fair.c 199.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29
#include <linux/mempolicy.h>
30
#include <linux/migrate.h>
31
#include <linux/task_work.h>
32 33 34 35

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
36

37
/*
38
 * Targeted preemption latency for CPU-bound tasks:
39
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48
 */
49 50
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

64
/*
65
 * Minimal preemption granularity for CPU-bound tasks:
66
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67
 */
68 69
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 71

/*
72 73
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
74
static unsigned int sched_nr_latency = 8;
75 76

/*
77
 * After fork, child runs first. If set to 0 (default) then
78
 * parent will (try to) run first.
79
 */
80
unsigned int sysctl_sched_child_runs_first __read_mostly;
81 82 83

/*
 * SCHED_OTHER wake-up granularity.
84
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 86 87 88 89
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
90
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92

93 94
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

95 96 97 98 99 100 101
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

102 103 104 105 106 107 108 109 110 111 112 113 114 115
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

181
#define WMULT_CONST	(~0U)
182 183
#define WMULT_SHIFT	32

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
200 201

/*
202 203 204 205 206 207 208 209 210 211
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212
 */
213
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214
{
215 216
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
217

218
	__update_inv_weight(lw);
219

220 221 222 223 224
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
225 226
	}

227 228
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
229

230 231 232 233
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
234

235
	return mul_u64_u32_shr(delta_exec, fact, shift);
236 237 238 239
}


const struct sched_class fair_sched_class;
240

241 242 243 244
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

245
#ifdef CONFIG_FAIR_GROUP_SCHED
246

247
/* cpu runqueue to which this cfs_rq is attached */
248 249
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
250
	return cfs_rq->rq;
251 252
}

253 254
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
255

256 257 258 259 260 261 262 263
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
287

288 289 290
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
291 292 293 294 295 296 297 298 299 300 301 302
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
304
		}
305 306

		cfs_rq->on_list = 1;
307
		/* We should have no load, but we need to update last_decay. */
308
		update_cfs_rq_blocked_load(cfs_rq, 0);
309 310 311 312 313 314 315 316 317 318 319
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
320 321 322 323 324
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
325
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
326 327 328
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
329
		return se->cfs_rq;
P
Peter Zijlstra 已提交
330

P
Peter Zijlstra 已提交
331
	return NULL;
P
Peter Zijlstra 已提交
332 333 334 335 336 337 338
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

339 340 341 342 343 344 345 346 347 348 349 350 351
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
352 353
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

371 372 373 374 375 376
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
377

378 379 380
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
381 382 383 384
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
385 386
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
387

P
Peter Zijlstra 已提交
388
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389
{
P
Peter Zijlstra 已提交
390
	return &task_rq(p)->cfs;
391 392
}

P
Peter Zijlstra 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

407 408 409 410 411 412 413 414
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
415 416 417 418 419 420 421 422
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

423 424 425 426 427
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
428 429
#endif	/* CONFIG_FAIR_GROUP_SCHED */

430
static __always_inline
431
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432 433 434 435 436

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

437
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438
{
439
	s64 delta = (s64)(vruntime - max_vruntime);
440
	if (delta > 0)
441
		max_vruntime = vruntime;
442

443
	return max_vruntime;
444 445
}

446
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
447 448 449 450 451 452 453 454
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

455 456 457 458 459 460
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

461 462 463 464 465 466 467 468 469 470 471 472
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
473
		if (!cfs_rq->curr)
474 475 476 477 478
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

479
	/* ensure we never gain time by being placed backwards. */
480
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481 482 483 484
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
485 486
}

487 488 489
/*
 * Enqueue an entity into the rb-tree:
 */
490
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
507
		if (entity_before(se, entry)) {
508 509 510 511 512 513 514 515 516 517 518
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
519
	if (leftmost)
I
Ingo Molnar 已提交
520
		cfs_rq->rb_leftmost = &se->run_node;
521 522 523 524 525

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

526
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527
{
P
Peter Zijlstra 已提交
528 529 530 531 532 533
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
534

535 536 537
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

538
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539
{
540 541 542 543 544 545
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
546 547
}

548 549 550 551 552 553 554 555 556 557 558
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
559
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560
{
561
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562

563 564
	if (!last)
		return NULL;
565 566

	return rb_entry(last, struct sched_entity, run_node);
567 568
}

569 570 571 572
/**************************************************************
 * Scheduling class statistics methods:
 */

573
int sched_proc_update_handler(struct ctl_table *table, int write,
574
		void __user *buffer, size_t *lenp,
575 576
		loff_t *ppos)
{
577
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578
	int factor = get_update_sysctl_factor();
579 580 581 582 583 584 585

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

586 587 588 589 590 591 592
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

593 594 595
	return 0;
}
#endif
596

597
/*
598
 * delta /= w
599
 */
600
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601
{
602
	if (unlikely(se->load.weight != NICE_0_LOAD))
603
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604 605 606 607

	return delta;
}

608 609 610
/*
 * The idea is to set a period in which each task runs once.
 *
611
 * When there are too many tasks (sched_nr_latency) we have to stretch
612 613 614 615
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
616 617 618
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
619
	unsigned long nr_latency = sched_nr_latency;
620 621

	if (unlikely(nr_running > nr_latency)) {
622
		period = sysctl_sched_min_granularity;
623 624 625 626 627 628
		period *= nr_running;
	}

	return period;
}

629 630 631 632
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
633
 * s = p*P[w/rw]
634
 */
P
Peter Zijlstra 已提交
635
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
636
{
M
Mike Galbraith 已提交
637
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
638

M
Mike Galbraith 已提交
639
	for_each_sched_entity(se) {
L
Lin Ming 已提交
640
		struct load_weight *load;
641
		struct load_weight lw;
L
Lin Ming 已提交
642 643 644

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
645

M
Mike Galbraith 已提交
646
		if (unlikely(!se->on_rq)) {
647
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
648 649 650 651

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
652
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
653 654
	}
	return slice;
655 656
}

657
/*
A
Andrei Epure 已提交
658
 * We calculate the vruntime slice of a to-be-inserted task.
659
 *
660
 * vs = s/w
661
 */
662
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
663
{
664
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
665 666
}

667
#ifdef CONFIG_SMP
668 669
static unsigned long task_h_load(struct task_struct *p);

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

689
/*
690
 * Update the current task's runtime statistics.
691
 */
692
static void update_curr(struct cfs_rq *cfs_rq)
693
{
694
	struct sched_entity *curr = cfs_rq->curr;
695
	u64 now = rq_clock_task(rq_of(cfs_rq));
696
	u64 delta_exec;
697 698 699 700

	if (unlikely(!curr))
		return;

701 702
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
703
		return;
704

I
Ingo Molnar 已提交
705
	curr->exec_start = now;
706

707 708 709 710 711 712 713 714 715
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

716 717 718
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

719
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720
		cpuacct_charge(curtask, delta_exec);
721
		account_group_exec_runtime(curtask, delta_exec);
722
	}
723 724

	account_cfs_rq_runtime(cfs_rq, delta_exec);
725 726 727
}

static inline void
728
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
729
{
730
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
731 732 733 734 735
}

/*
 * Task is being enqueued - update stats:
 */
736
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 738 739 740 741
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
742
	if (se != cfs_rq->curr)
743
		update_stats_wait_start(cfs_rq, se);
744 745 746
}

static void
747
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
748
{
749
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 752
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754 755 756
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
757
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
758 759
	}
#endif
760
	schedstat_set(se->statistics.wait_start, 0);
761 762 763
}

static inline void
764
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 766 767 768 769
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
770
	if (se != cfs_rq->curr)
771
		update_stats_wait_end(cfs_rq, se);
772 773 774 775 776 777
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
778
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 780 781 782
{
	/*
	 * We are starting a new run period:
	 */
783
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
784 785 786 787 788 789
}

/**************************************************
 * Scheduling class queueing methods:
 */

790 791
#ifdef CONFIG_NUMA_BALANCING
/*
792 793 794
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
795
 */
796 797
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
798 799 800

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
801

802 803 804
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
	unsigned int scan, floor;
	unsigned int windows = 1;

	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

850 851 852 853 854 855 856 857 858 859 860 861
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

862 863 864 865 866
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
867
	pid_t gid;
868 869 870
	struct list_head task_list;

	struct rcu_head rcu;
871
	nodemask_t active_nodes;
872
	unsigned long total_faults;
873 874 875 876 877
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
878
	unsigned long *faults_cpu;
879
	unsigned long faults[0];
880 881
};

882 883 884 885 886 887 888 889 890
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

891 892 893 894 895
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

896 897
static inline int task_faults_idx(int nid, int priv)
{
898
	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
899 900 901 902
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
903
	if (!p->numa_faults_memory)
904 905
		return 0;

906 907
	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
		p->numa_faults_memory[task_faults_idx(nid, 1)];
908 909
}

910 911 912 913 914
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

915 916
	return p->numa_group->faults[task_faults_idx(nid, 0)] +
		p->numa_group->faults[task_faults_idx(nid, 1)];
917 918
}

919 920 921 922 923 924
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
	return group->faults_cpu[task_faults_idx(nid, 0)] +
		group->faults_cpu[task_faults_idx(nid, 1)];
}

925 926 927 928 929 930 931 932 933 934
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
static inline unsigned long task_weight(struct task_struct *p, int nid)
{
	unsigned long total_faults;

935
	if (!p->numa_faults_memory)
936 937 938 939 940 941 942 943 944 945 946 947
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

	return 1000 * task_faults(p, nid) / total_faults;
}

static inline unsigned long group_weight(struct task_struct *p, int nid)
{
948
	if (!p->numa_group || !p->numa_group->total_faults)
949 950
		return 0;

951
	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
952 953
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Do not migrate if the destination is not a node that
	 * is actively used by this numa group.
	 */
	if (!node_isset(dst_nid, ng->active_nodes))
		return false;

	/*
	 * Source is a node that is not actively used by this
	 * numa group, while the destination is. Migrate.
	 */
	if (!node_isset(src_nid, ng->active_nodes))
		return true;

	/*
	 * Both source and destination are nodes in active
	 * use by this numa group. Maximize memory bandwidth
	 * by migrating from more heavily used groups, to less
	 * heavily used ones, spreading the load around.
	 * Use a 1/4 hysteresis to avoid spurious page movement.
	 */
	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}

1017
static unsigned long weighted_cpuload(const int cpu);
1018 1019 1020 1021 1022
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long power_of(int cpu);
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1023
/* Cached statistics for all CPUs within a node */
1024
struct numa_stats {
1025
	unsigned long nr_running;
1026
	unsigned long load;
1027 1028 1029 1030 1031 1032 1033

	/* Total compute capacity of CPUs on a node */
	unsigned long power;

	/* Approximate capacity in terms of runnable tasks on a node */
	unsigned long capacity;
	int has_capacity;
1034
};
1035

1036 1037 1038 1039 1040
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1041
	int cpu, cpus = 0;
1042 1043 1044 1045 1046 1047 1048 1049

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
		ns->power += power_of(cpu);
1050 1051

		cpus++;
1052 1053
	}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
	 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
	 * and bail there.
	 */
	if (!cpus)
		return;

1065 1066 1067 1068 1069
	ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
	ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
	ns->has_capacity = (ns->nr_running < ns->capacity);
}

1070 1071
struct task_numa_env {
	struct task_struct *p;
1072

1073 1074
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1075

1076
	struct numa_stats src_stats, dst_stats;
1077

1078
	int imbalance_pct;
1079 1080 1081

	struct task_struct *best_task;
	long best_imp;
1082 1083 1084
	int best_cpu;
};

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1104 1105
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1106 1107 1108 1109 1110 1111
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
	long dst_load, src_load;
	long load;
1112
	long imp = (groupimp > 0) ? groupimp : taskimp;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

	rcu_read_lock();
	cur = ACCESS_ONCE(dst_rq->curr);
	if (cur->pid == 0) /* idle */
		cur = NULL;

	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1131 1132
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1133
		 * in any group then look only at task weights.
1134
		 */
1135
		if (cur->numa_group == env->p->numa_group) {
1136 1137
			imp = taskimp + task_weight(cur, env->src_nid) -
			      task_weight(cur, env->dst_nid);
1138 1139 1140 1141 1142 1143
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1144
		} else {
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (env->p->numa_group)
				imp = groupimp;
			else
				imp = taskimp;

			if (cur->numa_group)
				imp += group_weight(cur, env->src_nid) -
				       group_weight(cur, env->dst_nid);
			else
				imp += task_weight(cur, env->src_nid) -
				       task_weight(cur, env->dst_nid);
1161
		}
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	}

	if (imp < env->best_imp)
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
		if (env->src_stats.has_capacity &&
		    !env->dst_stats.has_capacity)
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
	if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
	dst_load = env->dst_stats.load;
	src_load = env->src_stats.load;

	/* XXX missing power terms */
	load = task_h_load(env->p);
	dst_load += load;
	src_load -= load;

	if (cur) {
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
	}

	/* make src_load the smaller */
	if (dst_load < src_load)
		swap(dst_load, src_load);

	if (src_load * env->imbalance_pct < dst_load * 100)
		goto unlock;

assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1211 1212
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1213 1214 1215 1216 1217 1218 1219 1220 1221
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1222
		task_numa_compare(env, taskimp, groupimp);
1223 1224 1225
	}
}

1226 1227 1228 1229
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1230

1231
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1232
		.src_nid = task_node(p),
1233 1234 1235 1236 1237 1238

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1239 1240
	};
	struct sched_domain *sd;
1241
	unsigned long taskweight, groupweight;
1242
	int nid, ret;
1243
	long taskimp, groupimp;
1244

1245
	/*
1246 1247 1248 1249 1250 1251
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1252 1253
	 */
	rcu_read_lock();
1254
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1255 1256
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1257 1258
	rcu_read_unlock();

1259 1260 1261 1262 1263 1264 1265
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1266
		p->numa_preferred_nid = task_node(p);
1267 1268 1269
		return -EINVAL;
	}

1270 1271
	taskweight = task_weight(p, env.src_nid);
	groupweight = group_weight(p, env.src_nid);
1272
	update_numa_stats(&env.src_stats, env.src_nid);
1273
	env.dst_nid = p->numa_preferred_nid;
1274 1275
	taskimp = task_weight(p, env.dst_nid) - taskweight;
	groupimp = group_weight(p, env.dst_nid) - groupweight;
1276
	update_numa_stats(&env.dst_stats, env.dst_nid);
1277

1278 1279
	/* If the preferred nid has capacity, try to use it. */
	if (env.dst_stats.has_capacity)
1280
		task_numa_find_cpu(&env, taskimp, groupimp);
1281 1282 1283

	/* No space available on the preferred nid. Look elsewhere. */
	if (env.best_cpu == -1) {
1284 1285 1286
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1287

1288
			/* Only consider nodes where both task and groups benefit */
1289 1290 1291
			taskimp = task_weight(p, nid) - taskweight;
			groupimp = group_weight(p, nid) - groupweight;
			if (taskimp < 0 && groupimp < 0)
1292 1293
				continue;

1294 1295
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1296
			task_numa_find_cpu(&env, taskimp, groupimp);
1297 1298 1299
		}
	}

1300 1301 1302 1303
	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
	if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes))
		sched_setnuma(p, env.dst_nid);
1314

1315 1316 1317 1318 1319 1320
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1321
	if (env.best_task == NULL) {
1322 1323 1324
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1325 1326 1327 1328
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1329 1330
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1331 1332
	put_task_struct(env.best_task);
	return ret;
1333 1334
}

1335 1336 1337
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1338 1339
	unsigned long interval = HZ;

1340
	/* This task has no NUMA fault statistics yet */
1341
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1342 1343
		return;

1344
	/* Periodically retry migrating the task to the preferred node */
1345 1346
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1347 1348

	/* Success if task is already running on preferred CPU */
1349
	if (task_node(p) == p->numa_preferred_nid)
1350 1351 1352
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1353
	task_numa_migrate(p);
1354 1355
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
 * period will be for the next scan window. If local/remote ratio is below
 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
 * scan period will decrease
 */
#define NUMA_PERIOD_SLOTS 10
#define NUMA_PERIOD_THRESHOLD 3

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
	 * to automatic numa balancing. Scan slower
	 */
	if (local + shared == 0) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
		delta = p->se.avg.runnable_avg_sum;
		*period = p->se.avg.runnable_avg_period;
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1490 1491
static void task_numa_placement(struct task_struct *p)
{
1492 1493
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1494
	unsigned long fault_types[2] = { 0, 0 };
1495 1496
	unsigned long total_faults;
	u64 runtime, period;
1497
	spinlock_t *group_lock = NULL;
1498

1499
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1500 1501 1502
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1503
	p->numa_scan_period_max = task_scan_max(p);
1504

1505 1506 1507 1508
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1509 1510 1511
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1512
		spin_lock_irq(group_lock);
1513 1514
	}

1515 1516
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1517
		unsigned long faults = 0, group_faults = 0;
1518
		int priv, i;
1519

1520
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1521
			long diff, f_diff, f_weight;
1522

1523
			i = task_faults_idx(nid, priv);
1524

1525
			/* Decay existing window, copy faults since last scan */
1526
			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1527 1528
			fault_types[priv] += p->numa_faults_buffer_memory[i];
			p->numa_faults_buffer_memory[i] = 0;
1529

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
				   (total_faults + 1);
1540
			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1541 1542
			p->numa_faults_buffer_cpu[i] = 0;

1543 1544
			p->numa_faults_memory[i] += diff;
			p->numa_faults_cpu[i] += f_diff;
1545
			faults += p->numa_faults_memory[i];
1546
			p->total_numa_faults += diff;
1547 1548
			if (p->numa_group) {
				/* safe because we can only change our own group */
1549
				p->numa_group->faults[i] += diff;
1550
				p->numa_group->faults_cpu[i] += f_diff;
1551 1552
				p->numa_group->total_faults += diff;
				group_faults += p->numa_group->faults[i];
1553
			}
1554 1555
		}

1556 1557 1558 1559
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1560 1561 1562 1563 1564 1565 1566

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1567 1568
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1569
	if (p->numa_group) {
1570
		update_numa_active_node_mask(p->numa_group);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
		/*
		 * If the preferred task and group nids are different,
		 * iterate over the nodes again to find the best place.
		 */
		if (max_nid != max_group_nid) {
			unsigned long weight, max_weight = 0;

			for_each_online_node(nid) {
				weight = task_weight(p, nid) + group_weight(p, nid);
				if (weight > max_weight) {
					max_weight = weight;
					max_nid = nid;
				}
1584 1585
			}
		}
1586

1587
		spin_unlock_irq(group_lock);
1588 1589
	}

1590
	/* Preferred node as the node with the most faults */
1591
	if (max_faults && max_nid != p->numa_preferred_nid) {
1592
		/* Update the preferred nid and migrate task if possible */
1593
		sched_setnuma(p, max_nid);
1594
		numa_migrate_preferred(p);
1595
	}
1596 1597
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1609 1610
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1611 1612 1613 1614 1615 1616 1617 1618 1619
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1620
				    4*nr_node_ids*sizeof(unsigned long);
1621 1622 1623 1624 1625 1626 1627 1628

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
		INIT_LIST_HEAD(&grp->task_list);
1629
		grp->gid = p->pid;
1630
		/* Second half of the array tracks nids where faults happen */
1631 1632
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
1633

1634 1635
		node_set(task_node(current), grp->active_nodes);

1636
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1637
			grp->faults[i] = p->numa_faults_memory[i];
1638

1639
		grp->total_faults = p->total_numa_faults;
1640

1641 1642 1643 1644 1645 1646 1647 1648 1649
		list_add(&p->numa_entry, &grp->task_list);
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
1650
		goto no_join;
1651 1652 1653

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1654
		goto no_join;
1655 1656 1657

	my_grp = p->numa_group;
	if (grp == my_grp)
1658
		goto no_join;
1659 1660 1661 1662 1663 1664

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1665
		goto no_join;
1666 1667 1668 1669 1670

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1671
		goto no_join;
1672

1673 1674 1675 1676 1677 1678 1679
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
1680

1681 1682 1683
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

1684
	if (join && !get_numa_group(grp))
1685
		goto no_join;
1686 1687 1688 1689 1690 1691

	rcu_read_unlock();

	if (!join)
		return;

1692 1693
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
1694

1695
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1696 1697
		my_grp->faults[i] -= p->numa_faults_memory[i];
		grp->faults[i] += p->numa_faults_memory[i];
1698
	}
1699 1700
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
1701 1702 1703 1704 1705 1706

	list_move(&p->numa_entry, &grp->task_list);
	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
1707
	spin_unlock_irq(&grp->lock);
1708 1709 1710 1711

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
1712 1713 1714 1715 1716
	return;

no_join:
	rcu_read_unlock();
	return;
1717 1718 1719 1720 1721 1722
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
	int i;
1723
	void *numa_faults = p->numa_faults_memory;
1724 1725

	if (grp) {
1726
		spin_lock_irq(&grp->lock);
1727
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1728
			grp->faults[i] -= p->numa_faults_memory[i];
1729
		grp->total_faults -= p->total_numa_faults;
1730

1731 1732
		list_del(&p->numa_entry);
		grp->nr_tasks--;
1733
		spin_unlock_irq(&grp->lock);
1734 1735 1736 1737
		rcu_assign_pointer(p->numa_group, NULL);
		put_numa_group(grp);
	}

1738 1739
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1740 1741
	p->numa_faults_cpu= NULL;
	p->numa_faults_buffer_cpu = NULL;
1742
	kfree(numa_faults);
1743 1744
}

1745 1746 1747
/*
 * Got a PROT_NONE fault for a page on @node.
 */
1748
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1749 1750
{
	struct task_struct *p = current;
1751
	bool migrated = flags & TNF_MIGRATED;
1752
	int cpu_node = task_node(current);
1753
	int local = !!(flags & TNF_FAULT_LOCAL);
1754
	int priv;
1755

1756
	if (!numabalancing_enabled)
1757 1758
		return;

1759 1760 1761 1762
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

1763 1764 1765 1766
	/* Do not worry about placement if exiting */
	if (p->state == TASK_DEAD)
		return;

1767
	/* Allocate buffer to track faults on a per-node basis */
1768
	if (unlikely(!p->numa_faults_memory)) {
1769 1770
		int size = sizeof(*p->numa_faults_memory) *
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1771

1772
		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1773
		if (!p->numa_faults_memory)
1774
			return;
1775

1776
		BUG_ON(p->numa_faults_buffer_memory);
1777 1778 1779 1780 1781 1782
		/*
		 * The averaged statistics, shared & private, memory & cpu,
		 * occupy the first half of the array. The second half of the
		 * array is for current counters, which are averaged into the
		 * first set by task_numa_placement.
		 */
1783 1784 1785
		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1786
		p->total_numa_faults = 0;
1787
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1788
	}
1789

1790 1791 1792 1793 1794 1795 1796 1797
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
1798
		if (!priv && !(flags & TNF_NO_GROUP))
1799
			task_numa_group(p, last_cpupid, flags, &priv);
1800 1801
	}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
	if (!priv && !local && p->numa_group &&
			node_isset(cpu_node, p->numa_group->active_nodes) &&
			node_isset(mem_node, p->numa_group->active_nodes))
		local = 1;

1813
	task_numa_placement(p);
1814

1815 1816 1817 1818 1819
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
1820 1821
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
1822 1823 1824
	if (migrated)
		p->numa_pages_migrated += pages;

1825 1826
	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1827
	p->numa_faults_locality[local] += pages;
1828 1829
}

1830 1831 1832 1833 1834 1835
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

1836 1837 1838 1839 1840 1841 1842 1843 1844
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
1845
	struct vm_area_struct *vma;
1846
	unsigned long start, end;
1847
	unsigned long nr_pte_updates = 0;
1848
	long pages;
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

1864
	if (!mm->numa_next_scan) {
1865 1866
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1867 1868
	}

1869 1870 1871 1872 1873 1874 1875
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

1876 1877 1878 1879
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
1880

1881
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1882 1883 1884
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

1885 1886 1887 1888 1889 1890
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

1891 1892 1893 1894 1895
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
1896

1897
	down_read(&mm->mmap_sem);
1898
	vma = find_vma(mm, start);
1899 1900
	if (!vma) {
		reset_ptenuma_scan(p);
1901
		start = 0;
1902 1903
		vma = mm->mmap;
	}
1904
	for (; vma; vma = vma->vm_next) {
1905
		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1906 1907
			continue;

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
1918 1919 1920 1921 1922 1923
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
1924

1925 1926 1927 1928
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
1929 1930 1931 1932 1933 1934 1935 1936 1937
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
1938

1939 1940 1941
			start = end;
			if (pages <= 0)
				goto out;
1942 1943

			cond_resched();
1944
		} while (end != vma->vm_end);
1945
	}
1946

1947
out:
1948
	/*
P
Peter Zijlstra 已提交
1949 1950 1951 1952
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
1953 1954
	 */
	if (vma)
1955
		mm->numa_scan_offset = start;
1956 1957 1958
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
1985
		if (!curr->node_stamp)
1986
			curr->numa_scan_period = task_scan_min(curr);
1987
		curr->node_stamp += period;
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
1999 2000 2001 2002 2003 2004 2005 2006

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2007 2008
#endif /* CONFIG_NUMA_BALANCING */

2009 2010 2011 2012
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2013
	if (!parent_entity(se))
2014
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2015
#ifdef CONFIG_SMP
2016 2017 2018 2019 2020 2021
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2022
#endif
2023 2024 2025 2026 2027 2028 2029
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2030
	if (!parent_entity(se))
2031
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2032 2033
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2034
		list_del_init(&se->group_node);
2035
	}
2036 2037 2038
	cfs_rq->nr_running--;
}

2039 2040
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2041 2042 2043 2044 2045 2046 2047 2048 2049
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
2050
	tg_weight = atomic_long_read(&tg->load_avg);
2051
	tg_weight -= cfs_rq->tg_load_contrib;
2052 2053 2054 2055 2056
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

2057
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2058
{
2059
	long tg_weight, load, shares;
2060

2061
	tg_weight = calc_tg_weight(tg, cfs_rq);
2062
	load = cfs_rq->load.weight;
2063 2064

	shares = (tg->shares * load);
2065 2066
	if (tg_weight)
		shares /= tg_weight;
2067 2068 2069 2070 2071 2072 2073 2074 2075

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2076
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2077 2078 2079 2080
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2081 2082 2083
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2084 2085 2086 2087
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2088
		account_entity_dequeue(cfs_rq, se);
2089
	}
P
Peter Zijlstra 已提交
2090 2091 2092 2093 2094 2095 2096

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2097 2098
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2099
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2100 2101 2102
{
	struct task_group *tg;
	struct sched_entity *se;
2103
	long shares;
P
Peter Zijlstra 已提交
2104 2105 2106

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2107
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2108
		return;
2109 2110 2111 2112
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2113
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2114 2115 2116 2117

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2118
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2119 2120 2121 2122
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2123
#ifdef CONFIG_SMP
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2152 2153 2154 2155 2156 2157
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
	 * With a look-up table which covers k^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2178 2179
	}

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
2245 2246
	u64 delta, periods;
	u32 runnable_contrib;
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

2310
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2311
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2312 2313 2314 2315 2316 2317
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
2318
		return 0;
2319 2320 2321

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
2322 2323

	return decays;
2324 2325
}

2326 2327 2328 2329 2330
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
2331
	long tg_contrib;
2332 2333 2334 2335

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

2336 2337
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
2338 2339 2340
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
2341

2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
2353
	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2354 2355 2356 2357 2358 2359 2360 2361 2362
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

2363 2364 2365 2366
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
2367 2368
	int runnable_avg;

2369 2370 2371
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
2372 2373
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
2403
}
2404 2405 2406 2407 2408 2409

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
}
2410
#else /* CONFIG_FAIR_GROUP_SCHED */
2411 2412
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
2413 2414
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
2415
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2416
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2417
#endif /* CONFIG_FAIR_GROUP_SCHED */
2418

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

2429 2430 2431 2432 2433
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

2434 2435 2436
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
2437
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2438 2439
		__update_group_entity_contrib(se);
	}
2440 2441 2442 2443

	return se->avg.load_avg_contrib - old_contrib;
}

2444 2445 2446 2447 2448 2449 2450 2451 2452
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

2453 2454
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

2455
/* Update a sched_entity's runnable average */
2456 2457
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
2458
{
2459 2460
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
2461
	u64 now;
2462

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2473 2474 2475
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
2476 2477 2478 2479

	if (!update_cfs_rq)
		return;

2480 2481
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
2482 2483 2484 2485 2486 2487 2488 2489
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
2490
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2491
{
2492
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2493 2494 2495
	u64 decays;

	decays = now - cfs_rq->last_decay;
2496
	if (!decays && !force_update)
2497 2498
		return;

2499 2500 2501
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2502 2503
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
2504

2505 2506 2507 2508 2509 2510
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
2511 2512

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2513
}
2514

2515 2516
/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2517 2518
						  struct sched_entity *se,
						  int wakeup)
2519
{
2520 2521 2522 2523
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
2524 2525 2526 2527
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
2528 2529
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
2530
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
2546 2547
		wakeup = 0;
	} else {
2548
		__synchronize_entity_decay(se);
2549 2550
	}

2551 2552
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
2553
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2554 2555
		update_entity_load_avg(se, 0);
	}
2556

2557
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2558 2559
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2560 2561
}

2562 2563 2564 2565 2566
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
2567
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2568 2569
						  struct sched_entity *se,
						  int sleep)
2570
{
2571
	update_entity_load_avg(se, 1);
2572 2573
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2574

2575
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2576 2577 2578 2579
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2580
}
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

2602 2603
static int idle_balance(struct rq *this_rq);

2604 2605
#else /* CONFIG_SMP */

2606 2607
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
2608
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2609
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2610 2611
					   struct sched_entity *se,
					   int wakeup) {}
2612
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2613 2614
					   struct sched_entity *se,
					   int sleep) {}
2615 2616
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
2617 2618 2619 2620 2621 2622

static inline int idle_balance(struct rq *rq)
{
	return 0;
}

2623
#endif /* CONFIG_SMP */
2624

2625
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2626 2627
{
#ifdef CONFIG_SCHEDSTATS
2628 2629 2630 2631 2632
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2633
	if (se->statistics.sleep_start) {
2634
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2635 2636 2637 2638

		if ((s64)delta < 0)
			delta = 0;

2639 2640
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2641

2642
		se->statistics.sleep_start = 0;
2643
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2644

2645
		if (tsk) {
2646
			account_scheduler_latency(tsk, delta >> 10, 1);
2647 2648
			trace_sched_stat_sleep(tsk, delta);
		}
2649
	}
2650
	if (se->statistics.block_start) {
2651
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2652 2653 2654 2655

		if ((s64)delta < 0)
			delta = 0;

2656 2657
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2658

2659
		se->statistics.block_start = 0;
2660
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2661

2662
		if (tsk) {
2663
			if (tsk->in_iowait) {
2664 2665
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2666
				trace_sched_stat_iowait(tsk, delta);
2667 2668
			}

2669 2670
			trace_sched_stat_blocked(tsk, delta);

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2682
		}
2683 2684 2685 2686
	}
#endif
}

P
Peter Zijlstra 已提交
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2700 2701 2702
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2703
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2704

2705 2706 2707 2708 2709 2710
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2711
	if (initial && sched_feat(START_DEBIT))
2712
		vruntime += sched_vslice(cfs_rq, se);
2713

2714
	/* sleeps up to a single latency don't count. */
2715
	if (!initial) {
2716
		unsigned long thresh = sysctl_sched_latency;
2717

2718 2719 2720 2721 2722 2723
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2724

2725
		vruntime -= thresh;
2726 2727
	}

2728
	/* ensure we never gain time by being placed backwards. */
2729
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2730 2731
}

2732 2733
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2734
static void
2735
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2736
{
2737 2738
	/*
	 * Update the normalized vruntime before updating min_vruntime
2739
	 * through calling update_curr().
2740
	 */
2741
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2742 2743
		se->vruntime += cfs_rq->min_vruntime;

2744
	/*
2745
	 * Update run-time statistics of the 'current'.
2746
	 */
2747
	update_curr(cfs_rq);
2748
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2749 2750
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
2751

2752
	if (flags & ENQUEUE_WAKEUP) {
2753
		place_entity(cfs_rq, se, 0);
2754
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
2755
	}
2756

2757
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
2758
	check_spread(cfs_rq, se);
2759 2760
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
2761
	se->on_rq = 1;
2762

2763
	if (cfs_rq->nr_running == 1) {
2764
		list_add_leaf_cfs_rq(cfs_rq);
2765 2766
		check_enqueue_throttle(cfs_rq);
	}
2767 2768
}

2769
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
2770
{
2771 2772
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2773
		if (cfs_rq->last != se)
2774
			break;
2775 2776

		cfs_rq->last = NULL;
2777 2778
	}
}
P
Peter Zijlstra 已提交
2779

2780 2781 2782 2783
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2784
		if (cfs_rq->next != se)
2785
			break;
2786 2787

		cfs_rq->next = NULL;
2788
	}
P
Peter Zijlstra 已提交
2789 2790
}

2791 2792 2793 2794
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2795
		if (cfs_rq->skip != se)
2796
			break;
2797 2798

		cfs_rq->skip = NULL;
2799 2800 2801
	}
}

P
Peter Zijlstra 已提交
2802 2803
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2804 2805 2806 2807 2808
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
2809 2810 2811

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
2812 2813
}

2814
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2815

2816
static void
2817
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2818
{
2819 2820 2821 2822
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
2823
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2824

2825
	update_stats_dequeue(cfs_rq, se);
2826
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
2827
#ifdef CONFIG_SCHEDSTATS
2828 2829 2830 2831
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
2832
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2833
			if (tsk->state & TASK_UNINTERRUPTIBLE)
2834
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2835
		}
2836
#endif
P
Peter Zijlstra 已提交
2837 2838
	}

P
Peter Zijlstra 已提交
2839
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2840

2841
	if (se != cfs_rq->curr)
2842
		__dequeue_entity(cfs_rq, se);
2843
	se->on_rq = 0;
2844
	account_entity_dequeue(cfs_rq, se);
2845 2846 2847 2848 2849 2850

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
2851
	if (!(flags & DEQUEUE_SLEEP))
2852
		se->vruntime -= cfs_rq->min_vruntime;
2853

2854 2855 2856
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

2857
	update_min_vruntime(cfs_rq);
2858
	update_cfs_shares(cfs_rq);
2859 2860 2861 2862 2863
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
2864
static void
I
Ingo Molnar 已提交
2865
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2866
{
2867
	unsigned long ideal_runtime, delta_exec;
2868 2869
	struct sched_entity *se;
	s64 delta;
2870

P
Peter Zijlstra 已提交
2871
	ideal_runtime = sched_slice(cfs_rq, curr);
2872
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2873
	if (delta_exec > ideal_runtime) {
2874
		resched_task(rq_of(cfs_rq)->curr);
2875 2876 2877 2878 2879
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

2891 2892
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
2893

2894 2895
	if (delta < 0)
		return;
2896

2897 2898
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
2899 2900
}

2901
static void
2902
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2903
{
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

2915
	update_stats_curr_start(cfs_rq, se);
2916
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
2917 2918 2919 2920 2921 2922
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
2923
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2924
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
2925 2926 2927
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
2928
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2929 2930
}

2931 2932 2933
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

2934 2935 2936 2937 2938 2939 2940
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
2941 2942
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2943
{
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
2955

2956 2957 2958 2959 2960
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

2971 2972 2973
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
2974

2975 2976 2977 2978 2979 2980
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

2981 2982 2983 2984 2985 2986
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

2987
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2988 2989

	return se;
2990 2991
}

2992
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2993

2994
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2995 2996 2997 2998 2999 3000
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3001
		update_curr(cfs_rq);
3002

3003 3004 3005
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
3006
	check_spread(cfs_rq, prev);
3007
	if (prev->on_rq) {
3008
		update_stats_wait_start(cfs_rq, prev);
3009 3010
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3011
		/* in !on_rq case, update occurred at dequeue */
3012
		update_entity_load_avg(prev, 1);
3013
	}
3014
	cfs_rq->curr = NULL;
3015 3016
}

P
Peter Zijlstra 已提交
3017 3018
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3019 3020
{
	/*
3021
	 * Update run-time statistics of the 'current'.
3022
	 */
3023
	update_curr(cfs_rq);
3024

3025 3026 3027
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3028
	update_entity_load_avg(curr, 1);
3029
	update_cfs_rq_blocked_load(cfs_rq, 1);
3030
	update_cfs_shares(cfs_rq);
3031

P
Peter Zijlstra 已提交
3032 3033 3034 3035 3036
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3037 3038 3039 3040
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
3041 3042 3043 3044 3045 3046 3047 3048
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3049
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3050
		check_preempt_tick(cfs_rq, curr);
3051 3052
}

3053 3054 3055 3056 3057 3058

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3059 3060

#ifdef HAVE_JUMP_LABEL
3061
static struct static_key __cfs_bandwidth_used;
3062 3063 3064

static inline bool cfs_bandwidth_used(void)
{
3065
	return static_key_false(&__cfs_bandwidth_used);
3066 3067
}

3068
void cfs_bandwidth_usage_inc(void)
3069
{
3070 3071 3072 3073 3074 3075
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3076 3077 3078 3079 3080 3081 3082
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3083 3084
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3085 3086
#endif /* HAVE_JUMP_LABEL */

3087 3088 3089 3090 3091 3092 3093 3094
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3095 3096 3097 3098 3099 3100

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3101 3102 3103 3104 3105 3106 3107
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3108
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3120 3121 3122 3123 3124
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3125 3126 3127 3128 3129 3130
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3131
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3132 3133
}

3134 3135
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3136 3137 3138
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3139
	u64 amount = 0, min_amount, expires;
3140 3141 3142 3143 3144 3145 3146

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3147
	else {
P
Paul Turner 已提交
3148 3149 3150 3151 3152 3153 3154 3155
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
3156
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
3157
		}
3158 3159 3160 3161 3162 3163

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3164
	}
P
Paul Turner 已提交
3165
	expires = cfs_b->runtime_expires;
3166 3167 3168
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3169 3170 3171 3172 3173 3174 3175
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3176 3177

	return cfs_rq->runtime_remaining > 0;
3178 3179
}

P
Paul Turner 已提交
3180 3181 3182 3183 3184
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3185
{
P
Paul Turner 已提交
3186 3187 3188
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3189
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3190 3191
		return;

P
Paul Turner 已提交
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3213
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3214 3215
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3216
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3217 3218 3219
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3220 3221
		return;

3222 3223 3224 3225 3226 3227
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
3228 3229
}

3230
static __always_inline
3231
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3232
{
3233
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3234 3235 3236 3237 3238
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3239 3240
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3241
	return cfs_bandwidth_used() && cfs_rq->throttled;
3242 3243
}

3244 3245 3246
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3247
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3276
		/* adjust cfs_rq_clock_task() */
3277
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3278
					     cfs_rq->throttled_clock_task;
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3290 3291
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3292
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3293 3294 3295 3296 3297
	cfs_rq->throttle_count++;

	return 0;
}

3298
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3299 3300 3301 3302 3303 3304 3305 3306
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3307
	/* freeze hierarchy runnable averages while throttled */
3308 3309 3310
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
3331
	cfs_rq->throttled_clock = rq_clock(rq);
3332 3333
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3334 3335
	if (!cfs_b->timer_active)
		__start_cfs_bandwidth(cfs_b);
3336 3337 3338
	raw_spin_unlock(&cfs_b->lock);
}

3339
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3340 3341 3342 3343 3344 3345 3346
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3347
	se = cfs_rq->tg->se[cpu_of(rq)];
3348 3349

	cfs_rq->throttled = 0;
3350 3351 3352

	update_rq_clock(rq);

3353
	raw_spin_lock(&cfs_b->lock);
3354
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3355 3356 3357
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3358 3359 3360
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

3424 3425 3426 3427 3428 3429 3430 3431
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3432 3433
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
3434 3435 3436 3437 3438 3439

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

3440 3441 3442
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
3443
	cfs_b->nr_periods += overrun;
3444

P
Paul Turner 已提交
3445 3446 3447 3448
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

3449 3450 3451 3452 3453 3454 3455
	/*
	 * if we have relooped after returning idle once, we need to update our
	 * status as actually running, so that other cpus doing
	 * __start_cfs_bandwidth will stop trying to cancel us.
	 */
	cfs_b->timer_active = 1;

P
Paul Turner 已提交
3456 3457
	__refill_cfs_bandwidth_runtime(cfs_b);

3458 3459 3460 3461 3462 3463
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

3464 3465 3466
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
3491

3492 3493 3494 3495 3496 3497 3498 3499 3500
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3501 3502 3503 3504 3505 3506 3507
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
3508

3509 3510 3511 3512 3513 3514 3515
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3516 3517 3518 3519 3520 3521 3522
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3579 3580 3581
	if (!cfs_bandwidth_used())
		return;

3582
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3598 3599 3600
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3601
		return;
3602
	}
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621

	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

3622 3623 3624 3625 3626 3627 3628
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3629 3630 3631
	if (!cfs_bandwidth_used())
		return;

3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
3647
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3648
{
3649
	if (!cfs_bandwidth_used())
3650
		return false;
3651

3652
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3653
		return false;
3654 3655 3656 3657 3658 3659

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
3660
		return true;
3661 3662

	throttle_cfs_rq(cfs_rq);
3663
	return true;
3664
}
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
3725 3726 3727
	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3728
		raw_spin_unlock(&cfs_b->lock);
3729
		cpu_relax();
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

3746
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
3767 3768
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
3769
	return rq_clock_task(rq_of(cfs_rq));
3770 3771
}

3772
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3773
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3774
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3775
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3776 3777 3778 3779 3780

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
3792 3793 3794 3795 3796

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3797 3798
#endif

3799 3800 3801 3802 3803
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3804
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3805 3806 3807

#endif /* CONFIG_CFS_BANDWIDTH */

3808 3809 3810 3811
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
3812 3813 3814 3815 3816 3817 3818 3819
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

3820
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
3835
		if (rq->curr != p)
3836
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
3837

3838
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
3839 3840
	}
}
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

3851
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3852 3853 3854 3855 3856
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
3857
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
3858 3859 3860 3861
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
3862 3863 3864 3865

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
3866 3867
#endif

3868 3869 3870 3871 3872
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
3873
static void
3874
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3875 3876
{
	struct cfs_rq *cfs_rq;
3877
	struct sched_entity *se = &p->se;
3878 3879

	for_each_sched_entity(se) {
3880
		if (se->on_rq)
3881 3882
			break;
		cfs_rq = cfs_rq_of(se);
3883
		enqueue_entity(cfs_rq, se, flags);
3884 3885 3886 3887 3888 3889 3890 3891 3892

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3893
		cfs_rq->h_nr_running++;
3894

3895
		flags = ENQUEUE_WAKEUP;
3896
	}
P
Peter Zijlstra 已提交
3897

P
Peter Zijlstra 已提交
3898
	for_each_sched_entity(se) {
3899
		cfs_rq = cfs_rq_of(se);
3900
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
3901

3902 3903 3904
		if (cfs_rq_throttled(cfs_rq))
			break;

3905
		update_cfs_shares(cfs_rq);
3906
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3907 3908
	}

3909 3910
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
3911
		inc_nr_running(rq);
3912
	}
3913
	hrtick_update(rq);
3914 3915
}

3916 3917
static void set_next_buddy(struct sched_entity *se);

3918 3919 3920 3921 3922
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
3923
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3924 3925
{
	struct cfs_rq *cfs_rq;
3926
	struct sched_entity *se = &p->se;
3927
	int task_sleep = flags & DEQUEUE_SLEEP;
3928 3929 3930

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3931
		dequeue_entity(cfs_rq, se, flags);
3932 3933 3934 3935 3936 3937 3938 3939 3940

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3941
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3942

3943
		/* Don't dequeue parent if it has other entities besides us */
3944 3945 3946 3947 3948 3949 3950
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
3951 3952 3953

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
3954
			break;
3955
		}
3956
		flags |= DEQUEUE_SLEEP;
3957
	}
P
Peter Zijlstra 已提交
3958

P
Peter Zijlstra 已提交
3959
	for_each_sched_entity(se) {
3960
		cfs_rq = cfs_rq_of(se);
3961
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3962

3963 3964 3965
		if (cfs_rq_throttled(cfs_rq))
			break;

3966
		update_cfs_shares(cfs_rq);
3967
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3968 3969
	}

3970
	if (!se) {
3971
		dec_nr_running(rq);
3972 3973
		update_rq_runnable_avg(rq, 1);
	}
3974
	hrtick_update(rq);
3975 3976
}

3977
#ifdef CONFIG_SMP
3978 3979 3980
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
3981
	return cpu_rq(cpu)->cfs.runnable_load_avg;
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4026
	unsigned long load_avg = rq->cfs.runnable_load_avg;
4027 4028

	if (nr_running)
4029
		return load_avg / nr_running;
4030 4031 4032 4033

	return 0;
}

4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
	if (jiffies > current->wakee_flip_decay_ts + HZ) {
		current->wakee_flips = 0;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4051

4052
static void task_waking_fair(struct task_struct *p)
4053 4054 4055
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4056 4057 4058 4059
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4060

4061 4062 4063 4064 4065 4066 4067 4068
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4069

4070
	se->vruntime -= min_vruntime;
4071
	record_wakee(p);
4072 4073
}

4074
#ifdef CONFIG_FAIR_GROUP_SCHED
4075 4076 4077 4078 4079 4080
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4124
 */
P
Peter Zijlstra 已提交
4125
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4126
{
P
Peter Zijlstra 已提交
4127
	struct sched_entity *se = tg->se[cpu];
4128

4129
	if (!tg->parent)	/* the trivial, non-cgroup case */
4130 4131
		return wl;

P
Peter Zijlstra 已提交
4132
	for_each_sched_entity(se) {
4133
		long w, W;
P
Peter Zijlstra 已提交
4134

4135
		tg = se->my_q->tg;
4136

4137 4138 4139 4140
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4141

4142 4143 4144 4145
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
4146

4147 4148 4149 4150 4151
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
4152 4153
		else
			wl = tg->shares;
4154

4155 4156 4157 4158 4159
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4160 4161
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4162 4163 4164 4165

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4166
		wl -= se->load.weight;
4167 4168 4169 4170 4171 4172 4173 4174

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4175 4176
		wg = 0;
	}
4177

P
Peter Zijlstra 已提交
4178
	return wl;
4179 4180
}
#else
P
Peter Zijlstra 已提交
4181

4182
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4183
{
4184
	return wl;
4185
}
P
Peter Zijlstra 已提交
4186

4187 4188
#endif

4189 4190
static int wake_wide(struct task_struct *p)
{
4191
	int factor = this_cpu_read(sd_llc_size);
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

4211
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4212
{
4213
	s64 this_load, load;
4214
	int idx, this_cpu, prev_cpu;
4215
	unsigned long tl_per_task;
4216
	struct task_group *tg;
4217
	unsigned long weight;
4218
	int balanced;
4219

4220 4221 4222 4223 4224 4225 4226
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

4227 4228 4229 4230 4231
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4232

4233 4234 4235 4236 4237
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4238 4239 4240 4241
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

4242
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4243 4244
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4245

4246 4247
	tg = task_group(p);
	weight = p->se.load.weight;
4248

4249 4250
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4251 4252 4253
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4254 4255 4256 4257
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4258 4259
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
4273

4274
	/*
I
Ingo Molnar 已提交
4275 4276 4277
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
4278
	 */
4279 4280
	if (sync && balanced)
		return 1;
4281

4282
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4283 4284
	tl_per_task = cpu_avg_load_per_task(this_cpu);

4285 4286 4287
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4288 4289 4290 4291 4292
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
4293
		schedstat_inc(sd, ttwu_move_affine);
4294
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4295 4296 4297 4298 4299 4300

		return 1;
	}
	return 0;
}

4301 4302 4303 4304 4305
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4306
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4307
		  int this_cpu, int sd_flag)
4308
{
4309
	struct sched_group *idlest = NULL, *group = sd->groups;
4310
	unsigned long min_load = ULONG_MAX, this_load = 0;
4311
	int load_idx = sd->forkexec_idx;
4312
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4313

4314 4315 4316
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4317 4318 4319 4320
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4321

4322 4323
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4324
					tsk_cpus_allowed(p)))
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
4344
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
4370
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4371 4372 4373 4374 4375
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
4376 4377 4378
		}
	}

4379 4380
	return idlest;
}
4381

4382 4383 4384
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4385
static int select_idle_sibling(struct task_struct *p, int target)
4386
{
4387
	struct sched_domain *sd;
4388
	struct sched_group *sg;
4389
	int i = task_cpu(p);
4390

4391 4392
	if (idle_cpu(target))
		return target;
4393 4394

	/*
4395
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4396
	 */
4397 4398
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4399 4400

	/*
4401
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4402
	 */
4403
	sd = rcu_dereference(per_cpu(sd_llc, target));
4404
	for_each_lower_domain(sd) {
4405 4406 4407 4408 4409 4410 4411
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4412
				if (i == target || !idle_cpu(i))
4413 4414
					goto next;
			}
4415

4416 4417 4418 4419 4420 4421 4422 4423
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4424 4425 4426
	return target;
}

4427
/*
4428 4429 4430
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4431
 *
4432 4433
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4434
 *
4435
 * Returns the target cpu number.
4436 4437 4438
 *
 * preempt must be disabled.
 */
4439
static int
4440
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4441
{
4442
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4443 4444
	int cpu = smp_processor_id();
	int new_cpu = cpu;
4445
	int want_affine = 0;
4446
	int sync = wake_flags & WF_SYNC;
4447

4448
	if (p->nr_cpus_allowed == 1)
4449 4450
		return prev_cpu;

4451
	if (sd_flag & SD_BALANCE_WAKE) {
4452
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4453 4454 4455
			want_affine = 1;
		new_cpu = prev_cpu;
	}
4456

4457
	rcu_read_lock();
4458
	for_each_domain(cpu, tmp) {
4459 4460 4461
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

4462
		/*
4463 4464
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4465
		 */
4466 4467 4468
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4469
			break;
4470
		}
4471

4472
		if (tmp->flags & sd_flag)
4473 4474 4475
			sd = tmp;
	}

4476 4477
	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
		prev_cpu = cpu;
4478

4479
	if (sd_flag & SD_BALANCE_WAKE) {
4480 4481
		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
4482
	}
4483

4484 4485
	while (sd) {
		struct sched_group *group;
4486
		int weight;
4487

4488
		if (!(sd->flags & sd_flag)) {
4489 4490 4491
			sd = sd->child;
			continue;
		}
4492

4493
		group = find_idlest_group(sd, p, cpu, sd_flag);
4494 4495 4496 4497
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4498

4499
		new_cpu = find_idlest_cpu(group, p, cpu);
4500 4501 4502 4503
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4504
		}
4505 4506 4507

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4508
		weight = sd->span_weight;
4509 4510
		sd = NULL;
		for_each_domain(cpu, tmp) {
4511
			if (weight <= tmp->span_weight)
4512
				break;
4513
			if (tmp->flags & sd_flag)
4514 4515 4516
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4517
	}
4518 4519
unlock:
	rcu_read_unlock();
4520

4521
	return new_cpu;
4522
}
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
4544 4545
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
4546
	}
4547 4548 4549

	/* We have migrated, no longer consider this task hot */
	se->exec_start = 0;
4550
}
4551 4552
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
4553 4554
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4555 4556 4557 4558
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
4559 4560
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
4561 4562 4563 4564 4565 4566 4567 4568 4569
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
4570
	 */
4571
	return calc_delta_fair(gran, se);
4572 4573
}

4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
4596
	gran = wakeup_gran(curr, se);
4597 4598 4599 4600 4601 4602
	if (vdiff > gran)
		return 1;

	return 0;
}

4603 4604
static void set_last_buddy(struct sched_entity *se)
{
4605 4606 4607 4608 4609
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
4610 4611 4612 4613
}

static void set_next_buddy(struct sched_entity *se)
{
4614 4615 4616 4617 4618
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
4619 4620
}

4621 4622
static void set_skip_buddy(struct sched_entity *se)
{
4623 4624
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
4625 4626
}

4627 4628 4629
/*
 * Preempt the current task with a newly woken task if needed:
 */
4630
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4631 4632
{
	struct task_struct *curr = rq->curr;
4633
	struct sched_entity *se = &curr->se, *pse = &p->se;
4634
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4635
	int scale = cfs_rq->nr_running >= sched_nr_latency;
4636
	int next_buddy_marked = 0;
4637

I
Ingo Molnar 已提交
4638 4639 4640
	if (unlikely(se == pse))
		return;

4641
	/*
4642
	 * This is possible from callers such as move_task(), in which we
4643 4644 4645 4646 4647 4648 4649
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

4650
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
4651
		set_next_buddy(pse);
4652 4653
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
4654

4655 4656 4657
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
4658 4659 4660 4661 4662 4663
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
4664 4665 4666 4667
	 */
	if (test_tsk_need_resched(curr))
		return;

4668 4669 4670 4671 4672
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

4673
	/*
4674 4675
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
4676
	 */
4677
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4678
		return;
4679

4680
	find_matching_se(&se, &pse);
4681
	update_curr(cfs_rq_of(se));
4682
	BUG_ON(!pse);
4683 4684 4685 4686 4687 4688 4689
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
4690
		goto preempt;
4691
	}
4692

4693
	return;
4694

4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
4711 4712
}

4713 4714
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4715 4716 4717
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
4718
	struct task_struct *p;
4719
	int new_tasks;
4720

4721
again:
4722 4723
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
4724
		goto idle;
4725

4726
	if (prev->sched_class != &fair_sched_class)
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
		if (curr && curr->on_rq)
			update_curr(cfs_rq);
		else
			curr = NULL;

		/*
		 * This call to check_cfs_rq_runtime() will do the throttle and
		 * dequeue its entity in the parent(s). Therefore the 'simple'
		 * nr_running test will indeed be correct.
		 */
		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
			goto simple;

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
4798

4799
	if (!cfs_rq->nr_running)
4800
		goto idle;
4801

4802
	put_prev_task(rq, prev);
4803

4804
	do {
4805
		se = pick_next_entity(cfs_rq, NULL);
4806
		set_next_entity(cfs_rq, se);
4807 4808 4809
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
4810
	p = task_of(se);
4811

4812 4813
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
4814 4815

	return p;
4816 4817

idle:
4818
	new_tasks = idle_balance(rq);
4819 4820 4821 4822 4823
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
4824
	if (new_tasks < 0)
4825 4826
		return RETRY_TASK;

4827
	if (new_tasks > 0)
4828 4829 4830
		goto again;

	return NULL;
4831 4832 4833 4834 4835
}

/*
 * Account for a descheduled task:
 */
4836
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4837 4838 4839 4840 4841 4842
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4843
		put_prev_entity(cfs_rq, se);
4844 4845 4846
	}
}

4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
4872 4873 4874 4875 4876 4877
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
4878 4879 4880 4881 4882
	}

	set_skip_buddy(se);
}

4883 4884 4885 4886
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

4887 4888
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

4899
#ifdef CONFIG_SMP
4900
/**************************************************
P
Peter Zijlstra 已提交
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5017

5018 5019
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5020 5021
enum fbq_type { regular, remote, all };

5022
#define LBF_ALL_PINNED	0x01
5023
#define LBF_NEED_BREAK	0x02
5024 5025
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5026 5027 5028 5029 5030

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5031
	int			src_cpu;
5032 5033 5034 5035

	int			dst_cpu;
	struct rq		*dst_rq;

5036 5037
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5038
	enum cpu_idle_type	idle;
5039
	long			imbalance;
5040 5041 5042
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5043
	unsigned int		flags;
5044 5045 5046 5047

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5048 5049

	enum fbq_type		fbq_type;
5050 5051
};

5052
/*
5053
 * move_task - move a task from one runqueue to another runqueue.
5054 5055
 * Both runqueues must be locked.
 */
5056
static void move_task(struct task_struct *p, struct lb_env *env)
5057
{
5058 5059 5060 5061
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
5062 5063
}

5064 5065 5066 5067
/*
 * Is this task likely cache-hot:
 */
static int
5068
task_hot(struct task_struct *p, u64 now)
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

5096 5097 5098 5099 5100 5101
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
	int src_nid, dst_nid;

5102
	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5103 5104 5105 5106 5107 5108 5109
	    !(env->sd->flags & SD_NUMA)) {
		return false;
	}

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5110
	if (src_nid == dst_nid)
5111 5112
		return false;

5113 5114 5115 5116
	/* Always encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
		return true;

5117 5118 5119
	/* If both task and group weight improve, this move is a winner. */
	if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
	    group_weight(p, dst_nid) > group_weight(p, src_nid))
5120 5121 5122 5123
		return true;

	return false;
}
5124 5125 5126 5127 5128 5129 5130 5131 5132


static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
	int src_nid, dst_nid;

	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
		return false;

5133
	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5134 5135 5136 5137 5138
		return false;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5139
	if (src_nid == dst_nid)
5140 5141
		return false;

5142 5143 5144 5145
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid)
		return true;

5146 5147 5148
	/* If either task or group weight get worse, don't do it. */
	if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
	    group_weight(p, dst_nid) < group_weight(p, src_nid))
5149 5150 5151 5152 5153
		return true;

	return false;
}

5154 5155 5156 5157 5158 5159
#else
static inline bool migrate_improves_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5160 5161 5162 5163 5164 5165

static inline bool migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5166 5167
#endif

5168 5169 5170 5171
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5172
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5173 5174 5175 5176
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
5177
	 * 1) throttled_lb_pair, or
5178
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5179 5180
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5181
	 */
5182 5183 5184
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5185
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5186
		int cpu;
5187

5188
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5189

5190 5191
		env->flags |= LBF_SOME_PINNED;

5192 5193 5194 5195 5196 5197 5198 5199
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5200
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5201 5202
			return 0;

5203 5204 5205
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5206
				env->flags |= LBF_DST_PINNED;
5207 5208 5209
				env->new_dst_cpu = cpu;
				break;
			}
5210
		}
5211

5212 5213
		return 0;
	}
5214 5215

	/* Record that we found atleast one task that could run on dst_cpu */
5216
	env->flags &= ~LBF_ALL_PINNED;
5217

5218
	if (task_running(env->src_rq, p)) {
5219
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5220 5221 5222 5223 5224
		return 0;
	}

	/*
	 * Aggressive migration if:
5225 5226 5227
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5228
	 */
5229
	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
5230 5231
	if (!tsk_cache_hot)
		tsk_cache_hot = migrate_degrades_locality(p, env);
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242

	if (migrate_improves_locality(p, env)) {
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
#endif
		return 1;
	}

5243
	if (!tsk_cache_hot ||
5244
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Z
Zhang Hang 已提交
5245

5246
		if (tsk_cache_hot) {
5247
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5248
			schedstat_inc(p, se.statistics.nr_forced_migrations);
5249
		}
Z
Zhang Hang 已提交
5250

5251 5252 5253
		return 1;
	}

Z
Zhang Hang 已提交
5254 5255
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5256 5257
}

5258 5259 5260 5261 5262 5263 5264
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
5265
static int move_one_task(struct lb_env *env)
5266 5267 5268
{
	struct task_struct *p, *n;

5269 5270 5271
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5272

5273 5274 5275 5276 5277 5278 5279 5280
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
5281 5282 5283 5284
	}
	return 0;
}

5285 5286
static const unsigned int sched_nr_migrate_break = 32;

5287
/*
5288
 * move_tasks tries to move up to imbalance weighted load from busiest to
5289 5290 5291 5292 5293 5294
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
5295
{
5296 5297
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5298 5299
	unsigned long load;
	int pulled = 0;
5300

5301
	if (env->imbalance <= 0)
5302
		return 0;
5303

5304 5305
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5306

5307 5308
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5309
		if (env->loop > env->loop_max)
5310
			break;
5311 5312

		/* take a breather every nr_migrate tasks */
5313
		if (env->loop > env->loop_break) {
5314
			env->loop_break += sched_nr_migrate_break;
5315
			env->flags |= LBF_NEED_BREAK;
5316
			break;
5317
		}
5318

5319
		if (!can_migrate_task(p, env))
5320 5321 5322
			goto next;

		load = task_h_load(p);
5323

5324
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5325 5326
			goto next;

5327
		if ((load / 2) > env->imbalance)
5328
			goto next;
5329

5330
		move_task(p, env);
5331
		pulled++;
5332
		env->imbalance -= load;
5333 5334

#ifdef CONFIG_PREEMPT
5335 5336 5337 5338 5339
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
5340
		if (env->idle == CPU_NEWLY_IDLE)
5341
			break;
5342 5343
#endif

5344 5345 5346 5347
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5348
		if (env->imbalance <= 0)
5349
			break;
5350 5351 5352

		continue;
next:
5353
		list_move_tail(&p->se.group_node, tasks);
5354
	}
5355

5356
	/*
5357 5358 5359
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
5360
	 */
5361
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
5362

5363
	return pulled;
5364 5365
}

P
Peter Zijlstra 已提交
5366
#ifdef CONFIG_FAIR_GROUP_SCHED
5367 5368 5369
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
5370
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5371
{
5372 5373
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5374

5375 5376 5377
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
5378

5379
	update_cfs_rq_blocked_load(cfs_rq, 1);
5380

5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
5395
		struct rq *rq = rq_of(cfs_rq);
5396 5397
		update_rq_runnable_avg(rq, rq->nr_running);
	}
5398 5399
}

5400
static void update_blocked_averages(int cpu)
5401 5402
{
	struct rq *rq = cpu_rq(cpu);
5403 5404
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5405

5406 5407
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5408 5409 5410 5411
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5412
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5413 5414 5415 5416 5417 5418
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5419
	}
5420 5421

	raw_spin_unlock_irqrestore(&rq->lock, flags);
5422 5423
}

5424
/*
5425
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5426 5427 5428
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5429
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5430
{
5431 5432
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5433
	unsigned long now = jiffies;
5434
	unsigned long load;
5435

5436
	if (cfs_rq->last_h_load_update == now)
5437 5438
		return;

5439 5440 5441 5442 5443 5444 5445
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5446

5447
	if (!se) {
5448
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5460 5461
}

5462
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5463
{
5464
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5465

5466
	update_cfs_rq_h_load(cfs_rq);
5467 5468
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
5469 5470
}
#else
5471
static inline void update_blocked_averages(int cpu)
5472 5473 5474
{
}

5475
static unsigned long task_h_load(struct task_struct *p)
5476
{
5477
	return p->se.avg.load_avg_contrib;
5478
}
P
Peter Zijlstra 已提交
5479
#endif
5480 5481 5482 5483 5484 5485 5486 5487 5488

/********** Helpers for find_busiest_group ************************/
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5489
	unsigned long load_per_task;
5490
	unsigned long group_power;
5491 5492 5493 5494
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int group_capacity;
	unsigned int idle_cpus;
	unsigned int group_weight;
5495
	int group_imb; /* Is there an imbalance in the group ? */
5496
	int group_has_capacity; /* Is there extra capacity in the group? */
5497 5498 5499 5500
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
5501 5502
};

J
Joonsoo Kim 已提交
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
	unsigned long total_pwr;	/* Total power of all groups in sd */
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5515
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5516 5517
};

5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
		.total_pwr = 0UL,
		.busiest_stat = {
			.avg_load = 0UL,
		},
	};
}

5537 5538 5539
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
5540
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5541 5542
 *
 * Return: The load index.
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

5565
static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5566
{
5567
	return SCHED_POWER_SCALE;
5568 5569 5570 5571 5572 5573 5574
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

5575
static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5576
{
5577
	unsigned long weight = sd->span_weight;
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

5590
static unsigned long scale_rt_power(int cpu)
5591 5592
{
	struct rq *rq = cpu_rq(cpu);
5593
	u64 total, available, age_stamp, avg;
5594
	s64 delta;
5595

5596 5597 5598 5599 5600 5601 5602
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

5603 5604 5605 5606 5607
	delta = rq_clock(rq) - age_stamp;
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
5608

5609
	if (unlikely(total < avg)) {
5610 5611 5612
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
5613
		available = total - avg;
5614
	}
5615

5616 5617
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
5618

5619
	total >>= SCHED_POWER_SHIFT;
5620 5621 5622 5623 5624 5625

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
5626
	unsigned long weight = sd->span_weight;
5627
	unsigned long power = SCHED_POWER_SCALE;
5628 5629 5630 5631 5632 5633 5634 5635
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

5636
		power >>= SCHED_POWER_SHIFT;
5637 5638
	}

5639
	sdg->sgp->power_orig = power;
5640 5641 5642 5643 5644 5645

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

5646
	power >>= SCHED_POWER_SHIFT;
5647

5648
	power *= scale_rt_power(cpu);
5649
	power >>= SCHED_POWER_SHIFT;
5650 5651 5652 5653

	if (!power)
		power = 1;

5654
	cpu_rq(cpu)->cpu_power = power;
5655
	sdg->sgp->power = power;
5656 5657
}

5658
void update_group_power(struct sched_domain *sd, int cpu)
5659 5660 5661
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
5662
	unsigned long power, power_orig;
5663 5664 5665 5666 5667
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
5668 5669 5670 5671 5672 5673

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

5674
	power_orig = power = 0;
5675

P
Peter Zijlstra 已提交
5676 5677 5678 5679 5680 5681
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

5682
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5683 5684
			struct sched_group_power *sgp;
			struct rq *rq = cpu_rq(cpu);
5685

5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
			/*
			 * build_sched_domains() -> init_sched_groups_power()
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
			 * Use power_of(), which is set irrespective of domains
			 * in update_cpu_power().
			 *
			 * This avoids power/power_orig from being 0 and
			 * causing divide-by-zero issues on boot.
			 *
			 * Runtime updates will correct power_orig.
			 */
			if (unlikely(!rq->sd)) {
				power_orig += power_of(cpu);
				power += power_of(cpu);
				continue;
			}
5704

5705 5706 5707
			sgp = rq->sd->groups->sgp;
			power_orig += sgp->power_orig;
			power += sgp->power;
5708
		}
P
Peter Zijlstra 已提交
5709 5710 5711 5712 5713 5714 5715 5716
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
5717
			power_orig += group->sgp->power_orig;
P
Peter Zijlstra 已提交
5718 5719 5720 5721
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
5722

5723 5724
	sdg->sgp->power_orig = power_orig;
	sdg->sgp->power = power;
5725 5726
}

5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
5738
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
5739
	 */
P
Peter Zijlstra 已提交
5740
	if (!(sd->flags & SD_SHARE_CPUPOWER))
5741 5742 5743 5744 5745
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
5746
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5747 5748 5749 5750 5751
		return 1;

	return 0;
}

5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
5768 5769
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
5770 5771
 *
 * When this is so detected; this group becomes a candidate for busiest; see
5772
 * update_sd_pick_busiest(). And calculate_imbalance() and
5773
 * find_busiest_group() avoid some of the usual balance conditions to allow it
5774 5775 5776 5777 5778 5779 5780
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

5781
static inline int sg_imbalanced(struct sched_group *group)
5782
{
5783
	return group->sgp->imbalance;
5784 5785
}

5786 5787 5788
/*
 * Compute the group capacity.
 *
5789 5790 5791
 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
 * first dividing out the smt factor and computing the actual number of cores
 * and limit power unit capacity with that.
5792 5793 5794
 */
static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
{
5795 5796 5797 5798 5799 5800
	unsigned int capacity, smt, cpus;
	unsigned int power, power_orig;

	power = group->sgp->power;
	power_orig = group->sgp->power_orig;
	cpus = group->group_weight;
5801

5802 5803 5804
	/* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
	capacity = cpus / smt; /* cores */
5805

5806
	capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5807 5808 5809 5810 5811 5812
	if (!capacity)
		capacity = fix_small_capacity(env->sd, group);

	return capacity;
}

5813 5814
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5815
 * @env: The load balancing environment.
5816 5817 5818 5819 5820
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
 */
5821 5822
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
5823
			int local_group, struct sg_lb_stats *sgs)
5824
{
5825
	unsigned long load;
5826
	int i;
5827

5828 5829
	memset(sgs, 0, sizeof(*sgs));

5830
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5831 5832 5833
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
5834
		if (local_group)
5835
			load = target_load(i, load_idx);
5836
		else
5837 5838 5839
			load = source_load(i, load_idx);

		sgs->group_load += load;
5840
		sgs->sum_nr_running += rq->nr_running;
5841 5842 5843 5844
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
5845
		sgs->sum_weighted_load += weighted_cpuload(i);
5846 5847
		if (idle_cpu(i))
			sgs->idle_cpus++;
5848 5849 5850
	}

	/* Adjust by relative CPU power of the group */
5851 5852
	sgs->group_power = group->sgp->power;
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5853

5854
	if (sgs->sum_nr_running)
5855
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5856

5857
	sgs->group_weight = group->group_weight;
5858

5859 5860 5861
	sgs->group_imb = sg_imbalanced(group);
	sgs->group_capacity = sg_capacity(env, group);

5862 5863
	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
5864 5865
}

5866 5867
/**
 * update_sd_pick_busiest - return 1 on busiest group
5868
 * @env: The load balancing environment.
5869 5870
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
5871
 * @sgs: sched_group statistics
5872 5873 5874
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
5875 5876 5877
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
5878
 */
5879
static bool update_sd_pick_busiest(struct lb_env *env,
5880 5881
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
5882
				   struct sg_lb_stats *sgs)
5883
{
J
Joonsoo Kim 已提交
5884
	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
5898 5899
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

5940
/**
5941
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5942
 * @env: The load balancing environment.
5943 5944
 * @sds: variable to hold the statistics for this sched_domain.
 */
5945
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5946
{
5947 5948
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
5949
	struct sg_lb_stats tmp_sgs;
5950 5951 5952 5953 5954
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

5955
	load_idx = get_sd_load_idx(env->sd, env->idle);
5956 5957

	do {
J
Joonsoo Kim 已提交
5958
		struct sg_lb_stats *sgs = &tmp_sgs;
5959 5960
		int local_group;

5961
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
5962 5963 5964
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
5965 5966 5967 5968

			if (env->idle != CPU_NEWLY_IDLE ||
			    time_after_eq(jiffies, sg->sgp->next_update))
				update_group_power(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
5969
		}
5970

J
Joonsoo Kim 已提交
5971
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5972

5973 5974 5975
		if (local_group)
			goto next_group;

5976 5977
		/*
		 * In case the child domain prefers tasks go to siblings
5978
		 * first, lower the sg capacity to one so that we'll try
5979 5980 5981 5982 5983 5984
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
5985
		 */
5986 5987
		if (prefer_sibling && sds->local &&
		    sds->local_stat.group_has_capacity)
5988
			sgs->group_capacity = min(sgs->group_capacity, 1U);
5989

5990
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5991
			sds->busiest = sg;
J
Joonsoo Kim 已提交
5992
			sds->busiest_stat = *sgs;
5993 5994
		}

5995 5996 5997 5998 5999
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
		sds->total_pwr += sgs->group_power;

6000
		sg = sg->next;
6001
	} while (sg != env->sd->groups);
6002 6003 6004

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6024
 * Return: 1 when packing is required and a task should be moved to
6025 6026
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6027
 * @env: The load balancing environment.
6028 6029
 * @sds: Statistics of the sched_domain which is to be packed
 */
6030
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6031 6032 6033
{
	int busiest_cpu;

6034
	if (!(env->sd->flags & SD_ASYM_PACKING))
6035 6036 6037 6038 6039 6040
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6041
	if (env->dst_cpu > busiest_cpu)
6042 6043
		return 0;

6044
	env->imbalance = DIV_ROUND_CLOSEST(
6045 6046
		sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
		SCHED_POWER_SCALE);
6047

6048
	return 1;
6049 6050 6051 6052 6053 6054
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6055
 * @env: The load balancing environment.
6056 6057
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6058 6059
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6060 6061 6062
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
6063
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6064
	struct sg_lb_stats *local, *busiest;
6065

J
Joonsoo Kim 已提交
6066 6067
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6068

J
Joonsoo Kim 已提交
6069 6070 6071 6072
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6073

J
Joonsoo Kim 已提交
6074 6075
	scaled_busy_load_per_task =
		(busiest->load_per_task * SCHED_POWER_SCALE) /
6076
		busiest->group_power;
J
Joonsoo Kim 已提交
6077

6078 6079
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6080
		env->imbalance = busiest->load_per_task;
6081 6082 6083 6084 6085 6086 6087 6088 6089
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

6090
	pwr_now += busiest->group_power *
J
Joonsoo Kim 已提交
6091
			min(busiest->load_per_task, busiest->avg_load);
6092
	pwr_now += local->group_power *
J
Joonsoo Kim 已提交
6093
			min(local->load_per_task, local->avg_load);
6094
	pwr_now /= SCHED_POWER_SCALE;
6095 6096

	/* Amount of load we'd subtract */
6097
	if (busiest->avg_load > scaled_busy_load_per_task) {
6098
		pwr_move += busiest->group_power *
J
Joonsoo Kim 已提交
6099
			    min(busiest->load_per_task,
6100
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
6101
	}
6102 6103

	/* Amount of load we'd add */
6104
	if (busiest->avg_load * busiest->group_power <
J
Joonsoo Kim 已提交
6105
	    busiest->load_per_task * SCHED_POWER_SCALE) {
6106 6107
		tmp = (busiest->avg_load * busiest->group_power) /
		      local->group_power;
J
Joonsoo Kim 已提交
6108 6109
	} else {
		tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
6110
		      local->group_power;
J
Joonsoo Kim 已提交
6111
	}
6112 6113
	pwr_move += local->group_power *
		    min(local->load_per_task, local->avg_load + tmp);
6114
	pwr_move /= SCHED_POWER_SCALE;
6115 6116 6117

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
J
Joonsoo Kim 已提交
6118
		env->imbalance = busiest->load_per_task;
6119 6120 6121 6122 6123
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
6124
 * @env: load balance environment
6125 6126
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
6127
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6128
{
6129
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
6130 6131 6132 6133
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6134

J
Joonsoo Kim 已提交
6135
	if (busiest->group_imb) {
6136 6137 6138 6139
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
6140 6141
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
6142 6143
	}

6144 6145 6146 6147 6148
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
6149 6150
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6151 6152
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6153 6154
	}

J
Joonsoo Kim 已提交
6155
	if (!busiest->group_imb) {
6156 6157
		/*
		 * Don't want to pull so many tasks that a group would go idle.
6158 6159
		 * Except of course for the group_imb case, since then we might
		 * have to drop below capacity to reach cpu-load equilibrium.
6160
		 */
J
Joonsoo Kim 已提交
6161 6162
		load_above_capacity =
			(busiest->sum_nr_running - busiest->group_capacity);
6163

6164
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
6165
		load_above_capacity /= busiest->group_power;
6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6176
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6177 6178

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6179
	env->imbalance = min(
6180 6181
		max_pull * busiest->group_power,
		(sds->avg_load - local->avg_load) * local->group_power
J
Joonsoo Kim 已提交
6182
	) / SCHED_POWER_SCALE;
6183 6184 6185

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6186
	 * there is no guarantee that any tasks will be moved so we'll have
6187 6188 6189
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6190
	if (env->imbalance < busiest->load_per_task)
6191
		return fix_small_imbalance(env, sds);
6192
}
6193

6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6206
 * @env: The load balancing environment.
6207
 *
6208
 * Return:	- The busiest group if imbalance exists.
6209 6210 6211 6212
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6213
static struct sched_group *find_busiest_group(struct lb_env *env)
6214
{
J
Joonsoo Kim 已提交
6215
	struct sg_lb_stats *local, *busiest;
6216 6217
	struct sd_lb_stats sds;

6218
	init_sd_lb_stats(&sds);
6219 6220 6221 6222 6223

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6224
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6225 6226
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6227

6228 6229
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6230 6231
		return sds.busiest;

6232
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6233
	if (!sds.busiest || busiest->sum_nr_running == 0)
6234 6235
		goto out_balanced;

6236
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
6237

P
Peter Zijlstra 已提交
6238 6239
	/*
	 * If the busiest group is imbalanced the below checks don't
6240
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6241 6242
	 * isn't true due to cpus_allowed constraints and the like.
	 */
J
Joonsoo Kim 已提交
6243
	if (busiest->group_imb)
P
Peter Zijlstra 已提交
6244 6245
		goto force_balance;

6246
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
J
Joonsoo Kim 已提交
6247 6248
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
	    !busiest->group_has_capacity)
6249 6250
		goto force_balance;

6251 6252 6253 6254
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
6255
	if (local->avg_load >= busiest->avg_load)
6256 6257
		goto out_balanced;

6258 6259 6260 6261
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
6262
	if (local->avg_load >= sds.avg_load)
6263 6264
		goto out_balanced;

6265
	if (env->idle == CPU_IDLE) {
6266 6267 6268 6269 6270 6271
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
J
Joonsoo Kim 已提交
6272 6273
		if ((local->idle_cpus < busiest->idle_cpus) &&
		    busiest->sum_nr_running <= busiest->group_weight)
6274
			goto out_balanced;
6275 6276 6277 6278 6279
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6280 6281
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6282
			goto out_balanced;
6283
	}
6284

6285
force_balance:
6286
	/* Looks like there is an imbalance. Compute it */
6287
	calculate_imbalance(env, &sds);
6288 6289 6290
	return sds.busiest;

out_balanced:
6291
	env->imbalance = 0;
6292 6293 6294 6295 6296 6297
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6298
static struct rq *find_busiest_queue(struct lb_env *env,
6299
				     struct sched_group *group)
6300 6301
{
	struct rq *busiest = NULL, *rq;
6302
	unsigned long busiest_load = 0, busiest_power = 1;
6303 6304
	int i;

6305
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6306 6307 6308 6309 6310
		unsigned long power, capacity, wl;
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6311

6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

		power = power_of(i);
		capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6336
		if (!capacity)
6337
			capacity = fix_small_capacity(env->sd, group);
6338

6339
		wl = weighted_cpuload(i);
6340

6341 6342 6343 6344
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
6345
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6346 6347
			continue;

6348 6349 6350 6351 6352
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
6353 6354 6355 6356 6357
		 *
		 * Thus we're looking for max(wl_i / power_i), crosswise
		 * multiplication to rid ourselves of the division works out
		 * to: wl_i * power_j > wl_j * power_i;  where j is our
		 * previous maximum.
6358
		 */
6359 6360 6361
		if (wl * busiest_power > busiest_load * power) {
			busiest_load = wl;
			busiest_power = power;
6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6376
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6377

6378
static int need_active_balance(struct lb_env *env)
6379
{
6380 6381 6382
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6383 6384 6385 6386 6387 6388

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6389
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6390
			return 1;
6391 6392 6393 6394 6395
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6396 6397
static int active_load_balance_cpu_stop(void *data);

6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6429
	return balance_cpu == env->dst_cpu;
6430 6431
}

6432 6433 6434 6435 6436 6437
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6438
			int *continue_balancing)
6439
{
6440
	int ld_moved, cur_ld_moved, active_balance = 0;
6441
	struct sched_domain *sd_parent = sd->parent;
6442 6443 6444
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6445
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6446

6447 6448
	struct lb_env env = {
		.sd		= sd,
6449 6450
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6451
		.dst_grpmask    = sched_group_cpus(sd->groups),
6452
		.idle		= idle,
6453
		.loop_break	= sched_nr_migrate_break,
6454
		.cpus		= cpus,
6455
		.fbq_type	= all,
6456 6457
	};

6458 6459 6460 6461
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6462
	if (idle == CPU_NEWLY_IDLE)
6463 6464
		env.dst_grpmask = NULL;

6465 6466 6467 6468 6469
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6470 6471
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6472
		goto out_balanced;
6473
	}
6474

6475
	group = find_busiest_group(&env);
6476 6477 6478 6479 6480
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6481
	busiest = find_busiest_queue(&env, group);
6482 6483 6484 6485 6486
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

6487
	BUG_ON(busiest == env.dst_rq);
6488

6489
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6490 6491 6492 6493 6494 6495 6496 6497 6498

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
6499
		env.flags |= LBF_ALL_PINNED;
6500 6501 6502
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6503

6504
more_balance:
6505
		local_irq_save(flags);
6506
		double_rq_lock(env.dst_rq, busiest);
6507 6508 6509 6510 6511 6512 6513

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
6514
		double_rq_unlock(env.dst_rq, busiest);
6515 6516 6517 6518 6519
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
6520 6521 6522
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

6523 6524 6525 6526 6527
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
6547
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6548

6549 6550 6551
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

6552
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6553
			env.dst_cpu	 = env.new_dst_cpu;
6554
			env.flags	&= ~LBF_DST_PINNED;
6555 6556
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
6557

6558 6559 6560 6561 6562 6563
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
6564

6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
			int *group_imbalance = &sd_parent->groups->sgp->imbalance;

			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
				*group_imbalance = 1;
			} else if (*group_imbalance)
				*group_imbalance = 0;
		}

6577
		/* All tasks on this runqueue were pinned by CPU affinity */
6578
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6579
			cpumask_clear_cpu(cpu_of(busiest), cpus);
6580 6581 6582
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
6583
				goto redo;
6584
			}
6585 6586 6587 6588 6589 6590
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
6591 6592 6593 6594 6595 6596 6597 6598
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
6599

6600
		if (need_active_balance(&env)) {
6601 6602
			raw_spin_lock_irqsave(&busiest->lock, flags);

6603 6604 6605
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
6606 6607
			 */
			if (!cpumask_test_cpu(this_cpu,
6608
					tsk_cpus_allowed(busiest->curr))) {
6609 6610
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
6611
				env.flags |= LBF_ALL_PINNED;
6612 6613 6614
				goto out_one_pinned;
			}

6615 6616 6617 6618 6619
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
6620 6621 6622 6623 6624 6625
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6626

6627
			if (active_balance) {
6628 6629 6630
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
6631
			}
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
6665
	if (((env.flags & LBF_ALL_PINNED) &&
6666
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6667 6668 6669
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

6670
	ld_moved = 0;
6671 6672 6673 6674 6675 6676 6677 6678
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
6679
static int idle_balance(struct rq *this_rq)
6680 6681 6682 6683
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;
6684
	u64 curr_cost = 0;
6685
	int this_cpu = this_rq->cpu;
6686

6687
	idle_enter_fair(this_rq);
6688

6689 6690 6691 6692 6693 6694
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

6695
	if (this_rq->avg_idle < sysctl_sched_migration_cost)
6696
		goto out;
6697

6698 6699 6700 6701 6702
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

6703
	update_blocked_averages(this_cpu);
6704
	rcu_read_lock();
6705 6706
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
6707
		int continue_balancing = 1;
6708
		u64 t0, domain_cost;
6709 6710 6711 6712

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6713 6714 6715
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
			break;

6716
		if (sd->flags & SD_BALANCE_NEWIDLE) {
6717 6718
			t0 = sched_clock_cpu(this_cpu);

6719
			pulled_task = load_balance(this_cpu, this_rq,
6720 6721
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
6722 6723 6724 6725 6726 6727

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
6728
		}
6729 6730 6731 6732

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
6733 6734 6735 6736 6737 6738

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
6739 6740
			break;
	}
6741
	rcu_read_unlock();
6742 6743 6744

	raw_spin_lock(&this_rq->lock);

6745 6746 6747
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

6748
	/*
6749 6750 6751
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
6752
	 */
6753
	if (this_rq->cfs.h_nr_running && !pulled_task)
6754
		pulled_task = 1;
6755

6756 6757 6758 6759 6760 6761 6762
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
6763

6764
out:
6765
	/* Is there a task of a high priority class? */
6766
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
6767 6768 6769 6770
		pulled_task = -1;

	if (pulled_task) {
		idle_exit_fair(this_rq);
6771
		this_rq->idle_stamp = 0;
6772
	}
6773

6774
	return pulled_task;
6775 6776 6777
}

/*
6778 6779 6780 6781
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
6782
 */
6783
static int active_load_balance_cpu_stop(void *data)
6784
{
6785 6786
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
6787
	int target_cpu = busiest_rq->push_cpu;
6788
	struct rq *target_rq = cpu_rq(target_cpu);
6789
	struct sched_domain *sd;
6790 6791 6792 6793 6794 6795 6796

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
6797 6798 6799

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
6800
		goto out_unlock;
6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
6813
	rcu_read_lock();
6814 6815 6816 6817 6818 6819 6820
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
6821 6822
		struct lb_env env = {
			.sd		= sd,
6823 6824 6825 6826
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
6827 6828 6829
			.idle		= CPU_IDLE,
		};

6830 6831
		schedstat_inc(sd, alb_count);

6832
		if (move_one_task(&env))
6833 6834 6835 6836
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
6837
	rcu_read_unlock();
6838
	double_unlock_balance(busiest_rq, target_rq);
6839 6840 6841 6842
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
6843 6844
}

6845 6846 6847 6848 6849
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

6850
#ifdef CONFIG_NO_HZ_COMMON
6851 6852 6853 6854 6855 6856
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
6857
static struct {
6858
	cpumask_var_t idle_cpus_mask;
6859
	atomic_t nr_cpus;
6860 6861
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
6862

6863
static inline int find_new_ilb(void)
6864
{
6865
	int ilb = cpumask_first(nohz.idle_cpus_mask);
6866

6867 6868 6869 6870
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
6871 6872
}

6873 6874 6875 6876 6877
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
6878
static void nohz_balancer_kick(void)
6879 6880 6881 6882 6883
{
	int ilb_cpu;

	nohz.next_balance++;

6884
	ilb_cpu = find_new_ilb();
6885

6886 6887
	if (ilb_cpu >= nr_cpu_ids)
		return;
6888

6889
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6890 6891 6892 6893 6894 6895 6896 6897
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
6898 6899 6900
	return;
}

6901
static inline void nohz_balance_exit_idle(int cpu)
6902 6903
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6904 6905 6906 6907 6908 6909 6910
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
6911 6912 6913 6914
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

6915 6916 6917
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
6918
	int cpu = smp_processor_id();
6919 6920

	rcu_read_lock();
6921
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
6922 6923 6924 6925 6926

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

6927
	atomic_inc(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6928
unlock:
6929 6930 6931 6932 6933 6934
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
6935
	int cpu = smp_processor_id();
6936 6937

	rcu_read_lock();
6938
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
6939 6940 6941 6942 6943

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

6944
	atomic_dec(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6945
unlock:
6946 6947 6948
	rcu_read_unlock();
}

6949
/*
6950
 * This routine will record that the cpu is going idle with tick stopped.
6951
 * This info will be used in performing idle load balancing in the future.
6952
 */
6953
void nohz_balance_enter_idle(int cpu)
6954
{
6955 6956 6957 6958 6959 6960
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

6961 6962
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
6963

6964 6965 6966 6967 6968 6969
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

6970 6971 6972
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6973
}
6974

6975
static int sched_ilb_notifier(struct notifier_block *nfb,
6976 6977 6978 6979
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
6980
		nohz_balance_exit_idle(smp_processor_id());
6981 6982 6983 6984 6985
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
6986 6987 6988 6989
#endif

static DEFINE_SPINLOCK(balancing);

6990 6991 6992 6993
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
6994
void update_max_interval(void)
6995 6996 6997 6998
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

6999 7000 7001 7002
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7003
 * Balancing parameters are set up in init_sched_domains.
7004
 */
7005
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7006
{
7007
	int continue_balancing = 1;
7008
	int cpu = rq->cpu;
7009
	unsigned long interval;
7010
	struct sched_domain *sd;
7011 7012 7013
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7014 7015
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7016

7017
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7018

7019
	rcu_read_lock();
7020
	for_each_domain(cpu, sd) {
7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7033 7034 7035
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

7047 7048 7049 7050 7051 7052
		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
7053
		interval = clamp(interval, 1UL, max_load_balance_interval);
7054 7055 7056 7057 7058 7059 7060 7061 7062

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7063
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7064
				/*
7065
				 * The LBF_DST_PINNED logic could have changed
7066 7067
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
7068
				 */
7069
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7070 7071 7072 7073 7074 7075 7076 7077 7078 7079
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
7080 7081
	}
	if (need_decay) {
7082
		/*
7083 7084
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
7085
		 */
7086 7087
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
7088
	}
7089
	rcu_read_unlock();
7090 7091 7092 7093 7094 7095 7096 7097 7098 7099

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

7100
#ifdef CONFIG_NO_HZ_COMMON
7101
/*
7102
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7103 7104
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
7105
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7106
{
7107
	int this_cpu = this_rq->cpu;
7108 7109 7110
	struct rq *rq;
	int balance_cpu;

7111 7112 7113
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
7114 7115

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7116
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7117 7118 7119 7120 7121 7122 7123
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
7124
		if (need_resched())
7125 7126
			break;

V
Vincent Guittot 已提交
7127 7128 7129 7130 7131 7132
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
7133

7134
		rebalance_domains(rq, CPU_IDLE);
7135 7136 7137 7138 7139

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
7140 7141
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7142 7143 7144
}

/*
7145 7146 7147 7148 7149 7150 7151
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
7152
 */
7153
static inline int nohz_kick_needed(struct rq *rq)
7154 7155
{
	unsigned long now = jiffies;
7156
	struct sched_domain *sd;
7157
	struct sched_group_power *sgp;
7158
	int nr_busy, cpu = rq->cpu;
7159

7160
	if (unlikely(rq->idle_balance))
7161 7162
		return 0;

7163 7164 7165 7166
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
7167
	set_cpu_sd_state_busy();
7168
	nohz_balance_exit_idle(cpu);
7169 7170 7171 7172 7173 7174 7175

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
7176 7177

	if (time_before(now, nohz.next_balance))
7178 7179
		return 0;

7180 7181
	if (rq->nr_running >= 2)
		goto need_kick;
7182

7183
	rcu_read_lock();
7184
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7185

7186 7187 7188
	if (sd) {
		sgp = sd->groups->sgp;
		nr_busy = atomic_read(&sgp->nr_busy_cpus);
7189

7190
		if (nr_busy > 1)
7191
			goto need_kick_unlock;
7192
	}
7193 7194 7195 7196 7197 7198 7199

	sd = rcu_dereference(per_cpu(sd_asym, cpu));

	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
				  sched_domain_span(sd)) < cpu))
		goto need_kick_unlock;

7200
	rcu_read_unlock();
7201
	return 0;
7202 7203 7204

need_kick_unlock:
	rcu_read_unlock();
7205 7206
need_kick:
	return 1;
7207 7208
}
#else
7209
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7210 7211 7212 7213 7214 7215
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
7216 7217
static void run_rebalance_domains(struct softirq_action *h)
{
7218
	struct rq *this_rq = this_rq();
7219
	enum cpu_idle_type idle = this_rq->idle_balance ?
7220 7221
						CPU_IDLE : CPU_NOT_IDLE;

7222
	rebalance_domains(this_rq, idle);
7223 7224

	/*
7225
	 * If this cpu has a pending nohz_balance_kick, then do the
7226 7227 7228
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
7229
	nohz_idle_balance(this_rq, idle);
7230 7231 7232 7233 7234
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
7235
void trigger_load_balance(struct rq *rq)
7236 7237
{
	/* Don't need to rebalance while attached to NULL domain */
7238 7239 7240 7241
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
7242
		raise_softirq(SCHED_SOFTIRQ);
7243
#ifdef CONFIG_NO_HZ_COMMON
7244
	if (nohz_kick_needed(rq))
7245
		nohz_balancer_kick();
7246
#endif
7247 7248
}

7249 7250 7251 7252 7253 7254 7255 7256
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
7257 7258 7259

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
7260 7261
}

7262
#endif /* CONFIG_SMP */
7263

7264 7265 7266
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
7267
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7268 7269 7270 7271 7272 7273
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
7274
		entity_tick(cfs_rq, se, queued);
7275
	}
7276

7277
	if (numabalancing_enabled)
7278
		task_tick_numa(rq, curr);
7279

7280
	update_rq_runnable_avg(rq, 1);
7281 7282 7283
}

/*
P
Peter Zijlstra 已提交
7284 7285 7286
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
7287
 */
P
Peter Zijlstra 已提交
7288
static void task_fork_fair(struct task_struct *p)
7289
{
7290 7291
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
7292
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
7293 7294 7295
	struct rq *rq = this_rq();
	unsigned long flags;

7296
	raw_spin_lock_irqsave(&rq->lock, flags);
7297

7298 7299
	update_rq_clock(rq);

7300 7301 7302
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

7303 7304 7305 7306 7307 7308 7309 7310 7311
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
7312

7313
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
7314

7315 7316
	if (curr)
		se->vruntime = curr->vruntime;
7317
	place_entity(cfs_rq, se, 1);
7318

P
Peter Zijlstra 已提交
7319
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
7320
		/*
7321 7322 7323
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
7324
		swap(curr->vruntime, se->vruntime);
7325
		resched_task(rq->curr);
7326
	}
7327

7328 7329
	se->vruntime -= cfs_rq->min_vruntime;

7330
	raw_spin_unlock_irqrestore(&rq->lock, flags);
7331 7332
}

7333 7334 7335 7336
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
7337 7338
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7339
{
P
Peter Zijlstra 已提交
7340 7341 7342
	if (!p->se.on_rq)
		return;

7343 7344 7345 7346 7347
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
7348
	if (rq->curr == p) {
7349 7350 7351
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
7352
		check_preempt_curr(rq, p, 0);
7353 7354
}

P
Peter Zijlstra 已提交
7355 7356 7357 7358 7359 7360
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
7361
	 * Ensure the task's vruntime is normalized, so that when it's
P
Peter Zijlstra 已提交
7362 7363 7364
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
7365 7366
	 * If it's on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it's !on_rq, then only when
P
Peter Zijlstra 已提交
7367 7368
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
7369
	if (!p->on_rq && p->state != TASK_RUNNING) {
P
Peter Zijlstra 已提交
7370 7371 7372 7373 7374 7375 7376
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
7377

7378
#ifdef CONFIG_SMP
7379 7380 7381 7382 7383
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
7384 7385 7386
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7387 7388
	}
#endif
P
Peter Zijlstra 已提交
7389 7390
}

7391 7392 7393
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
7394
static void switched_to_fair(struct rq *rq, struct task_struct *p)
7395
{
7396 7397 7398 7399 7400 7401 7402 7403 7404
	struct sched_entity *se = &p->se;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
	if (!se->on_rq)
P
Peter Zijlstra 已提交
7405 7406
		return;

7407 7408 7409 7410 7411
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
7412
	if (rq->curr == p)
7413 7414
		resched_task(rq->curr);
	else
7415
		check_preempt_curr(rq, p, 0);
7416 7417
}

7418 7419 7420 7421 7422 7423 7424 7425 7426
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

7427 7428 7429 7430 7431 7432 7433
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
7434 7435
}

7436 7437 7438 7439 7440 7441 7442
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
7443
#ifdef CONFIG_SMP
7444
	atomic64_set(&cfs_rq->decay_counter, 1);
7445
	atomic_long_set(&cfs_rq->removed_load, 0);
7446
#endif
7447 7448
}

P
Peter Zijlstra 已提交
7449
#ifdef CONFIG_FAIR_GROUP_SCHED
7450
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
7451
{
P
Peter Zijlstra 已提交
7452
	struct sched_entity *se = &p->se;
7453
	struct cfs_rq *cfs_rq;
P
Peter Zijlstra 已提交
7454

7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
7468 7469 7470 7471 7472 7473
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
7474 7475
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
7476 7477 7478 7479
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
P
Peter Zijlstra 已提交
7480
	if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7481 7482
		on_rq = 1;

7483
	if (!on_rq)
P
Peter Zijlstra 已提交
7484
		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7485
	set_task_rq(p, task_cpu(p));
P
Peter Zijlstra 已提交
7486
	se->depth = se->parent ? se->parent->depth + 1 : 0;
7487
	if (!on_rq) {
P
Peter Zijlstra 已提交
7488 7489
		cfs_rq = cfs_rq_of(se);
		se->vruntime += cfs_rq->min_vruntime;
7490 7491 7492 7493 7494 7495
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
P
Peter Zijlstra 已提交
7496 7497
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7498 7499
#endif
	}
P
Peter Zijlstra 已提交
7500
}
7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
7593
	if (!parent) {
7594
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
7595 7596
		se->depth = 0;
	} else {
7597
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
7598 7599
		se->depth = parent->depth + 1;
	}
7600 7601

	se->my_q = cfs_rq;
7602 7603
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
7634 7635 7636

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
7637
		for_each_sched_entity(se)
7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
7659

7660
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7661 7662 7663 7664 7665 7666 7667 7668 7669
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
7670
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7671 7672 7673 7674

	return rr_interval;
}

7675 7676 7677
/*
 * All the scheduling class methods:
 */
7678
const struct sched_class fair_sched_class = {
7679
	.next			= &idle_sched_class,
7680 7681 7682
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
7683
	.yield_to_task		= yield_to_task_fair,
7684

I
Ingo Molnar 已提交
7685
	.check_preempt_curr	= check_preempt_wakeup,
7686 7687 7688 7689

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

7690
#ifdef CONFIG_SMP
L
Li Zefan 已提交
7691
	.select_task_rq		= select_task_rq_fair,
7692
	.migrate_task_rq	= migrate_task_rq_fair,
7693

7694 7695
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
7696 7697

	.task_waking		= task_waking_fair,
7698
#endif
7699

7700
	.set_curr_task          = set_curr_task_fair,
7701
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
7702
	.task_fork		= task_fork_fair,
7703 7704

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
7705
	.switched_from		= switched_from_fair,
7706
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
7707

7708 7709
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
7710
#ifdef CONFIG_FAIR_GROUP_SCHED
7711
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
7712
#endif
7713 7714 7715
};

#ifdef CONFIG_SCHED_DEBUG
7716
void print_cfs_stats(struct seq_file *m, int cpu)
7717 7718 7719
{
	struct cfs_rq *cfs_rq;

7720
	rcu_read_lock();
7721
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7722
		print_cfs_rq(m, cpu, cfs_rq);
7723
	rcu_read_unlock();
7724 7725
}
#endif
7726 7727 7728 7729 7730 7731

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

7732
#ifdef CONFIG_NO_HZ_COMMON
7733
	nohz.next_balance = jiffies;
7734
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7735
	cpu_notifier(sched_ilb_notifier, 0);
7736 7737 7738 7739
#endif
#endif /* SMP */

}