fair.c 231.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched.h>
24
#include <linux/latencytop.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

135 136 137 138 139 140 141 142 143
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
144
static unsigned int get_update_sysctl_factor(void)
145
{
146
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

182
#define WMULT_CONST	(~0U)
183 184
#define WMULT_SHIFT	32

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
201 202

/*
203 204 205 206
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
207
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
208 209 210 211 212
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213
 */
214
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215
{
216 217
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
218

219
	__update_inv_weight(lw);
220

221 222 223 224 225
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
226 227
	}

228 229
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
230

231 232 233 234
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
235

236
	return mul_u64_u32_shr(delta_exec, fact, shift);
237 238 239 240
}


const struct sched_class fair_sched_class;
241

242 243 244 245
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

246
#ifdef CONFIG_FAIR_GROUP_SCHED
247

248
/* cpu runqueue to which this cfs_rq is attached */
249 250
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
251
	return cfs_rq->rq;
252 253
}

254 255
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
256

257 258 259 260 261 262 263 264
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

286 287 288
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302
		}
303 304 305 306 307 308 309 310 311 312 313 314 315

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
316 317 318 319 320
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
321
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
322 323 324
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
325
		return se->cfs_rq;
P
Peter Zijlstra 已提交
326

P
Peter Zijlstra 已提交
327
	return NULL;
P
Peter Zijlstra 已提交
328 329 330 331 332 333 334
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

335 336 337 338 339 340 341 342 343 344 345 346 347
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
348 349
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

367 368 369 370 371 372
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
373

374 375 376
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
377 378 379 380
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
381 382
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
383

P
Peter Zijlstra 已提交
384
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385
{
P
Peter Zijlstra 已提交
386
	return &task_rq(p)->cfs;
387 388
}

P
Peter Zijlstra 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

403 404 405 406 407 408 409 410
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
411 412 413 414 415 416 417 418
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

419 420 421 422 423
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
424 425
#endif	/* CONFIG_FAIR_GROUP_SCHED */

426
static __always_inline
427
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428 429 430 431 432

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

433
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434
{
435
	s64 delta = (s64)(vruntime - max_vruntime);
436
	if (delta > 0)
437
		max_vruntime = vruntime;
438

439
	return max_vruntime;
440 441
}

442
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

451 452 453 454 455 456
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

457 458 459 460 461 462 463 464 465 466 467 468
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
469
		if (!cfs_rq->curr)
470 471 472 473 474
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

475
	/* ensure we never gain time by being placed backwards. */
476
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 478 479 480
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
481 482
}

483 484 485
/*
 * Enqueue an entity into the rb-tree:
 */
486
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
503
		if (entity_before(se, entry)) {
504 505 506 507 508 509 510 511 512 513 514
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
515
	if (leftmost)
I
Ingo Molnar 已提交
516
		cfs_rq->rb_leftmost = &se->run_node;
517 518 519 520 521

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

522
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523
{
P
Peter Zijlstra 已提交
524 525 526 527 528 529
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
530

531 532 533
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

534
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535
{
536 537 538 539 540 541
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
542 543
}

544 545 546 547 548 549 550 551 552 553 554
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
555
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556
{
557
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558

559 560
	if (!last)
		return NULL;
561 562

	return rb_entry(last, struct sched_entity, run_node);
563 564
}

565 566 567 568
/**************************************************************
 * Scheduling class statistics methods:
 */

569
int sched_proc_update_handler(struct ctl_table *table, int write,
570
		void __user *buffer, size_t *lenp,
571 572
		loff_t *ppos)
{
573
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574
	unsigned int factor = get_update_sysctl_factor();
575 576 577 578 579 580 581

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

582 583 584 585 586 587 588
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

589 590 591
	return 0;
}
#endif
592

593
/*
594
 * delta /= w
595
 */
596
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597
{
598
	if (unlikely(se->load.weight != NICE_0_LOAD))
599
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600 601 602 603

	return delta;
}

604 605 606
/*
 * The idea is to set a period in which each task runs once.
 *
607
 * When there are too many tasks (sched_nr_latency) we have to stretch
608 609 610 611
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
612 613
static u64 __sched_period(unsigned long nr_running)
{
614 615 616 617
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
618 619
}

620 621 622 623
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
624
 * s = p*P[w/rw]
625
 */
P
Peter Zijlstra 已提交
626
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627
{
M
Mike Galbraith 已提交
628
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629

M
Mike Galbraith 已提交
630
	for_each_sched_entity(se) {
L
Lin Ming 已提交
631
		struct load_weight *load;
632
		struct load_weight lw;
L
Lin Ming 已提交
633 634 635

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
636

M
Mike Galbraith 已提交
637
		if (unlikely(!se->on_rq)) {
638
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
639 640 641 642

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
643
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
644 645
	}
	return slice;
646 647
}

648
/*
A
Andrei Epure 已提交
649
 * We calculate the vruntime slice of a to-be-inserted task.
650
 *
651
 * vs = s/w
652
 */
653
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
654
{
655
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 657
}

658
#ifdef CONFIG_SMP
659
static int select_idle_sibling(struct task_struct *p, int cpu);
660 661
static unsigned long task_h_load(struct task_struct *p);

662 663
/*
 * We choose a half-life close to 1 scheduling period.
664 665
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
666 667 668
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670

671 672
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
673
{
674
	struct sched_avg *sa = &se->avg;
675

676 677 678 679 680 681 682
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
683
	sa->load_avg = scale_load_down(se->load.weight);
684
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 686 687 688 689
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
690
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
691
}
692

693 694
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
695
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
696 697
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
727
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
728
	u64 now = cfs_rq_clock_task(cfs_rq);
729 730 731 732 733 734 735 736 737 738 739 740 741

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
			update_cfs_rq_load_avg(now, cfs_rq, false);
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
			se->avg.last_update_time = now;
			return;
		}
	}

761
	update_cfs_rq_load_avg(now, cfs_rq, false);
762
	attach_entity_load_avg(cfs_rq, se);
763
	update_tg_load_avg(cfs_rq, false);
764 765
}

766
#else /* !CONFIG_SMP */
767
void init_entity_runnable_average(struct sched_entity *se)
768 769
{
}
770 771 772
void post_init_entity_util_avg(struct sched_entity *se)
{
}
773 774 775
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
776
#endif /* CONFIG_SMP */
777

778
/*
779
 * Update the current task's runtime statistics.
780
 */
781
static void update_curr(struct cfs_rq *cfs_rq)
782
{
783
	struct sched_entity *curr = cfs_rq->curr;
784
	u64 now = rq_clock_task(rq_of(cfs_rq));
785
	u64 delta_exec;
786 787 788 789

	if (unlikely(!curr))
		return;

790 791
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
792
		return;
793

I
Ingo Molnar 已提交
794
	curr->exec_start = now;
795

796 797 798 799 800 801 802 803 804
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

805 806 807
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

808
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
809
		cpuacct_charge(curtask, delta_exec);
810
		account_group_exec_runtime(curtask, delta_exec);
811
	}
812 813

	account_cfs_rq_runtime(cfs_rq, delta_exec);
814 815
}

816 817 818 819 820
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

821
#ifdef CONFIG_SCHEDSTATS
822
static inline void
823
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
824
{
825 826 827 828 829 830 831
	u64 wait_start = rq_clock(rq_of(cfs_rq));

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
	    likely(wait_start > se->statistics.wait_start))
		wait_start -= se->statistics.wait_start;

	se->statistics.wait_start = wait_start;
832 833
}

834 835 836 837
static void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
838 839 840
	u64 delta;

	delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
			se->statistics.wait_start = delta;
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

	se->statistics.wait_max = max(se->statistics.wait_max, delta);
	se->statistics.wait_count++;
	se->statistics.wait_sum += delta;
	se->statistics.wait_start = 0;
}

862 863 864
/*
 * Task is being enqueued - update stats:
 */
865 866
static inline void
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
867 868 869 870 871
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
872
	if (se != cfs_rq->curr)
873
		update_stats_wait_start(cfs_rq, se);
874 875 876
}

static inline void
877
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
878 879 880 881 882
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
883
	if (se != cfs_rq->curr)
884
		update_stats_wait_end(cfs_rq, se);
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916

	if (flags & DEQUEUE_SLEEP) {
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
			if (tsk->state & TASK_UNINTERRUPTIBLE)
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
		}
	}

}
#else
static inline void
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
917
}
918
#endif
919 920 921 922 923

/*
 * We are picking a new current task - update its stats:
 */
static inline void
924
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
925 926 927 928
{
	/*
	 * We are starting a new run period:
	 */
929
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
930 931 932 933 934 935
}

/**************************************************
 * Scheduling class queueing methods:
 */

936 937
#ifdef CONFIG_NUMA_BALANCING
/*
938 939 940
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
941
 */
942 943
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
944 945 946

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
947

948 949 950
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
975
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
976 977 978
	unsigned int scan, floor;
	unsigned int windows = 1;

979 980
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1009 1010 1011 1012 1013
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
1014
	pid_t gid;
1015
	int active_nodes;
1016 1017

	struct rcu_head rcu;
1018
	unsigned long total_faults;
1019
	unsigned long max_faults_cpu;
1020 1021 1022 1023 1024
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
1025
	unsigned long *faults_cpu;
1026
	unsigned long faults[0];
1027 1028
};

1029 1030 1031 1032 1033 1034 1035 1036 1037
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1038 1039 1040 1041 1042
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1043 1044 1045 1046 1047 1048 1049
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1050
{
1051
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1052 1053 1054 1055
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1056
	if (!p->numa_faults)
1057 1058
		return 0;

1059 1060
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1061 1062
}

1063 1064 1065 1066 1067
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1068 1069
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1070 1071
}

1072 1073
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1074 1075
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1076 1077
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1155 1156 1157 1158 1159 1160
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1161 1162
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1163
{
1164
	unsigned long faults, total_faults;
1165

1166
	if (!p->numa_faults)
1167 1168 1169 1170 1171 1172 1173
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1174
	faults = task_faults(p, nid);
1175 1176
	faults += score_nearby_nodes(p, nid, dist, true);

1177
	return 1000 * faults / total_faults;
1178 1179
}

1180 1181
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1182
{
1183 1184 1185 1186 1187 1188 1189 1190
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1191 1192
		return 0;

1193
	faults = group_faults(p, nid);
1194 1195
	faults += score_nearby_nodes(p, nid, dist, false);

1196
	return 1000 * faults / total_faults;
1197 1198
}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1239 1240
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1241
	 */
1242 1243
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1244 1245 1246
		return true;

	/*
1247 1248 1249 1250 1251 1252
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1253
	 */
1254 1255
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1256 1257
}

1258
static unsigned long weighted_cpuload(const int cpu);
1259 1260
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1261
static unsigned long capacity_of(int cpu);
1262 1263
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1264
/* Cached statistics for all CPUs within a node */
1265
struct numa_stats {
1266
	unsigned long nr_running;
1267
	unsigned long load;
1268 1269

	/* Total compute capacity of CPUs on a node */
1270
	unsigned long compute_capacity;
1271 1272

	/* Approximate capacity in terms of runnable tasks on a node */
1273
	unsigned long task_capacity;
1274
	int has_free_capacity;
1275
};
1276

1277 1278 1279 1280 1281
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1282 1283
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1284 1285 1286 1287 1288 1289 1290

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1291
		ns->compute_capacity += capacity_of(cpu);
1292 1293

		cpus++;
1294 1295
	}

1296 1297 1298 1299 1300
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1301 1302
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1303 1304 1305 1306
	 */
	if (!cpus)
		return;

1307 1308 1309 1310 1311 1312
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1313
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1314 1315
}

1316 1317
struct task_numa_env {
	struct task_struct *p;
1318

1319 1320
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1321

1322
	struct numa_stats src_stats, dst_stats;
1323

1324
	int imbalance_pct;
1325
	int dist;
1326 1327 1328

	struct task_struct *best_task;
	long best_imp;
1329 1330 1331
	int best_cpu;
};

1332 1333 1334 1335 1336
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1337 1338
	if (p)
		get_task_struct(p);
1339 1340 1341 1342 1343 1344

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1345
static bool load_too_imbalanced(long src_load, long dst_load,
1346 1347
				struct task_numa_env *env)
{
1348 1349
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1361 1362

	/* We care about the slope of the imbalance, not the direction. */
1363 1364
	if (dst_load < src_load)
		swap(dst_load, src_load);
1365 1366

	/* Is the difference below the threshold? */
1367 1368
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1369 1370 1371 1372 1373
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1374
	 * Compare it with the old imbalance.
1375
	 */
1376
	orig_src_load = env->src_stats.load;
1377
	orig_dst_load = env->dst_stats.load;
1378

1379 1380
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1381

1382 1383 1384 1385 1386
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1387 1388
}

1389 1390 1391 1392 1393 1394
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1395 1396
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1397 1398 1399 1400
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1401
	long src_load, dst_load;
1402
	long load;
1403
	long imp = env->p->numa_group ? groupimp : taskimp;
1404
	long moveimp = imp;
1405
	int dist = env->dist;
1406 1407

	rcu_read_lock();
1408 1409
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1410 1411
		cur = NULL;

1412 1413 1414 1415 1416 1417 1418
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1431 1432
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1433
		 * in any group then look only at task weights.
1434
		 */
1435
		if (cur->numa_group == env->p->numa_group) {
1436 1437
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1438 1439 1440 1441 1442 1443
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1444
		} else {
1445 1446 1447 1448 1449 1450
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1451 1452
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1453
			else
1454 1455
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1456
		}
1457 1458
	}

1459
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1460 1461 1462 1463
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1464
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1465
		    !env->dst_stats.has_free_capacity)
1466 1467 1468 1469 1470 1471
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1472 1473
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1474 1475 1476 1477 1478 1479
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1480 1481 1482
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1501
	if (cur) {
1502 1503 1504
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1505 1506
	}

1507
	if (load_too_imbalanced(src_load, dst_load, env))
1508 1509
		goto unlock;

1510 1511 1512 1513 1514 1515 1516
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur)
		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);

1517 1518 1519 1520 1521 1522
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1523 1524
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1525 1526 1527 1528 1529 1530 1531 1532 1533
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1534
		task_numa_compare(env, taskimp, groupimp);
1535 1536 1537
	}
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1555 1556 1557
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1558 1559 1560 1561 1562
		return true;

	return false;
}

1563 1564 1565 1566
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1567

1568
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1569
		.src_nid = task_node(p),
1570 1571 1572 1573 1574

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1575
		.best_cpu = -1,
1576 1577
	};
	struct sched_domain *sd;
1578
	unsigned long taskweight, groupweight;
1579
	int nid, ret, dist;
1580
	long taskimp, groupimp;
1581

1582
	/*
1583 1584 1585 1586 1587 1588
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1589 1590
	 */
	rcu_read_lock();
1591
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1592 1593
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1594 1595
	rcu_read_unlock();

1596 1597 1598 1599 1600 1601 1602
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1603
		p->numa_preferred_nid = task_node(p);
1604 1605 1606
		return -EINVAL;
	}

1607
	env.dst_nid = p->numa_preferred_nid;
1608 1609 1610 1611 1612 1613
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1614
	update_numa_stats(&env.dst_stats, env.dst_nid);
1615

1616
	/* Try to find a spot on the preferred nid. */
1617 1618
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1619

1620 1621 1622 1623 1624 1625 1626
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1627
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1628 1629 1630
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1631

1632
			dist = node_distance(env.src_nid, env.dst_nid);
1633 1634 1635 1636 1637
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1638

1639
			/* Only consider nodes where both task and groups benefit */
1640 1641
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1642
			if (taskimp < 0 && groupimp < 0)
1643 1644
				continue;

1645
			env.dist = dist;
1646 1647
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1648 1649
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1650 1651 1652
		}
	}

1653 1654 1655 1656 1657 1658 1659 1660
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1661
	if (p->numa_group) {
1662 1663
		struct numa_group *ng = p->numa_group;

1664 1665 1666 1667 1668
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1669
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1670 1671 1672 1673 1674 1675
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1676

1677 1678 1679 1680 1681 1682
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1683
	if (env.best_task == NULL) {
1684 1685 1686
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1687 1688 1689 1690
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1691 1692
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1693 1694
	put_task_struct(env.best_task);
	return ret;
1695 1696
}

1697 1698 1699
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1700 1701
	unsigned long interval = HZ;

1702
	/* This task has no NUMA fault statistics yet */
1703
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1704 1705
		return;

1706
	/* Periodically retry migrating the task to the preferred node */
1707 1708
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1709 1710

	/* Success if task is already running on preferred CPU */
1711
	if (task_node(p) == p->numa_preferred_nid)
1712 1713 1714
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1715
	task_numa_migrate(p);
1716 1717
}

1718
/*
1719
 * Find out how many nodes on the workload is actively running on. Do this by
1720 1721 1722 1723
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1724
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1725 1726
{
	unsigned long faults, max_faults = 0;
1727
	int nid, active_nodes = 0;
1728 1729 1730 1731 1732 1733 1734 1735 1736

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1737 1738
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1739
	}
1740 1741 1742

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1743 1744
}

1745 1746 1747
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1748 1749 1750
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1751 1752
 */
#define NUMA_PERIOD_SLOTS 10
1753
#define NUMA_PERIOD_THRESHOLD 7
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1774 1775 1776
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1777
	 */
1778
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1812
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1813 1814 1815 1816 1817 1818 1819 1820
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1839 1840
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1841 1842 1843 1844 1845 1846 1847 1848
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
1896
		nodemask_t max_group = NODE_MASK_NONE;
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
1930 1931
		if (!max_faults)
			break;
1932 1933 1934 1935 1936
		nodes = max_group;
	}
	return nid;
}

1937 1938
static void task_numa_placement(struct task_struct *p)
{
1939 1940
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1941
	unsigned long fault_types[2] = { 0, 0 };
1942 1943
	unsigned long total_faults;
	u64 runtime, period;
1944
	spinlock_t *group_lock = NULL;
1945

1946 1947 1948 1949 1950
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
1951
	seq = READ_ONCE(p->mm->numa_scan_seq);
1952 1953 1954
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1955
	p->numa_scan_period_max = task_scan_max(p);
1956

1957 1958 1959 1960
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1961 1962 1963
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1964
		spin_lock_irq(group_lock);
1965 1966
	}

1967 1968
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1969 1970
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1971
		unsigned long faults = 0, group_faults = 0;
1972
		int priv;
1973

1974
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1975
			long diff, f_diff, f_weight;
1976

1977 1978 1979 1980
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1981

1982
			/* Decay existing window, copy faults since last scan */
1983 1984 1985
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
1986

1987 1988 1989 1990 1991 1992 1993 1994
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
1995
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1996
				   (total_faults + 1);
1997 1998
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
1999

2000 2001 2002
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2003
			p->total_numa_faults += diff;
2004
			if (p->numa_group) {
2005 2006 2007 2008 2009 2010 2011 2012 2013
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2014
				p->numa_group->total_faults += diff;
2015
				group_faults += p->numa_group->faults[mem_idx];
2016
			}
2017 2018
		}

2019 2020 2021 2022
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2023 2024 2025 2026 2027 2028 2029

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2030 2031
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2032
	if (p->numa_group) {
2033
		numa_group_count_active_nodes(p->numa_group);
2034
		spin_unlock_irq(group_lock);
2035
		max_nid = preferred_group_nid(p, max_group_nid);
2036 2037
	}

2038 2039 2040 2041 2042 2043 2044
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2045
	}
2046 2047
}

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2059 2060
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2061 2062 2063 2064 2065 2066 2067 2068 2069
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2070
				    4*nr_node_ids*sizeof(unsigned long);
2071 2072 2073 2074 2075 2076

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2077 2078
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2079
		spin_lock_init(&grp->lock);
2080
		grp->gid = p->pid;
2081
		/* Second half of the array tracks nids where faults happen */
2082 2083
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2084

2085
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2086
			grp->faults[i] = p->numa_faults[i];
2087

2088
		grp->total_faults = p->total_numa_faults;
2089

2090 2091 2092 2093 2094
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2095
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2096 2097

	if (!cpupid_match_pid(tsk, cpupid))
2098
		goto no_join;
2099 2100 2101

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2102
		goto no_join;
2103 2104 2105

	my_grp = p->numa_group;
	if (grp == my_grp)
2106
		goto no_join;
2107 2108 2109 2110 2111 2112

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2113
		goto no_join;
2114 2115 2116 2117 2118

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2119
		goto no_join;
2120

2121 2122 2123 2124 2125 2126 2127
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2128

2129 2130 2131
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2132
	if (join && !get_numa_group(grp))
2133
		goto no_join;
2134 2135 2136 2137 2138 2139

	rcu_read_unlock();

	if (!join)
		return;

2140 2141
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2142

2143
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2144 2145
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2146
	}
2147 2148
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2149 2150 2151 2152 2153

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2154
	spin_unlock_irq(&grp->lock);
2155 2156 2157 2158

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2159 2160 2161 2162 2163
	return;

no_join:
	rcu_read_unlock();
	return;
2164 2165 2166 2167 2168
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2169
	void *numa_faults = p->numa_faults;
2170 2171
	unsigned long flags;
	int i;
2172 2173

	if (grp) {
2174
		spin_lock_irqsave(&grp->lock, flags);
2175
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2176
			grp->faults[i] -= p->numa_faults[i];
2177
		grp->total_faults -= p->total_numa_faults;
2178

2179
		grp->nr_tasks--;
2180
		spin_unlock_irqrestore(&grp->lock, flags);
2181
		RCU_INIT_POINTER(p->numa_group, NULL);
2182 2183 2184
		put_numa_group(grp);
	}

2185
	p->numa_faults = NULL;
2186
	kfree(numa_faults);
2187 2188
}

2189 2190 2191
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2192
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2193 2194
{
	struct task_struct *p = current;
2195
	bool migrated = flags & TNF_MIGRATED;
2196
	int cpu_node = task_node(current);
2197
	int local = !!(flags & TNF_FAULT_LOCAL);
2198
	struct numa_group *ng;
2199
	int priv;
2200

2201
	if (!static_branch_likely(&sched_numa_balancing))
2202 2203
		return;

2204 2205 2206 2207
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2208
	/* Allocate buffer to track faults on a per-node basis */
2209 2210
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2211
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2212

2213 2214
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2215
			return;
2216

2217
		p->total_numa_faults = 0;
2218
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2219
	}
2220

2221 2222 2223 2224 2225 2226 2227 2228
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2229
		if (!priv && !(flags & TNF_NO_GROUP))
2230
			task_numa_group(p, last_cpupid, flags, &priv);
2231 2232
	}

2233 2234 2235 2236 2237 2238
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2239 2240 2241 2242
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2243 2244
		local = 1;

2245
	task_numa_placement(p);
2246

2247 2248 2249 2250 2251
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2252 2253
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2254 2255
	if (migrated)
		p->numa_pages_migrated += pages;
2256 2257
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2258

2259 2260
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2261
	p->numa_faults_locality[local] += pages;
2262 2263
}

2264 2265
static void reset_ptenuma_scan(struct task_struct *p)
{
2266 2267 2268 2269 2270 2271 2272 2273
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2274
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2275 2276 2277
	p->mm->numa_scan_offset = 0;
}

2278 2279 2280 2281 2282 2283 2284 2285 2286
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2287
	u64 runtime = p->se.sum_exec_runtime;
2288
	struct vm_area_struct *vma;
2289
	unsigned long start, end;
2290
	unsigned long nr_pte_updates = 0;
2291
	long pages, virtpages;
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2307
	if (!mm->numa_next_scan) {
2308 2309
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2310 2311
	}

2312 2313 2314 2315 2316 2317 2318
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2319 2320 2321 2322
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2323

2324
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2325 2326 2327
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2328 2329 2330 2331 2332 2333
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2334 2335 2336
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2337
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2338 2339
	if (!pages)
		return;
2340

2341

2342
	down_read(&mm->mmap_sem);
2343
	vma = find_vma(mm, start);
2344 2345
	if (!vma) {
		reset_ptenuma_scan(p);
2346
		start = 0;
2347 2348
		vma = mm->mmap;
	}
2349
	for (; vma; vma = vma->vm_next) {
2350
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2351
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2352
			continue;
2353
		}
2354

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2365 2366 2367 2368 2369 2370
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2371

2372 2373 2374 2375
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2376
			nr_pte_updates = change_prot_numa(vma, start, end);
2377 2378

			/*
2379 2380 2381 2382 2383 2384
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2385 2386 2387
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2388
			virtpages -= (end - start) >> PAGE_SHIFT;
2389

2390
			start = end;
2391
			if (pages <= 0 || virtpages <= 0)
2392
				goto out;
2393 2394

			cond_resched();
2395
		} while (end != vma->vm_end);
2396
	}
2397

2398
out:
2399
	/*
P
Peter Zijlstra 已提交
2400 2401 2402 2403
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2404 2405
	 */
	if (vma)
2406
		mm->numa_scan_offset = start;
2407 2408 2409
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2446
	if (now > curr->node_stamp + period) {
2447
		if (!curr->node_stamp)
2448
			curr->numa_scan_period = task_scan_min(curr);
2449
		curr->node_stamp += period;
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2461 2462 2463 2464 2465 2466 2467 2468

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2469 2470
#endif /* CONFIG_NUMA_BALANCING */

2471 2472 2473 2474
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2475
	if (!parent_entity(se))
2476
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2477
#ifdef CONFIG_SMP
2478 2479 2480 2481 2482 2483
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2484
#endif
2485 2486 2487 2488 2489 2490 2491
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2492
	if (!parent_entity(se))
2493
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2494
#ifdef CONFIG_SMP
2495 2496
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2497
		list_del_init(&se->group_node);
2498
	}
2499
#endif
2500 2501 2502
	cfs_rq->nr_running--;
}

2503 2504
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2505
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2506
{
2507
	long tg_weight, load, shares;
2508 2509

	/*
2510 2511 2512
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2513
	 */
2514
	load = scale_load_down(cfs_rq->load.weight);
2515

2516
	tg_weight = atomic_long_read(&tg->load_avg);
2517

2518 2519 2520
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2521 2522

	shares = (tg->shares * load);
2523 2524
	if (tg_weight)
		shares /= tg_weight;
2525 2526 2527 2528 2529 2530 2531 2532 2533

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2534
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2535 2536 2537 2538
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2539

P
Peter Zijlstra 已提交
2540 2541 2542
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2543 2544 2545 2546
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2547
		account_entity_dequeue(cfs_rq, se);
2548
	}
P
Peter Zijlstra 已提交
2549 2550 2551 2552 2553 2554 2555

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2556 2557
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2558
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2559 2560 2561
{
	struct task_group *tg;
	struct sched_entity *se;
2562
	long shares;
P
Peter Zijlstra 已提交
2563 2564 2565

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2566
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2567
		return;
2568 2569 2570 2571
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2572
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2573 2574 2575 2576

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2577
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2578 2579 2580 2581
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2582
#ifdef CONFIG_SMP
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/*
 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
 * lower integers. See Documentation/scheduler/sched-avg.txt how these
 * were generated:
 */
static const u32 __accumulated_sum_N32[] = {
	    0, 23371, 35056, 40899, 43820, 45281,
	46011, 46376, 46559, 46650, 46696, 46719,
};

2613 2614 2615 2616 2617 2618
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2631 2632
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2633 2634 2635 2636 2637 2638
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2639 2640
	}

2641 2642
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

2661 2662 2663
	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
	n %= LOAD_AVG_PERIOD;
2664 2665
	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2666 2667
}

2668
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2669

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2698 2699
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2700
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2701
{
2702
	u64 delta, scaled_delta, periods;
2703
	u32 contrib;
2704
	unsigned int delta_w, scaled_delta_w, decayed = 0;
2705
	unsigned long scale_freq, scale_cpu;
2706

2707
	delta = now - sa->last_update_time;
2708 2709 2710 2711 2712
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2713
		sa->last_update_time = now;
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2724
	sa->last_update_time = now;
2725

2726 2727 2728
	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

2729
	/* delta_w is the amount already accumulated against our next period */
2730
	delta_w = sa->period_contrib;
2731 2732 2733
	if (delta + delta_w >= 1024) {
		decayed = 1;

2734 2735 2736
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2737 2738 2739 2740 2741 2742
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2743
		scaled_delta_w = cap_scale(delta_w, scale_freq);
2744
		if (weight) {
2745 2746 2747 2748 2749
			sa->load_sum += weight * scaled_delta_w;
			if (cfs_rq) {
				cfs_rq->runnable_load_sum +=
						weight * scaled_delta_w;
			}
2750
		}
2751
		if (running)
2752
			sa->util_sum += scaled_delta_w * scale_cpu;
2753 2754 2755 2756 2757 2758 2759

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2760
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2761 2762 2763 2764
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2765
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2766 2767

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2768
		contrib = __compute_runnable_contrib(periods);
2769
		contrib = cap_scale(contrib, scale_freq);
2770
		if (weight) {
2771
			sa->load_sum += weight * contrib;
2772 2773 2774
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2775
		if (running)
2776
			sa->util_sum += contrib * scale_cpu;
2777 2778 2779
	}

	/* Remainder of delta accrued against u_0` */
2780
	scaled_delta = cap_scale(delta, scale_freq);
2781
	if (weight) {
2782
		sa->load_sum += weight * scaled_delta;
2783
		if (cfs_rq)
2784
			cfs_rq->runnable_load_sum += weight * scaled_delta;
2785
	}
2786
	if (running)
2787
		sa->util_sum += scaled_delta * scale_cpu;
2788

2789
	sa->period_contrib += delta;
2790

2791 2792
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2793 2794 2795 2796
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2797
		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2798
	}
2799

2800
	return decayed;
2801 2802
}

2803
#ifdef CONFIG_FAIR_GROUP_SCHED
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
 * Updating tg's load_avg is necessary before update_cfs_share() (which is
 * done) and effective_load() (which is not done because it is too costly).
2819
 */
2820
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2821
{
2822
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2823

2824 2825 2826 2827 2828 2829
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

2830 2831 2832
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2833
	}
2834
}
2835

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
	if (se->avg.last_update_time && prev) {
		u64 p_last_update_time;
		u64 n_last_update_time;

#ifndef CONFIG_64BIT
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
#else
		p_last_update_time = prev->avg.last_update_time;
		n_last_update_time = next->avg.last_update_time;
#endif
		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
				  &se->avg, 0, 0, NULL);
		se->avg.last_update_time = n_last_update_time;
	}
}
2882
#else /* CONFIG_FAIR_GROUP_SCHED */
2883
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2884
#endif /* CONFIG_FAIR_GROUP_SCHED */
2885

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);

	if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
		unsigned long max = rq->cpu_capacity_orig;

		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
		cpufreq_update_util(rq_clock(rq),
				    min(cfs_rq->avg.util_avg, max), max);
	}
}

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 * @update_freq: should we call cfs_rq_util_change() or will the call do so
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
2944 2945 2946 2947
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
2948
 */
2949 2950
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2951
{
2952
	struct sched_avg *sa = &cfs_rq->avg;
2953
	int decayed, removed_load = 0, removed_util = 0;
2954

2955
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2956
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2957 2958
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
2959
		removed_load = 1;
2960
	}
2961

2962 2963
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2964 2965
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
2966
		removed_util = 1;
2967
	}
2968

2969
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2970
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2971

2972 2973 2974 2975
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
2976

2977 2978
	if (update_freq && (decayed || removed_util))
		cfs_rq_util_change(cfs_rq);
2979

2980
	return decayed || removed_load;
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
}

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct sched_entity *se, int update_tg)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	__update_load_avg(now, cpu, &se->avg,
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

2999
	if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
3000
		update_tg_load_avg(cfs_rq, 0);
3001 3002
}

3003 3004 3005 3006 3007 3008 3009 3010
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3011 3012
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3013 3014 3015
	if (!sched_feat(ATTACH_AGE_LOAD))
		goto skip_aging;

3016 3017 3018
	/*
	 * If we got migrated (either between CPUs or between cgroups) we'll
	 * have aged the average right before clearing @last_update_time.
3019 3020
	 *
	 * Or we're fresh through post_init_entity_util_avg().
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
	 */
	if (se->avg.last_update_time) {
		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
				  &se->avg, 0, 0, NULL);

		/*
		 * XXX: we could have just aged the entire load away if we've been
		 * absent from the fair class for too long.
		 */
	}

3032
skip_aging:
3033 3034 3035 3036 3037
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3038 3039

	cfs_rq_util_change(cfs_rq);
3040 3041
}

3042 3043 3044 3045 3046 3047 3048 3049
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3050 3051 3052 3053 3054 3055
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

3056 3057 3058 3059
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3060 3061

	cfs_rq_util_change(cfs_rq);
3062 3063
}

3064 3065 3066
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3067
{
3068 3069
	struct sched_avg *sa = &se->avg;
	u64 now = cfs_rq_clock_task(cfs_rq);
3070
	int migrated, decayed;
3071

3072 3073
	migrated = !sa->last_update_time;
	if (!migrated) {
3074
		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3075 3076
			se->on_rq * scale_load_down(se->load.weight),
			cfs_rq->curr == se, NULL);
3077
	}
3078

3079
	decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
3080

3081 3082 3083
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3084 3085
	if (migrated)
		attach_entity_load_avg(cfs_rq, se);
3086

3087 3088
	if (decayed || migrated)
		update_tg_load_avg(cfs_rq, 0);
3089 3090
}

3091 3092 3093 3094 3095 3096 3097 3098 3099
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_avg(se, 1);

	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3100
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3101 3102
}

3103
#ifndef CONFIG_64BIT
3104 3105
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3106
	u64 last_update_time_copy;
3107
	u64 last_update_time;
3108

3109 3110 3111 3112 3113
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3114 3115 3116

	return last_update_time;
}
3117
#else
3118 3119 3120 3121
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3122 3123
#endif

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	/*
3134 3135 3136 3137 3138 3139 3140
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3141 3142 3143 3144
	 */

	last_update_time = cfs_rq_last_update_time(cfs_rq);

3145
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3146 3147
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3148
}
3149

3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3160 3161
static int idle_balance(struct rq *this_rq);

3162 3163
#else /* CONFIG_SMP */

3164 3165 3166 3167 3168 3169
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
{
	return 0;
}

3170 3171 3172 3173 3174 3175 3176 3177
static inline void update_load_avg(struct sched_entity *se, int not_used)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct rq *rq = rq_of(cfs_rq);

	cpufreq_trigger_update(rq_clock(rq));
}

3178 3179
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3180 3181
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3182
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3183

3184 3185 3186 3187 3188
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3189 3190 3191 3192 3193
static inline int idle_balance(struct rq *rq)
{
	return 0;
}

3194
#endif /* CONFIG_SMP */
3195

3196
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3197 3198
{
#ifdef CONFIG_SCHEDSTATS
3199 3200 3201 3202 3203
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

3204
	if (se->statistics.sleep_start) {
3205
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3206 3207 3208 3209

		if ((s64)delta < 0)
			delta = 0;

3210 3211
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
3212

3213
		se->statistics.sleep_start = 0;
3214
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
3215

3216
		if (tsk) {
3217
			account_scheduler_latency(tsk, delta >> 10, 1);
3218 3219
			trace_sched_stat_sleep(tsk, delta);
		}
3220
	}
3221
	if (se->statistics.block_start) {
3222
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3223 3224 3225 3226

		if ((s64)delta < 0)
			delta = 0;

3227 3228
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
3229

3230
		se->statistics.block_start = 0;
3231
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
3232

3233
		if (tsk) {
3234
			if (tsk->in_iowait) {
3235 3236
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
3237
				trace_sched_stat_iowait(tsk, delta);
3238 3239
			}

3240 3241
			trace_sched_stat_blocked(tsk, delta);

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
3253
		}
3254 3255 3256 3257
	}
#endif
}

P
Peter Zijlstra 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

3271 3272 3273
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3274
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3275

3276 3277 3278 3279 3280 3281
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3282
	if (initial && sched_feat(START_DEBIT))
3283
		vruntime += sched_vslice(cfs_rq, se);
3284

3285
	/* sleeps up to a single latency don't count. */
3286
	if (!initial) {
3287
		unsigned long thresh = sysctl_sched_latency;
3288

3289 3290 3291 3292 3293 3294
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3295

3296
		vruntime -= thresh;
3297 3298
	}

3299
	/* ensure we never gain time by being placed backwards. */
3300
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3301 3302
}

3303 3304
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3317
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3318 3319 3320 3321 3322 3323 3324
			     "stat_blocked and stat_runtime require the "
			     "kernel parameter schedstats=enabled or "
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3344
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3356
static void
3357
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3358
{
3359 3360 3361
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3362
	/*
3363 3364
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3365
	 */
3366
	if (renorm && curr)
3367 3368
		se->vruntime += cfs_rq->min_vruntime;

3369 3370
	update_curr(cfs_rq);

3371
	/*
3372 3373 3374 3375
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3376
	 */
3377 3378 3379
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3380
	enqueue_entity_load_avg(cfs_rq, se);
3381 3382
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
3383

3384
	if (flags & ENQUEUE_WAKEUP) {
3385
		place_entity(cfs_rq, se, 0);
3386 3387
		if (schedstat_enabled())
			enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
3388
	}
3389

3390 3391 3392 3393 3394
	check_schedstat_required();
	if (schedstat_enabled()) {
		update_stats_enqueue(cfs_rq, se);
		check_spread(cfs_rq, se);
	}
3395
	if (!curr)
3396
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3397
	se->on_rq = 1;
3398

3399
	if (cfs_rq->nr_running == 1) {
3400
		list_add_leaf_cfs_rq(cfs_rq);
3401 3402
		check_enqueue_throttle(cfs_rq);
	}
3403 3404
}

3405
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3406
{
3407 3408
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3409
		if (cfs_rq->last != se)
3410
			break;
3411 3412

		cfs_rq->last = NULL;
3413 3414
	}
}
P
Peter Zijlstra 已提交
3415

3416 3417 3418 3419
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3420
		if (cfs_rq->next != se)
3421
			break;
3422 3423

		cfs_rq->next = NULL;
3424
	}
P
Peter Zijlstra 已提交
3425 3426
}

3427 3428 3429 3430
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3431
		if (cfs_rq->skip != se)
3432
			break;
3433 3434

		cfs_rq->skip = NULL;
3435 3436 3437
	}
}

P
Peter Zijlstra 已提交
3438 3439
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3440 3441 3442 3443 3444
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3445 3446 3447

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3448 3449
}

3450
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3451

3452
static void
3453
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3454
{
3455 3456 3457 3458
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3459
	dequeue_entity_load_avg(cfs_rq, se);
3460

3461 3462
	if (schedstat_enabled())
		update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3463

P
Peter Zijlstra 已提交
3464
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3465

3466
	if (se != cfs_rq->curr)
3467
		__dequeue_entity(cfs_rq, se);
3468
	se->on_rq = 0;
3469
	account_entity_dequeue(cfs_rq, se);
3470 3471 3472 3473 3474 3475

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
3476
	if (!(flags & DEQUEUE_SLEEP))
3477
		se->vruntime -= cfs_rq->min_vruntime;
3478

3479 3480 3481
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3482
	update_min_vruntime(cfs_rq);
3483
	update_cfs_shares(cfs_rq);
3484 3485 3486 3487 3488
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3489
static void
I
Ingo Molnar 已提交
3490
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3491
{
3492
	unsigned long ideal_runtime, delta_exec;
3493 3494
	struct sched_entity *se;
	s64 delta;
3495

P
Peter Zijlstra 已提交
3496
	ideal_runtime = sched_slice(cfs_rq, curr);
3497
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3498
	if (delta_exec > ideal_runtime) {
3499
		resched_curr(rq_of(cfs_rq));
3500 3501 3502 3503 3504
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3516 3517
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3518

3519 3520
	if (delta < 0)
		return;
3521

3522
	if (delta > ideal_runtime)
3523
		resched_curr(rq_of(cfs_rq));
3524 3525
}

3526
static void
3527
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3528
{
3529 3530 3531 3532 3533 3534 3535
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3536 3537
		if (schedstat_enabled())
			update_stats_wait_end(cfs_rq, se);
3538
		__dequeue_entity(cfs_rq, se);
3539
		update_load_avg(se, 1);
3540 3541
	}

3542
	update_stats_curr_start(cfs_rq, se);
3543
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
3544 3545 3546 3547 3548 3549
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3550
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3551
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
3552 3553 3554
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
3555
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3556 3557
}

3558 3559 3560
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3561 3562 3563 3564 3565 3566 3567
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3568 3569
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3570
{
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3582

3583 3584 3585 3586 3587
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3598 3599 3600
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3601

3602 3603 3604 3605 3606 3607
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3608 3609 3610 3611 3612 3613
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3614
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3615 3616

	return se;
3617 3618
}

3619
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3620

3621
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3622 3623 3624 3625 3626 3627
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3628
		update_curr(cfs_rq);
3629

3630 3631 3632
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3633 3634 3635 3636 3637 3638
	if (schedstat_enabled()) {
		check_spread(cfs_rq, prev);
		if (prev->on_rq)
			update_stats_wait_start(cfs_rq, prev);
	}

3639 3640 3641
	if (prev->on_rq) {
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3642
		/* in !on_rq case, update occurred at dequeue */
3643
		update_load_avg(prev, 0);
3644
	}
3645
	cfs_rq->curr = NULL;
3646 3647
}

P
Peter Zijlstra 已提交
3648 3649
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3650 3651
{
	/*
3652
	 * Update run-time statistics of the 'current'.
3653
	 */
3654
	update_curr(cfs_rq);
3655

3656 3657 3658
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3659
	update_load_avg(curr, 1);
3660
	update_cfs_shares(cfs_rq);
3661

P
Peter Zijlstra 已提交
3662 3663 3664 3665 3666
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3667
	if (queued) {
3668
		resched_curr(rq_of(cfs_rq));
3669 3670
		return;
	}
P
Peter Zijlstra 已提交
3671 3672 3673 3674 3675 3676 3677 3678
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3679
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3680
		check_preempt_tick(cfs_rq, curr);
3681 3682
}

3683 3684 3685 3686 3687 3688

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3689 3690

#ifdef HAVE_JUMP_LABEL
3691
static struct static_key __cfs_bandwidth_used;
3692 3693 3694

static inline bool cfs_bandwidth_used(void)
{
3695
	return static_key_false(&__cfs_bandwidth_used);
3696 3697
}

3698
void cfs_bandwidth_usage_inc(void)
3699
{
3700 3701 3702 3703 3704 3705
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3706 3707 3708 3709 3710 3711 3712
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3713 3714
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3715 3716
#endif /* HAVE_JUMP_LABEL */

3717 3718 3719 3720 3721 3722 3723 3724
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3725 3726 3727 3728 3729 3730

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3731 3732 3733 3734 3735 3736 3737
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3738
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3750 3751 3752 3753 3754
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3755 3756 3757 3758
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
3759
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3760

3761
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3762 3763
}

3764 3765
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3766 3767 3768
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3769
	u64 amount = 0, min_amount, expires;
3770 3771 3772 3773 3774 3775 3776

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3777
	else {
P
Peter Zijlstra 已提交
3778
		start_cfs_bandwidth(cfs_b);
3779 3780 3781 3782 3783 3784

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3785
	}
P
Paul Turner 已提交
3786
	expires = cfs_b->runtime_expires;
3787 3788 3789
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3790 3791 3792 3793 3794 3795 3796
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3797 3798

	return cfs_rq->runtime_remaining > 0;
3799 3800
}

P
Paul Turner 已提交
3801 3802 3803 3804 3805
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3806
{
P
Paul Turner 已提交
3807 3808 3809
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3810
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3811 3812
		return;

P
Paul Turner 已提交
3813 3814 3815 3816 3817 3818 3819 3820 3821
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3822 3823 3824
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3825 3826
	 */

3827
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3828 3829 3830 3831 3832 3833 3834 3835
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3836
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3837 3838
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3839
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3840 3841 3842
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3843 3844
		return;

3845 3846 3847 3848 3849
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3850
		resched_curr(rq_of(cfs_rq));
3851 3852
}

3853
static __always_inline
3854
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3855
{
3856
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3857 3858 3859 3860 3861
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3862 3863
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3864
	return cfs_bandwidth_used() && cfs_rq->throttled;
3865 3866
}

3867 3868 3869
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3870
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
3898
		/* adjust cfs_rq_clock_task() */
3899
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3900
					     cfs_rq->throttled_clock_task;
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3911 3912
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3913
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3914 3915 3916 3917 3918
	cfs_rq->throttle_count++;

	return 0;
}

3919
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3920 3921 3922 3923 3924
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
3925
	bool empty;
3926 3927 3928

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3929
	/* freeze hierarchy runnable averages while throttled */
3930 3931 3932
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3950
		sub_nr_running(rq, task_delta);
3951 3952

	cfs_rq->throttled = 1;
3953
	cfs_rq->throttled_clock = rq_clock(rq);
3954
	raw_spin_lock(&cfs_b->lock);
3955
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3956

3957 3958 3959 3960 3961
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3962 3963 3964 3965 3966 3967 3968 3969

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

3970 3971 3972
	raw_spin_unlock(&cfs_b->lock);
}

3973
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3974 3975 3976 3977 3978 3979 3980
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3981
	se = cfs_rq->tg->se[cpu_of(rq)];
3982 3983

	cfs_rq->throttled = 0;
3984 3985 3986

	update_rq_clock(rq);

3987
	raw_spin_lock(&cfs_b->lock);
3988
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3989 3990 3991
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3992 3993 3994
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4013
		add_nr_running(rq, task_delta);
4014 4015 4016

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4017
		resched_curr(rq);
4018 4019 4020 4021 4022 4023
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4024 4025
	u64 runtime;
	u64 starting_runtime = remaining;
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4056
	return starting_runtime - remaining;
4057 4058
}

4059 4060 4061 4062 4063 4064 4065 4066
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4067
	u64 runtime, runtime_expires;
4068
	int throttled;
4069 4070 4071

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4072
		goto out_deactivate;
4073

4074
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4075
	cfs_b->nr_periods += overrun;
4076

4077 4078 4079 4080 4081 4082
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4083 4084 4085

	__refill_cfs_bandwidth_runtime(cfs_b);

4086 4087 4088
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4089
		return 0;
4090 4091
	}

4092 4093 4094
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4095 4096 4097
	runtime_expires = cfs_b->runtime_expires;

	/*
4098 4099 4100 4101 4102
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4103
	 */
4104 4105
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4106 4107 4108 4109 4110 4111 4112
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4113 4114

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4115
	}
4116

4117 4118 4119 4120 4121 4122 4123
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4124

4125 4126 4127 4128
	return 0;

out_deactivate:
	return 1;
4129
}
4130

4131 4132 4133 4134 4135 4136 4137
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4138 4139 4140 4141
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4142
 * hrtimer base being cleared by hrtimer_start. In the case of
4143 4144
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4170 4171 4172
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4202 4203 4204
	if (!cfs_bandwidth_used())
		return;

4205
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4221 4222 4223
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4224
		return;
4225
	}
4226

4227
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4228
		runtime = cfs_b->runtime;
4229

4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4240
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4241 4242 4243
	raw_spin_unlock(&cfs_b->lock);
}

4244 4245 4246 4247 4248 4249 4250
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4251 4252 4253
	if (!cfs_bandwidth_used())
		return;

4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4282
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4283 4284
}

4285
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4286
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4287
{
4288
	if (!cfs_bandwidth_used())
4289
		return false;
4290

4291
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4292
		return false;
4293 4294 4295 4296 4297 4298

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4299
		return true;
4300 4301

	throttle_cfs_rq(cfs_rq);
4302
	return true;
4303
}
4304 4305 4306 4307 4308

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4309

4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4322
	raw_spin_lock(&cfs_b->lock);
4323
	for (;;) {
P
Peter Zijlstra 已提交
4324
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4325 4326 4327 4328 4329
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4330 4331
	if (idle)
		cfs_b->period_active = 0;
4332
	raw_spin_unlock(&cfs_b->lock);
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4345
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4357
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4358
{
P
Peter Zijlstra 已提交
4359
	lockdep_assert_held(&cfs_b->lock);
4360

P
Peter Zijlstra 已提交
4361 4362 4363 4364 4365
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4366 4367 4368 4369
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4370 4371 4372 4373
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4374 4375 4376 4377
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4391
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4403
		cfs_rq->runtime_remaining = 1;
4404 4405 4406 4407 4408 4409
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4410 4411 4412 4413 4414 4415
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4416 4417
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4418
	return rq_clock_task(rq_of(cfs_rq));
4419 4420
}

4421
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4422
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4423
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4424
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4425
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4426 4427 4428 4429 4430

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4442 4443 4444 4445 4446

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4447 4448
#endif

4449 4450 4451 4452 4453
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4454
static inline void update_runtime_enabled(struct rq *rq) {}
4455
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4456 4457 4458

#endif /* CONFIG_CFS_BANDWIDTH */

4459 4460 4461 4462
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4463 4464 4465 4466 4467 4468 4469 4470
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

4471
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
4472 4473 4474 4475 4476 4477
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4478
				resched_curr(rq);
P
Peter Zijlstra 已提交
4479 4480
			return;
		}
4481
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4482 4483
	}
}
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4494
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4495 4496 4497 4498 4499
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4500
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4501 4502 4503 4504
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4505 4506 4507 4508

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4509 4510
#endif

4511 4512 4513 4514 4515
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4516
static void
4517
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4518 4519
{
	struct cfs_rq *cfs_rq;
4520
	struct sched_entity *se = &p->se;
4521 4522

	for_each_sched_entity(se) {
4523
		if (se->on_rq)
4524 4525
			break;
		cfs_rq = cfs_rq_of(se);
4526
		enqueue_entity(cfs_rq, se, flags);
4527 4528 4529 4530 4531 4532

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
4533
		 */
4534 4535
		if (cfs_rq_throttled(cfs_rq))
			break;
4536
		cfs_rq->h_nr_running++;
4537

4538
		flags = ENQUEUE_WAKEUP;
4539
	}
P
Peter Zijlstra 已提交
4540

P
Peter Zijlstra 已提交
4541
	for_each_sched_entity(se) {
4542
		cfs_rq = cfs_rq_of(se);
4543
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4544

4545 4546 4547
		if (cfs_rq_throttled(cfs_rq))
			break;

4548
		update_load_avg(se, 1);
4549
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4550 4551
	}

Y
Yuyang Du 已提交
4552
	if (!se)
4553
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4554

4555
	hrtick_update(rq);
4556 4557
}

4558 4559
static void set_next_buddy(struct sched_entity *se);

4560 4561 4562 4563 4564
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4565
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4566 4567
{
	struct cfs_rq *cfs_rq;
4568
	struct sched_entity *se = &p->se;
4569
	int task_sleep = flags & DEQUEUE_SLEEP;
4570 4571 4572

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4573
		dequeue_entity(cfs_rq, se, flags);
4574 4575 4576 4577 4578 4579 4580 4581 4582

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4583
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4584

4585
		/* Don't dequeue parent if it has other entities besides us */
4586
		if (cfs_rq->load.weight) {
4587 4588
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
4589 4590 4591 4592
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
4593 4594
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
4595
			break;
4596
		}
4597
		flags |= DEQUEUE_SLEEP;
4598
	}
P
Peter Zijlstra 已提交
4599

P
Peter Zijlstra 已提交
4600
	for_each_sched_entity(se) {
4601
		cfs_rq = cfs_rq_of(se);
4602
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4603

4604 4605 4606
		if (cfs_rq_throttled(cfs_rq))
			break;

4607
		update_load_avg(se, 1);
4608
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4609 4610
	}

Y
Yuyang Du 已提交
4611
	if (!se)
4612
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4613

4614
	hrtick_update(rq);
4615 4616
}

4617
#ifdef CONFIG_SMP
4618
#ifdef CONFIG_NO_HZ_COMMON
4619 4620 4621 4622 4623
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4624
 * The exact cpuload calculated at every tick would be:
4625
 *
4626 4627 4628 4629 4630 4631 4632
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4633 4634 4635
 *
 * decay_load_missed() below does efficient calculation of
 *
4636 4637 4638 4639 4640 4641
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4642
 *
4643
 * The calculation is approximated on a 128 point scale.
4644 4645
 */
#define DEGRADE_SHIFT		7
4646 4647 4648 4649 4650 4651 4652 4653 4654

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
4684
#endif /* CONFIG_NO_HZ_COMMON */
4685

4686
/**
4687
 * __cpu_load_update - update the rq->cpu_load[] statistics
4688 4689 4690 4691
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
4692
 * Update rq->cpu_load[] statistics. This function is usually called every
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4719
 * term.
4720
 */
4721 4722
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
4723
{
4724
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

4736
		old_load = this_rq->cpu_load[i];
4737
#ifdef CONFIG_NO_HZ_COMMON
4738
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4739 4740 4741 4742 4743 4744 4745 4746 4747
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
4748
#endif
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

4764 4765 4766 4767 4768 4769
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

4770
#ifdef CONFIG_NO_HZ_COMMON
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
4799
		cpu_load_update(this_rq, load, pending_updates);
4800 4801 4802
	}
}

4803 4804 4805 4806
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
4807
static void cpu_load_update_idle(struct rq *this_rq)
4808 4809 4810 4811
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
4812
	if (weighted_cpuload(cpu_of(this_rq)))
4813 4814
		return;

4815
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
4816 4817 4818
}

/*
4819 4820 4821 4822
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
4823
 */
4824
void cpu_load_update_nohz_start(void)
4825 4826
{
	struct rq *this_rq = this_rq();
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
4841
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4842 4843
	struct rq *this_rq = this_rq();
	unsigned long load;
4844 4845 4846 4847

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

4848
	load = weighted_cpuload(cpu_of(this_rq));
4849
	raw_spin_lock(&this_rq->lock);
4850
	update_rq_clock(this_rq);
4851
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
4852 4853
	raw_spin_unlock(&this_rq->lock);
}
4854 4855 4856 4857 4858 4859 4860 4861
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
4862
#ifdef CONFIG_NO_HZ_COMMON
4863 4864
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
4865
#endif
4866 4867
	cpu_load_update(this_rq, load, 1);
}
4868 4869 4870 4871

/*
 * Called from scheduler_tick()
 */
4872
void cpu_load_update_active(struct rq *this_rq)
4873
{
4874
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4875 4876 4877 4878 4879

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
4880 4881
}

4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4915
static unsigned long capacity_of(int cpu)
4916
{
4917
	return cpu_rq(cpu)->cpu_capacity;
4918 4919
}

4920 4921 4922 4923 4924
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

4925 4926 4927
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4928
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4929
	unsigned long load_avg = weighted_cpuload(cpu);
4930 4931

	if (nr_running)
4932
		return load_avg / nr_running;
4933 4934 4935 4936

	return 0;
}

4937
#ifdef CONFIG_FAIR_GROUP_SCHED
4938 4939 4940 4941 4942 4943
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4987
 */
P
Peter Zijlstra 已提交
4988
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4989
{
P
Peter Zijlstra 已提交
4990
	struct sched_entity *se = tg->se[cpu];
4991

4992
	if (!tg->parent)	/* the trivial, non-cgroup case */
4993 4994
		return wl;

P
Peter Zijlstra 已提交
4995
	for_each_sched_entity(se) {
4996 4997
		struct cfs_rq *cfs_rq = se->my_q;
		long W, w = cfs_rq_load_avg(cfs_rq);
P
Peter Zijlstra 已提交
4998

4999
		tg = cfs_rq->tg;
5000

5001 5002 5003
		/*
		 * W = @wg + \Sum rw_j
		 */
5004 5005 5006 5007 5008
		W = wg + atomic_long_read(&tg->load_avg);

		/* Ensure \Sum rw_j >= rw_i */
		W -= cfs_rq->tg_load_avg_contrib;
		W += w;
P
Peter Zijlstra 已提交
5009

5010 5011 5012
		/*
		 * w = rw_i + @wl
		 */
5013
		w += wl;
5014

5015 5016 5017 5018
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
5019
			wl = (w * (long)tg->shares) / W;
5020 5021
		else
			wl = tg->shares;
5022

5023 5024 5025 5026 5027
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
5028 5029
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
5030 5031 5032 5033

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
5034
		wl -= se->avg.load_avg;
5035 5036 5037 5038 5039 5040 5041 5042

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
5043 5044
		wg = 0;
	}
5045

P
Peter Zijlstra 已提交
5046
	return wl;
5047 5048
}
#else
P
Peter Zijlstra 已提交
5049

5050
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
5051
{
5052
	return wl;
5053
}
P
Peter Zijlstra 已提交
5054

5055 5056
#endif

P
Peter Zijlstra 已提交
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5074 5075
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5076
 *
M
Mike Galbraith 已提交
5077
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5090
 */
5091 5092
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5093 5094
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5095
	int factor = this_cpu_read(sd_llc_size);
5096

M
Mike Galbraith 已提交
5097 5098 5099 5100 5101
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5102 5103
}

5104
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
5105
{
5106
	s64 this_load, load;
5107
	s64 this_eff_load, prev_eff_load;
5108 5109
	int idx, this_cpu, prev_cpu;
	struct task_group *tg;
5110
	unsigned long weight;
5111
	int balanced;
5112

5113 5114 5115 5116 5117
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
5118

5119 5120 5121 5122 5123
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
5124 5125
	if (sync) {
		tg = task_group(current);
5126
		weight = current->se.avg.load_avg;
5127

5128
		this_load += effective_load(tg, this_cpu, -weight, -weight);
5129 5130
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
5131

5132
	tg = task_group(p);
5133
	weight = p->se.avg.load_avg;
5134

5135 5136
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5137 5138 5139
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
5140 5141 5142 5143
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
5144 5145
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
5146

5147 5148
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5149

5150
	if (this_load > 0) {
5151 5152 5153 5154
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5155
	}
5156

5157
	balanced = this_eff_load <= prev_eff_load;
5158

5159
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
5160

5161 5162
	if (!balanced)
		return 0;
5163

5164 5165 5166 5167
	schedstat_inc(sd, ttwu_move_affine);
	schedstat_inc(p, se.statistics.nr_wakeups_affine);

	return 1;
5168 5169
}

5170 5171 5172 5173 5174
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5175
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5176
		  int this_cpu, int sd_flag)
5177
{
5178
	struct sched_group *idlest = NULL, *group = sd->groups;
5179
	unsigned long min_load = ULONG_MAX, this_load = 0;
5180
	int load_idx = sd->forkexec_idx;
5181
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
5182

5183 5184 5185
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5186 5187 5188 5189
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
5190

5191 5192
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
5193
					tsk_cpus_allowed(p)))
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

5212
		/* Adjust by relative CPU capacity of the group */
5213
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5235 5236 5237 5238
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5239 5240 5241
	int i;

	/* Traverse only the allowed CPUs */
5242
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5265
		} else if (shallowest_idle_cpu == -1) {
5266 5267 5268 5269 5270
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5271 5272 5273
		}
	}

5274
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5275
}
5276

5277 5278 5279
/*
 * Try and locate an idle CPU in the sched_domain.
 */
5280
static int select_idle_sibling(struct task_struct *p, int target)
5281
{
5282
	struct sched_domain *sd;
5283
	struct sched_group *sg;
5284
	int i = task_cpu(p);
5285

5286 5287
	if (idle_cpu(target))
		return target;
5288 5289

	/*
5290
	 * If the prevous cpu is cache affine and idle, don't be stupid.
5291
	 */
5292 5293
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
5294 5295

	/*
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
	 * Otherwise, iterate the domains and find an eligible idle cpu.
	 *
	 * A completely idle sched group at higher domains is more
	 * desirable than an idle group at a lower level, because lower
	 * domains have smaller groups and usually share hardware
	 * resources which causes tasks to contend on them, e.g. x86
	 * hyperthread siblings in the lowest domain (SMT) can contend
	 * on the shared cpu pipeline.
	 *
	 * However, while we prefer idle groups at higher domains
	 * finding an idle cpu at the lowest domain is still better than
	 * returning 'target', which we've already established, isn't
	 * idle.
5309
	 */
5310
	sd = rcu_dereference(per_cpu(sd_llc, target));
5311
	for_each_lower_domain(sd) {
5312 5313 5314 5315 5316 5317
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

5318
			/* Ensure the entire group is idle */
5319
			for_each_cpu(i, sched_group_cpus(sg)) {
5320
				if (i == target || !idle_cpu(i))
5321 5322
					goto next;
			}
5323

5324 5325 5326 5327
			/*
			 * It doesn't matter which cpu we pick, the
			 * whole group is idle.
			 */
5328 5329 5330 5331 5332 5333 5334 5335
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
5336 5337
	return target;
}
5338

5339
/*
5340
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5341
 * tasks. The unit of the return value must be the one of capacity so we can
5342 5343
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5364
 */
5365
static int cpu_util(int cpu)
5366
{
5367
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5368 5369
	unsigned long capacity = capacity_orig_of(cpu);

5370
	return (util >= capacity) ? capacity : util;
5371
}
5372

5373
/*
5374 5375 5376
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5377
 *
5378 5379
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5380
 *
5381
 * Returns the target cpu number.
5382 5383 5384
 *
 * preempt must be disabled.
 */
5385
static int
5386
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5387
{
5388
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5389
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5390
	int new_cpu = prev_cpu;
5391
	int want_affine = 0;
5392
	int sync = wake_flags & WF_SYNC;
5393

P
Peter Zijlstra 已提交
5394 5395
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
M
Mike Galbraith 已提交
5396
		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
P
Peter Zijlstra 已提交
5397
	}
5398

5399
	rcu_read_lock();
5400
	for_each_domain(cpu, tmp) {
5401
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
5402
			break;
5403

5404
		/*
5405 5406
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
5407
		 */
5408 5409 5410
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
5411
			break;
5412
		}
5413

5414
		if (tmp->flags & sd_flag)
5415
			sd = tmp;
M
Mike Galbraith 已提交
5416 5417
		else if (!want_affine)
			break;
5418 5419
	}

M
Mike Galbraith 已提交
5420 5421 5422 5423
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
			new_cpu = cpu;
5424
	}
5425

M
Mike Galbraith 已提交
5426 5427 5428 5429 5430
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
			new_cpu = select_idle_sibling(p, new_cpu);

	} else while (sd) {
5431
		struct sched_group *group;
5432
		int weight;
5433

5434
		if (!(sd->flags & sd_flag)) {
5435 5436 5437
			sd = sd->child;
			continue;
		}
5438

5439
		group = find_idlest_group(sd, p, cpu, sd_flag);
5440 5441 5442 5443
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
5444

5445
		new_cpu = find_idlest_cpu(group, p, cpu);
5446 5447 5448 5449
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
5450
		}
5451 5452 5453

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
5454
		weight = sd->span_weight;
5455 5456
		sd = NULL;
		for_each_domain(cpu, tmp) {
5457
			if (weight <= tmp->span_weight)
5458
				break;
5459
			if (tmp->flags & sd_flag)
5460 5461 5462
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
5463
	}
5464
	rcu_read_unlock();
5465

5466
	return new_cpu;
5467
}
5468 5469 5470 5471

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
5472
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5473
 */
5474
static void migrate_task_rq_fair(struct task_struct *p)
5475
{
5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

5502
	/*
5503 5504 5505 5506 5507
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
5508
	 */
5509 5510 5511 5512
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
5513 5514

	/* We have migrated, no longer consider this task hot */
5515
	p->se.exec_start = 0;
5516
}
5517 5518 5519 5520 5521

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
5522 5523
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
5524 5525
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5526 5527 5528 5529
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
5530 5531
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
5532 5533 5534 5535 5536 5537 5538 5539 5540
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
5541
	 */
5542
	return calc_delta_fair(gran, se);
5543 5544
}

5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
5567
	gran = wakeup_gran(curr, se);
5568 5569 5570 5571 5572 5573
	if (vdiff > gran)
		return 1;

	return 0;
}

5574 5575
static void set_last_buddy(struct sched_entity *se)
{
5576 5577 5578 5579 5580
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
5581 5582 5583 5584
}

static void set_next_buddy(struct sched_entity *se)
{
5585 5586 5587 5588 5589
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
5590 5591
}

5592 5593
static void set_skip_buddy(struct sched_entity *se)
{
5594 5595
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
5596 5597
}

5598 5599 5600
/*
 * Preempt the current task with a newly woken task if needed:
 */
5601
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5602 5603
{
	struct task_struct *curr = rq->curr;
5604
	struct sched_entity *se = &curr->se, *pse = &p->se;
5605
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5606
	int scale = cfs_rq->nr_running >= sched_nr_latency;
5607
	int next_buddy_marked = 0;
5608

I
Ingo Molnar 已提交
5609 5610 5611
	if (unlikely(se == pse))
		return;

5612
	/*
5613
	 * This is possible from callers such as attach_tasks(), in which we
5614 5615 5616 5617 5618 5619 5620
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

5621
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
5622
		set_next_buddy(pse);
5623 5624
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
5625

5626 5627 5628
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
5629 5630 5631 5632 5633 5634
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
5635 5636 5637 5638
	 */
	if (test_tsk_need_resched(curr))
		return;

5639 5640 5641 5642 5643
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

5644
	/*
5645 5646
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
5647
	 */
5648
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5649
		return;
5650

5651
	find_matching_se(&se, &pse);
5652
	update_curr(cfs_rq_of(se));
5653
	BUG_ON(!pse);
5654 5655 5656 5657 5658 5659 5660
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
5661
		goto preempt;
5662
	}
5663

5664
	return;
5665

5666
preempt:
5667
	resched_curr(rq);
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
5682 5683
}

5684
static struct task_struct *
5685
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
5686 5687 5688
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
5689
	struct task_struct *p;
5690
	int new_tasks;
5691

5692
again:
5693 5694
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
5695
		goto idle;
5696

5697
	if (prev->sched_class != &fair_sched_class)
5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
5717 5718 5719 5720 5721
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
5722

5723 5724 5725 5726 5727 5728 5729 5730 5731
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
5772

5773
	if (!cfs_rq->nr_running)
5774
		goto idle;
5775

5776
	put_prev_task(rq, prev);
5777

5778
	do {
5779
		se = pick_next_entity(cfs_rq, NULL);
5780
		set_next_entity(cfs_rq, se);
5781 5782 5783
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
5784
	p = task_of(se);
5785

5786 5787
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
5788 5789

	return p;
5790 5791

idle:
5792 5793 5794 5795 5796 5797
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
5798
	lockdep_unpin_lock(&rq->lock, cookie);
5799
	new_tasks = idle_balance(rq);
5800
	lockdep_repin_lock(&rq->lock, cookie);
5801 5802 5803 5804 5805
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
5806
	if (new_tasks < 0)
5807 5808
		return RETRY_TASK;

5809
	if (new_tasks > 0)
5810 5811 5812
		goto again;

	return NULL;
5813 5814 5815 5816 5817
}

/*
 * Account for a descheduled task:
 */
5818
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5819 5820 5821 5822 5823 5824
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5825
		put_prev_entity(cfs_rq, se);
5826 5827 5828
	}
}

5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
5854 5855 5856 5857 5858
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
5859
		rq_clock_skip_update(rq, true);
5860 5861 5862 5863 5864
	}

	set_skip_buddy(se);
}

5865 5866 5867 5868
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

5869 5870
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5871 5872 5873 5874 5875 5876 5877 5878 5879 5880
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

5881
#ifdef CONFIG_SMP
5882
/**************************************************
P
Peter Zijlstra 已提交
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5899
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
5900 5901 5902 5903 5904 5905
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
5906
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
5907 5908 5909 5910 5911 5912
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5913
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5999

6000 6001
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6002 6003
enum fbq_type { regular, remote, all };

6004
#define LBF_ALL_PINNED	0x01
6005
#define LBF_NEED_BREAK	0x02
6006 6007
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6008 6009 6010 6011 6012

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6013
	int			src_cpu;
6014 6015 6016 6017

	int			dst_cpu;
	struct rq		*dst_rq;

6018 6019
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6020
	enum cpu_idle_type	idle;
6021
	long			imbalance;
6022 6023 6024
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6025
	unsigned int		flags;
6026 6027 6028 6029

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6030 6031

	enum fbq_type		fbq_type;
6032
	struct list_head	tasks;
6033 6034
};

6035 6036 6037
/*
 * Is this task likely cache-hot:
 */
6038
static int task_hot(struct task_struct *p, struct lb_env *env)
6039 6040 6041
{
	s64 delta;

6042 6043
	lockdep_assert_held(&env->src_rq->lock);

6044 6045 6046 6047 6048 6049 6050 6051 6052
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6053
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6054 6055 6056 6057 6058 6059 6060 6061 6062
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6063
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6064 6065 6066 6067

	return delta < (s64)sysctl_sched_migration_cost;
}

6068
#ifdef CONFIG_NUMA_BALANCING
6069
/*
6070 6071 6072
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6073
 */
6074
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6075
{
6076
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6077
	unsigned long src_faults, dst_faults;
6078 6079
	int src_nid, dst_nid;

6080
	if (!static_branch_likely(&sched_numa_balancing))
6081 6082
		return -1;

6083
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6084
		return -1;
6085 6086 6087 6088

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6089
	if (src_nid == dst_nid)
6090
		return -1;
6091

6092 6093 6094 6095 6096 6097 6098
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6099

6100 6101
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6102
		return 0;
6103

6104 6105 6106 6107 6108 6109
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6110 6111
	}

6112
	return dst_faults < src_faults;
6113 6114
}

6115
#else
6116
static inline int migrate_degrades_locality(struct task_struct *p,
6117 6118
					     struct lb_env *env)
{
6119
	return -1;
6120
}
6121 6122
#endif

6123 6124 6125 6126
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6127
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6128
{
6129
	int tsk_cache_hot;
6130 6131 6132

	lockdep_assert_held(&env->src_rq->lock);

6133 6134
	/*
	 * We do not migrate tasks that are:
6135
	 * 1) throttled_lb_pair, or
6136
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6137 6138
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6139
	 */
6140 6141 6142
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6143
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6144
		int cpu;
6145

6146
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
6147

6148 6149
		env->flags |= LBF_SOME_PINNED;

6150 6151 6152 6153 6154 6155 6156 6157
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
6158
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6159 6160
			return 0;

6161 6162 6163
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6164
				env->flags |= LBF_DST_PINNED;
6165 6166 6167
				env->new_dst_cpu = cpu;
				break;
			}
6168
		}
6169

6170 6171
		return 0;
	}
6172 6173

	/* Record that we found atleast one task that could run on dst_cpu */
6174
	env->flags &= ~LBF_ALL_PINNED;
6175

6176
	if (task_running(env->src_rq, p)) {
6177
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
6178 6179 6180 6181 6182
		return 0;
	}

	/*
	 * Aggressive migration if:
6183 6184 6185
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6186
	 */
6187 6188 6189
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6190

6191
	if (tsk_cache_hot <= 0 ||
6192
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6193
		if (tsk_cache_hot == 1) {
6194 6195 6196
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
6197 6198 6199
		return 1;
	}

Z
Zhang Hang 已提交
6200 6201
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
6202 6203
}

6204
/*
6205 6206 6207 6208 6209 6210 6211
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6212
	deactivate_task(env->src_rq, p, 0);
6213 6214 6215
	set_task_cpu(p, env->dst_cpu);
}

6216
/*
6217
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6218 6219
 * part of active balancing operations within "domain".
 *
6220
 * Returns a task if successful and NULL otherwise.
6221
 */
6222
static struct task_struct *detach_one_task(struct lb_env *env)
6223 6224 6225
{
	struct task_struct *p, *n;

6226 6227
	lockdep_assert_held(&env->src_rq->lock);

6228 6229 6230
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6231

6232
		detach_task(p, env);
6233

6234
		/*
6235
		 * Right now, this is only the second place where
6236
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6237
		 * so we can safely collect stats here rather than
6238
		 * inside detach_tasks().
6239 6240
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
6241
		return p;
6242
	}
6243
	return NULL;
6244 6245
}

6246 6247
static const unsigned int sched_nr_migrate_break = 32;

6248
/*
6249 6250
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6251
 *
6252
 * Returns number of detached tasks if successful and 0 otherwise.
6253
 */
6254
static int detach_tasks(struct lb_env *env)
6255
{
6256 6257
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6258
	unsigned long load;
6259 6260 6261
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6262

6263
	if (env->imbalance <= 0)
6264
		return 0;
6265

6266
	while (!list_empty(tasks)) {
6267 6268 6269 6270 6271 6272 6273
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6274
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6275

6276 6277
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6278
		if (env->loop > env->loop_max)
6279
			break;
6280 6281

		/* take a breather every nr_migrate tasks */
6282
		if (env->loop > env->loop_break) {
6283
			env->loop_break += sched_nr_migrate_break;
6284
			env->flags |= LBF_NEED_BREAK;
6285
			break;
6286
		}
6287

6288
		if (!can_migrate_task(p, env))
6289 6290 6291
			goto next;

		load = task_h_load(p);
6292

6293
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6294 6295
			goto next;

6296
		if ((load / 2) > env->imbalance)
6297
			goto next;
6298

6299 6300 6301 6302
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6303
		env->imbalance -= load;
6304 6305

#ifdef CONFIG_PREEMPT
6306 6307
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6308
		 * kernels will stop after the first task is detached to minimize
6309 6310
		 * the critical section.
		 */
6311
		if (env->idle == CPU_NEWLY_IDLE)
6312
			break;
6313 6314
#endif

6315 6316 6317 6318
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6319
		if (env->imbalance <= 0)
6320
			break;
6321 6322 6323

		continue;
next:
6324
		list_move_tail(&p->se.group_node, tasks);
6325
	}
6326

6327
	/*
6328 6329 6330
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6331
	 */
6332
	schedstat_add(env->sd, lb_gained[env->idle], detached);
6333

6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	activate_task(rq, p, 0);
6346
	p->on_rq = TASK_ON_RQ_QUEUED;
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6375

6376 6377 6378 6379
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
6380 6381
}

P
Peter Zijlstra 已提交
6382
#ifdef CONFIG_FAIR_GROUP_SCHED
6383
static void update_blocked_averages(int cpu)
6384 6385
{
	struct rq *rq = cpu_rq(cpu);
6386 6387
	struct cfs_rq *cfs_rq;
	unsigned long flags;
6388

6389 6390
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6391

6392 6393 6394 6395
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6396
	for_each_leaf_cfs_rq(rq, cfs_rq) {
6397 6398 6399
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
6400

6401
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6402 6403
			update_tg_load_avg(cfs_rq, 0);
	}
6404
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6405 6406
}

6407
/*
6408
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6409 6410 6411
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
6412
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6413
{
6414 6415
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6416
	unsigned long now = jiffies;
6417
	unsigned long load;
6418

6419
	if (cfs_rq->last_h_load_update == now)
6420 6421
		return;

6422 6423 6424 6425 6426 6427 6428
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
6429

6430
	if (!se) {
6431
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6432 6433 6434 6435 6436
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
6437 6438
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
6439 6440 6441 6442
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
6443 6444
}

6445
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
6446
{
6447
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
6448

6449
	update_cfs_rq_h_load(cfs_rq);
6450
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6451
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
6452 6453
}
#else
6454
static inline void update_blocked_averages(int cpu)
6455
{
6456 6457 6458 6459 6460 6461
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6462
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6463
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6464 6465
}

6466
static unsigned long task_h_load(struct task_struct *p)
6467
{
6468
	return p->se.avg.load_avg;
6469
}
P
Peter Zijlstra 已提交
6470
#endif
6471 6472

/********** Helpers for find_busiest_group ************************/
6473 6474 6475 6476 6477 6478 6479

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

6480 6481 6482 6483 6484 6485 6486
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
6487
	unsigned long load_per_task;
6488
	unsigned long group_capacity;
6489
	unsigned long group_util; /* Total utilization of the group */
6490 6491 6492
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
6493
	enum group_type group_type;
6494
	int group_no_capacity;
6495 6496 6497 6498
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
6499 6500
};

J
Joonsoo Kim 已提交
6501 6502 6503 6504 6505 6506 6507 6508
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
6509
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
6510 6511 6512
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6513
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
6514 6515
};

6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
6528
		.total_capacity = 0UL,
6529 6530
		.busiest_stat = {
			.avg_load = 0UL,
6531 6532
			.sum_nr_running = 0,
			.group_type = group_other,
6533 6534 6535 6536
		},
	};
}

6537 6538 6539
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
6540
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6541 6542
 *
 * Return: The load index.
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

6565
static unsigned long scale_rt_capacity(int cpu)
6566 6567
{
	struct rq *rq = cpu_rq(cpu);
6568
	u64 total, used, age_stamp, avg;
6569
	s64 delta;
6570

6571 6572 6573 6574
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
6575 6576
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
6577
	delta = __rq_clock_broken(rq) - age_stamp;
6578

6579 6580 6581 6582
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
6583

6584
	used = div_u64(avg, total);
6585

6586 6587
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
6588

6589
	return 1;
6590 6591
}

6592
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6593
{
6594
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6595 6596
	struct sched_group *sdg = sd->groups;

6597
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6598

6599
	capacity *= scale_rt_capacity(cpu);
6600
	capacity >>= SCHED_CAPACITY_SHIFT;
6601

6602 6603
	if (!capacity)
		capacity = 1;
6604

6605 6606
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
6607 6608
}

6609
void update_group_capacity(struct sched_domain *sd, int cpu)
6610 6611 6612
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
6613
	unsigned long capacity;
6614 6615 6616 6617
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
6618
	sdg->sgc->next_update = jiffies + interval;
6619 6620

	if (!child) {
6621
		update_cpu_capacity(sd, cpu);
6622 6623 6624
		return;
	}

6625
	capacity = 0;
6626

P
Peter Zijlstra 已提交
6627 6628 6629 6630 6631 6632
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

6633
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6634
			struct sched_group_capacity *sgc;
6635
			struct rq *rq = cpu_rq(cpu);
6636

6637
			/*
6638
			 * build_sched_domains() -> init_sched_groups_capacity()
6639 6640 6641
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
6642 6643
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
6644
			 *
6645
			 * This avoids capacity from being 0 and
6646 6647 6648
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
6649
				capacity += capacity_of(cpu);
6650 6651
				continue;
			}
6652

6653 6654
			sgc = rq->sd->groups->sgc;
			capacity += sgc->capacity;
6655
		}
P
Peter Zijlstra 已提交
6656 6657 6658 6659 6660 6661 6662 6663
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
6664
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
6665 6666 6667
			group = group->next;
		} while (group != child->groups);
	}
6668

6669
	sdg->sgc->capacity = capacity;
6670 6671
}

6672
/*
6673 6674 6675
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
6676 6677
 */
static inline int
6678
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6679
{
6680 6681
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
6682 6683
}

6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
6700 6701
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
6702 6703
 *
 * When this is so detected; this group becomes a candidate for busiest; see
6704
 * update_sd_pick_busiest(). And calculate_imbalance() and
6705
 * find_busiest_group() avoid some of the usual balance conditions to allow it
6706 6707 6708 6709 6710 6711 6712
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

6713
static inline int sg_imbalanced(struct sched_group *group)
6714
{
6715
	return group->sgc->imbalance;
6716 6717
}

6718
/*
6719 6720 6721
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
6722 6723
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
6724 6725 6726 6727 6728
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
6729
 */
6730 6731
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6732
{
6733 6734
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
6735

6736
	if ((sgs->group_capacity * 100) >
6737
			(sgs->group_util * env->sd->imbalance_pct))
6738
		return true;
6739

6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
6756

6757
	if ((sgs->group_capacity * 100) <
6758
			(sgs->group_util * env->sd->imbalance_pct))
6759
		return true;
6760

6761
	return false;
6762 6763
}

6764 6765 6766
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
6767
{
6768
	if (sgs->group_no_capacity)
6769 6770 6771 6772 6773 6774 6775 6776
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

6777 6778
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6779
 * @env: The load balancing environment.
6780 6781 6782 6783
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
6784
 * @overload: Indicate more than one runnable task for any CPU.
6785
 */
6786 6787
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
6788 6789
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
6790
{
6791
	unsigned long load;
6792
	int i, nr_running;
6793

6794 6795
	memset(sgs, 0, sizeof(*sgs));

6796
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6797 6798 6799
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
6800
		if (local_group)
6801
			load = target_load(i, load_idx);
6802
		else
6803 6804 6805
			load = source_load(i, load_idx);

		sgs->group_load += load;
6806
		sgs->group_util += cpu_util(i);
6807
		sgs->sum_nr_running += rq->cfs.h_nr_running;
6808

6809 6810
		nr_running = rq->nr_running;
		if (nr_running > 1)
6811 6812
			*overload = true;

6813 6814 6815 6816
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
6817
		sgs->sum_weighted_load += weighted_cpuload(i);
6818 6819 6820 6821
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
6822
			sgs->idle_cpus++;
6823 6824
	}

6825 6826
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
6827
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6828

6829
	if (sgs->sum_nr_running)
6830
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6831

6832
	sgs->group_weight = group->group_weight;
6833

6834
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6835
	sgs->group_type = group_classify(group, sgs);
6836 6837
}

6838 6839
/**
 * update_sd_pick_busiest - return 1 on busiest group
6840
 * @env: The load balancing environment.
6841 6842
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
6843
 * @sgs: sched_group statistics
6844 6845 6846
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
6847 6848 6849
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
6850
 */
6851
static bool update_sd_pick_busiest(struct lb_env *env,
6852 6853
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
6854
				   struct sg_lb_stats *sgs)
6855
{
6856
	struct sg_lb_stats *busiest = &sds->busiest_stat;
6857

6858
	if (sgs->group_type > busiest->group_type)
6859 6860
		return true;

6861 6862 6863 6864 6865 6866 6867 6868
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
6869 6870
		return true;

6871 6872 6873
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
6874 6875 6876 6877 6878
	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
6879
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6880 6881 6882
		if (!sds->busiest)
			return true;

6883 6884
		/* Prefer to move from highest possible cpu's work */
		if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
6885 6886 6887 6888 6889 6890
			return true;
	}

	return false;
}

6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6921
/**
6922
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6923
 * @env: The load balancing environment.
6924 6925
 * @sds: variable to hold the statistics for this sched_domain.
 */
6926
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6927
{
6928 6929
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6930
	struct sg_lb_stats tmp_sgs;
6931
	int load_idx, prefer_sibling = 0;
6932
	bool overload = false;
6933 6934 6935 6936

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6937
	load_idx = get_sd_load_idx(env->sd, env->idle);
6938 6939

	do {
J
Joonsoo Kim 已提交
6940
		struct sg_lb_stats *sgs = &tmp_sgs;
6941 6942
		int local_group;

6943
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6944 6945 6946
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6947 6948

			if (env->idle != CPU_NEWLY_IDLE ||
6949 6950
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6951
		}
6952

6953 6954
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6955

6956 6957 6958
		if (local_group)
			goto next_group;

6959 6960
		/*
		 * In case the child domain prefers tasks go to siblings
6961
		 * first, lower the sg capacity so that we'll try
6962 6963
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6964 6965 6966 6967
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
6968
		 */
6969
		if (prefer_sibling && sds->local &&
6970 6971 6972
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
6973
			sgs->group_type = group_classify(sg, sgs);
6974
		}
6975

6976
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6977
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6978
			sds->busiest_stat = *sgs;
6979 6980
		}

6981 6982 6983
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6984
		sds->total_capacity += sgs->group_capacity;
6985

6986
		sg = sg->next;
6987
	} while (sg != env->sd->groups);
6988 6989 6990

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6991 6992 6993 6994 6995 6996 6997

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7017
 * Return: 1 when packing is required and a task should be moved to
7018 7019
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
7020
 * @env: The load balancing environment.
7021 7022
 * @sds: Statistics of the sched_domain which is to be packed
 */
7023
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7024 7025 7026
{
	int busiest_cpu;

7027
	if (!(env->sd->flags & SD_ASYM_PACKING))
7028 7029
		return 0;

7030 7031 7032
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7033 7034 7035 7036
	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
7037
	if (env->dst_cpu > busiest_cpu)
7038 7039
		return 0;

7040
	env->imbalance = DIV_ROUND_CLOSEST(
7041
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7042
		SCHED_CAPACITY_SCALE);
7043

7044
	return 1;
7045 7046 7047 7048 7049 7050
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
7051
 * @env: The load balancing environment.
7052 7053
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
7054 7055
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7056
{
7057
	unsigned long tmp, capa_now = 0, capa_move = 0;
7058
	unsigned int imbn = 2;
7059
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
7060
	struct sg_lb_stats *local, *busiest;
7061

J
Joonsoo Kim 已提交
7062 7063
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7064

J
Joonsoo Kim 已提交
7065 7066 7067 7068
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
7069

J
Joonsoo Kim 已提交
7070
	scaled_busy_load_per_task =
7071
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7072
		busiest->group_capacity;
J
Joonsoo Kim 已提交
7073

7074 7075
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7076
		env->imbalance = busiest->load_per_task;
7077 7078 7079 7080 7081
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7082
	 * however we may be able to increase total CPU capacity used by
7083 7084 7085
	 * moving them.
	 */

7086
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7087
			min(busiest->load_per_task, busiest->avg_load);
7088
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7089
			min(local->load_per_task, local->avg_load);
7090
	capa_now /= SCHED_CAPACITY_SCALE;
7091 7092

	/* Amount of load we'd subtract */
7093
	if (busiest->avg_load > scaled_busy_load_per_task) {
7094
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7095
			    min(busiest->load_per_task,
7096
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7097
	}
7098 7099

	/* Amount of load we'd add */
7100
	if (busiest->avg_load * busiest->group_capacity <
7101
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7102 7103
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7104
	} else {
7105
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7106
		      local->group_capacity;
J
Joonsoo Kim 已提交
7107
	}
7108
	capa_move += local->group_capacity *
7109
		    min(local->load_per_task, local->avg_load + tmp);
7110
	capa_move /= SCHED_CAPACITY_SCALE;
7111 7112

	/* Move if we gain throughput */
7113
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7114
		env->imbalance = busiest->load_per_task;
7115 7116 7117 7118 7119
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7120
 * @env: load balance environment
7121 7122
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7123
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7124
{
7125
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7126 7127 7128 7129
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7130

7131
	if (busiest->group_type == group_imbalanced) {
7132 7133 7134 7135
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7136 7137
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7138 7139
	}

7140
	/*
7141 7142 7143 7144
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7145
	 */
7146 7147
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7148 7149
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7150 7151
	}

7152 7153 7154 7155 7156
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7157
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7158
		if (load_above_capacity > busiest->group_capacity) {
7159
			load_above_capacity -= busiest->group_capacity;
7160 7161 7162
			load_above_capacity *= NICE_0_LOAD;
			load_above_capacity /= busiest->group_capacity;
		} else
7163
			load_above_capacity = ~0UL;
7164 7165 7166 7167 7168 7169
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7170 7171
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7172
	 */
7173
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7174 7175

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7176
	env->imbalance = min(
7177 7178
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7179
	) / SCHED_CAPACITY_SCALE;
7180 7181 7182

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7183
	 * there is no guarantee that any tasks will be moved so we'll have
7184 7185 7186
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7187
	if (env->imbalance < busiest->load_per_task)
7188
		return fix_small_imbalance(env, sds);
7189
}
7190

7191 7192 7193 7194
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7195
 * if there is an imbalance.
7196 7197 7198 7199
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7200
 * @env: The load balancing environment.
7201
 *
7202
 * Return:	- The busiest group if imbalance exists.
7203
 */
J
Joonsoo Kim 已提交
7204
static struct sched_group *find_busiest_group(struct lb_env *env)
7205
{
J
Joonsoo Kim 已提交
7206
	struct sg_lb_stats *local, *busiest;
7207 7208
	struct sd_lb_stats sds;

7209
	init_sd_lb_stats(&sds);
7210 7211 7212 7213 7214

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7215
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7216 7217
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7218

7219
	/* ASYM feature bypasses nice load balance check */
7220
	if (check_asym_packing(env, &sds))
7221 7222
		return sds.busiest;

7223
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7224
	if (!sds.busiest || busiest->sum_nr_running == 0)
7225 7226
		goto out_balanced;

7227 7228
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7229

P
Peter Zijlstra 已提交
7230 7231
	/*
	 * If the busiest group is imbalanced the below checks don't
7232
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7233 7234
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7235
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7236 7237
		goto force_balance;

7238
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7239 7240
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7241 7242
		goto force_balance;

7243
	/*
7244
	 * If the local group is busier than the selected busiest group
7245 7246
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7247
	if (local->avg_load >= busiest->avg_load)
7248 7249
		goto out_balanced;

7250 7251 7252 7253
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7254
	if (local->avg_load >= sds.avg_load)
7255 7256
		goto out_balanced;

7257
	if (env->idle == CPU_IDLE) {
7258
		/*
7259 7260 7261 7262 7263
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7264
		 */
7265 7266
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7267
			goto out_balanced;
7268 7269 7270 7271 7272
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7273 7274
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7275
			goto out_balanced;
7276
	}
7277

7278
force_balance:
7279
	/* Looks like there is an imbalance. Compute it */
7280
	calculate_imbalance(env, &sds);
7281 7282 7283
	return sds.busiest;

out_balanced:
7284
	env->imbalance = 0;
7285 7286 7287 7288 7289 7290
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7291
static struct rq *find_busiest_queue(struct lb_env *env,
7292
				     struct sched_group *group)
7293 7294
{
	struct rq *busiest = NULL, *rq;
7295
	unsigned long busiest_load = 0, busiest_capacity = 1;
7296 7297
	int i;

7298
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7299
		unsigned long capacity, wl;
7300 7301 7302 7303
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7304

7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7327
		capacity = capacity_of(i);
7328

7329
		wl = weighted_cpuload(i);
7330

7331 7332
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7333
		 * which is not scaled with the cpu capacity.
7334
		 */
7335 7336 7337

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7338 7339
			continue;

7340 7341
		/*
		 * For the load comparisons with the other cpu's, consider
7342 7343 7344
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7345
		 *
7346
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7347
		 * multiplication to rid ourselves of the division works out
7348 7349
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
7350
		 */
7351
		if (wl * busiest_capacity > busiest_load * capacity) {
7352
			busiest_load = wl;
7353
			busiest_capacity = capacity;
7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
7368
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7369

7370
static int need_active_balance(struct lb_env *env)
7371
{
7372 7373 7374
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
7375 7376 7377 7378 7379 7380

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
7381
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7382
			return 1;
7383 7384
	}

7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

7398 7399 7400
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

7401 7402
static int active_load_balance_cpu_stop(void *data);

7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
7434
	return balance_cpu == env->dst_cpu;
7435 7436
}

7437 7438 7439 7440 7441 7442
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
7443
			int *continue_balancing)
7444
{
7445
	int ld_moved, cur_ld_moved, active_balance = 0;
7446
	struct sched_domain *sd_parent = sd->parent;
7447 7448 7449
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
7450
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7451

7452 7453
	struct lb_env env = {
		.sd		= sd,
7454 7455
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
7456
		.dst_grpmask    = sched_group_cpus(sd->groups),
7457
		.idle		= idle,
7458
		.loop_break	= sched_nr_migrate_break,
7459
		.cpus		= cpus,
7460
		.fbq_type	= all,
7461
		.tasks		= LIST_HEAD_INIT(env.tasks),
7462 7463
	};

7464 7465 7466 7467
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
7468
	if (idle == CPU_NEWLY_IDLE)
7469 7470
		env.dst_grpmask = NULL;

7471 7472 7473 7474 7475
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
7476 7477
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
7478
		goto out_balanced;
7479
	}
7480

7481
	group = find_busiest_group(&env);
7482 7483 7484 7485 7486
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

7487
	busiest = find_busiest_queue(&env, group);
7488 7489 7490 7491 7492
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

7493
	BUG_ON(busiest == env.dst_rq);
7494

7495
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7496

7497 7498 7499
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

7500 7501 7502 7503 7504 7505 7506 7507
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
7508
		env.flags |= LBF_ALL_PINNED;
7509
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7510

7511
more_balance:
7512
		raw_spin_lock_irqsave(&busiest->lock, flags);
7513 7514 7515 7516 7517

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
7518
		cur_ld_moved = detach_tasks(&env);
7519 7520

		/*
7521 7522 7523 7524 7525
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
7526
		 */
7527 7528 7529 7530 7531 7532 7533 7534

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

7535
		local_irq_restore(flags);
7536

7537 7538 7539 7540 7541
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
7561
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7562

7563 7564 7565
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

7566
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7567
			env.dst_cpu	 = env.new_dst_cpu;
7568
			env.flags	&= ~LBF_DST_PINNED;
7569 7570
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
7571

7572 7573 7574 7575 7576 7577
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
7578

7579 7580 7581 7582
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
7583
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7584

7585
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7586 7587 7588
				*group_imbalance = 1;
		}

7589
		/* All tasks on this runqueue were pinned by CPU affinity */
7590
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7591
			cpumask_clear_cpu(cpu_of(busiest), cpus);
7592 7593 7594
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
7595
				goto redo;
7596
			}
7597
			goto out_all_pinned;
7598 7599 7600 7601 7602
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
7603 7604 7605 7606 7607 7608 7609 7610
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
7611

7612
		if (need_active_balance(&env)) {
7613 7614
			raw_spin_lock_irqsave(&busiest->lock, flags);

7615 7616 7617
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
7618 7619
			 */
			if (!cpumask_test_cpu(this_cpu,
7620
					tsk_cpus_allowed(busiest->curr))) {
7621 7622
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
7623
				env.flags |= LBF_ALL_PINNED;
7624 7625 7626
				goto out_one_pinned;
			}

7627 7628 7629 7630 7631
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
7632 7633 7634 7635 7636 7637
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7638

7639
			if (active_balance) {
7640 7641 7642
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
7643
			}
7644

7645
			/* We've kicked active balancing, force task migration. */
7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
7659
		 * detach_tasks).
7660 7661 7662 7663 7664 7665 7666 7667
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
7685 7686 7687 7688 7689 7690
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
7691
	if (((env.flags & LBF_ALL_PINNED) &&
7692
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7693 7694 7695
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

7696
	ld_moved = 0;
7697 7698 7699 7700
out:
	return ld_moved;
}

7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
7717
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
7718 7719 7720
{
	unsigned long interval, next;

7721 7722
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
7723 7724 7725 7726 7727 7728
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

7729 7730 7731 7732
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
7733
static int idle_balance(struct rq *this_rq)
7734
{
7735 7736
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
7737 7738
	struct sched_domain *sd;
	int pulled_task = 0;
7739
	u64 curr_cost = 0;
7740

7741 7742 7743 7744 7745 7746
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

7747 7748
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
7749 7750 7751
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
7752
			update_next_balance(sd, &next_balance);
7753 7754
		rcu_read_unlock();

7755
		goto out;
7756
	}
7757

7758 7759
	raw_spin_unlock(&this_rq->lock);

7760
	update_blocked_averages(this_cpu);
7761
	rcu_read_lock();
7762
	for_each_domain(this_cpu, sd) {
7763
		int continue_balancing = 1;
7764
		u64 t0, domain_cost;
7765 7766 7767 7768

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7769
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7770
			update_next_balance(sd, &next_balance);
7771
			break;
7772
		}
7773

7774
		if (sd->flags & SD_BALANCE_NEWIDLE) {
7775 7776
			t0 = sched_clock_cpu(this_cpu);

7777
			pulled_task = load_balance(this_cpu, this_rq,
7778 7779
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
7780 7781 7782 7783 7784 7785

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
7786
		}
7787

7788
		update_next_balance(sd, &next_balance);
7789 7790 7791 7792 7793 7794

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
7795 7796
			break;
	}
7797
	rcu_read_unlock();
7798 7799 7800

	raw_spin_lock(&this_rq->lock);

7801 7802 7803
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

7804
	/*
7805 7806 7807
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
7808
	 */
7809
	if (this_rq->cfs.h_nr_running && !pulled_task)
7810
		pulled_task = 1;
7811

7812 7813 7814
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
7815
		this_rq->next_balance = next_balance;
7816

7817
	/* Is there a task of a high priority class? */
7818
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7819 7820
		pulled_task = -1;

7821
	if (pulled_task)
7822 7823
		this_rq->idle_stamp = 0;

7824
	return pulled_task;
7825 7826 7827
}

/*
7828 7829 7830 7831
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
7832
 */
7833
static int active_load_balance_cpu_stop(void *data)
7834
{
7835 7836
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
7837
	int target_cpu = busiest_rq->push_cpu;
7838
	struct rq *target_rq = cpu_rq(target_cpu);
7839
	struct sched_domain *sd;
7840
	struct task_struct *p = NULL;
7841 7842 7843 7844 7845 7846 7847

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
7848 7849 7850

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
7851
		goto out_unlock;
7852 7853 7854 7855 7856 7857 7858 7859 7860

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
7861
	rcu_read_lock();
7862 7863 7864 7865 7866 7867 7868
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
7869 7870
		struct lb_env env = {
			.sd		= sd,
7871 7872 7873 7874
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
7875 7876 7877
			.idle		= CPU_IDLE,
		};

7878 7879
		schedstat_inc(sd, alb_count);

7880
		p = detach_one_task(&env);
7881
		if (p) {
7882
			schedstat_inc(sd, alb_pushed);
7883 7884 7885
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
7886
			schedstat_inc(sd, alb_failed);
7887
		}
7888
	}
7889
	rcu_read_unlock();
7890 7891
out_unlock:
	busiest_rq->active_balance = 0;
7892 7893 7894 7895 7896 7897 7898
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

7899
	return 0;
7900 7901
}

7902 7903 7904 7905 7906
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

7907
#ifdef CONFIG_NO_HZ_COMMON
7908 7909 7910 7911 7912 7913
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
7914
static struct {
7915
	cpumask_var_t idle_cpus_mask;
7916
	atomic_t nr_cpus;
7917 7918
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
7919

7920
static inline int find_new_ilb(void)
7921
{
7922
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7923

7924 7925 7926 7927
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7928 7929
}

7930 7931 7932 7933 7934
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7935
static void nohz_balancer_kick(void)
7936 7937 7938 7939 7940
{
	int ilb_cpu;

	nohz.next_balance++;

7941
	ilb_cpu = find_new_ilb();
7942

7943 7944
	if (ilb_cpu >= nr_cpu_ids)
		return;
7945

7946
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7947 7948 7949 7950 7951 7952 7953 7954
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7955 7956 7957
	return;
}

7958
void nohz_balance_exit_idle(unsigned int cpu)
7959 7960
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7961 7962 7963 7964 7965 7966 7967
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
7968 7969 7970 7971
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

7972 7973 7974
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
7975
	int cpu = smp_processor_id();
7976 7977

	rcu_read_lock();
7978
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7979 7980 7981 7982 7983

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7984
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7985
unlock:
7986 7987 7988 7989 7990 7991
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7992
	int cpu = smp_processor_id();
7993 7994

	rcu_read_lock();
7995
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7996 7997 7998 7999 8000

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

8001
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
8002
unlock:
8003 8004 8005
	rcu_read_unlock();
}

8006
/*
8007
 * This routine will record that the cpu is going idle with tick stopped.
8008
 * This info will be used in performing idle load balancing in the future.
8009
 */
8010
void nohz_balance_enter_idle(int cpu)
8011
{
8012 8013 8014 8015 8016 8017
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

8018 8019
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
8020

8021 8022 8023 8024 8025 8026
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

8027 8028 8029
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8030 8031 8032 8033 8034
}
#endif

static DEFINE_SPINLOCK(balancing);

8035 8036 8037 8038
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
8039
void update_max_interval(void)
8040 8041 8042 8043
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

8044 8045 8046 8047
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
8048
 * Balancing parameters are set up in init_sched_domains.
8049
 */
8050
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8051
{
8052
	int continue_balancing = 1;
8053
	int cpu = rq->cpu;
8054
	unsigned long interval;
8055
	struct sched_domain *sd;
8056 8057 8058
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8059 8060
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
8061

8062
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
8063

8064
	rcu_read_lock();
8065
	for_each_domain(cpu, sd) {
8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8078 8079 8080
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8092
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8093 8094 8095 8096 8097 8098 8099 8100

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8101
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8102
				/*
8103
				 * The LBF_DST_PINNED logic could have changed
8104 8105
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8106
				 */
8107
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8108 8109
			}
			sd->last_balance = jiffies;
8110
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8111 8112 8113 8114 8115 8116 8117 8118
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8119 8120
	}
	if (need_decay) {
8121
		/*
8122 8123
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8124
		 */
8125 8126
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8127
	}
8128
	rcu_read_unlock();
8129 8130 8131 8132 8133 8134

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8135
	if (likely(update_next_balance)) {
8136
		rq->next_balance = next_balance;
8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8151 8152
}

8153
#ifdef CONFIG_NO_HZ_COMMON
8154
/*
8155
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8156 8157
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8158
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8159
{
8160
	int this_cpu = this_rq->cpu;
8161 8162
	struct rq *rq;
	int balance_cpu;
8163 8164 8165
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8166

8167 8168 8169
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8170 8171

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8172
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8173 8174 8175 8176 8177 8178 8179
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8180
		if (need_resched())
8181 8182
			break;

V
Vincent Guittot 已提交
8183 8184
		rq = cpu_rq(balance_cpu);

8185 8186 8187 8188 8189 8190 8191
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
8192
			cpu_load_update_idle(rq);
8193 8194 8195
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
8196

8197 8198 8199 8200
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8201
	}
8202 8203 8204 8205 8206 8207 8208 8209

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8210 8211
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8212 8213 8214
}

/*
8215
 * Current heuristic for kicking the idle load balancer in the presence
8216
 * of an idle cpu in the system.
8217
 *   - This rq has more than one task.
8218 8219 8220 8221
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8222 8223
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8224
 */
8225
static inline bool nohz_kick_needed(struct rq *rq)
8226 8227
{
	unsigned long now = jiffies;
8228
	struct sched_domain *sd;
8229
	struct sched_group_capacity *sgc;
8230
	int nr_busy, cpu = rq->cpu;
8231
	bool kick = false;
8232

8233
	if (unlikely(rq->idle_balance))
8234
		return false;
8235

8236 8237 8238 8239
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8240
	set_cpu_sd_state_busy();
8241
	nohz_balance_exit_idle(cpu);
8242 8243 8244 8245 8246 8247

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8248
		return false;
8249 8250

	if (time_before(now, nohz.next_balance))
8251
		return false;
8252

8253
	if (rq->nr_running >= 2)
8254
		return true;
8255

8256
	rcu_read_lock();
8257 8258
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
	if (sd) {
8259 8260
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
8261

8262 8263 8264 8265 8266
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8267
	}
8268

8269 8270 8271 8272 8273 8274 8275 8276
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8277

8278
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8279
	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8280 8281 8282 8283
				  sched_domain_span(sd)) < cpu)) {
		kick = true;
		goto unlock;
	}
8284

8285
unlock:
8286
	rcu_read_unlock();
8287
	return kick;
8288 8289
}
#else
8290
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8291 8292 8293 8294 8295 8296
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8297 8298
static void run_rebalance_domains(struct softirq_action *h)
{
8299
	struct rq *this_rq = this_rq();
8300
	enum cpu_idle_type idle = this_rq->idle_balance ?
8301 8302 8303
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8304
	 * If this cpu has a pending nohz_balance_kick, then do the
8305
	 * balancing on behalf of the other idle cpus whose ticks are
8306 8307 8308 8309
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8310
	 */
8311
	nohz_idle_balance(this_rq, idle);
8312
	rebalance_domains(this_rq, idle);
8313 8314 8315 8316 8317
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
8318
void trigger_load_balance(struct rq *rq)
8319 8320
{
	/* Don't need to rebalance while attached to NULL domain */
8321 8322 8323 8324
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
8325
		raise_softirq(SCHED_SOFTIRQ);
8326
#ifdef CONFIG_NO_HZ_COMMON
8327
	if (nohz_kick_needed(rq))
8328
		nohz_balancer_kick();
8329
#endif
8330 8331
}

8332 8333 8334
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
8335 8336

	update_runtime_enabled(rq);
8337 8338 8339 8340 8341
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
8342 8343 8344

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
8345 8346
}

8347
#endif /* CONFIG_SMP */
8348

8349 8350 8351
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
8352
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8353 8354 8355 8356 8357 8358
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
8359
		entity_tick(cfs_rq, se, queued);
8360
	}
8361

8362
	if (static_branch_unlikely(&sched_numa_balancing))
8363
		task_tick_numa(rq, curr);
8364 8365 8366
}

/*
P
Peter Zijlstra 已提交
8367 8368 8369
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
8370
 */
P
Peter Zijlstra 已提交
8371
static void task_fork_fair(struct task_struct *p)
8372
{
8373 8374
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
8375
	struct rq *rq = this_rq();
8376

8377
	raw_spin_lock(&rq->lock);
8378 8379
	update_rq_clock(rq);

8380 8381
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
8382 8383
	if (curr) {
		update_curr(cfs_rq);
8384
		se->vruntime = curr->vruntime;
8385
	}
8386
	place_entity(cfs_rq, se, 1);
8387

P
Peter Zijlstra 已提交
8388
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
8389
		/*
8390 8391 8392
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
8393
		swap(curr->vruntime, se->vruntime);
8394
		resched_curr(rq);
8395
	}
8396

8397
	se->vruntime -= cfs_rq->min_vruntime;
8398
	raw_spin_unlock(&rq->lock);
8399 8400
}

8401 8402 8403 8404
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
8405 8406
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8407
{
8408
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
8409 8410
		return;

8411 8412 8413 8414 8415
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
8416
	if (rq->curr == p) {
8417
		if (p->prio > oldprio)
8418
			resched_curr(rq);
8419
	} else
8420
		check_preempt_curr(rq, p, 0);
8421 8422
}

8423
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
8424 8425 8426 8427
{
	struct sched_entity *se = &p->se;

	/*
8428 8429 8430 8431 8432 8433 8434 8435 8436 8437
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
8438
	 *
8439 8440 8441 8442
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
8443
	 */
8444 8445 8446 8447 8448 8449 8450 8451 8452 8453
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8454
	u64 now = cfs_rq_clock_task(cfs_rq);
8455 8456

	if (!vruntime_normalized(p)) {
P
Peter Zijlstra 已提交
8457 8458 8459 8460 8461 8462 8463
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
8464

8465
	/* Catch up with the cfs_rq and remove our load when we leave */
8466
	update_cfs_rq_load_avg(now, cfs_rq, false);
8467
	detach_entity_load_avg(cfs_rq, se);
8468
	update_tg_load_avg(cfs_rq, false);
P
Peter Zijlstra 已提交
8469 8470
}

8471
static void attach_task_cfs_rq(struct task_struct *p)
8472
{
8473
	struct sched_entity *se = &p->se;
8474
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8475
	u64 now = cfs_rq_clock_task(cfs_rq);
8476 8477

#ifdef CONFIG_FAIR_GROUP_SCHED
8478 8479 8480 8481 8482 8483
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
8484

8485
	/* Synchronize task with its cfs_rq */
8486
	update_cfs_rq_load_avg(now, cfs_rq, false);
8487
	attach_entity_load_avg(cfs_rq, se);
8488
	update_tg_load_avg(cfs_rq, false);
8489 8490 8491 8492

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
8493

8494 8495 8496 8497 8498 8499 8500 8501
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
8502

8503
	if (task_on_rq_queued(p)) {
8504
		/*
8505 8506 8507
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
8508
		 */
8509 8510 8511 8512
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
8513
	}
8514 8515
}

8516 8517 8518 8519 8520 8521 8522 8523 8524
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

8525 8526 8527 8528 8529 8530 8531
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
8532 8533
}

8534 8535 8536 8537 8538 8539 8540
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
8541
#ifdef CONFIG_SMP
8542 8543
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8544
#endif
8545 8546
}

P
Peter Zijlstra 已提交
8547
#ifdef CONFIG_FAIR_GROUP_SCHED
8548 8549 8550 8551 8552 8553 8554 8555
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

8556
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
8557
{
8558
	detach_task_cfs_rq(p);
8559
	set_task_rq(p, task_cpu(p));
8560 8561 8562 8563 8564

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
8565
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
8566
}
8567

8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

8581 8582 8583 8584 8585 8586 8587 8588 8589
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
8590
		if (tg->se)
8591 8592 8593 8594 8595 8596 8597 8598 8599 8600
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
8601 8602
	struct cfs_rq *cfs_rq;
	struct rq *rq;
8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
8617 8618
		rq = cpu_rq(i);

8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8631
		init_entity_runnable_average(se);
8632 8633 8634 8635 8636 8637 8638 8639 8640 8641
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
		post_init_entity_util_avg(se);
8654
		sync_throttle(tg, i);
8655 8656 8657 8658
		raw_spin_unlock_irq(&rq->lock);
	}
}

8659
void unregister_fair_sched_group(struct task_group *tg)
8660 8661
{
	unsigned long flags;
8662 8663
	struct rq *rq;
	int cpu;
8664

8665 8666 8667
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
8668

8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
8701
	if (!parent) {
8702
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
8703 8704
		se->depth = 0;
	} else {
8705
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
8706 8707
		se->depth = parent->depth + 1;
	}
8708 8709

	se->my_q = cfs_rq;
8710 8711
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
8742 8743 8744

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
8745
		for_each_sched_entity(se)
8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

8763 8764
void online_fair_sched_group(struct task_group *tg) { }

8765
void unregister_fair_sched_group(struct task_group *tg) { }
8766 8767 8768

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
8769

8770
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8771 8772 8773 8774 8775 8776 8777 8778 8779
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
8780
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8781 8782 8783 8784

	return rr_interval;
}

8785 8786 8787
/*
 * All the scheduling class methods:
 */
8788
const struct sched_class fair_sched_class = {
8789
	.next			= &idle_sched_class,
8790 8791 8792
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
8793
	.yield_to_task		= yield_to_task_fair,
8794

I
Ingo Molnar 已提交
8795
	.check_preempt_curr	= check_preempt_wakeup,
8796 8797 8798 8799

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

8800
#ifdef CONFIG_SMP
L
Li Zefan 已提交
8801
	.select_task_rq		= select_task_rq_fair,
8802
	.migrate_task_rq	= migrate_task_rq_fair,
8803

8804 8805
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
8806

8807
	.task_dead		= task_dead_fair,
8808
	.set_cpus_allowed	= set_cpus_allowed_common,
8809
#endif
8810

8811
	.set_curr_task          = set_curr_task_fair,
8812
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
8813
	.task_fork		= task_fork_fair,
8814 8815

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
8816
	.switched_from		= switched_from_fair,
8817
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
8818

8819 8820
	.get_rr_interval	= get_rr_interval_fair,

8821 8822
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
8823
#ifdef CONFIG_FAIR_GROUP_SCHED
8824
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
8825
#endif
8826 8827 8828
};

#ifdef CONFIG_SCHED_DEBUG
8829
void print_cfs_stats(struct seq_file *m, int cpu)
8830 8831 8832
{
	struct cfs_rq *cfs_rq;

8833
	rcu_read_lock();
8834
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8835
		print_cfs_rq(m, cpu, cfs_rq);
8836
	rcu_read_unlock();
8837
}
8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
8859 8860 8861 8862 8863 8864

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

8865
#ifdef CONFIG_NO_HZ_COMMON
8866
	nohz.next_balance = jiffies;
8867 8868 8869 8870 8871
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}