bi_next;
	}
	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
		goto overlap;

2165
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2166 2167 2168
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2169
	bi->bi_phys_segments++;
2170

L
Linus Torvalds 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
			     bi && bi->bi_sector <= sector;
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
				sector = bi->bi_sector + (bi->bi_size>>9);
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
	}
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
	spin_unlock_irq(&conf->device_lock);

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
		(unsigned long long)(*bip)->bi_sector,
		(unsigned long long)sh->sector, dd_idx);

	if (conf->mddev->bitmap && firstwrite) {
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
		sh->bm_seq = conf->seq_flush+1;
		set_bit(STRIPE_BIT_DELAY, &sh->state);
	}
L
Linus Torvalds 已提交
2196 2197 2198 2199 2200 2201 2202 2203
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
	spin_unlock_irq(&conf->device_lock);
	return 0;
}

2204 2205
static void end_reshape(raid5_conf_t *conf);

2206 2207
static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
			    struct stripe_head *sh)
2208
{
2209
	int sectors_per_chunk =
2210
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2211
	int dd_idx;
2212
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2213
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2214

2215 2216
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
2217
			     *sectors_per_chunk + chunk_offset,
2218
			     previous,
2219
			     &dd_idx, sh);
2220 2221
}

2222
static void
2223
handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
			mdk_rdev_t *rdev;
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
				/* multiple read failures in one stripe */
				md_error(conf->mddev, rdev);
			rcu_read_unlock();
		}
		spin_lock_irq(&conf->device_lock);
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
		if (bi) {
			s->to_write--;
			bitmap_end = 1;
		}

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

		while (bi && bi->bi_sector <
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2257
			if (!raid5_dec_bi_phys_segments(bi)) {
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
		if (bi) bitmap_end = 1;
		while (bi && bi->bi_sector <
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2272
			if (!raid5_dec_bi_phys_segments(bi)) {
2273 2274 2275 2276 2277 2278 2279
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

2280 2281 2282 2283 2284 2285
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
			if (bi) s->to_read--;
			while (bi && bi->bi_sector <
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2296
				if (!raid5_dec_bi_phys_segments(bi)) {
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		spin_unlock_irq(&conf->device_lock);
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
	}

2309 2310 2311
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2312 2313
}

2314
/* fetch_block - checks the given member device to see if its data needs
2315 2316 2317
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
2318
 * 0 to tell the loop in handle_stripe_fill to continue
2319
 */
2320 2321
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
2322
{
2323
	struct r5dev *dev = &sh->dev[disk_idx];
2324 2325
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
2326

2327
	/* is the data in this block needed, and can we get it? */
2328 2329 2330 2331 2332
	if (!test_bit(R5_LOCKED, &dev->flags) &&
	    !test_bit(R5_UPTODATE, &dev->flags) &&
	    (dev->toread ||
	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
	     s->syncing || s->expanding ||
2333 2334
	     (s->failed >= 1 && fdev[0]->toread) ||
	     (s->failed >= 2 && fdev[1]->toread) ||
2335 2336 2337
	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2338 2339 2340 2341 2342 2343
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
		if ((s->uptodate == disks - 1) &&
2344 2345
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
2346 2347
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
2348
			 */
2349 2350 2351 2352 2353 2354 2355 2356
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
2357 2358 2359 2360 2361 2362
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
2376
			}
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
2396 2397
		}
	}
2398 2399 2400 2401 2402

	return 0;
}

/**
2403
 * handle_stripe_fill - read or compute data to satisfy pending requests.
2404
 */
2405 2406 2407
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
2418
			if (fetch_block(sh, s, i, disks))
2419
				break;
2420 2421 2422 2423
	set_bit(STRIPE_HANDLE, &sh->state);
}


2424
/* handle_stripe_clean_event
2425 2426 2427 2428
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
2429
static void handle_stripe_clean_event(raid5_conf_t *conf,
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
				test_bit(R5_UPTODATE, &dev->flags)) {
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
				int bitmap_end = 0;
2443
				pr_debug("Return write for disc %d\n", i);
2444 2445 2446 2447 2448 2449
				spin_lock_irq(&conf->device_lock);
				wbi = dev->written;
				dev->written = NULL;
				while (wbi && wbi->bi_sector <
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
2450
					if (!raid5_dec_bi_phys_segments(wbi)) {
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
				if (dev->towrite == NULL)
					bitmap_end = 1;
				spin_unlock_irq(&conf->device_lock);
				if (bitmap_end)
					bitmap_endwrite(conf->mddev->bitmap,
							sh->sector,
							STRIPE_SECTORS,
					 !test_bit(STRIPE_DEGRADED, &sh->state),
							0);
			}
		}
2468 2469 2470 2471

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
2472 2473
}

2474 2475 2476 2477
static void handle_stripe_dirtying(raid5_conf_t *conf,
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
2478 2479
{
	int rmw = 0, rcw = 0, i;
2480 2481 2482 2483 2484 2485 2486
	if (conf->max_degraded == 2) {
		/* RAID6 requires 'rcw' in current implementation
		 * Calculate the real rcw later - for now fake it
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
	} else for (i = disks; i--; ) {
2487 2488 2489 2490
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
		if ((dev->towrite || i == sh->pd_idx) &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2491 2492
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
2493 2494 2495 2496 2497 2498 2499 2500
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
		    !test_bit(R5_LOCKED, &dev->flags) &&
2501 2502 2503
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2504 2505 2506 2507
			else
				rcw += 2*disks;
		}
	}
2508
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2509 2510 2511 2512 2513 2514 2515 2516
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
	if (rmw < rcw && rmw > 0)
		/* prefer read-modify-write, but need to get some data */
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if ((dev->towrite || i == sh->pd_idx) &&
			    !test_bit(R5_LOCKED, &dev->flags) &&
2517 2518
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
2519 2520 2521
			    test_bit(R5_Insync, &dev->flags)) {
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2522
					pr_debug("Read_old block "
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
						"%d for r-m-w\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2533
	if (rcw <= rmw && rcw > 0) {
2534
		/* want reconstruct write, but need to get some data */
2535
		rcw = 0;
2536 2537 2538
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2539
			    i != sh->pd_idx && i != sh->qd_idx &&
2540
			    !test_bit(R5_LOCKED, &dev->flags) &&
2541
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2542 2543 2544 2545
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
				if (!test_bit(R5_Insync, &dev->flags))
					continue; /* it's a failed drive */
2546 2547
				if (
				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2548
					pr_debug("Read_old block "
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
2559
	}
2560 2561 2562
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
2563 2564
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
2565 2566
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
2567 2568 2569
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
2570 2571 2572
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2573
		schedule_reconstruction(sh, s, rcw == 0, 0);
2574 2575 2576 2577 2578
}

static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
				struct stripe_head_state *s, int disks)
{
2579
	struct r5dev *dev = NULL;
2580

2581
	set_bit(STRIPE_HANDLE, &sh->state);
2582

2583 2584 2585
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
2586 2587
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
2588 2589
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2590 2591
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
2592
			break;
2593
		}
2594
		dev = &sh->dev[s->failed_num[0]];
2595 2596 2597 2598 2599 2600 2601 2602 2603
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
2604

2605 2606 2607 2608 2609
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
2610
		s->locked++;
2611
		set_bit(R5_Wantwrite, &dev->flags);
2612

2613 2614
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
2631
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
2643
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2644 2645 2646 2647
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
2648
				sh->ops.target2 = -1;
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2660 2661 2662 2663 2664
	}
}


static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2665
				  struct stripe_head_state *s,
2666
				  int disks)
2667 2668
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
2669
	int qd_idx = sh->qd_idx;
2670
	struct r5dev *dev;
2671 2672 2673 2674

	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
2675

2676 2677 2678 2679 2680 2681
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

2682 2683 2684
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
2685
		if (s->failed == s->q_failed) {
2686
			/* The only possible failed device holds Q, so it
2687 2688 2689
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
2690
			sh->check_state = check_state_run;
2691
		}
2692
		if (!s->q_failed && s->failed < 2) {
2693
			/* Q is not failed, and we didn't use it to generate
2694 2695
			 * anything, so it makes sense to check it
			 */
2696 2697 2698 2699
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
2700 2701
		}

2702 2703
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
2704

2705 2706 2707 2708
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
2709
		}
2710 2711 2712 2713 2714 2715 2716
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
2717 2718
		}

2719 2720 2721 2722 2723
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
2724

2725 2726 2727
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
2728 2729

		/* now write out any block on a failed drive,
2730
		 * or P or Q if they were recomputed
2731
		 */
2732
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2733
		if (s->failed == 2) {
2734
			dev = &sh->dev[s->failed_num[1]];
2735 2736 2737 2738 2739
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
2740
			dev = &sh->dev[s->failed_num[0]];
2741 2742 2743 2744
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2745
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2746 2747 2748 2749 2750
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
2751
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2752 2753 2754 2755 2756 2757 2758 2759
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
			conf->mddev->resync_mismatches += STRIPE_SECTORS;
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
2824 2825 2826
	}
}

2827
static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2828 2829 2830 2831 2832 2833
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
2834
	struct dma_async_tx_descriptor *tx = NULL;
2835 2836
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
2837
		if (i != sh->pd_idx && i != sh->qd_idx) {
2838
			int dd_idx, j;
2839
			struct stripe_head *sh2;
2840
			struct async_submit_ctl submit;
2841

2842
			sector_t bn = compute_blocknr(sh, i, 1);
2843 2844
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
2845
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
2858 2859

			/* place all the copies on one channel */
2860
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2861
			tx = async_memcpy(sh2->dev[dd_idx].page,
2862
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2863
					  &submit);
2864

2865 2866 2867 2868
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
2869
				    j != sh2->qd_idx &&
2870 2871 2872 2873 2874 2875 2876
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
2877

2878
		}
2879 2880 2881 2882 2883
	/* done submitting copies, wait for them to complete */
	if (tx) {
		async_tx_ack(tx);
		dma_wait_for_async_tx(tx);
	}
2884
}
L
Linus Torvalds 已提交
2885

2886

L
Linus Torvalds 已提交
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
/*
 * handle_stripe - do things to a stripe.
 *
 * We lock the stripe and then examine the state of various bits
 * to see what needs to be done.
 * Possible results:
 *    return some read request which now have data
 *    return some write requests which are safely on disc
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 * buffers are taken off read_list or write_list, and bh_cache buffers
 * get BH_Lock set before the stripe lock is released.
 *
 */
2903

2904
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
2905
{
2906
	raid5_conf_t *conf = sh->raid_conf;
2907
	int disks = sh->disks;
2908 2909
	struct r5dev *dev;
	int i;
L
Linus Torvalds 已提交
2910

2911 2912 2913 2914 2915 2916 2917
	memset(s, 0, sizeof(*s));

	s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
2918

2919
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
2920
	rcu_read_lock();
2921
	spin_lock_irq(&conf->device_lock);
2922 2923
	for (i=disks; i--; ) {
		mdk_rdev_t *rdev;
2924

2925
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
2926

2927
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2928
			i, dev->flags, dev->toread, dev->towrite, dev->written);
2929 2930 2931 2932 2933 2934 2935 2936
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
2937

2938
		/* now count some things */
2939 2940 2941 2942
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
2943
		if (test_bit(R5_Wantcompute, &dev->flags)) {
2944 2945
			s->compute++;
			BUG_ON(s->compute > 2);
2946
		}
L
Linus Torvalds 已提交
2947

2948
		if (test_bit(R5_Wantfill, &dev->flags))
2949
			s->to_fill++;
2950
		else if (dev->toread)
2951
			s->to_read++;
2952
		if (dev->towrite) {
2953
			s->to_write++;
2954
			if (!test_bit(R5_OVERWRITE, &dev->flags))
2955
				s->non_overwrite++;
2956
		}
2957
		if (dev->written)
2958
			s->written++;
2959
		rdev = rcu_dereference(conf->disks[i].rdev);
2960
		if (s->blocked_rdev == NULL &&
2961
		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2962
			s->blocked_rdev = rdev;
2963 2964
			atomic_inc(&rdev->nr_pending);
		}
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
		else if (test_bit(In_sync, &rdev->flags))
			set_bit(R5_Insync, &dev->flags);
		else {
			/* in sync if before recovery_offset */
			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
				set_bit(R5_Insync, &dev->flags);
		}
		if (!test_bit(R5_Insync, &dev->flags)) {
2976 2977 2978
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
2979
		}
2980 2981 2982
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
2983 2984 2985
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
2986
		}
L
Linus Torvalds 已提交
2987
	}
2988
	spin_unlock_irq(&conf->device_lock);
L
Linus Torvalds 已提交
2989
	rcu_read_unlock();
2990 2991 2992 2993 2994
}

static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
2995
	raid5_conf_t *conf = sh->raid_conf;
2996
	int i;
2997 2998
	int prexor;
	int disks = sh->disks;
2999
	struct r5dev *pdev, *qdev;
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019

	clear_bit(STRIPE_HANDLE, &sh->state);
	if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
		set_bit(STRIPE_SYNCING, &sh->state);
		clear_bit(STRIPE_INSYNC, &sh->state);
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
3020

3021
	analyse_stripe(sh, &s);
3022

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
		    s.to_write || s.written) {
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
	if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
		handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
	if (s.failed > conf->max_degraded && s.syncing) {
		md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
		clear_bit(STRIPE_SYNCING, &sh->state);
		s.syncing = 0;
	}

	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && test_bit(R5_UPTODATE, &qdev->flags)))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
	    || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
		handle_stripe_fill(sh, &s, disks);

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
		BUG_ON(sh->qd_idx >= 0 &&
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172

	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}


3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
3200

3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
3217

3218
finish:
3219
	/* wait for this device to become unblocked */
3220 3221
	if (unlikely(s.blocked_rdev))
		md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3222

3223 3224 3225
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
3226
	ops_run_io(sh, &s);
3227

3228

3229
	if (s.dec_preread_active) {
3230
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
3231
		 * is waiting on a flush, it won't continue until the writes
3232 3233 3234 3235 3236 3237 3238 3239
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

3240
	return_io(s.return_bi);
3241

3242
	clear_bit(STRIPE_ACTIVE, &sh->state);
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
}

static void raid5_activate_delayed(raid5_conf_t *conf)
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
3256
			list_add_tail(&sh->lru, &conf->hold_list);
3257
		}
N
NeilBrown 已提交
3258
	}
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
}

static void activate_bit_delay(raid5_conf_t *conf)
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
		__release_stripe(conf, sh);
	}
}

N
NeilBrown 已提交
3275
int md_raid5_congested(mddev_t *mddev, int bits)
3276
{
3277
	raid5_conf_t *conf = mddev->private;
3278 3279 3280 3281

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
3282

3283 3284 3285 3286 3287 3288 3289 3290 3291
	if (conf->inactive_blocked)
		return 1;
	if (conf->quiesce)
		return 1;
	if (list_empty_careful(&conf->inactive_list))
		return 1;

	return 0;
}
N
NeilBrown 已提交
3292 3293 3294 3295 3296 3297 3298 3299 3300
EXPORT_SYMBOL_GPL(md_raid5_congested);

static int raid5_congested(void *data, int bits)
{
	mddev_t *mddev = data;

	return mddev_congested(mddev, bits) ||
		md_raid5_congested(mddev, bits);
}
3301

3302 3303 3304
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
3305 3306 3307
static int raid5_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
3308 3309
{
	mddev_t *mddev = q->queuedata;
3310
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3311
	int max;
3312
	unsigned int chunk_sectors = mddev->chunk_sectors;
3313
	unsigned int bio_sectors = bvm->bi_size >> 9;
3314

3315
	if ((bvm->bi_rw & 1) == WRITE)
3316 3317
		return biovec->bv_len; /* always allow writes to be mergeable */

3318 3319
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3320 3321 3322 3323 3324 3325 3326 3327
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

3328 3329 3330 3331

static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
{
	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3332
	unsigned int chunk_sectors = mddev->chunk_sectors;
3333 3334
	unsigned int bio_sectors = bio->bi_size >> 9;

3335 3336
	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
		chunk_sectors = mddev->new_chunk_sectors;
3337 3338 3339 3340
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}


static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
3370
		conf->retry_read_aligned_list = bi->bi_next;
3371
		bi->bi_next = NULL;
3372 3373 3374 3375
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
3376 3377 3378 3379 3380 3381 3382
		bi->bi_phys_segments = 1; /* biased count of active stripes */
	}

	return bi;
}


3383 3384 3385 3386 3387 3388
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
3389
static void raid5_align_endio(struct bio *bi, int error)
3390 3391
{
	struct bio* raid_bi  = bi->bi_private;
3392 3393 3394 3395 3396
	mddev_t *mddev;
	raid5_conf_t *conf;
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
	mdk_rdev_t *rdev;

3397
	bio_put(bi);
3398 3399 3400

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
3401 3402
	mddev = rdev->mddev;
	conf = mddev->private;
3403 3404 3405 3406

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
3407
		bio_endio(raid_bi, 0);
3408 3409
		if (atomic_dec_and_test(&conf->active_aligned_reads))
			wake_up(&conf->wait_for_stripe);
3410
		return;
3411 3412 3413
	}


3414
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3415 3416

	add_bio_to_retry(raid_bi, conf);
3417 3418
}

3419 3420
static int bio_fits_rdev(struct bio *bi)
{
3421
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3422

3423
	if ((bi->bi_size>>9) > queue_max_sectors(q))
3424 3425
		return 0;
	blk_recount_segments(q, bi);
3426
	if (bi->bi_phys_segments > queue_max_segments(q))
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}


3439
static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3440
{
3441
	raid5_conf_t *conf = mddev->private;
N
NeilBrown 已提交
3442
	int dd_idx;
3443 3444 3445 3446
	struct bio* align_bi;
	mdk_rdev_t *rdev;

	if (!in_chunk_boundary(mddev, raid_bio)) {
3447
		pr_debug("chunk_aligned_read : non aligned\n");
3448 3449 3450
		return 0;
	}
	/*
3451
	 * use bio_clone_mddev to make a copy of the bio
3452
	 */
3453
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
3465 3466
	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
						    0,
3467
						    &dd_idx, NULL);
3468 3469 3470 3471 3472 3473

	rcu_read_lock();
	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
	if (rdev && test_bit(In_sync, &rdev->flags)) {
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
3474 3475 3476 3477 3478
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
		align_bi->bi_sector += rdev->data_offset;

3479 3480 3481 3482 3483 3484 3485
		if (!bio_fits_rdev(align_bi)) {
			/* too big in some way */
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

3486 3487 3488 3489 3490 3491 3492
		spin_lock_irq(&conf->device_lock);
		wait_event_lock_irq(conf->wait_for_stripe,
				    conf->quiesce == 0,
				    conf->device_lock, /* nothing */);
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

3493 3494 3495 3496
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
3497
		bio_put(align_bi);
3498 3499 3500 3501
		return 0;
	}
}

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
{
	struct stripe_head *sh;

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
		  list_empty(&conf->handle_list) ? "empty" : "busy",
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

	if (!list_empty(&conf->handle_list)) {
		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
		sh = list_entry(conf->hold_list.next,
				typeof(*sh), lru);
		conf->bypass_count -= conf->bypass_threshold;
		if (conf->bypass_count < 0)
			conf->bypass_count = 0;
	} else
		return NULL;

	list_del_init(&sh->lru);
	atomic_inc(&sh->count);
	BUG_ON(atomic_read(&sh->count) != 1);
	return sh;
}
3554

3555
static int make_request(mddev_t *mddev, struct bio * bi)
L
Linus Torvalds 已提交
3556
{
3557
	raid5_conf_t *conf = mddev->private;
3558
	int dd_idx;
L
Linus Torvalds 已提交
3559 3560 3561
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
3562
	const int rw = bio_data_dir(bi);
3563
	int remaining;
3564
	int plugged;
L
Linus Torvalds 已提交
3565

T
Tejun Heo 已提交
3566 3567
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
3568 3569 3570
		return 0;
	}

3571
	md_write_start(mddev, bi);
3572

3573
	if (rw == READ &&
3574
	     mddev->reshape_position == MaxSector &&
3575
	     chunk_aligned_read(mddev,bi))
3576
		return 0;
3577

L
Linus Torvalds 已提交
3578 3579 3580 3581
	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_sector + (bi->bi_size>>9);
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3582

3583
	plugged = mddev_check_plugged(mddev);
L
Linus Torvalds 已提交
3584 3585
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
3586
		int disks, data_disks;
3587
		int previous;
3588

3589
	retry:
3590
		previous = 0;
3591
		disks = conf->raid_disks;
3592
		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3593
		if (unlikely(conf->reshape_progress != MaxSector)) {
3594
			/* spinlock is needed as reshape_progress may be
3595 3596
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
3597
			 * Of course reshape_progress could change after
3598 3599 3600 3601
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
3602
			spin_lock_irq(&conf->device_lock);
3603 3604 3605
			if (mddev->delta_disks < 0
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
3606
				disks = conf->previous_raid_disks;
3607 3608
				previous = 1;
			} else {
3609 3610 3611
				if (mddev->delta_disks < 0
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
3612 3613 3614 3615 3616
					spin_unlock_irq(&conf->device_lock);
					schedule();
					goto retry;
				}
			}
3617 3618
			spin_unlock_irq(&conf->device_lock);
		}
3619 3620
		data_disks = disks - conf->max_degraded;

3621 3622
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
3623
						  &dd_idx, NULL);
3624
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
L
Linus Torvalds 已提交
3625 3626 3627
			(unsigned long long)new_sector, 
			(unsigned long long)logical_sector);

3628
		sh = get_active_stripe(conf, new_sector, previous,
3629
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
3630
		if (sh) {
3631
			if (unlikely(previous)) {
3632
				/* expansion might have moved on while waiting for a
3633 3634 3635 3636 3637 3638
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
3639 3640 3641
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
3642 3643 3644
				if (mddev->delta_disks < 0
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
3645 3646 3647 3648 3649
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
3650
					schedule();
3651 3652 3653
					goto retry;
				}
			}
3654

3655
			if (rw == WRITE &&
3656
			    logical_sector >= mddev->suspend_lo &&
3657 3658
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
				    logical_sector < mddev->suspend_hi)
					schedule();
3669 3670
				goto retry;
			}
3671 3672

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3673
			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
3674 3675
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
3676 3677
				 * and wait a while
				 */
N
NeilBrown 已提交
3678
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
3679 3680 3681 3682 3683
				release_stripe(sh);
				schedule();
				goto retry;
			}
			finish_wait(&conf->wait_for_overlap, &w);
3684 3685
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
T
Tejun Heo 已提交
3686
			if ((bi->bi_rw & REQ_SYNC) &&
3687 3688
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
L
Linus Torvalds 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697
			release_stripe(sh);
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			finish_wait(&conf->wait_for_overlap, &w);
			break;
		}
			
	}
3698 3699 3700
	if (!plugged)
		md_wakeup_thread(mddev->thread);

L
Linus Torvalds 已提交
3701
	spin_lock_irq(&conf->device_lock);
3702
	remaining = raid5_dec_bi_phys_segments(bi);
3703 3704
	spin_unlock_irq(&conf->device_lock);
	if (remaining == 0) {
L
Linus Torvalds 已提交
3705

3706
		if ( rw == WRITE )
L
Linus Torvalds 已提交
3707
			md_write_end(mddev);
3708

3709
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
3710
	}
3711

L
Linus Torvalds 已提交
3712 3713 3714
	return 0;
}

D
Dan Williams 已提交
3715 3716
static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);

3717
static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
3718
{
3719 3720 3721 3722 3723 3724 3725 3726 3727
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
3728
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
3729
	struct stripe_head *sh;
3730
	sector_t first_sector, last_sector;
3731 3732 3733
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
3734 3735
	int i;
	int dd_idx;
3736
	sector_t writepos, readpos, safepos;
3737
	sector_t stripe_addr;
3738
	int reshape_sectors;
3739
	struct list_head stripes;
3740

3741 3742 3743 3744 3745 3746
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
		if (mddev->delta_disks < 0 &&
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
3747
		} else if (mddev->delta_disks >= 0 &&
3748 3749
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
3750
		sector_div(sector_nr, new_data_disks);
3751
		if (sector_nr) {
3752 3753
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3754 3755 3756
			*skipped = 1;
			return sector_nr;
		}
3757 3758
	}

3759 3760 3761 3762
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
3763 3764
	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
		reshape_sectors = mddev->new_chunk_sectors;
3765
	else
3766
		reshape_sectors = mddev->chunk_sectors;
3767

3768 3769 3770 3771 3772
	/* we update the metadata when there is more than 3Meg
	 * in the block range (that is rather arbitrary, should
	 * probably be time based) or when the data about to be
	 * copied would over-write the source of the data at
	 * the front of the range.
3773 3774
	 * i.e. one new_stripe along from reshape_progress new_maps
	 * to after where reshape_safe old_maps to
3775
	 */
3776
	writepos = conf->reshape_progress;
3777
	sector_div(writepos, new_data_disks);
3778 3779
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
3780
	safepos = conf->reshape_safe;
3781
	sector_div(safepos, data_disks);
3782
	if (mddev->delta_disks < 0) {
3783
		writepos -= min_t(sector_t, reshape_sectors, writepos);
3784
		readpos += reshape_sectors;
3785
		safepos += reshape_sectors;
3786
	} else {
3787
		writepos += reshape_sectors;
3788 3789
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
3790
	}
3791

3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
	 * If 'readpos' is behind 'writepos', then there is no way that we can
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
3809
	if ((mddev->delta_disks < 0
3810 3811 3812
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3813 3814 3815
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes)==0);
3816
		mddev->reshape_position = conf->reshape_progress;
3817
		mddev->curr_resync_completed = sector_nr;
3818
		conf->reshape_checkpoint = jiffies;
3819
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3820
		md_wakeup_thread(mddev->thread);
3821
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3822 3823
			   kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
3824
		conf->reshape_safe = mddev->reshape_position;
3825 3826
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
3827
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3828 3829
	}

3830 3831 3832 3833
	if (mddev->delta_disks < 0) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
3834 3835
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
3836 3837
		       != sector_nr);
	} else {
3838
		BUG_ON(writepos != sector_nr + reshape_sectors);
3839 3840
		stripe_addr = sector_nr;
	}
3841
	INIT_LIST_HEAD(&stripes);
3842
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3843
		int j;
3844
		int skipped_disk = 0;
3845
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3846 3847 3848 3849 3850 3851 3852 3853 3854
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
3855
			if (conf->level == 6 &&
3856
			    j == sh->qd_idx)
3857
				continue;
3858
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
3859
			if (s < raid5_size(mddev, 0, 0)) {
3860
				skipped_disk = 1;
3861 3862 3863 3864 3865 3866
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
3867
		if (!skipped_disk) {
3868 3869 3870
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
3871
		list_add(&sh->lru, &stripes);
3872 3873
	}
	spin_lock_irq(&conf->device_lock);
3874
	if (mddev->delta_disks < 0)
3875
		conf->reshape_progress -= reshape_sectors * new_data_disks;
3876
	else
3877
		conf->reshape_progress += reshape_sectors * new_data_disks;
3878 3879 3880 3881 3882 3883 3884
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
3885
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3886
				     1, &dd_idx, NULL);
3887
	last_sector =
3888
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
3889
					    * new_data_disks - 1),
3890
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
3891 3892
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
3893
	while (first_sector <= last_sector) {
3894
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
3895 3896 3897 3898 3899
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
3900 3901 3902 3903 3904 3905 3906 3907
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
3908 3909 3910
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
3911
	sector_nr += reshape_sectors;
3912 3913
	if ((sector_nr - mddev->curr_resync_completed) * 2
	    >= mddev->resync_max - mddev->curr_resync_completed) {
3914 3915 3916
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
			   atomic_read(&conf->reshape_stripes) == 0);
3917
		mddev->reshape_position = conf->reshape_progress;
3918
		mddev->curr_resync_completed = sector_nr;
3919
		conf->reshape_checkpoint = jiffies;
3920 3921 3922 3923 3924 3925
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
			   || kthread_should_stop());
		spin_lock_irq(&conf->device_lock);
3926
		conf->reshape_safe = mddev->reshape_position;
3927 3928
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
3929
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3930
	}
3931
	return reshape_sectors;
3932 3933 3934 3935 3936
}

/* FIXME go_faster isn't used */
static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
3937
	raid5_conf_t *conf = mddev->private;
3938
	struct stripe_head *sh;
A
Andre Noll 已提交
3939
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
3940
	sector_t sync_blocks;
3941 3942
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
3943

3944
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
3945
		/* just being told to finish up .. nothing much to do */
3946

3947 3948 3949 3950
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
3951 3952 3953 3954

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
3955
		else /* completed sync */
3956 3957 3958
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
3959 3960
		return 0;
	}
3961

3962 3963 3964
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

3965 3966
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
3967

3968 3969 3970 3971 3972 3973
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

3974
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
3975 3976 3977
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
3978
	if (mddev->degraded >= conf->max_degraded &&
3979
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
3980
		sector_t rv = mddev->dev_sectors - sector_nr;
3981
		*skipped = 1;
L
Linus Torvalds 已提交
3982 3983
		return rv;
	}
3984
	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3985
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3986 3987 3988 3989 3990 3991
	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
3992

N
NeilBrown 已提交
3993 3994 3995

	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

3996
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
3997
	if (sh == NULL) {
3998
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
3999
		/* make sure we don't swamp the stripe cache if someone else
4000
		 * is trying to get access
L
Linus Torvalds 已提交
4001
		 */
4002
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4003
	}
4004 4005 4006 4007
	/* Need to check if array will still be degraded after recovery/resync
	 * We don't need to check the 'failed' flag as when that gets set,
	 * recovery aborts.
	 */
4008
	for (i = 0; i < conf->raid_disks; i++)
4009 4010 4011 4012 4013
		if (conf->disks[i].rdev == NULL)
			still_degraded = 1;

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

4014
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
L
Linus Torvalds 已提交
4015

4016
	handle_stripe(sh);
L
Linus Torvalds 已提交
4017 4018 4019 4020 4021
	release_stripe(sh);

	return STRIPE_SECTORS;
}

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
4035
	int dd_idx;
4036 4037 4038 4039 4040 4041
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4042
	sector = raid5_compute_sector(conf, logical_sector,
4043
				      0, &dd_idx, NULL);
4044 4045 4046
	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);

	for (; logical_sector < last_sector;
4047 4048 4049
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
4050

4051
		if (scnt < raid5_bi_hw_segments(raid_bio))
4052 4053 4054
			/* already done this stripe */
			continue;

4055
		sh = get_active_stripe(conf, sector, 0, 1, 0);
4056 4057 4058

		if (!sh) {
			/* failed to get a stripe - must wait */
4059
			raid5_set_bi_hw_segments(raid_bio, scnt);
4060 4061 4062 4063 4064
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4065 4066
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
			release_stripe(sh);
4067
			raid5_set_bi_hw_segments(raid_bio, scnt);
4068 4069 4070 4071
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

4072
		handle_stripe(sh);
4073 4074 4075 4076
		release_stripe(sh);
		handled++;
	}
	spin_lock_irq(&conf->device_lock);
4077
	remaining = raid5_dec_bi_phys_segments(raid_bio);
4078
	spin_unlock_irq(&conf->device_lock);
4079 4080
	if (remaining == 0)
		bio_endio(raid_bio, 0);
4081 4082 4083 4084 4085 4086
	if (atomic_dec_and_test(&conf->active_aligned_reads))
		wake_up(&conf->wait_for_stripe);
	return handled;
}


L
Linus Torvalds 已提交
4087 4088 4089 4090 4091 4092 4093
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
4094
static void raid5d(mddev_t *mddev)
L
Linus Torvalds 已提交
4095 4096
{
	struct stripe_head *sh;
4097
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4098
	int handled;
4099
	struct blk_plug plug;
L
Linus Torvalds 已提交
4100

4101
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
4102 4103 4104

	md_check_recovery(mddev);

4105
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
4106 4107 4108
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
4109
		struct bio *bio;
L
Linus Torvalds 已提交
4110

4111 4112 4113 4114
		if (atomic_read(&mddev->plug_cnt) == 0 &&
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
4115
			spin_unlock_irq(&conf->device_lock);
4116
			bitmap_unplug(mddev->bitmap);
4117
			spin_lock_irq(&conf->device_lock);
4118
			conf->seq_write = conf->seq_flush;
4119 4120
			activate_bit_delay(conf);
		}
4121 4122
		if (atomic_read(&mddev->plug_cnt) == 0)
			raid5_activate_delayed(conf);
4123

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

4134 4135
		sh = __get_priority_stripe(conf);

4136
		if (!sh)
L
Linus Torvalds 已提交
4137 4138 4139 4140
			break;
		spin_unlock_irq(&conf->device_lock);
		
		handled++;
4141 4142 4143
		handle_stripe(sh);
		release_stripe(sh);
		cond_resched();
L
Linus Torvalds 已提交
4144 4145 4146

		spin_lock_irq(&conf->device_lock);
	}
4147
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
4148 4149 4150

	spin_unlock_irq(&conf->device_lock);

4151
	async_tx_issue_pending_all();
4152
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
4153

4154
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
4155 4156
}

4157
static ssize_t
4158
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4159
{
4160
	raid5_conf_t *conf = mddev->private;
4161 4162 4163 4164
	if (conf)
		return sprintf(page, "%d\n", conf->max_nr_stripes);
	else
		return 0;
4165 4166
}

4167 4168
int
raid5_set_cache_size(mddev_t *mddev, int size)
4169
{
4170
	raid5_conf_t *conf = mddev->private;
4171 4172
	int err;

4173
	if (size <= 16 || size > 32768)
4174
		return -EINVAL;
4175
	while (size < conf->max_nr_stripes) {
4176 4177 4178 4179 4180
		if (drop_one_stripe(conf))
			conf->max_nr_stripes--;
		else
			break;
	}
4181 4182 4183
	err = md_allow_write(mddev);
	if (err)
		return err;
4184
	while (size > conf->max_nr_stripes) {
4185 4186 4187 4188
		if (grow_one_stripe(conf))
			conf->max_nr_stripes++;
		else break;
	}
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
{
	raid5_conf_t *conf = mddev->private;
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

	if (strict_strtoul(page, 10, &new))
		return -EINVAL;
	err = raid5_set_cache_size(mddev, new);
	if (err)
		return err;
4210 4211
	return len;
}
4212

4213 4214 4215 4216
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
4217

4218 4219 4220
static ssize_t
raid5_show_preread_threshold(mddev_t *mddev, char *page)
{
4221
	raid5_conf_t *conf = mddev->private;
4222 4223 4224 4225 4226 4227 4228 4229 4230
	if (conf)
		return sprintf(page, "%d\n", conf->bypass_threshold);
	else
		return 0;
}

static ssize_t
raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
{
4231
	raid5_conf_t *conf = mddev->private;
4232
	unsigned long new;
4233 4234 4235 4236 4237
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (!conf)
		return -ENODEV;

4238
	if (strict_strtoul(page, 10, &new))
4239
		return -EINVAL;
4240
	if (new > conf->max_nr_stripes)
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
		return -EINVAL;
	conf->bypass_threshold = new;
	return len;
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

4252
static ssize_t
4253
stripe_cache_active_show(mddev_t *mddev, char *page)
4254
{
4255
	raid5_conf_t *conf = mddev->private;
4256 4257 4258 4259
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
4260 4261
}

4262 4263
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4264

4265
static struct attribute *raid5_attrs[] =  {
4266 4267
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
4268
	&raid5_preread_bypass_threshold.attr,
4269 4270
	NULL,
};
4271 4272 4273
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
4274 4275
};

4276 4277 4278
static sector_t
raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
4279
	raid5_conf_t *conf = mddev->private;
4280 4281 4282

	if (!sectors)
		sectors = mddev->dev_sectors;
4283
	if (!raid_disks)
4284
		/* size is defined by the smallest of previous and new size */
4285
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4286

4287
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4288
	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4289 4290 4291
	return sectors * (raid_disks - conf->max_degraded);
}

4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
static void raid5_free_percpu(raid5_conf_t *conf)
{
	struct raid5_percpu *percpu;
	unsigned long cpu;

	if (!conf->percpu)
		return;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		percpu = per_cpu_ptr(conf->percpu, cpu);
		safe_put_page(percpu->spare_page);
4304
		kfree(percpu->scribble);
4305 4306 4307 4308 4309 4310 4311 4312 4313
	}
#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	free_percpu(conf->percpu);
}

4314 4315 4316
static void free_conf(raid5_conf_t *conf)
{
	shrink_stripes(conf);
4317
	raid5_free_percpu(conf);
4318 4319 4320 4321 4322
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
4334
		if (conf->level == 6 && !percpu->spare_page)
4335
			percpu->spare_page = alloc_page(GFP_KERNEL);
4336 4337 4338 4339 4340 4341 4342
		if (!percpu->scribble)
			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);

		if (!percpu->scribble ||
		    (conf->level == 6 && !percpu->spare_page)) {
			safe_put_page(percpu->spare_page);
			kfree(percpu->scribble);
4343 4344
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
4345
			return notifier_from_errno(-ENOMEM);
4346 4347 4348 4349 4350
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		safe_put_page(percpu->spare_page);
4351
		kfree(percpu->scribble);
4352
		percpu->spare_page = NULL;
4353
		percpu->scribble = NULL;
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

static int raid5_alloc_percpu(raid5_conf_t *conf)
{
	unsigned long cpu;
	struct page *spare_page;
4366
	struct raid5_percpu __percpu *allcpus;
4367
	void *scribble;
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
	int err;

	allcpus = alloc_percpu(struct raid5_percpu);
	if (!allcpus)
		return -ENOMEM;
	conf->percpu = allcpus;

	get_online_cpus();
	err = 0;
	for_each_present_cpu(cpu) {
4378 4379 4380 4381 4382 4383 4384 4385
		if (conf->level == 6) {
			spare_page = alloc_page(GFP_KERNEL);
			if (!spare_page) {
				err = -ENOMEM;
				break;
			}
			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
		}
4386
		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4387
		if (!scribble) {
4388 4389 4390
			err = -ENOMEM;
			break;
		}
4391
		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
	}
#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	if (err == 0)
		err = register_cpu_notifier(&conf->cpu_notify);
#endif
	put_online_cpus();

	return err;
}

N
NeilBrown 已提交
4404
static raid5_conf_t *setup_conf(mddev_t *mddev)
L
Linus Torvalds 已提交
4405 4406
{
	raid5_conf_t *conf;
4407
	int raid_disk, memory, max_disks;
L
Linus Torvalds 已提交
4408 4409 4410
	mdk_rdev_t *rdev;
	struct disk_info *disk;

N
NeilBrown 已提交
4411 4412 4413
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
4414
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
4415 4416
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
4417
	}
N
NeilBrown 已提交
4418 4419 4420 4421
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
4422
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
4423 4424
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
4425
	}
N
NeilBrown 已提交
4426
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4427
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
4428 4429
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
4430 4431
	}

4432 4433 4434
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
4435 4436
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
4437
		return ERR_PTR(-EINVAL);
4438 4439
	}

N
NeilBrown 已提交
4440 4441
	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
	if (conf == NULL)
L
Linus Torvalds 已提交
4442
		goto abort;
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
	spin_lock_init(&conf->device_lock);
	init_waitqueue_head(&conf->wait_for_stripe);
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
	INIT_LIST_HEAD(&conf->inactive_list);
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
N
NeilBrown 已提交
4455 4456 4457 4458 4459

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
4460
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4461 4462
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
	conf->scribble_len = scribble_len(max_disks);
4463

4464
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4465 4466 4467
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
4468

L
Linus Torvalds 已提交
4469 4470
	conf->mddev = mddev;

4471
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
4472 4473
		goto abort;

4474 4475 4476 4477
	conf->level = mddev->new_level;
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

4478
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
4479

4480
	list_for_each_entry(rdev, &mddev->disks, same_set) {
L
Linus Torvalds 已提交
4481
		raid_disk = rdev->raid_disk;
4482
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
4483 4484 4485 4486 4487 4488
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

		disk->rdev = rdev;

4489
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
4490
			char b[BDEVNAME_SIZE];
4491 4492 4493
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
4494
		} else if (rdev->saved_raid_disk != raid_disk)
4495 4496
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
4497 4498
	}

4499
	conf->chunk_sectors = mddev->new_chunk_sectors;
N
NeilBrown 已提交
4500
	conf->level = mddev->new_level;
4501 4502 4503 4504
	if (conf->level == 6)
		conf->max_degraded = 2;
	else
		conf->max_degraded = 1;
N
NeilBrown 已提交
4505
	conf->algorithm = mddev->new_layout;
L
Linus Torvalds 已提交
4506
	conf->max_nr_stripes = NR_STRIPES;
4507
	conf->reshape_progress = mddev->reshape_position;
4508
	if (conf->reshape_progress != MaxSector) {
4509
		conf->prev_chunk_sectors = mddev->chunk_sectors;
4510 4511
		conf->prev_algo = mddev->layout;
	}
L
Linus Torvalds 已提交
4512

N
NeilBrown 已提交
4513
	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4514
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
N
NeilBrown 已提交
4515 4516
	if (grow_stripes(conf, conf->max_nr_stripes)) {
		printk(KERN_ERR
4517 4518
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
4519 4520
		goto abort;
	} else
4521 4522
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
L
Linus Torvalds 已提交
4523

4524
	conf->thread = md_register_thread(raid5d, mddev, NULL);
N
NeilBrown 已提交
4525 4526
	if (!conf->thread) {
		printk(KERN_ERR
4527
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
4528
		       mdname(mddev));
4529 4530
		goto abort;
	}
N
NeilBrown 已提交
4531 4532 4533 4534 4535

	return conf;

 abort:
	if (conf) {
4536
		free_conf(conf);
N
NeilBrown 已提交
4537 4538 4539 4540 4541
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568

static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
		if (raid_disk == 0 || 
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

N
NeilBrown 已提交
4569 4570 4571
static int run(mddev_t *mddev)
{
	raid5_conf_t *conf;
4572
	int working_disks = 0;
4573
	int dirty_parity_disks = 0;
N
NeilBrown 已提交
4574
	mdk_rdev_t *rdev;
4575
	sector_t reshape_offset = 0;
N
NeilBrown 已提交
4576

4577
	if (mddev->recovery_cp != MaxSector)
4578
		printk(KERN_NOTICE "md/raid:%s: not clean"
4579 4580
		       " -- starting background reconstruction\n",
		       mdname(mddev));
N
NeilBrown 已提交
4581 4582 4583 4584 4585 4586 4587 4588
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
		 * Currently only disks can change, it must
		 * increase, and we must be past the point where
		 * a stripe over-writes itself
		 */
		sector_t here_new, here_old;
		int old_disks;
4589
		int max_degraded = (mddev->level == 6 ? 2 : 1);
N
NeilBrown 已提交
4590

4591
		if (mddev->new_level != mddev->level) {
4592
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
		 */
		here_new = mddev->reshape_position;
4603
		if (sector_div(here_new, mddev->new_chunk_sectors *
N
NeilBrown 已提交
4604
			       (mddev->raid_disks - max_degraded))) {
4605 4606
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
4607 4608
			return -EINVAL;
		}
4609
		reshape_offset = here_new * mddev->new_chunk_sectors;
N
NeilBrown 已提交
4610 4611
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
4612
		sector_div(here_old, mddev->chunk_sectors *
N
NeilBrown 已提交
4613 4614 4615
			   (old_disks-max_degraded));
		/* here_old is the first stripe that we might need to read
		 * from */
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
			 * reshape.  It is only safe if user-space if monitoring
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
			if ((here_new * mddev->new_chunk_sectors != 
			     here_old * mddev->chunk_sectors) ||
			    mddev->ro == 0) {
4627 4628 4629
				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
				       " in read-only mode - aborting\n",
				       mdname(mddev));
4630 4631 4632 4633 4634 4635 4636
				return -EINVAL;
			}
		} else if (mddev->delta_disks < 0
		    ? (here_new * mddev->new_chunk_sectors <=
		       here_old * mddev->chunk_sectors)
		    : (here_new * mddev->new_chunk_sectors >=
		       here_old * mddev->chunk_sectors)) {
N
NeilBrown 已提交
4637
			/* Reading from the same stripe as writing to - bad */
4638 4639 4640
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
4641 4642
			return -EINVAL;
		}
4643 4644
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
4645 4646 4647 4648
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
4649
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
4650
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
4651
	}
N
NeilBrown 已提交
4652

4653 4654 4655 4656 4657
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
	if (IS_ERR(conf))
		return PTR_ERR(conf);

	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
4668 4669 4670
	list_for_each_entry(rdev, &mddev->disks, same_set) {
		if (rdev->raid_disk < 0)
			continue;
4671
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
4672
			working_disks++;
4673 4674
			continue;
		}
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
			
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
4703

4704 4705
	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
			   - working_disks);
N
NeilBrown 已提交
4706

4707
	if (has_failed(conf)) {
4708
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
4709
			" (%d/%d failed)\n",
4710
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
4711 4712 4713
		goto abort;
	}

N
NeilBrown 已提交
4714
	/* device size must be a multiple of chunk size */
4715
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
4716 4717
	mddev->resync_max_sectors = mddev->dev_sectors;

4718
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
4719
	    mddev->recovery_cp != MaxSector) {
4720 4721
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
4722 4723
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
4724 4725 4726
			       mdname(mddev));
		else {
			printk(KERN_ERR
4727
			       "md/raid:%s: cannot start dirty degraded array.\n",
4728 4729 4730
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
4731 4732 4733
	}

	if (mddev->degraded == 0)
4734 4735
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
4736 4737
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
4738
	else
4739 4740 4741 4742 4743
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
4744 4745 4746

	print_raid5_conf(conf);

4747 4748
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
4749 4750 4751 4752 4753 4754
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4755
							"reshape");
4756 4757
	}

L
Linus Torvalds 已提交
4758 4759

	/* Ok, everything is just fine now */
4760 4761
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
4762 4763
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4764
		printk(KERN_WARNING
4765
		       "raid5: failed to create sysfs attributes for %s\n",
4766
		       mdname(mddev));
4767
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4768

4769
	if (mddev->queue) {
4770
		int chunk_size;
4771 4772 4773 4774 4775 4776 4777 4778 4779
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
4780

4781
		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4782

N
NeilBrown 已提交
4783 4784
		mddev->queue->backing_dev_info.congested_data = mddev;
		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4785

4786 4787 4788 4789
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
4790

4791 4792 4793 4794
		list_for_each_entry(rdev, &mddev->disks, same_set)
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
	}
4795

L
Linus Torvalds 已提交
4796 4797
	return 0;
abort:
4798
	md_unregister_thread(mddev->thread);
N
NeilBrown 已提交
4799
	mddev->thread = NULL;
L
Linus Torvalds 已提交
4800 4801
	if (conf) {
		print_raid5_conf(conf);
4802
		free_conf(conf);
L
Linus Torvalds 已提交
4803 4804
	}
	mddev->private = NULL;
4805
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
4806 4807 4808
	return -EIO;
}

4809
static int stop(mddev_t *mddev)
L
Linus Torvalds 已提交
4810
{
4811
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4812 4813 4814

	md_unregister_thread(mddev->thread);
	mddev->thread = NULL;
N
NeilBrown 已提交
4815 4816
	if (mddev->queue)
		mddev->queue->backing_dev_info.congested_fn = NULL;
4817
	free_conf(conf);
4818 4819
	mddev->private = NULL;
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
4820 4821 4822
	return 0;
}

4823
#ifdef DEBUG
4824
static void print_sh(struct seq_file *seq, struct stripe_head *sh)
L
Linus Torvalds 已提交
4825 4826 4827
{
	int i;

4828 4829 4830 4831 4832
	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
	seq_printf(seq, "sh %llu,  count %d.\n",
		   (unsigned long long)sh->sector, atomic_read(&sh->count));
	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4833
	for (i = 0; i < sh->disks; i++) {
4834 4835
		seq_printf(seq, "(cache%d: %p %ld) ",
			   i, sh->dev[i].page, sh->dev[i].flags);
L
Linus Torvalds 已提交
4836
	}
4837
	seq_printf(seq, "\n");
L
Linus Torvalds 已提交
4838 4839
}

4840
static void printall(struct seq_file *seq, raid5_conf_t *conf)
L
Linus Torvalds 已提交
4841 4842
{
	struct stripe_head *sh;
4843
	struct hlist_node *hn;
L
Linus Torvalds 已提交
4844 4845 4846 4847
	int i;

	spin_lock_irq(&conf->device_lock);
	for (i = 0; i < NR_HASH; i++) {
4848
		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
L
Linus Torvalds 已提交
4849 4850
			if (sh->raid_conf != conf)
				continue;
4851
			print_sh(seq, sh);
L
Linus Torvalds 已提交
4852 4853 4854 4855 4856 4857
		}
	}
	spin_unlock_irq(&conf->device_lock);
}
#endif

4858
static void status(struct seq_file *seq, mddev_t *mddev)
L
Linus Torvalds 已提交
4859
{
4860
	raid5_conf_t *conf = mddev->private;
L
Linus Torvalds 已提交
4861 4862
	int i;

4863 4864
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
		mddev->chunk_sectors / 2, mddev->layout);
4865
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
4866 4867 4868
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
4869
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
4870
	seq_printf (seq, "]");
4871
#ifdef DEBUG
4872 4873
	seq_printf (seq, "\n");
	printall(seq, conf);
L
Linus Torvalds 已提交
4874 4875 4876 4877 4878 4879 4880 4881
#endif
}

static void print_raid5_conf (raid5_conf_t *conf)
{
	int i;
	struct disk_info *tmp;

4882
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
4883 4884 4885 4886
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
4887 4888 4889
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
4890 4891 4892 4893 4894

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
4895 4896 4897
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
4898 4899 4900 4901 4902 4903 4904 4905
	}
}

static int raid5_spare_active(mddev_t *mddev)
{
	int i;
	raid5_conf_t *conf = mddev->private;
	struct disk_info *tmp;
4906 4907
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
4908 4909 4910 4911

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
		if (tmp->rdev
4912
		    && tmp->rdev->recovery_offset == MaxSector
4913
		    && !test_bit(Faulty, &tmp->rdev->flags)
4914
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4915
			count++;
4916
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
4917 4918
		}
	}
4919 4920 4921
	spin_lock_irqsave(&conf->device_lock, flags);
	mddev->degraded -= count;
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
4922
	print_raid5_conf(conf);
4923
	return count;
L
Linus Torvalds 已提交
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
}

static int raid5_remove_disk(mddev_t *mddev, int number)
{
	raid5_conf_t *conf = mddev->private;
	int err = 0;
	mdk_rdev_t *rdev;
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
	rdev = p->rdev;
	if (rdev) {
4936 4937 4938 4939
		if (number >= conf->raid_disks &&
		    conf->reshape_progress == MaxSector)
			clear_bit(In_sync, &rdev->flags);

4940
		if (test_bit(In_sync, &rdev->flags) ||
L
Linus Torvalds 已提交
4941 4942 4943 4944
		    atomic_read(&rdev->nr_pending)) {
			err = -EBUSY;
			goto abort;
		}
4945 4946 4947 4948
		/* Only remove non-faulty devices if recovery
		 * isn't possible.
		 */
		if (!test_bit(Faulty, &rdev->flags) &&
4949
		    !has_failed(conf) &&
4950
		    number < conf->raid_disks) {
4951 4952 4953
			err = -EBUSY;
			goto abort;
		}
L
Linus Torvalds 已提交
4954
		p->rdev = NULL;
4955
		synchronize_rcu();
L
Linus Torvalds 已提交
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
		if (atomic_read(&rdev->nr_pending)) {
			/* lost the race, try later */
			err = -EBUSY;
			p->rdev = rdev;
		}
	}
abort:

	print_raid5_conf(conf);
	return err;
}

static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
	raid5_conf_t *conf = mddev->private;
4971
	int err = -EEXIST;
L
Linus Torvalds 已提交
4972 4973
	int disk;
	struct disk_info *p;
4974 4975
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
4976

4977
	if (has_failed(conf))
L
Linus Torvalds 已提交
4978
		/* no point adding a device */
4979
		return -EINVAL;
L
Linus Torvalds 已提交
4980

4981 4982
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
4983 4984

	/*
4985 4986
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
4987
	 */
4988
	if (rdev->saved_raid_disk >= 0 &&
4989
	    rdev->saved_raid_disk >= first &&
4990 4991 4992
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
		disk = rdev->saved_raid_disk;
	else
4993 4994
		disk = first;
	for ( ; disk <= last ; disk++)
L
Linus Torvalds 已提交
4995
		if ((p=conf->disks + disk)->rdev == NULL) {
4996
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
4997
			rdev->raid_disk = disk;
4998
			err = 0;
4999 5000
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
5001
			rcu_assign_pointer(p->rdev, rdev);
L
Linus Torvalds 已提交
5002 5003 5004
			break;
		}
	print_raid5_conf(conf);
5005
	return err;
L
Linus Torvalds 已提交
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
}

static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
5017
	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5018 5019
	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
					       mddev->raid_disks));
D
Dan Williams 已提交
5020 5021 5022
	if (mddev->array_sectors >
	    raid5_size(mddev, sectors, mddev->raid_disks))
		return -EINVAL;
5023
	set_capacity(mddev->gendisk, mddev->array_sectors);
5024
	revalidate_disk(mddev->gendisk);
5025 5026
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
5027
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
5028 5029
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
5030
	mddev->dev_sectors = sectors;
5031
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
5032 5033 5034
	return 0;
}

5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049
static int check_stripe_cache(mddev_t *mddev)
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
	raid5_conf_t *conf = mddev->private;
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes ||
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
	    > conf->max_nr_stripes) {
5050 5051
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
5052 5053 5054 5055 5056 5057 5058
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

5059
static int check_reshape(mddev_t *mddev)
5060
{
5061
	raid5_conf_t *conf = mddev->private;
5062

5063 5064
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
5065
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5066
		return 0; /* nothing to do */
5067 5068 5069
	if (mddev->bitmap)
		/* Cannot grow a bitmap yet */
		return -EBUSY;
5070
	if (has_failed(conf))
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
		return -EINVAL;
	if (mddev->delta_disks < 0) {
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
5084

5085
	if (!check_stripe_cache(mddev))
5086 5087
		return -ENOSPC;

5088
	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5089 5090 5091 5092
}

static int raid5_start_reshape(mddev_t *mddev)
{
5093
	raid5_conf_t *conf = mddev->private;
5094 5095
	mdk_rdev_t *rdev;
	int spares = 0;
5096
	unsigned long flags;
5097

5098
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5099 5100
		return -EBUSY;

5101 5102 5103
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

5104
	list_for_each_entry(rdev, &mddev->disks, same_set)
5105 5106
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
5107
			spares++;
5108

5109
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5110 5111 5112 5113 5114
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

5115 5116 5117 5118 5119 5120
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
5121
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5122 5123 5124 5125
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

5126
	atomic_set(&conf->reshape_stripes, 0);
5127 5128
	spin_lock_irq(&conf->device_lock);
	conf->previous_raid_disks = conf->raid_disks;
5129
	conf->raid_disks += mddev->delta_disks;
5130 5131
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
5132 5133
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
5134 5135 5136 5137 5138
	if (mddev->delta_disks < 0)
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
5139
	conf->generation++;
5140 5141 5142 5143
	spin_unlock_irq(&conf->device_lock);

	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
5144 5145 5146 5147
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
5148
	 */
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
	if (mddev->delta_disks >= 0) {
		int added_devices = 0;
		list_for_each_entry(rdev, &mddev->disks, same_set)
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
					    >= conf->previous_raid_disks) {
						set_bit(In_sync, &rdev->flags);
						added_devices++;
					} else
						rdev->recovery_offset = 0;
5161 5162

					if (sysfs_link_rdev(mddev, rdev))
5163
						/* Failure here is OK */;
5164
				}
5165 5166 5167 5168 5169 5170
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
				added_devices++;
			}
5171

5172 5173 5174 5175
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
5176
		spin_lock_irqsave(&conf->device_lock, flags);
5177
		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5178 5179 5180
			- added_devices;
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
5181
	mddev->raid_disks = conf->raid_disks;
5182
	mddev->reshape_position = conf->reshape_progress;
5183
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5184

5185 5186 5187 5188 5189
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5190
						"reshape");
5191 5192 5193 5194
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5195
		conf->reshape_progress = MaxSector;
5196 5197 5198
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
5199
	conf->reshape_checkpoint = jiffies;
5200 5201 5202 5203 5204
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

5205 5206 5207
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
5208 5209 5210
static void end_reshape(raid5_conf_t *conf)
{

5211 5212 5213
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {

		spin_lock_irq(&conf->device_lock);
5214
		conf->previous_raid_disks = conf->raid_disks;
5215
		conf->reshape_progress = MaxSector;
5216
		spin_unlock_irq(&conf->device_lock);
5217
		wake_up(&conf->wait_for_overlap);
5218 5219 5220 5221

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
5222
		if (conf->mddev->queue) {
5223
			int data_disks = conf->raid_disks - conf->max_degraded;
5224
			int stripe = data_disks * ((conf->chunk_sectors << 9)
5225
						   / PAGE_SIZE);
5226 5227 5228
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
5229 5230 5231
	}
}

5232 5233 5234
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
5235 5236
static void raid5_finish_reshape(mddev_t *mddev)
{
5237
	raid5_conf_t *conf = mddev->private;
5238 5239 5240

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

5241 5242 5243
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
5244
			revalidate_disk(mddev->gendisk);
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
		} else {
			int d;
			mddev->degraded = conf->raid_disks;
			for (d = 0; d < conf->raid_disks ; d++)
				if (conf->disks[d].rdev &&
				    test_bit(In_sync,
					     &conf->disks[d].rdev->flags))
					mddev->degraded--;
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
5255 5256 5257
			     d++) {
				mdk_rdev_t *rdev = conf->disks[d].rdev;
				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5258
					sysfs_unlink_rdev(mddev, rdev);
5259 5260 5261
					rdev->raid_disk = -1;
				}
			}
5262
		}
5263
		mddev->layout = conf->algorithm;
5264
		mddev->chunk_sectors = conf->chunk_sectors;
5265 5266
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
5267 5268 5269
	}
}

5270 5271
static void raid5_quiesce(mddev_t *mddev, int state)
{
5272
	raid5_conf_t *conf = mddev->private;
5273 5274

	switch(state) {
5275 5276 5277 5278
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

5279 5280
	case 1: /* stop all writes */
		spin_lock_irq(&conf->device_lock);
5281 5282 5283 5284
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
5285
		wait_event_lock_irq(conf->wait_for_stripe,
5286 5287
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
5288
				    conf->device_lock, /* nothing */);
5289
		conf->quiesce = 1;
5290
		spin_unlock_irq(&conf->device_lock);
5291 5292
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
5293 5294 5295 5296 5297 5298
		break;

	case 0: /* re-enable writes */
		spin_lock_irq(&conf->device_lock);
		conf->quiesce = 0;
		wake_up(&conf->wait_for_stripe);
5299
		wake_up(&conf->wait_for_overlap);
5300 5301 5302 5303
		spin_unlock_irq(&conf->device_lock);
		break;
	}
}
5304

5305

D
Dan Williams 已提交
5306
static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5307
{
D
Dan Williams 已提交
5308
	struct raid0_private_data *raid0_priv = mddev->private;
5309
	sector_t sectors;
5310

D
Dan Williams 已提交
5311 5312
	/* for raid0 takeover only one zone is supported */
	if (raid0_priv->nr_strip_zones > 1) {
5313 5314
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
5315 5316 5317
		return ERR_PTR(-EINVAL);
	}

5318 5319 5320
	sectors = raid0_priv->strip_zone[0].zone_end;
	sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
5321
	mddev->new_level = level;
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}


5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
static void *raid5_takeover_raid1(mddev_t *mddev)
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5355
	mddev->new_chunk_sectors = chunksect;
5356 5357 5358 5359

	return setup_conf(mddev);
}

5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
static void *raid5_takeover_raid6(mddev_t *mddev)
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

5393

5394
static int raid5_check_reshape(mddev_t *mddev)
5395
{
5396 5397 5398 5399
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
5400
	 */
5401
	raid5_conf_t *conf = mddev->private;
5402
	int new_chunk = mddev->new_chunk_sectors;
5403

5404
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5405 5406
		return -EINVAL;
	if (new_chunk > 0) {
5407
		if (!is_power_of_2(new_chunk))
5408
			return -EINVAL;
5409
		if (new_chunk < (PAGE_SIZE>>9))
5410
			return -EINVAL;
5411
		if (mddev->array_sectors & (new_chunk-1))
5412 5413 5414 5415 5416 5417
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

5418
	if (mddev->raid_disks == 2) {
5419 5420 5421 5422
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
5423 5424
		}
		if (new_chunk > 0) {
5425 5426
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
5427 5428 5429
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
5430
	}
5431
	return check_reshape(mddev);
5432 5433
}

5434
static int raid6_check_reshape(mddev_t *mddev)
5435
{
5436
	int new_chunk = mddev->new_chunk_sectors;
5437

5438
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5439
		return -EINVAL;
5440
	if (new_chunk > 0) {
5441
		if (!is_power_of_2(new_chunk))
5442
			return -EINVAL;
5443
		if (new_chunk < (PAGE_SIZE >> 9))
5444
			return -EINVAL;
5445
		if (mddev->array_sectors & (new_chunk-1))
5446 5447
			/* not factor of array size */
			return -EINVAL;
5448
	}
5449 5450

	/* They look valid */
5451
	return check_reshape(mddev);
5452 5453
}

5454 5455 5456
static void *raid5_takeover(mddev_t *mddev)
{
	/* raid5 can take over:
D
Dan Williams 已提交
5457
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5458 5459 5460 5461
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
5462 5463
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
5464 5465
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
5466 5467 5468 5469 5470
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
5471 5472
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
5473 5474 5475 5476

	return ERR_PTR(-EINVAL);
}

5477 5478
static void *raid4_takeover(mddev_t *mddev)
{
D
Dan Williams 已提交
5479 5480 5481
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
5482
	 */
D
Dan Williams 已提交
5483 5484
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
5485 5486 5487 5488 5489 5490 5491 5492
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
5493

5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
static struct mdk_personality raid5_personality;

static void *raid6_takeover(mddev_t *mddev)
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}


5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
static struct mdk_personality raid6_personality =
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5558
	.size		= raid5_size,
5559
	.check_reshape	= raid6_check_reshape,
5560
	.start_reshape  = raid5_start_reshape,
5561
	.finish_reshape = raid5_finish_reshape,
5562
	.quiesce	= raid5_quiesce,
5563
	.takeover	= raid6_takeover,
5564
};
5565
static struct mdk_personality raid5_personality =
L
Linus Torvalds 已提交
5566 5567
{
	.name		= "raid5",
5568
	.level		= 5,
L
Linus Torvalds 已提交
5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5580
	.size		= raid5_size,
5581 5582
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5583
	.finish_reshape = raid5_finish_reshape,
5584
	.quiesce	= raid5_quiesce,
5585
	.takeover	= raid5_takeover,
L
Linus Torvalds 已提交
5586 5587
};

5588
static struct mdk_personality raid4_personality =
L
Linus Torvalds 已提交
5589
{
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
	.stop		= stop,
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
5603
	.size		= raid5_size,
5604 5605
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
5606
	.finish_reshape = raid5_finish_reshape,
5607
	.quiesce	= raid5_quiesce,
5608
	.takeover	= raid4_takeover,
5609 5610 5611 5612
};

static int __init raid5_init(void)
{
5613
	register_md_personality(&raid6_personality);
5614 5615 5616
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
5617 5618
}

5619
static void raid5_exit(void)
L
Linus Torvalds 已提交
5620
{
5621
	unregister_md_personality(&raid6_personality);
5622 5623
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
L
Linus Torvalds 已提交
5624 5625 5626 5627 5628
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
5629
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
5630
MODULE_ALIAS("md-personality-4"); /* RAID5 */
5631 5632
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
5633 5634
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
5635 5636 5637 5638 5639 5640 5641
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");