fair.c 228.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched.h>
24
#include <linux/latencytop.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

135 136 137 138 139 140 141 142 143
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
144
static unsigned int get_update_sysctl_factor(void)
145
{
146
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

182
#define WMULT_CONST	(~0U)
183 184
#define WMULT_SHIFT	32

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
201 202

/*
203 204 205 206
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
207
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
208 209 210 211 212
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213
 */
214
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215
{
216 217
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
218

219
	__update_inv_weight(lw);
220

221 222 223 224 225
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
226 227
	}

228 229
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
230

231 232 233 234
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
235

236
	return mul_u64_u32_shr(delta_exec, fact, shift);
237 238 239 240
}


const struct sched_class fair_sched_class;
241

242 243 244 245
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

246
#ifdef CONFIG_FAIR_GROUP_SCHED
247

248
/* cpu runqueue to which this cfs_rq is attached */
249 250
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
251
	return cfs_rq->rq;
252 253
}

254 255
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
256

257 258 259 260 261 262 263 264
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

286 287 288
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302
		}
303 304 305 306 307 308 309 310 311 312 313 314 315

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
316 317 318 319 320
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
321
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
322 323 324
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
325
		return se->cfs_rq;
P
Peter Zijlstra 已提交
326

P
Peter Zijlstra 已提交
327
	return NULL;
P
Peter Zijlstra 已提交
328 329 330 331 332 333 334
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

335 336 337 338 339 340 341 342 343 344 345 346 347
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
348 349
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

367 368 369 370 371 372
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
373

374 375 376
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
377 378 379 380
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
381 382
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
383

P
Peter Zijlstra 已提交
384
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385
{
P
Peter Zijlstra 已提交
386
	return &task_rq(p)->cfs;
387 388
}

P
Peter Zijlstra 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

403 404 405 406 407 408 409 410
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
411 412 413 414 415 416 417 418
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

419 420 421 422 423
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
424 425
#endif	/* CONFIG_FAIR_GROUP_SCHED */

426
static __always_inline
427
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428 429 430 431 432

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

433
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434
{
435
	s64 delta = (s64)(vruntime - max_vruntime);
436
	if (delta > 0)
437
		max_vruntime = vruntime;
438

439
	return max_vruntime;
440 441
}

442
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

451 452 453 454 455 456
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

457 458 459 460 461 462 463 464 465 466 467 468
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
469
		if (!cfs_rq->curr)
470 471 472 473 474
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

475
	/* ensure we never gain time by being placed backwards. */
476
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 478 479 480
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
481 482
}

483 484 485
/*
 * Enqueue an entity into the rb-tree:
 */
486
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
503
		if (entity_before(se, entry)) {
504 505 506 507 508 509 510 511 512 513 514
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
515
	if (leftmost)
I
Ingo Molnar 已提交
516
		cfs_rq->rb_leftmost = &se->run_node;
517 518 519 520 521

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

522
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523
{
P
Peter Zijlstra 已提交
524 525 526 527 528 529
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
530

531 532 533
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

534
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535
{
536 537 538 539 540 541
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
542 543
}

544 545 546 547 548 549 550 551 552 553 554
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
555
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556
{
557
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558

559 560
	if (!last)
		return NULL;
561 562

	return rb_entry(last, struct sched_entity, run_node);
563 564
}

565 566 567 568
/**************************************************************
 * Scheduling class statistics methods:
 */

569
int sched_proc_update_handler(struct ctl_table *table, int write,
570
		void __user *buffer, size_t *lenp,
571 572
		loff_t *ppos)
{
573
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574
	unsigned int factor = get_update_sysctl_factor();
575 576 577 578 579 580 581

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

582 583 584 585 586 587 588
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

589 590 591
	return 0;
}
#endif
592

593
/*
594
 * delta /= w
595
 */
596
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597
{
598
	if (unlikely(se->load.weight != NICE_0_LOAD))
599
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600 601 602 603

	return delta;
}

604 605 606
/*
 * The idea is to set a period in which each task runs once.
 *
607
 * When there are too many tasks (sched_nr_latency) we have to stretch
608 609 610 611
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
612 613
static u64 __sched_period(unsigned long nr_running)
{
614 615 616 617
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
618 619
}

620 621 622 623
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
624
 * s = p*P[w/rw]
625
 */
P
Peter Zijlstra 已提交
626
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627
{
M
Mike Galbraith 已提交
628
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629

M
Mike Galbraith 已提交
630
	for_each_sched_entity(se) {
L
Lin Ming 已提交
631
		struct load_weight *load;
632
		struct load_weight lw;
L
Lin Ming 已提交
633 634 635

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
636

M
Mike Galbraith 已提交
637
		if (unlikely(!se->on_rq)) {
638
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
639 640 641 642

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
643
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
644 645
	}
	return slice;
646 647
}

648
/*
A
Andrei Epure 已提交
649
 * We calculate the vruntime slice of a to-be-inserted task.
650
 *
651
 * vs = s/w
652
 */
653
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
654
{
655
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 657
}

658
#ifdef CONFIG_SMP
659
static int select_idle_sibling(struct task_struct *p, int cpu);
660 661
static unsigned long task_h_load(struct task_struct *p);

662 663
/*
 * We choose a half-life close to 1 scheduling period.
664 665
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
666 667 668
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670

671 672
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
673
{
674
	struct sched_avg *sa = &se->avg;
675

676 677 678 679 680 681 682
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
683
	sa->load_avg = scale_load_down(se->load.weight);
684
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 686 687 688 689
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
690
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
691
}
692

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
722
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
}

738
#else
739
void init_entity_runnable_average(struct sched_entity *se)
740 741
{
}
742 743 744
void post_init_entity_util_avg(struct sched_entity *se)
{
}
745 746
#endif

747
/*
748
 * Update the current task's runtime statistics.
749
 */
750
static void update_curr(struct cfs_rq *cfs_rq)
751
{
752
	struct sched_entity *curr = cfs_rq->curr;
753
	u64 now = rq_clock_task(rq_of(cfs_rq));
754
	u64 delta_exec;
755 756 757 758

	if (unlikely(!curr))
		return;

759 760
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
761
		return;
762

I
Ingo Molnar 已提交
763
	curr->exec_start = now;
764

765 766 767 768 769 770 771 772 773
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

774 775 776
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

777
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
778
		cpuacct_charge(curtask, delta_exec);
779
		account_group_exec_runtime(curtask, delta_exec);
780
	}
781 782

	account_cfs_rq_runtime(cfs_rq, delta_exec);
783 784
}

785 786 787 788 789
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

790
#ifdef CONFIG_SCHEDSTATS
791
static inline void
792
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
793
{
794 795 796 797 798 799 800
	u64 wait_start = rq_clock(rq_of(cfs_rq));

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
	    likely(wait_start > se->statistics.wait_start))
		wait_start -= se->statistics.wait_start;

	se->statistics.wait_start = wait_start;
801 802
}

803 804 805 806
static void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
807 808 809
	u64 delta;

	delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
			se->statistics.wait_start = delta;
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

	se->statistics.wait_max = max(se->statistics.wait_max, delta);
	se->statistics.wait_count++;
	se->statistics.wait_sum += delta;
	se->statistics.wait_start = 0;
}

831 832 833
/*
 * Task is being enqueued - update stats:
 */
834 835
static inline void
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
836 837 838 839 840
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
841
	if (se != cfs_rq->curr)
842
		update_stats_wait_start(cfs_rq, se);
843 844 845
}

static inline void
846
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
847 848 849 850 851
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
852
	if (se != cfs_rq->curr)
853
		update_stats_wait_end(cfs_rq, se);
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885

	if (flags & DEQUEUE_SLEEP) {
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
			if (tsk->state & TASK_UNINTERRUPTIBLE)
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
		}
	}

}
#else
static inline void
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
886
}
887
#endif
888 889 890 891 892

/*
 * We are picking a new current task - update its stats:
 */
static inline void
893
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 895 896 897
{
	/*
	 * We are starting a new run period:
	 */
898
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
899 900 901 902 903 904
}

/**************************************************
 * Scheduling class queueing methods:
 */

905 906
#ifdef CONFIG_NUMA_BALANCING
/*
907 908 909
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
910
 */
911 912
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
913 914 915

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
916

917 918 919
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
944
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
945 946 947
	unsigned int scan, floor;
	unsigned int windows = 1;

948 949
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

966 967 968 969 970 971 972 973 974 975 976 977
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

978 979 980 981 982
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
983
	pid_t gid;
984
	int active_nodes;
985 986

	struct rcu_head rcu;
987
	unsigned long total_faults;
988
	unsigned long max_faults_cpu;
989 990 991 992 993
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
994
	unsigned long *faults_cpu;
995
	unsigned long faults[0];
996 997
};

998 999 1000 1001 1002 1003 1004 1005 1006
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1007 1008 1009 1010 1011
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1012 1013 1014 1015 1016 1017 1018
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1019
{
1020
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1021 1022 1023 1024
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1025
	if (!p->numa_faults)
1026 1027
		return 0;

1028 1029
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1030 1031
}

1032 1033 1034 1035 1036
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1037 1038
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1039 1040
}

1041 1042
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1043 1044
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1045 1046
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1124 1125 1126 1127 1128 1129
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1130 1131
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1132
{
1133
	unsigned long faults, total_faults;
1134

1135
	if (!p->numa_faults)
1136 1137 1138 1139 1140 1141 1142
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1143
	faults = task_faults(p, nid);
1144 1145
	faults += score_nearby_nodes(p, nid, dist, true);

1146
	return 1000 * faults / total_faults;
1147 1148
}

1149 1150
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1151
{
1152 1153 1154 1155 1156 1157 1158 1159
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1160 1161
		return 0;

1162
	faults = group_faults(p, nid);
1163 1164
	faults += score_nearby_nodes(p, nid, dist, false);

1165
	return 1000 * faults / total_faults;
1166 1167
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1208 1209
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1210
	 */
1211 1212
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1213 1214 1215
		return true;

	/*
1216 1217 1218 1219 1220 1221
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1222
	 */
1223 1224
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1225 1226
}

1227
static unsigned long weighted_cpuload(const int cpu);
1228 1229
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1230
static unsigned long capacity_of(int cpu);
1231 1232
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1233
/* Cached statistics for all CPUs within a node */
1234
struct numa_stats {
1235
	unsigned long nr_running;
1236
	unsigned long load;
1237 1238

	/* Total compute capacity of CPUs on a node */
1239
	unsigned long compute_capacity;
1240 1241

	/* Approximate capacity in terms of runnable tasks on a node */
1242
	unsigned long task_capacity;
1243
	int has_free_capacity;
1244
};
1245

1246 1247 1248 1249 1250
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1251 1252
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1253 1254 1255 1256 1257 1258 1259

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1260
		ns->compute_capacity += capacity_of(cpu);
1261 1262

		cpus++;
1263 1264
	}

1265 1266 1267 1268 1269
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1270 1271
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1272 1273 1274 1275
	 */
	if (!cpus)
		return;

1276 1277 1278 1279 1280 1281
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1282
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1283 1284
}

1285 1286
struct task_numa_env {
	struct task_struct *p;
1287

1288 1289
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1290

1291
	struct numa_stats src_stats, dst_stats;
1292

1293
	int imbalance_pct;
1294
	int dist;
1295 1296 1297

	struct task_struct *best_task;
	long best_imp;
1298 1299 1300
	int best_cpu;
};

1301 1302 1303 1304 1305
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1306 1307
	if (p)
		get_task_struct(p);
1308 1309 1310 1311 1312 1313

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1314
static bool load_too_imbalanced(long src_load, long dst_load,
1315 1316
				struct task_numa_env *env)
{
1317 1318
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1330 1331

	/* We care about the slope of the imbalance, not the direction. */
1332 1333
	if (dst_load < src_load)
		swap(dst_load, src_load);
1334 1335

	/* Is the difference below the threshold? */
1336 1337
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1338 1339 1340 1341 1342
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1343
	 * Compare it with the old imbalance.
1344
	 */
1345
	orig_src_load = env->src_stats.load;
1346
	orig_dst_load = env->dst_stats.load;
1347

1348 1349
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1350

1351 1352 1353 1354 1355
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1356 1357
}

1358 1359 1360 1361 1362 1363
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1364 1365
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1366 1367 1368 1369
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1370
	long src_load, dst_load;
1371
	long load;
1372
	long imp = env->p->numa_group ? groupimp : taskimp;
1373
	long moveimp = imp;
1374
	int dist = env->dist;
1375 1376

	rcu_read_lock();
1377 1378
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1379 1380
		cur = NULL;

1381 1382 1383 1384 1385 1386 1387
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1400 1401
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1402
		 * in any group then look only at task weights.
1403
		 */
1404
		if (cur->numa_group == env->p->numa_group) {
1405 1406
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1407 1408 1409 1410 1411 1412
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1413
		} else {
1414 1415 1416 1417 1418 1419
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1420 1421
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1422
			else
1423 1424
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1425
		}
1426 1427
	}

1428
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1429 1430 1431 1432
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1433
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1434
		    !env->dst_stats.has_free_capacity)
1435 1436 1437 1438 1439 1440
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1441 1442
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1443 1444 1445 1446 1447 1448
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1449 1450 1451
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1470
	if (cur) {
1471 1472 1473
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1474 1475
	}

1476
	if (load_too_imbalanced(src_load, dst_load, env))
1477 1478
		goto unlock;

1479 1480 1481 1482 1483 1484 1485
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur)
		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);

1486 1487 1488 1489 1490 1491
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1492 1493
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1494 1495 1496 1497 1498 1499 1500 1501 1502
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1503
		task_numa_compare(env, taskimp, groupimp);
1504 1505 1506
	}
}

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1524 1525 1526
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1527 1528 1529 1530 1531
		return true;

	return false;
}

1532 1533 1534 1535
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1536

1537
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1538
		.src_nid = task_node(p),
1539 1540 1541 1542 1543

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1544
		.best_cpu = -1,
1545 1546
	};
	struct sched_domain *sd;
1547
	unsigned long taskweight, groupweight;
1548
	int nid, ret, dist;
1549
	long taskimp, groupimp;
1550

1551
	/*
1552 1553 1554 1555 1556 1557
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1558 1559
	 */
	rcu_read_lock();
1560
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1561 1562
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1563 1564
	rcu_read_unlock();

1565 1566 1567 1568 1569 1570 1571
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1572
		p->numa_preferred_nid = task_node(p);
1573 1574 1575
		return -EINVAL;
	}

1576
	env.dst_nid = p->numa_preferred_nid;
1577 1578 1579 1580 1581 1582
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1583
	update_numa_stats(&env.dst_stats, env.dst_nid);
1584

1585
	/* Try to find a spot on the preferred nid. */
1586 1587
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1588

1589 1590 1591 1592 1593 1594 1595
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1596
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1597 1598 1599
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1600

1601
			dist = node_distance(env.src_nid, env.dst_nid);
1602 1603 1604 1605 1606
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1607

1608
			/* Only consider nodes where both task and groups benefit */
1609 1610
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1611
			if (taskimp < 0 && groupimp < 0)
1612 1613
				continue;

1614
			env.dist = dist;
1615 1616
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1617 1618
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1619 1620 1621
		}
	}

1622 1623 1624 1625 1626 1627 1628 1629
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1630
	if (p->numa_group) {
1631 1632
		struct numa_group *ng = p->numa_group;

1633 1634 1635 1636 1637
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1638
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1639 1640 1641 1642 1643 1644
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1645

1646 1647 1648 1649 1650 1651
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1652
	if (env.best_task == NULL) {
1653 1654 1655
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1656 1657 1658 1659
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1660 1661
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1662 1663
	put_task_struct(env.best_task);
	return ret;
1664 1665
}

1666 1667 1668
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1669 1670
	unsigned long interval = HZ;

1671
	/* This task has no NUMA fault statistics yet */
1672
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1673 1674
		return;

1675
	/* Periodically retry migrating the task to the preferred node */
1676 1677
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1678 1679

	/* Success if task is already running on preferred CPU */
1680
	if (task_node(p) == p->numa_preferred_nid)
1681 1682 1683
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1684
	task_numa_migrate(p);
1685 1686
}

1687
/*
1688
 * Find out how many nodes on the workload is actively running on. Do this by
1689 1690 1691 1692
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1693
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1694 1695
{
	unsigned long faults, max_faults = 0;
1696
	int nid, active_nodes = 0;
1697 1698 1699 1700 1701 1702 1703 1704 1705

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1706 1707
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1708
	}
1709 1710 1711

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1712 1713
}

1714 1715 1716
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1717 1718 1719
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1720 1721
 */
#define NUMA_PERIOD_SLOTS 10
1722
#define NUMA_PERIOD_THRESHOLD 7
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1743 1744 1745
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1746
	 */
1747
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1781
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1782 1783 1784 1785 1786 1787 1788 1789
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1808 1809
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1810 1811 1812 1813 1814 1815 1816 1817
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
1865
		nodemask_t max_group = NODE_MASK_NONE;
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
1899 1900
		if (!max_faults)
			break;
1901 1902 1903 1904 1905
		nodes = max_group;
	}
	return nid;
}

1906 1907
static void task_numa_placement(struct task_struct *p)
{
1908 1909
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1910
	unsigned long fault_types[2] = { 0, 0 };
1911 1912
	unsigned long total_faults;
	u64 runtime, period;
1913
	spinlock_t *group_lock = NULL;
1914

1915 1916 1917 1918 1919
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
1920
	seq = READ_ONCE(p->mm->numa_scan_seq);
1921 1922 1923
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1924
	p->numa_scan_period_max = task_scan_max(p);
1925

1926 1927 1928 1929
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1930 1931 1932
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1933
		spin_lock_irq(group_lock);
1934 1935
	}

1936 1937
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1938 1939
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1940
		unsigned long faults = 0, group_faults = 0;
1941
		int priv;
1942

1943
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1944
			long diff, f_diff, f_weight;
1945

1946 1947 1948 1949
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1950

1951
			/* Decay existing window, copy faults since last scan */
1952 1953 1954
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
1955

1956 1957 1958 1959 1960 1961 1962 1963
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
1964
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1965
				   (total_faults + 1);
1966 1967
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
1968

1969 1970 1971
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
1972
			p->total_numa_faults += diff;
1973
			if (p->numa_group) {
1974 1975 1976 1977 1978 1979 1980 1981 1982
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
1983
				p->numa_group->total_faults += diff;
1984
				group_faults += p->numa_group->faults[mem_idx];
1985
			}
1986 1987
		}

1988 1989 1990 1991
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1992 1993 1994 1995 1996 1997 1998

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1999 2000
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2001
	if (p->numa_group) {
2002
		numa_group_count_active_nodes(p->numa_group);
2003
		spin_unlock_irq(group_lock);
2004
		max_nid = preferred_group_nid(p, max_group_nid);
2005 2006
	}

2007 2008 2009 2010 2011 2012 2013
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2014
	}
2015 2016
}

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2028 2029
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2030 2031 2032 2033 2034 2035 2036 2037 2038
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2039
				    4*nr_node_ids*sizeof(unsigned long);
2040 2041 2042 2043 2044 2045

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2046 2047
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2048
		spin_lock_init(&grp->lock);
2049
		grp->gid = p->pid;
2050
		/* Second half of the array tracks nids where faults happen */
2051 2052
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2053

2054
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2055
			grp->faults[i] = p->numa_faults[i];
2056

2057
		grp->total_faults = p->total_numa_faults;
2058

2059 2060 2061 2062 2063
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2064
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2065 2066

	if (!cpupid_match_pid(tsk, cpupid))
2067
		goto no_join;
2068 2069 2070

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2071
		goto no_join;
2072 2073 2074

	my_grp = p->numa_group;
	if (grp == my_grp)
2075
		goto no_join;
2076 2077 2078 2079 2080 2081

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2082
		goto no_join;
2083 2084 2085 2086 2087

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2088
		goto no_join;
2089

2090 2091 2092 2093 2094 2095 2096
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2097

2098 2099 2100
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2101
	if (join && !get_numa_group(grp))
2102
		goto no_join;
2103 2104 2105 2106 2107 2108

	rcu_read_unlock();

	if (!join)
		return;

2109 2110
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2111

2112
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2113 2114
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2115
	}
2116 2117
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2118 2119 2120 2121 2122

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2123
	spin_unlock_irq(&grp->lock);
2124 2125 2126 2127

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2128 2129 2130 2131 2132
	return;

no_join:
	rcu_read_unlock();
	return;
2133 2134 2135 2136 2137
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2138
	void *numa_faults = p->numa_faults;
2139 2140
	unsigned long flags;
	int i;
2141 2142

	if (grp) {
2143
		spin_lock_irqsave(&grp->lock, flags);
2144
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2145
			grp->faults[i] -= p->numa_faults[i];
2146
		grp->total_faults -= p->total_numa_faults;
2147

2148
		grp->nr_tasks--;
2149
		spin_unlock_irqrestore(&grp->lock, flags);
2150
		RCU_INIT_POINTER(p->numa_group, NULL);
2151 2152 2153
		put_numa_group(grp);
	}

2154
	p->numa_faults = NULL;
2155
	kfree(numa_faults);
2156 2157
}

2158 2159 2160
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2161
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2162 2163
{
	struct task_struct *p = current;
2164
	bool migrated = flags & TNF_MIGRATED;
2165
	int cpu_node = task_node(current);
2166
	int local = !!(flags & TNF_FAULT_LOCAL);
2167
	struct numa_group *ng;
2168
	int priv;
2169

2170
	if (!static_branch_likely(&sched_numa_balancing))
2171 2172
		return;

2173 2174 2175 2176
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2177
	/* Allocate buffer to track faults on a per-node basis */
2178 2179
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2180
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2181

2182 2183
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2184
			return;
2185

2186
		p->total_numa_faults = 0;
2187
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2188
	}
2189

2190 2191 2192 2193 2194 2195 2196 2197
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2198
		if (!priv && !(flags & TNF_NO_GROUP))
2199
			task_numa_group(p, last_cpupid, flags, &priv);
2200 2201
	}

2202 2203 2204 2205 2206 2207
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2208 2209 2210 2211
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2212 2213
		local = 1;

2214
	task_numa_placement(p);
2215

2216 2217 2218 2219 2220
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2221 2222
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2223 2224
	if (migrated)
		p->numa_pages_migrated += pages;
2225 2226
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2227

2228 2229
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2230
	p->numa_faults_locality[local] += pages;
2231 2232
}

2233 2234
static void reset_ptenuma_scan(struct task_struct *p)
{
2235 2236 2237 2238 2239 2240 2241 2242
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2243
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2244 2245 2246
	p->mm->numa_scan_offset = 0;
}

2247 2248 2249 2250 2251 2252 2253 2254 2255
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2256
	u64 runtime = p->se.sum_exec_runtime;
2257
	struct vm_area_struct *vma;
2258
	unsigned long start, end;
2259
	unsigned long nr_pte_updates = 0;
2260
	long pages, virtpages;
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2276
	if (!mm->numa_next_scan) {
2277 2278
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2279 2280
	}

2281 2282 2283 2284 2285 2286 2287
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2288 2289 2290 2291
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2292

2293
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2294 2295 2296
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2297 2298 2299 2300 2301 2302
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2303 2304 2305
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2306
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2307 2308
	if (!pages)
		return;
2309

2310

2311
	down_read(&mm->mmap_sem);
2312
	vma = find_vma(mm, start);
2313 2314
	if (!vma) {
		reset_ptenuma_scan(p);
2315
		start = 0;
2316 2317
		vma = mm->mmap;
	}
2318
	for (; vma; vma = vma->vm_next) {
2319
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2320
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2321
			continue;
2322
		}
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2334 2335 2336 2337 2338 2339
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2340

2341 2342 2343 2344
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2345
			nr_pte_updates = change_prot_numa(vma, start, end);
2346 2347

			/*
2348 2349 2350 2351 2352 2353
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2354 2355 2356
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2357
			virtpages -= (end - start) >> PAGE_SHIFT;
2358

2359
			start = end;
2360
			if (pages <= 0 || virtpages <= 0)
2361
				goto out;
2362 2363

			cond_resched();
2364
		} while (end != vma->vm_end);
2365
	}
2366

2367
out:
2368
	/*
P
Peter Zijlstra 已提交
2369 2370 2371 2372
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2373 2374
	 */
	if (vma)
2375
		mm->numa_scan_offset = start;
2376 2377 2378
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2415
	if (now > curr->node_stamp + period) {
2416
		if (!curr->node_stamp)
2417
			curr->numa_scan_period = task_scan_min(curr);
2418
		curr->node_stamp += period;
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2430 2431 2432 2433 2434 2435 2436 2437

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2438 2439
#endif /* CONFIG_NUMA_BALANCING */

2440 2441 2442 2443
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2444
	if (!parent_entity(se))
2445
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2446
#ifdef CONFIG_SMP
2447 2448 2449 2450 2451 2452
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2453
#endif
2454 2455 2456 2457 2458 2459 2460
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2461
	if (!parent_entity(se))
2462
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2463
#ifdef CONFIG_SMP
2464 2465
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2466
		list_del_init(&se->group_node);
2467
	}
2468
#endif
2469 2470 2471
	cfs_rq->nr_running--;
}

2472 2473
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2474
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2475
{
2476
	long tg_weight, load, shares;
2477 2478

	/*
2479 2480 2481
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2482
	 */
2483
	load = scale_load_down(cfs_rq->load.weight);
2484

2485
	tg_weight = atomic_long_read(&tg->load_avg);
2486

2487 2488 2489
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2490 2491

	shares = (tg->shares * load);
2492 2493
	if (tg_weight)
		shares /= tg_weight;
2494 2495 2496 2497 2498 2499 2500 2501 2502

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2503
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2504 2505 2506 2507
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2508

P
Peter Zijlstra 已提交
2509 2510 2511
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2512 2513 2514 2515
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2516
		account_entity_dequeue(cfs_rq, se);
2517
	}
P
Peter Zijlstra 已提交
2518 2519 2520 2521 2522 2523 2524

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2525 2526
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2527
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2528 2529 2530
{
	struct task_group *tg;
	struct sched_entity *se;
2531
	long shares;
P
Peter Zijlstra 已提交
2532 2533 2534

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2535
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2536
		return;
2537 2538 2539 2540
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2541
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2542 2543 2544 2545

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2546
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2547 2548 2549 2550
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2551
#ifdef CONFIG_SMP
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
/*
 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
 * lower integers. See Documentation/scheduler/sched-avg.txt how these
 * were generated:
 */
static const u32 __accumulated_sum_N32[] = {
	    0, 23371, 35056, 40899, 43820, 45281,
	46011, 46376, 46559, 46650, 46696, 46719,
};

2582 2583 2584 2585 2586 2587
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2600 2601
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2602 2603 2604 2605 2606 2607
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2608 2609
	}

2610 2611
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

2630 2631 2632
	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
	n %= LOAD_AVG_PERIOD;
2633 2634
	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2635 2636
}

2637
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2638

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2667 2668
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2669
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2670
{
2671
	u64 delta, scaled_delta, periods;
2672
	u32 contrib;
2673
	unsigned int delta_w, scaled_delta_w, decayed = 0;
2674
	unsigned long scale_freq, scale_cpu;
2675

2676
	delta = now - sa->last_update_time;
2677 2678 2679 2680 2681
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2682
		sa->last_update_time = now;
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2693
	sa->last_update_time = now;
2694

2695 2696 2697
	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

2698
	/* delta_w is the amount already accumulated against our next period */
2699
	delta_w = sa->period_contrib;
2700 2701 2702
	if (delta + delta_w >= 1024) {
		decayed = 1;

2703 2704 2705
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2706 2707 2708 2709 2710 2711
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2712
		scaled_delta_w = cap_scale(delta_w, scale_freq);
2713
		if (weight) {
2714 2715 2716 2717 2718
			sa->load_sum += weight * scaled_delta_w;
			if (cfs_rq) {
				cfs_rq->runnable_load_sum +=
						weight * scaled_delta_w;
			}
2719
		}
2720
		if (running)
2721
			sa->util_sum += scaled_delta_w * scale_cpu;
2722 2723 2724 2725 2726 2727 2728

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2729
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2730 2731 2732 2733
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2734
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2735 2736

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2737
		contrib = __compute_runnable_contrib(periods);
2738
		contrib = cap_scale(contrib, scale_freq);
2739
		if (weight) {
2740
			sa->load_sum += weight * contrib;
2741 2742 2743
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2744
		if (running)
2745
			sa->util_sum += contrib * scale_cpu;
2746 2747 2748
	}

	/* Remainder of delta accrued against u_0` */
2749
	scaled_delta = cap_scale(delta, scale_freq);
2750
	if (weight) {
2751
		sa->load_sum += weight * scaled_delta;
2752
		if (cfs_rq)
2753
			cfs_rq->runnable_load_sum += weight * scaled_delta;
2754
	}
2755
	if (running)
2756
		sa->util_sum += scaled_delta * scale_cpu;
2757

2758
	sa->period_contrib += delta;
2759

2760 2761
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2762 2763 2764 2765
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2766
		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2767
	}
2768

2769
	return decayed;
2770 2771
}

2772
#ifdef CONFIG_FAIR_GROUP_SCHED
2773
/*
2774 2775
 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
 * and effective_load (which is not done because it is too costly).
2776
 */
2777
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2778
{
2779
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2780

2781 2782 2783 2784 2785 2786
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

2787 2788 2789
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2790
	}
2791
}
2792

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
	if (se->avg.last_update_time && prev) {
		u64 p_last_update_time;
		u64 n_last_update_time;

#ifndef CONFIG_64BIT
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
#else
		p_last_update_time = prev->avg.last_update_time;
		n_last_update_time = next->avg.last_update_time;
#endif
		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
				  &se->avg, 0, 0, NULL);
		se->avg.last_update_time = n_last_update_time;
	}
}
2839
#else /* CONFIG_FAIR_GROUP_SCHED */
2840
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2841
#endif /* CONFIG_FAIR_GROUP_SCHED */
2842

2843
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2844

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);

	if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
		unsigned long max = rq->cpu_capacity_orig;

		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
		cpufreq_update_util(rq_clock(rq),
				    min(cfs_rq->avg.util_avg, max), max);
	}
}

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

2891
/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2892 2893
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2894
{
2895
	struct sched_avg *sa = &cfs_rq->avg;
2896
	int decayed, removed_load = 0, removed_util = 0;
2897

2898
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2899
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2900 2901
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
2902
		removed_load = 1;
2903
	}
2904

2905 2906
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2907 2908
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
2909
		removed_util = 1;
2910
	}
2911

2912
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2913
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2914

2915 2916 2917 2918
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
2919

2920 2921
	if (update_freq && (decayed || removed_util))
		cfs_rq_util_change(cfs_rq);
2922

2923
	return decayed || removed_load;
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
}

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct sched_entity *se, int update_tg)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	__update_load_avg(now, cpu, &se->avg,
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

2942
	if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
2943
		update_tg_load_avg(cfs_rq, 0);
2944 2945
}

2946 2947
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2948 2949 2950
	if (!sched_feat(ATTACH_AGE_LOAD))
		goto skip_aging;

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	/*
	 * If we got migrated (either between CPUs or between cgroups) we'll
	 * have aged the average right before clearing @last_update_time.
	 */
	if (se->avg.last_update_time) {
		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
				  &se->avg, 0, 0, NULL);

		/*
		 * XXX: we could have just aged the entire load away if we've been
		 * absent from the fair class for too long.
		 */
	}

2965
skip_aging:
2966 2967 2968 2969 2970
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
2971 2972

	cfs_rq_util_change(cfs_rq);
2973 2974 2975 2976 2977 2978 2979 2980
}

static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

2981 2982 2983 2984
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
2985 2986

	cfs_rq_util_change(cfs_rq);
2987 2988
}

2989 2990 2991
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2992
{
2993 2994
	struct sched_avg *sa = &se->avg;
	u64 now = cfs_rq_clock_task(cfs_rq);
2995
	int migrated, decayed;
2996

2997 2998
	migrated = !sa->last_update_time;
	if (!migrated) {
2999
		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3000 3001
			se->on_rq * scale_load_down(se->load.weight),
			cfs_rq->curr == se, NULL);
3002
	}
3003

3004
	decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
3005

3006 3007 3008
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3009 3010
	if (migrated)
		attach_entity_load_avg(cfs_rq, se);
3011

3012 3013
	if (decayed || migrated)
		update_tg_load_avg(cfs_rq, 0);
3014 3015
}

3016 3017 3018 3019 3020 3021 3022 3023 3024
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_avg(se, 1);

	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3025
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3026 3027
}

3028
#ifndef CONFIG_64BIT
3029 3030
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3031
	u64 last_update_time_copy;
3032
	u64 last_update_time;
3033

3034 3035 3036 3037 3038
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3039 3040 3041

	return last_update_time;
}
3042
#else
3043 3044 3045 3046
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3047 3048
#endif

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	/*
	 * Newly created task or never used group entity should not be removed
	 * from its (source) cfs_rq
	 */
	if (se->avg.last_update_time == 0)
		return;

	last_update_time = cfs_rq_last_update_time(cfs_rq);

3067
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3068 3069
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3070
}
3071

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3082 3083
static int idle_balance(struct rq *this_rq);

3084 3085
#else /* CONFIG_SMP */

3086 3087 3088 3089 3090 3091
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
{
	return 0;
}

3092 3093 3094 3095 3096 3097 3098 3099
static inline void update_load_avg(struct sched_entity *se, int not_used)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct rq *rq = rq_of(cfs_rq);

	cpufreq_trigger_update(rq_clock(rq));
}

3100 3101
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3102 3103
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3104
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3105

3106 3107 3108 3109 3110
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3111 3112 3113 3114 3115
static inline int idle_balance(struct rq *rq)
{
	return 0;
}

3116
#endif /* CONFIG_SMP */
3117

3118
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3119 3120
{
#ifdef CONFIG_SCHEDSTATS
3121 3122 3123 3124 3125
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

3126
	if (se->statistics.sleep_start) {
3127
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3128 3129 3130 3131

		if ((s64)delta < 0)
			delta = 0;

3132 3133
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
3134

3135
		se->statistics.sleep_start = 0;
3136
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
3137

3138
		if (tsk) {
3139
			account_scheduler_latency(tsk, delta >> 10, 1);
3140 3141
			trace_sched_stat_sleep(tsk, delta);
		}
3142
	}
3143
	if (se->statistics.block_start) {
3144
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3145 3146 3147 3148

		if ((s64)delta < 0)
			delta = 0;

3149 3150
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
3151

3152
		se->statistics.block_start = 0;
3153
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
3154

3155
		if (tsk) {
3156
			if (tsk->in_iowait) {
3157 3158
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
3159
				trace_sched_stat_iowait(tsk, delta);
3160 3161
			}

3162 3163
			trace_sched_stat_blocked(tsk, delta);

3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
3175
		}
3176 3177 3178 3179
	}
#endif
}

P
Peter Zijlstra 已提交
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

3193 3194 3195
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3196
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3197

3198 3199 3200 3201 3202 3203
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3204
	if (initial && sched_feat(START_DEBIT))
3205
		vruntime += sched_vslice(cfs_rq, se);
3206

3207
	/* sleeps up to a single latency don't count. */
3208
	if (!initial) {
3209
		unsigned long thresh = sysctl_sched_latency;
3210

3211 3212 3213 3214 3215 3216
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3217

3218
		vruntime -= thresh;
3219 3220
	}

3221
	/* ensure we never gain time by being placed backwards. */
3222
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3223 3224
}

3225 3226
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3239
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3240 3241 3242 3243 3244 3245 3246
			     "stat_blocked and stat_runtime require the "
			     "kernel parameter schedstats=enabled or "
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3266
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3278
static void
3279
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3280
{
3281 3282 3283
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3284
	/*
3285 3286
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3287
	 */
3288
	if (renorm && curr)
3289 3290
		se->vruntime += cfs_rq->min_vruntime;

3291 3292
	update_curr(cfs_rq);

3293
	/*
3294 3295 3296 3297
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3298
	 */
3299 3300 3301
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3302
	enqueue_entity_load_avg(cfs_rq, se);
3303 3304
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
3305

3306
	if (flags & ENQUEUE_WAKEUP) {
3307
		place_entity(cfs_rq, se, 0);
3308 3309
		if (schedstat_enabled())
			enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
3310
	}
3311

3312 3313 3314 3315 3316
	check_schedstat_required();
	if (schedstat_enabled()) {
		update_stats_enqueue(cfs_rq, se);
		check_spread(cfs_rq, se);
	}
3317
	if (!curr)
3318
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3319
	se->on_rq = 1;
3320

3321
	if (cfs_rq->nr_running == 1) {
3322
		list_add_leaf_cfs_rq(cfs_rq);
3323 3324
		check_enqueue_throttle(cfs_rq);
	}
3325 3326
}

3327
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3328
{
3329 3330
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3331
		if (cfs_rq->last != se)
3332
			break;
3333 3334

		cfs_rq->last = NULL;
3335 3336
	}
}
P
Peter Zijlstra 已提交
3337

3338 3339 3340 3341
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3342
		if (cfs_rq->next != se)
3343
			break;
3344 3345

		cfs_rq->next = NULL;
3346
	}
P
Peter Zijlstra 已提交
3347 3348
}

3349 3350 3351 3352
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3353
		if (cfs_rq->skip != se)
3354
			break;
3355 3356

		cfs_rq->skip = NULL;
3357 3358 3359
	}
}

P
Peter Zijlstra 已提交
3360 3361
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3362 3363 3364 3365 3366
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3367 3368 3369

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3370 3371
}

3372
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3373

3374
static void
3375
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3376
{
3377 3378 3379 3380
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3381
	dequeue_entity_load_avg(cfs_rq, se);
3382

3383 3384
	if (schedstat_enabled())
		update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3385

P
Peter Zijlstra 已提交
3386
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3387

3388
	if (se != cfs_rq->curr)
3389
		__dequeue_entity(cfs_rq, se);
3390
	se->on_rq = 0;
3391
	account_entity_dequeue(cfs_rq, se);
3392 3393 3394 3395 3396 3397

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
3398
	if (!(flags & DEQUEUE_SLEEP))
3399
		se->vruntime -= cfs_rq->min_vruntime;
3400

3401 3402 3403
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3404
	update_min_vruntime(cfs_rq);
3405
	update_cfs_shares(cfs_rq);
3406 3407 3408 3409 3410
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3411
static void
I
Ingo Molnar 已提交
3412
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3413
{
3414
	unsigned long ideal_runtime, delta_exec;
3415 3416
	struct sched_entity *se;
	s64 delta;
3417

P
Peter Zijlstra 已提交
3418
	ideal_runtime = sched_slice(cfs_rq, curr);
3419
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3420
	if (delta_exec > ideal_runtime) {
3421
		resched_curr(rq_of(cfs_rq));
3422 3423 3424 3425 3426
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3438 3439
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3440

3441 3442
	if (delta < 0)
		return;
3443

3444
	if (delta > ideal_runtime)
3445
		resched_curr(rq_of(cfs_rq));
3446 3447
}

3448
static void
3449
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3450
{
3451 3452 3453 3454 3455 3456 3457
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3458 3459
		if (schedstat_enabled())
			update_stats_wait_end(cfs_rq, se);
3460
		__dequeue_entity(cfs_rq, se);
3461
		update_load_avg(se, 1);
3462 3463
	}

3464
	update_stats_curr_start(cfs_rq, se);
3465
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
3466 3467 3468 3469 3470 3471
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3472
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3473
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
3474 3475 3476
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
3477
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3478 3479
}

3480 3481 3482
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3483 3484 3485 3486 3487 3488 3489
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3490 3491
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3492
{
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3504

3505 3506 3507 3508 3509
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3520 3521 3522
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3523

3524 3525 3526 3527 3528 3529
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3530 3531 3532 3533 3534 3535
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3536
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3537 3538

	return se;
3539 3540
}

3541
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3542

3543
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3544 3545 3546 3547 3548 3549
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3550
		update_curr(cfs_rq);
3551

3552 3553 3554
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3555 3556 3557 3558 3559 3560
	if (schedstat_enabled()) {
		check_spread(cfs_rq, prev);
		if (prev->on_rq)
			update_stats_wait_start(cfs_rq, prev);
	}

3561 3562 3563
	if (prev->on_rq) {
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3564
		/* in !on_rq case, update occurred at dequeue */
3565
		update_load_avg(prev, 0);
3566
	}
3567
	cfs_rq->curr = NULL;
3568 3569
}

P
Peter Zijlstra 已提交
3570 3571
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3572 3573
{
	/*
3574
	 * Update run-time statistics of the 'current'.
3575
	 */
3576
	update_curr(cfs_rq);
3577

3578 3579 3580
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3581
	update_load_avg(curr, 1);
3582
	update_cfs_shares(cfs_rq);
3583

P
Peter Zijlstra 已提交
3584 3585 3586 3587 3588
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3589
	if (queued) {
3590
		resched_curr(rq_of(cfs_rq));
3591 3592
		return;
	}
P
Peter Zijlstra 已提交
3593 3594 3595 3596 3597 3598 3599 3600
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3601
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3602
		check_preempt_tick(cfs_rq, curr);
3603 3604
}

3605 3606 3607 3608 3609 3610

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3611 3612

#ifdef HAVE_JUMP_LABEL
3613
static struct static_key __cfs_bandwidth_used;
3614 3615 3616

static inline bool cfs_bandwidth_used(void)
{
3617
	return static_key_false(&__cfs_bandwidth_used);
3618 3619
}

3620
void cfs_bandwidth_usage_inc(void)
3621
{
3622 3623 3624 3625 3626 3627
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3628 3629 3630 3631 3632 3633 3634
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3635 3636
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3637 3638
#endif /* HAVE_JUMP_LABEL */

3639 3640 3641 3642 3643 3644 3645 3646
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3647 3648 3649 3650 3651 3652

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3653 3654 3655 3656 3657 3658 3659
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3660
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3672 3673 3674 3675 3676
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3677 3678 3679 3680
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
3681
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3682

3683
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3684 3685
}

3686 3687
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3688 3689 3690
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3691
	u64 amount = 0, min_amount, expires;
3692 3693 3694 3695 3696 3697 3698

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3699
	else {
P
Peter Zijlstra 已提交
3700
		start_cfs_bandwidth(cfs_b);
3701 3702 3703 3704 3705 3706

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3707
	}
P
Paul Turner 已提交
3708
	expires = cfs_b->runtime_expires;
3709 3710 3711
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3712 3713 3714 3715 3716 3717 3718
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3719 3720

	return cfs_rq->runtime_remaining > 0;
3721 3722
}

P
Paul Turner 已提交
3723 3724 3725 3726 3727
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3728
{
P
Paul Turner 已提交
3729 3730 3731
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3732
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3733 3734
		return;

P
Paul Turner 已提交
3735 3736 3737 3738 3739 3740 3741 3742 3743
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3744 3745 3746
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3747 3748
	 */

3749
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3750 3751 3752 3753 3754 3755 3756 3757
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3758
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3759 3760
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3761
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3762 3763 3764
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3765 3766
		return;

3767 3768 3769 3770 3771
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3772
		resched_curr(rq_of(cfs_rq));
3773 3774
}

3775
static __always_inline
3776
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3777
{
3778
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3779 3780 3781 3782 3783
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3784 3785
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3786
	return cfs_bandwidth_used() && cfs_rq->throttled;
3787 3788
}

3789 3790 3791
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3792
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
3820
		/* adjust cfs_rq_clock_task() */
3821
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3822
					     cfs_rq->throttled_clock_task;
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3833 3834
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3835
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3836 3837 3838 3839 3840
	cfs_rq->throttle_count++;

	return 0;
}

3841
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3842 3843 3844 3845 3846
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
3847
	bool empty;
3848 3849 3850

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3851
	/* freeze hierarchy runnable averages while throttled */
3852 3853 3854
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3872
		sub_nr_running(rq, task_delta);
3873 3874

	cfs_rq->throttled = 1;
3875
	cfs_rq->throttled_clock = rq_clock(rq);
3876
	raw_spin_lock(&cfs_b->lock);
3877
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3878

3879 3880 3881 3882 3883
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3884 3885 3886 3887 3888 3889 3890 3891

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

3892 3893 3894
	raw_spin_unlock(&cfs_b->lock);
}

3895
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3896 3897 3898 3899 3900 3901 3902
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3903
	se = cfs_rq->tg->se[cpu_of(rq)];
3904 3905

	cfs_rq->throttled = 0;
3906 3907 3908

	update_rq_clock(rq);

3909
	raw_spin_lock(&cfs_b->lock);
3910
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3911 3912 3913
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3914 3915 3916
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
3935
		add_nr_running(rq, task_delta);
3936 3937 3938

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
3939
		resched_curr(rq);
3940 3941 3942 3943 3944 3945
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
3946 3947
	u64 runtime;
	u64 starting_runtime = remaining;
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

3978
	return starting_runtime - remaining;
3979 3980
}

3981 3982 3983 3984 3985 3986 3987 3988
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3989
	u64 runtime, runtime_expires;
3990
	int throttled;
3991 3992 3993

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
3994
		goto out_deactivate;
3995

3996
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3997
	cfs_b->nr_periods += overrun;
3998

3999 4000 4001 4002 4003 4004
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4005 4006 4007

	__refill_cfs_bandwidth_runtime(cfs_b);

4008 4009 4010
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4011
		return 0;
4012 4013
	}

4014 4015 4016
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4017 4018 4019
	runtime_expires = cfs_b->runtime_expires;

	/*
4020 4021 4022 4023 4024
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4025
	 */
4026 4027
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4028 4029 4030 4031 4032 4033 4034
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4035 4036

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4037
	}
4038

4039 4040 4041 4042 4043 4044 4045
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4046

4047 4048 4049 4050
	return 0;

out_deactivate:
	return 1;
4051
}
4052

4053 4054 4055 4056 4057 4058 4059
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4060 4061 4062 4063
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4064
 * hrtimer base being cleared by hrtimer_start. In the case of
4065 4066
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4092 4093 4094
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4124 4125 4126
	if (!cfs_bandwidth_used())
		return;

4127
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4143 4144 4145
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4146
		return;
4147
	}
4148

4149
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4150
		runtime = cfs_b->runtime;
4151

4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4162
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4163 4164 4165
	raw_spin_unlock(&cfs_b->lock);
}

4166 4167 4168 4169 4170 4171 4172
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4173 4174 4175
	if (!cfs_bandwidth_used())
		return;

4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
	/* Synchronize hierarchical throttle counter: */
	if (unlikely(!cfs_rq->throttle_uptodate)) {
		struct rq *rq = rq_of(cfs_rq);
		struct cfs_rq *pcfs_rq;
		struct task_group *tg;

		cfs_rq->throttle_uptodate = 1;

		/* Get closest up-to-date node, because leaves go first: */
		for (tg = cfs_rq->tg->parent; tg; tg = tg->parent) {
			pcfs_rq = tg->cfs_rq[cpu_of(rq)];
			if (pcfs_rq->throttle_uptodate)
				break;
		}
		if (tg) {
			cfs_rq->throttle_count = pcfs_rq->throttle_count;
			cfs_rq->throttled_clock_task = rq_clock_task(rq);
		}
	}

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
4211
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4212
{
4213
	if (!cfs_bandwidth_used())
4214
		return false;
4215

4216
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4217
		return false;
4218 4219 4220 4221 4222 4223

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4224
		return true;
4225 4226

	throttle_cfs_rq(cfs_rq);
4227
	return true;
4228
}
4229 4230 4231 4232 4233

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4234

4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4247
	raw_spin_lock(&cfs_b->lock);
4248
	for (;;) {
P
Peter Zijlstra 已提交
4249
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4250 4251 4252 4253 4254
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4255 4256
	if (idle)
		cfs_b->period_active = 0;
4257
	raw_spin_unlock(&cfs_b->lock);
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4270
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4282
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4283
{
P
Peter Zijlstra 已提交
4284
	lockdep_assert_held(&cfs_b->lock);
4285

P
Peter Zijlstra 已提交
4286 4287 4288 4289 4290
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4291 4292 4293 4294
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4295 4296 4297 4298
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4299 4300 4301 4302
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4316
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4328
		cfs_rq->runtime_remaining = 1;
4329 4330 4331 4332 4333 4334
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4335 4336 4337 4338 4339 4340
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4341 4342
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4343
	return rq_clock_task(rq_of(cfs_rq));
4344 4345
}

4346
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4347
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4348
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4349
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4350 4351 4352 4353 4354

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4366 4367 4368 4369 4370

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4371 4372
#endif

4373 4374 4375 4376 4377
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4378
static inline void update_runtime_enabled(struct rq *rq) {}
4379
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4380 4381 4382

#endif /* CONFIG_CFS_BANDWIDTH */

4383 4384 4385 4386
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4387 4388 4389 4390 4391 4392 4393 4394
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

4395
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
4396 4397 4398 4399 4400 4401
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4402
				resched_curr(rq);
P
Peter Zijlstra 已提交
4403 4404
			return;
		}
4405
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4406 4407
	}
}
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4418
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4419 4420 4421 4422 4423
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4424
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4425 4426 4427 4428
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4429 4430 4431 4432

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4433 4434
#endif

4435 4436 4437 4438 4439
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4440
static void
4441
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4442 4443
{
	struct cfs_rq *cfs_rq;
4444
	struct sched_entity *se = &p->se;
4445 4446

	for_each_sched_entity(se) {
4447
		if (se->on_rq)
4448 4449
			break;
		cfs_rq = cfs_rq_of(se);
4450
		enqueue_entity(cfs_rq, se, flags);
4451 4452 4453 4454 4455 4456

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
4457
		 */
4458 4459
		if (cfs_rq_throttled(cfs_rq))
			break;
4460
		cfs_rq->h_nr_running++;
4461

4462
		flags = ENQUEUE_WAKEUP;
4463
	}
P
Peter Zijlstra 已提交
4464

P
Peter Zijlstra 已提交
4465
	for_each_sched_entity(se) {
4466
		cfs_rq = cfs_rq_of(se);
4467
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4468

4469 4470 4471
		if (cfs_rq_throttled(cfs_rq))
			break;

4472
		update_load_avg(se, 1);
4473
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4474 4475
	}

Y
Yuyang Du 已提交
4476
	if (!se)
4477
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4478

4479
	hrtick_update(rq);
4480 4481
}

4482 4483
static void set_next_buddy(struct sched_entity *se);

4484 4485 4486 4487 4488
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4489
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4490 4491
{
	struct cfs_rq *cfs_rq;
4492
	struct sched_entity *se = &p->se;
4493
	int task_sleep = flags & DEQUEUE_SLEEP;
4494 4495 4496

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4497
		dequeue_entity(cfs_rq, se, flags);
4498 4499 4500 4501 4502 4503 4504 4505 4506

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4507
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4508

4509
		/* Don't dequeue parent if it has other entities besides us */
4510
		if (cfs_rq->load.weight) {
4511 4512
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
4513 4514 4515 4516
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
4517 4518
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
4519
			break;
4520
		}
4521
		flags |= DEQUEUE_SLEEP;
4522
	}
P
Peter Zijlstra 已提交
4523

P
Peter Zijlstra 已提交
4524
	for_each_sched_entity(se) {
4525
		cfs_rq = cfs_rq_of(se);
4526
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4527

4528 4529 4530
		if (cfs_rq_throttled(cfs_rq))
			break;

4531
		update_load_avg(se, 1);
4532
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4533 4534
	}

Y
Yuyang Du 已提交
4535
	if (!se)
4536
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4537

4538
	hrtick_update(rq);
4539 4540
}

4541
#ifdef CONFIG_SMP
4542
#ifdef CONFIG_NO_HZ_COMMON
4543 4544 4545 4546 4547
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4548
 * The exact cpuload calculated at every tick would be:
4549
 *
4550 4551 4552 4553 4554 4555 4556
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4557 4558 4559
 *
 * decay_load_missed() below does efficient calculation of
 *
4560 4561 4562 4563 4564 4565
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4566
 *
4567
 * The calculation is approximated on a 128 point scale.
4568 4569
 */
#define DEGRADE_SHIFT		7
4570 4571 4572 4573 4574 4575 4576 4577 4578

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
4608
#endif /* CONFIG_NO_HZ_COMMON */
4609

4610
/**
4611
 * __cpu_load_update - update the rq->cpu_load[] statistics
4612 4613 4614 4615
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
4616
 * Update rq->cpu_load[] statistics. This function is usually called every
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4643
 * term.
4644
 */
4645 4646
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
4647
{
4648
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

4660
		old_load = this_rq->cpu_load[i];
4661
#ifdef CONFIG_NO_HZ_COMMON
4662
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4663 4664 4665 4666 4667 4668 4669 4670 4671
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
4672
#endif
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

4688 4689 4690 4691 4692 4693
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

4694
#ifdef CONFIG_NO_HZ_COMMON
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
4723
		cpu_load_update(this_rq, load, pending_updates);
4724 4725 4726
	}
}

4727 4728 4729 4730
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
4731
static void cpu_load_update_idle(struct rq *this_rq)
4732 4733 4734 4735
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
4736
	if (weighted_cpuload(cpu_of(this_rq)))
4737 4738
		return;

4739
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
4740 4741 4742
}

/*
4743 4744 4745 4746
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
4747
 */
4748
void cpu_load_update_nohz_start(void)
4749 4750
{
	struct rq *this_rq = this_rq();
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
4765
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4766 4767
	struct rq *this_rq = this_rq();
	unsigned long load;
4768 4769 4770 4771

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

4772
	load = weighted_cpuload(cpu_of(this_rq));
4773
	raw_spin_lock(&this_rq->lock);
4774
	update_rq_clock(this_rq);
4775
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
4776 4777
	raw_spin_unlock(&this_rq->lock);
}
4778 4779 4780 4781 4782 4783 4784 4785
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
4786
#ifdef CONFIG_NO_HZ_COMMON
4787 4788
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
4789
#endif
4790 4791
	cpu_load_update(this_rq, load, 1);
}
4792 4793 4794 4795

/*
 * Called from scheduler_tick()
 */
4796
void cpu_load_update_active(struct rq *this_rq)
4797
{
4798
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4799 4800 4801 4802 4803

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
4804 4805
}

4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4839
static unsigned long capacity_of(int cpu)
4840
{
4841
	return cpu_rq(cpu)->cpu_capacity;
4842 4843
}

4844 4845 4846 4847 4848
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

4849 4850 4851
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4852
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4853
	unsigned long load_avg = weighted_cpuload(cpu);
4854 4855

	if (nr_running)
4856
		return load_avg / nr_running;
4857 4858 4859 4860

	return 0;
}

4861
#ifdef CONFIG_FAIR_GROUP_SCHED
4862 4863 4864 4865 4866 4867
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4911
 */
P
Peter Zijlstra 已提交
4912
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4913
{
P
Peter Zijlstra 已提交
4914
	struct sched_entity *se = tg->se[cpu];
4915

4916
	if (!tg->parent)	/* the trivial, non-cgroup case */
4917 4918
		return wl;

P
Peter Zijlstra 已提交
4919
	for_each_sched_entity(se) {
4920 4921
		struct cfs_rq *cfs_rq = se->my_q;
		long W, w = cfs_rq_load_avg(cfs_rq);
P
Peter Zijlstra 已提交
4922

4923
		tg = cfs_rq->tg;
4924

4925 4926 4927
		/*
		 * W = @wg + \Sum rw_j
		 */
4928 4929 4930 4931 4932
		W = wg + atomic_long_read(&tg->load_avg);

		/* Ensure \Sum rw_j >= rw_i */
		W -= cfs_rq->tg_load_avg_contrib;
		W += w;
P
Peter Zijlstra 已提交
4933

4934 4935 4936
		/*
		 * w = rw_i + @wl
		 */
4937
		w += wl;
4938

4939 4940 4941 4942
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
4943
			wl = (w * (long)tg->shares) / W;
4944 4945
		else
			wl = tg->shares;
4946

4947 4948 4949 4950 4951
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4952 4953
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4954 4955 4956 4957

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4958
		wl -= se->avg.load_avg;
4959 4960 4961 4962 4963 4964 4965 4966

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4967 4968
		wg = 0;
	}
4969

P
Peter Zijlstra 已提交
4970
	return wl;
4971 4972
}
#else
P
Peter Zijlstra 已提交
4973

4974
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4975
{
4976
	return wl;
4977
}
P
Peter Zijlstra 已提交
4978

4979 4980
#endif

P
Peter Zijlstra 已提交
4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
4998 4999
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5000
 *
M
Mike Galbraith 已提交
5001
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5014
 */
5015 5016
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5017 5018
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5019
	int factor = this_cpu_read(sd_llc_size);
5020

M
Mike Galbraith 已提交
5021 5022 5023 5024 5025
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5026 5027
}

5028
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
5029
{
5030
	s64 this_load, load;
5031
	s64 this_eff_load, prev_eff_load;
5032 5033
	int idx, this_cpu, prev_cpu;
	struct task_group *tg;
5034
	unsigned long weight;
5035
	int balanced;
5036

5037 5038 5039 5040 5041
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
5042

5043 5044 5045 5046 5047
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
5048 5049
	if (sync) {
		tg = task_group(current);
5050
		weight = current->se.avg.load_avg;
5051

5052
		this_load += effective_load(tg, this_cpu, -weight, -weight);
5053 5054
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
5055

5056
	tg = task_group(p);
5057
	weight = p->se.avg.load_avg;
5058

5059 5060
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5061 5062 5063
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
5064 5065 5066 5067
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
5068 5069
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
5070

5071 5072
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5073

5074
	if (this_load > 0) {
5075 5076 5077 5078
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5079
	}
5080

5081
	balanced = this_eff_load <= prev_eff_load;
5082

5083
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
5084

5085 5086
	if (!balanced)
		return 0;
5087

5088 5089 5090 5091
	schedstat_inc(sd, ttwu_move_affine);
	schedstat_inc(p, se.statistics.nr_wakeups_affine);

	return 1;
5092 5093
}

5094 5095 5096 5097 5098
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5099
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5100
		  int this_cpu, int sd_flag)
5101
{
5102
	struct sched_group *idlest = NULL, *group = sd->groups;
5103
	unsigned long min_load = ULONG_MAX, this_load = 0;
5104
	int load_idx = sd->forkexec_idx;
5105
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
5106

5107 5108 5109
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5110 5111 5112 5113
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
5114

5115 5116
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
5117
					tsk_cpus_allowed(p)))
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

5136
		/* Adjust by relative CPU capacity of the group */
5137
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5159 5160 5161 5162
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5163 5164 5165
	int i;

	/* Traverse only the allowed CPUs */
5166
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5189
		} else if (shallowest_idle_cpu == -1) {
5190 5191 5192 5193 5194
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5195 5196 5197
		}
	}

5198
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5199
}
5200

5201 5202 5203
/*
 * Try and locate an idle CPU in the sched_domain.
 */
5204
static int select_idle_sibling(struct task_struct *p, int target)
5205
{
5206
	struct sched_domain *sd;
5207
	struct sched_group *sg;
5208
	int i = task_cpu(p);
5209

5210 5211
	if (idle_cpu(target))
		return target;
5212 5213

	/*
5214
	 * If the prevous cpu is cache affine and idle, don't be stupid.
5215
	 */
5216 5217
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
5218 5219

	/*
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
	 * Otherwise, iterate the domains and find an eligible idle cpu.
	 *
	 * A completely idle sched group at higher domains is more
	 * desirable than an idle group at a lower level, because lower
	 * domains have smaller groups and usually share hardware
	 * resources which causes tasks to contend on them, e.g. x86
	 * hyperthread siblings in the lowest domain (SMT) can contend
	 * on the shared cpu pipeline.
	 *
	 * However, while we prefer idle groups at higher domains
	 * finding an idle cpu at the lowest domain is still better than
	 * returning 'target', which we've already established, isn't
	 * idle.
5233
	 */
5234
	sd = rcu_dereference(per_cpu(sd_llc, target));
5235
	for_each_lower_domain(sd) {
5236 5237 5238 5239 5240 5241
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

5242
			/* Ensure the entire group is idle */
5243
			for_each_cpu(i, sched_group_cpus(sg)) {
5244
				if (i == target || !idle_cpu(i))
5245 5246
					goto next;
			}
5247

5248 5249 5250 5251
			/*
			 * It doesn't matter which cpu we pick, the
			 * whole group is idle.
			 */
5252 5253 5254 5255 5256 5257 5258 5259
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
5260 5261
	return target;
}
5262

5263
/*
5264
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5265
 * tasks. The unit of the return value must be the one of capacity so we can
5266 5267
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5288
 */
5289
static int cpu_util(int cpu)
5290
{
5291
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5292 5293
	unsigned long capacity = capacity_orig_of(cpu);

5294
	return (util >= capacity) ? capacity : util;
5295
}
5296

5297
/*
5298 5299 5300
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5301
 *
5302 5303
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5304
 *
5305
 * Returns the target cpu number.
5306 5307 5308
 *
 * preempt must be disabled.
 */
5309
static int
5310
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5311
{
5312
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5313
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5314
	int new_cpu = prev_cpu;
5315
	int want_affine = 0;
5316
	int sync = wake_flags & WF_SYNC;
5317

P
Peter Zijlstra 已提交
5318 5319
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
M
Mike Galbraith 已提交
5320
		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
P
Peter Zijlstra 已提交
5321
	}
5322

5323
	rcu_read_lock();
5324
	for_each_domain(cpu, tmp) {
5325
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
5326
			break;
5327

5328
		/*
5329 5330
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
5331
		 */
5332 5333 5334
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
5335
			break;
5336
		}
5337

5338
		if (tmp->flags & sd_flag)
5339
			sd = tmp;
M
Mike Galbraith 已提交
5340 5341
		else if (!want_affine)
			break;
5342 5343
	}

M
Mike Galbraith 已提交
5344 5345 5346 5347
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
			new_cpu = cpu;
5348
	}
5349

M
Mike Galbraith 已提交
5350 5351 5352 5353 5354
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
			new_cpu = select_idle_sibling(p, new_cpu);

	} else while (sd) {
5355
		struct sched_group *group;
5356
		int weight;
5357

5358
		if (!(sd->flags & sd_flag)) {
5359 5360 5361
			sd = sd->child;
			continue;
		}
5362

5363
		group = find_idlest_group(sd, p, cpu, sd_flag);
5364 5365 5366 5367
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
5368

5369
		new_cpu = find_idlest_cpu(group, p, cpu);
5370 5371 5372 5373
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
5374
		}
5375 5376 5377

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
5378
		weight = sd->span_weight;
5379 5380
		sd = NULL;
		for_each_domain(cpu, tmp) {
5381
			if (weight <= tmp->span_weight)
5382
				break;
5383
			if (tmp->flags & sd_flag)
5384 5385 5386
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
5387
	}
5388
	rcu_read_unlock();
5389

5390
	return new_cpu;
5391
}
5392 5393 5394 5395

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
5396
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5397
 */
5398
static void migrate_task_rq_fair(struct task_struct *p)
5399
{
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

5426
	/*
5427 5428 5429 5430 5431
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
5432
	 */
5433 5434 5435 5436
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
5437 5438

	/* We have migrated, no longer consider this task hot */
5439
	p->se.exec_start = 0;
5440
}
5441 5442 5443 5444 5445

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
5446 5447
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
5448 5449
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5450 5451 5452 5453
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
5454 5455
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
5456 5457 5458 5459 5460 5461 5462 5463 5464
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
5465
	 */
5466
	return calc_delta_fair(gran, se);
5467 5468
}

5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
5491
	gran = wakeup_gran(curr, se);
5492 5493 5494 5495 5496 5497
	if (vdiff > gran)
		return 1;

	return 0;
}

5498 5499
static void set_last_buddy(struct sched_entity *se)
{
5500 5501 5502 5503 5504
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
5505 5506 5507 5508
}

static void set_next_buddy(struct sched_entity *se)
{
5509 5510 5511 5512 5513
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
5514 5515
}

5516 5517
static void set_skip_buddy(struct sched_entity *se)
{
5518 5519
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
5520 5521
}

5522 5523 5524
/*
 * Preempt the current task with a newly woken task if needed:
 */
5525
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5526 5527
{
	struct task_struct *curr = rq->curr;
5528
	struct sched_entity *se = &curr->se, *pse = &p->se;
5529
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5530
	int scale = cfs_rq->nr_running >= sched_nr_latency;
5531
	int next_buddy_marked = 0;
5532

I
Ingo Molnar 已提交
5533 5534 5535
	if (unlikely(se == pse))
		return;

5536
	/*
5537
	 * This is possible from callers such as attach_tasks(), in which we
5538 5539 5540 5541 5542 5543 5544
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

5545
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
5546
		set_next_buddy(pse);
5547 5548
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
5549

5550 5551 5552
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
5553 5554 5555 5556 5557 5558
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
5559 5560 5561 5562
	 */
	if (test_tsk_need_resched(curr))
		return;

5563 5564 5565 5566 5567
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

5568
	/*
5569 5570
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
5571
	 */
5572
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5573
		return;
5574

5575
	find_matching_se(&se, &pse);
5576
	update_curr(cfs_rq_of(se));
5577
	BUG_ON(!pse);
5578 5579 5580 5581 5582 5583 5584
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
5585
		goto preempt;
5586
	}
5587

5588
	return;
5589

5590
preempt:
5591
	resched_curr(rq);
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
5606 5607
}

5608
static struct task_struct *
5609
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
5610 5611 5612
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
5613
	struct task_struct *p;
5614
	int new_tasks;
5615

5616
again:
5617 5618
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
5619
		goto idle;
5620

5621
	if (prev->sched_class != &fair_sched_class)
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
5641 5642 5643 5644 5645
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
5646

5647 5648 5649 5650 5651 5652 5653 5654 5655
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
5696

5697
	if (!cfs_rq->nr_running)
5698
		goto idle;
5699

5700
	put_prev_task(rq, prev);
5701

5702
	do {
5703
		se = pick_next_entity(cfs_rq, NULL);
5704
		set_next_entity(cfs_rq, se);
5705 5706 5707
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
5708
	p = task_of(se);
5709

5710 5711
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
5712 5713

	return p;
5714 5715

idle:
5716 5717 5718 5719 5720 5721
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
5722
	lockdep_unpin_lock(&rq->lock, cookie);
5723
	new_tasks = idle_balance(rq);
5724
	lockdep_repin_lock(&rq->lock, cookie);
5725 5726 5727 5728 5729
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
5730
	if (new_tasks < 0)
5731 5732
		return RETRY_TASK;

5733
	if (new_tasks > 0)
5734 5735 5736
		goto again;

	return NULL;
5737 5738 5739 5740 5741
}

/*
 * Account for a descheduled task:
 */
5742
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5743 5744 5745 5746 5747 5748
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5749
		put_prev_entity(cfs_rq, se);
5750 5751 5752
	}
}

5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
5778 5779 5780 5781 5782
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
5783
		rq_clock_skip_update(rq, true);
5784 5785 5786 5787 5788
	}

	set_skip_buddy(se);
}

5789 5790 5791 5792
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

5793 5794
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

5805
#ifdef CONFIG_SMP
5806
/**************************************************
P
Peter Zijlstra 已提交
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5823
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
5824 5825 5826 5827 5828 5829
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
5830
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
5831 5832 5833 5834 5835 5836
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5837
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5923

5924 5925
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5926 5927
enum fbq_type { regular, remote, all };

5928
#define LBF_ALL_PINNED	0x01
5929
#define LBF_NEED_BREAK	0x02
5930 5931
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5932 5933 5934 5935 5936

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5937
	int			src_cpu;
5938 5939 5940 5941

	int			dst_cpu;
	struct rq		*dst_rq;

5942 5943
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5944
	enum cpu_idle_type	idle;
5945
	long			imbalance;
5946 5947 5948
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5949
	unsigned int		flags;
5950 5951 5952 5953

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5954 5955

	enum fbq_type		fbq_type;
5956
	struct list_head	tasks;
5957 5958
};

5959 5960 5961
/*
 * Is this task likely cache-hot:
 */
5962
static int task_hot(struct task_struct *p, struct lb_env *env)
5963 5964 5965
{
	s64 delta;

5966 5967
	lockdep_assert_held(&env->src_rq->lock);

5968 5969 5970 5971 5972 5973 5974 5975 5976
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
5977
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5978 5979 5980 5981 5982 5983 5984 5985 5986
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

5987
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5988 5989 5990 5991

	return delta < (s64)sysctl_sched_migration_cost;
}

5992
#ifdef CONFIG_NUMA_BALANCING
5993
/*
5994 5995 5996
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
5997
 */
5998
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5999
{
6000
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6001
	unsigned long src_faults, dst_faults;
6002 6003
	int src_nid, dst_nid;

6004
	if (!static_branch_likely(&sched_numa_balancing))
6005 6006
		return -1;

6007
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6008
		return -1;
6009 6010 6011 6012

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6013
	if (src_nid == dst_nid)
6014
		return -1;
6015

6016 6017 6018 6019 6020 6021 6022
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6023

6024 6025
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6026
		return 0;
6027

6028 6029 6030 6031 6032 6033
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6034 6035
	}

6036
	return dst_faults < src_faults;
6037 6038
}

6039
#else
6040
static inline int migrate_degrades_locality(struct task_struct *p,
6041 6042
					     struct lb_env *env)
{
6043
	return -1;
6044
}
6045 6046
#endif

6047 6048 6049 6050
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6051
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6052
{
6053
	int tsk_cache_hot;
6054 6055 6056

	lockdep_assert_held(&env->src_rq->lock);

6057 6058
	/*
	 * We do not migrate tasks that are:
6059
	 * 1) throttled_lb_pair, or
6060
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6061 6062
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6063
	 */
6064 6065 6066
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6067
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6068
		int cpu;
6069

6070
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
6071

6072 6073
		env->flags |= LBF_SOME_PINNED;

6074 6075 6076 6077 6078 6079 6080 6081
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
6082
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6083 6084
			return 0;

6085 6086 6087
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6088
				env->flags |= LBF_DST_PINNED;
6089 6090 6091
				env->new_dst_cpu = cpu;
				break;
			}
6092
		}
6093

6094 6095
		return 0;
	}
6096 6097

	/* Record that we found atleast one task that could run on dst_cpu */
6098
	env->flags &= ~LBF_ALL_PINNED;
6099

6100
	if (task_running(env->src_rq, p)) {
6101
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
6102 6103 6104 6105 6106
		return 0;
	}

	/*
	 * Aggressive migration if:
6107 6108 6109
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6110
	 */
6111 6112 6113
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6114

6115
	if (tsk_cache_hot <= 0 ||
6116
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6117
		if (tsk_cache_hot == 1) {
6118 6119 6120
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
6121 6122 6123
		return 1;
	}

Z
Zhang Hang 已提交
6124 6125
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
6126 6127
}

6128
/*
6129 6130 6131 6132 6133 6134 6135
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6136
	deactivate_task(env->src_rq, p, 0);
6137 6138 6139
	set_task_cpu(p, env->dst_cpu);
}

6140
/*
6141
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6142 6143
 * part of active balancing operations within "domain".
 *
6144
 * Returns a task if successful and NULL otherwise.
6145
 */
6146
static struct task_struct *detach_one_task(struct lb_env *env)
6147 6148 6149
{
	struct task_struct *p, *n;

6150 6151
	lockdep_assert_held(&env->src_rq->lock);

6152 6153 6154
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6155

6156
		detach_task(p, env);
6157

6158
		/*
6159
		 * Right now, this is only the second place where
6160
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6161
		 * so we can safely collect stats here rather than
6162
		 * inside detach_tasks().
6163 6164
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
6165
		return p;
6166
	}
6167
	return NULL;
6168 6169
}

6170 6171
static const unsigned int sched_nr_migrate_break = 32;

6172
/*
6173 6174
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6175
 *
6176
 * Returns number of detached tasks if successful and 0 otherwise.
6177
 */
6178
static int detach_tasks(struct lb_env *env)
6179
{
6180 6181
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6182
	unsigned long load;
6183 6184 6185
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6186

6187
	if (env->imbalance <= 0)
6188
		return 0;
6189

6190
	while (!list_empty(tasks)) {
6191 6192 6193 6194 6195 6196 6197
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6198
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6199

6200 6201
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6202
		if (env->loop > env->loop_max)
6203
			break;
6204 6205

		/* take a breather every nr_migrate tasks */
6206
		if (env->loop > env->loop_break) {
6207
			env->loop_break += sched_nr_migrate_break;
6208
			env->flags |= LBF_NEED_BREAK;
6209
			break;
6210
		}
6211

6212
		if (!can_migrate_task(p, env))
6213 6214 6215
			goto next;

		load = task_h_load(p);
6216

6217
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6218 6219
			goto next;

6220
		if ((load / 2) > env->imbalance)
6221
			goto next;
6222

6223 6224 6225 6226
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6227
		env->imbalance -= load;
6228 6229

#ifdef CONFIG_PREEMPT
6230 6231
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6232
		 * kernels will stop after the first task is detached to minimize
6233 6234
		 * the critical section.
		 */
6235
		if (env->idle == CPU_NEWLY_IDLE)
6236
			break;
6237 6238
#endif

6239 6240 6241 6242
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6243
		if (env->imbalance <= 0)
6244
			break;
6245 6246 6247

		continue;
next:
6248
		list_move_tail(&p->se.group_node, tasks);
6249
	}
6250

6251
	/*
6252 6253 6254
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6255
	 */
6256
	schedstat_add(env->sd, lb_gained[env->idle], detached);
6257

6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	activate_task(rq, p, 0);
6270
	p->on_rq = TASK_ON_RQ_QUEUED;
6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6299

6300 6301 6302 6303
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
6304 6305
}

P
Peter Zijlstra 已提交
6306
#ifdef CONFIG_FAIR_GROUP_SCHED
6307
static void update_blocked_averages(int cpu)
6308 6309
{
	struct rq *rq = cpu_rq(cpu);
6310 6311
	struct cfs_rq *cfs_rq;
	unsigned long flags;
6312

6313 6314
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6315

6316 6317 6318 6319
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6320
	for_each_leaf_cfs_rq(rq, cfs_rq) {
6321 6322 6323
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
6324

6325
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6326 6327
			update_tg_load_avg(cfs_rq, 0);
	}
6328
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6329 6330
}

6331
/*
6332
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6333 6334 6335
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
6336
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6337
{
6338 6339
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6340
	unsigned long now = jiffies;
6341
	unsigned long load;
6342

6343
	if (cfs_rq->last_h_load_update == now)
6344 6345
		return;

6346 6347 6348 6349 6350 6351 6352
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
6353

6354
	if (!se) {
6355
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6356 6357 6358 6359 6360
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
6361 6362
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
6363 6364 6365 6366
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
6367 6368
}

6369
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
6370
{
6371
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
6372

6373
	update_cfs_rq_h_load(cfs_rq);
6374
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6375
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
6376 6377
}
#else
6378
static inline void update_blocked_averages(int cpu)
6379
{
6380 6381 6382 6383 6384 6385
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6386
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6387
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6388 6389
}

6390
static unsigned long task_h_load(struct task_struct *p)
6391
{
6392
	return p->se.avg.load_avg;
6393
}
P
Peter Zijlstra 已提交
6394
#endif
6395 6396

/********** Helpers for find_busiest_group ************************/
6397 6398 6399 6400 6401 6402 6403

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

6404 6405 6406 6407 6408 6409 6410
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
6411
	unsigned long load_per_task;
6412
	unsigned long group_capacity;
6413
	unsigned long group_util; /* Total utilization of the group */
6414 6415 6416
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
6417
	enum group_type group_type;
6418
	int group_no_capacity;
6419 6420 6421 6422
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
6423 6424
};

J
Joonsoo Kim 已提交
6425 6426 6427 6428 6429 6430 6431 6432
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
6433
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
6434 6435 6436
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6437
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
6438 6439
};

6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
6452
		.total_capacity = 0UL,
6453 6454
		.busiest_stat = {
			.avg_load = 0UL,
6455 6456
			.sum_nr_running = 0,
			.group_type = group_other,
6457 6458 6459 6460
		},
	};
}

6461 6462 6463
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
6464
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6465 6466
 *
 * Return: The load index.
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

6489
static unsigned long scale_rt_capacity(int cpu)
6490 6491
{
	struct rq *rq = cpu_rq(cpu);
6492
	u64 total, used, age_stamp, avg;
6493
	s64 delta;
6494

6495 6496 6497 6498
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
6499 6500
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
6501
	delta = __rq_clock_broken(rq) - age_stamp;
6502

6503 6504 6505 6506
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
6507

6508
	used = div_u64(avg, total);
6509

6510 6511
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
6512

6513
	return 1;
6514 6515
}

6516
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6517
{
6518
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6519 6520
	struct sched_group *sdg = sd->groups;

6521
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6522

6523
	capacity *= scale_rt_capacity(cpu);
6524
	capacity >>= SCHED_CAPACITY_SHIFT;
6525

6526 6527
	if (!capacity)
		capacity = 1;
6528

6529 6530
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
6531 6532
}

6533
void update_group_capacity(struct sched_domain *sd, int cpu)
6534 6535 6536
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
6537
	unsigned long capacity;
6538 6539 6540 6541
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
6542
	sdg->sgc->next_update = jiffies + interval;
6543 6544

	if (!child) {
6545
		update_cpu_capacity(sd, cpu);
6546 6547 6548
		return;
	}

6549
	capacity = 0;
6550

P
Peter Zijlstra 已提交
6551 6552 6553 6554 6555 6556
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

6557
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6558
			struct sched_group_capacity *sgc;
6559
			struct rq *rq = cpu_rq(cpu);
6560

6561
			/*
6562
			 * build_sched_domains() -> init_sched_groups_capacity()
6563 6564 6565
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
6566 6567
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
6568
			 *
6569
			 * This avoids capacity from being 0 and
6570 6571 6572
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
6573
				capacity += capacity_of(cpu);
6574 6575
				continue;
			}
6576

6577 6578
			sgc = rq->sd->groups->sgc;
			capacity += sgc->capacity;
6579
		}
P
Peter Zijlstra 已提交
6580 6581 6582 6583 6584 6585 6586 6587
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
6588
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
6589 6590 6591
			group = group->next;
		} while (group != child->groups);
	}
6592

6593
	sdg->sgc->capacity = capacity;
6594 6595
}

6596
/*
6597 6598 6599
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
6600 6601
 */
static inline int
6602
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6603
{
6604 6605
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
6606 6607
}

6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
6624 6625
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
6626 6627
 *
 * When this is so detected; this group becomes a candidate for busiest; see
6628
 * update_sd_pick_busiest(). And calculate_imbalance() and
6629
 * find_busiest_group() avoid some of the usual balance conditions to allow it
6630 6631 6632 6633 6634 6635 6636
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

6637
static inline int sg_imbalanced(struct sched_group *group)
6638
{
6639
	return group->sgc->imbalance;
6640 6641
}

6642
/*
6643 6644 6645
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
6646 6647
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
6648 6649 6650 6651 6652
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
6653
 */
6654 6655
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6656
{
6657 6658
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
6659

6660
	if ((sgs->group_capacity * 100) >
6661
			(sgs->group_util * env->sd->imbalance_pct))
6662
		return true;
6663

6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
6680

6681
	if ((sgs->group_capacity * 100) <
6682
			(sgs->group_util * env->sd->imbalance_pct))
6683
		return true;
6684

6685
	return false;
6686 6687
}

6688 6689 6690
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
6691
{
6692
	if (sgs->group_no_capacity)
6693 6694 6695 6696 6697 6698 6699 6700
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

6701 6702
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6703
 * @env: The load balancing environment.
6704 6705 6706 6707
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
6708
 * @overload: Indicate more than one runnable task for any CPU.
6709
 */
6710 6711
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
6712 6713
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
6714
{
6715
	unsigned long load;
6716
	int i, nr_running;
6717

6718 6719
	memset(sgs, 0, sizeof(*sgs));

6720
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6721 6722 6723
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
6724
		if (local_group)
6725
			load = target_load(i, load_idx);
6726
		else
6727 6728 6729
			load = source_load(i, load_idx);

		sgs->group_load += load;
6730
		sgs->group_util += cpu_util(i);
6731
		sgs->sum_nr_running += rq->cfs.h_nr_running;
6732

6733 6734
		nr_running = rq->nr_running;
		if (nr_running > 1)
6735 6736
			*overload = true;

6737 6738 6739 6740
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
6741
		sgs->sum_weighted_load += weighted_cpuload(i);
6742 6743 6744 6745
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
6746
			sgs->idle_cpus++;
6747 6748
	}

6749 6750
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
6751
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6752

6753
	if (sgs->sum_nr_running)
6754
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6755

6756
	sgs->group_weight = group->group_weight;
6757

6758
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6759
	sgs->group_type = group_classify(group, sgs);
6760 6761
}

6762 6763
/**
 * update_sd_pick_busiest - return 1 on busiest group
6764
 * @env: The load balancing environment.
6765 6766
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
6767
 * @sgs: sched_group statistics
6768 6769 6770
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
6771 6772 6773
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
6774
 */
6775
static bool update_sd_pick_busiest(struct lb_env *env,
6776 6777
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
6778
				   struct sg_lb_stats *sgs)
6779
{
6780
	struct sg_lb_stats *busiest = &sds->busiest_stat;
6781

6782
	if (sgs->group_type > busiest->group_type)
6783 6784
		return true;

6785 6786 6787 6788 6789 6790 6791 6792
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
6793 6794
		return true;

6795 6796 6797
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
6798 6799 6800 6801 6802
	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
6803
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6804 6805 6806
		if (!sds->busiest)
			return true;

6807 6808
		/* Prefer to move from highest possible cpu's work */
		if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
6809 6810 6811 6812 6813 6814
			return true;
	}

	return false;
}

6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6845
/**
6846
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6847
 * @env: The load balancing environment.
6848 6849
 * @sds: variable to hold the statistics for this sched_domain.
 */
6850
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6851
{
6852 6853
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6854
	struct sg_lb_stats tmp_sgs;
6855
	int load_idx, prefer_sibling = 0;
6856
	bool overload = false;
6857 6858 6859 6860

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6861
	load_idx = get_sd_load_idx(env->sd, env->idle);
6862 6863

	do {
J
Joonsoo Kim 已提交
6864
		struct sg_lb_stats *sgs = &tmp_sgs;
6865 6866
		int local_group;

6867
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6868 6869 6870
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6871 6872

			if (env->idle != CPU_NEWLY_IDLE ||
6873 6874
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6875
		}
6876

6877 6878
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6879

6880 6881 6882
		if (local_group)
			goto next_group;

6883 6884
		/*
		 * In case the child domain prefers tasks go to siblings
6885
		 * first, lower the sg capacity so that we'll try
6886 6887
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6888 6889 6890 6891
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
6892
		 */
6893
		if (prefer_sibling && sds->local &&
6894 6895 6896
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
6897
			sgs->group_type = group_classify(sg, sgs);
6898
		}
6899

6900
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6901
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6902
			sds->busiest_stat = *sgs;
6903 6904
		}

6905 6906 6907
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6908
		sds->total_capacity += sgs->group_capacity;
6909

6910
		sg = sg->next;
6911
	} while (sg != env->sd->groups);
6912 6913 6914

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6915 6916 6917 6918 6919 6920 6921

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6941
 * Return: 1 when packing is required and a task should be moved to
6942 6943
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6944
 * @env: The load balancing environment.
6945 6946
 * @sds: Statistics of the sched_domain which is to be packed
 */
6947
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6948 6949 6950
{
	int busiest_cpu;

6951
	if (!(env->sd->flags & SD_ASYM_PACKING))
6952 6953
		return 0;

6954 6955 6956
	if (env->idle == CPU_NOT_IDLE)
		return 0;

6957 6958 6959 6960
	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6961
	if (env->dst_cpu > busiest_cpu)
6962 6963
		return 0;

6964
	env->imbalance = DIV_ROUND_CLOSEST(
6965
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6966
		SCHED_CAPACITY_SCALE);
6967

6968
	return 1;
6969 6970 6971 6972 6973 6974
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6975
 * @env: The load balancing environment.
6976 6977
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6978 6979
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6980
{
6981
	unsigned long tmp, capa_now = 0, capa_move = 0;
6982
	unsigned int imbn = 2;
6983
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6984
	struct sg_lb_stats *local, *busiest;
6985

J
Joonsoo Kim 已提交
6986 6987
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6988

J
Joonsoo Kim 已提交
6989 6990 6991 6992
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6993

J
Joonsoo Kim 已提交
6994
	scaled_busy_load_per_task =
6995
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6996
		busiest->group_capacity;
J
Joonsoo Kim 已提交
6997

6998 6999
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7000
		env->imbalance = busiest->load_per_task;
7001 7002 7003 7004 7005
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7006
	 * however we may be able to increase total CPU capacity used by
7007 7008 7009
	 * moving them.
	 */

7010
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7011
			min(busiest->load_per_task, busiest->avg_load);
7012
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7013
			min(local->load_per_task, local->avg_load);
7014
	capa_now /= SCHED_CAPACITY_SCALE;
7015 7016

	/* Amount of load we'd subtract */
7017
	if (busiest->avg_load > scaled_busy_load_per_task) {
7018
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7019
			    min(busiest->load_per_task,
7020
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7021
	}
7022 7023

	/* Amount of load we'd add */
7024
	if (busiest->avg_load * busiest->group_capacity <
7025
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7026 7027
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7028
	} else {
7029
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7030
		      local->group_capacity;
J
Joonsoo Kim 已提交
7031
	}
7032
	capa_move += local->group_capacity *
7033
		    min(local->load_per_task, local->avg_load + tmp);
7034
	capa_move /= SCHED_CAPACITY_SCALE;
7035 7036

	/* Move if we gain throughput */
7037
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7038
		env->imbalance = busiest->load_per_task;
7039 7040 7041 7042 7043
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7044
 * @env: load balance environment
7045 7046
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7047
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7048
{
7049
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7050 7051 7052 7053
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7054

7055
	if (busiest->group_type == group_imbalanced) {
7056 7057 7058 7059
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7060 7061
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7062 7063
	}

7064
	/*
7065 7066 7067 7068
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7069
	 */
7070 7071
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7072 7073
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7074 7075
	}

7076 7077 7078 7079 7080
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7081
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7082
		if (load_above_capacity > busiest->group_capacity) {
7083
			load_above_capacity -= busiest->group_capacity;
7084 7085 7086
			load_above_capacity *= NICE_0_LOAD;
			load_above_capacity /= busiest->group_capacity;
		} else
7087
			load_above_capacity = ~0UL;
7088 7089 7090 7091 7092 7093
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7094 7095
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7096
	 */
7097
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7098 7099

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7100
	env->imbalance = min(
7101 7102
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7103
	) / SCHED_CAPACITY_SCALE;
7104 7105 7106

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7107
	 * there is no guarantee that any tasks will be moved so we'll have
7108 7109 7110
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7111
	if (env->imbalance < busiest->load_per_task)
7112
		return fix_small_imbalance(env, sds);
7113
}
7114

7115 7116 7117 7118
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7119
 * if there is an imbalance.
7120 7121 7122 7123
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7124
 * @env: The load balancing environment.
7125
 *
7126
 * Return:	- The busiest group if imbalance exists.
7127
 */
J
Joonsoo Kim 已提交
7128
static struct sched_group *find_busiest_group(struct lb_env *env)
7129
{
J
Joonsoo Kim 已提交
7130
	struct sg_lb_stats *local, *busiest;
7131 7132
	struct sd_lb_stats sds;

7133
	init_sd_lb_stats(&sds);
7134 7135 7136 7137 7138

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7139
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7140 7141
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7142

7143
	/* ASYM feature bypasses nice load balance check */
7144
	if (check_asym_packing(env, &sds))
7145 7146
		return sds.busiest;

7147
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7148
	if (!sds.busiest || busiest->sum_nr_running == 0)
7149 7150
		goto out_balanced;

7151 7152
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7153

P
Peter Zijlstra 已提交
7154 7155
	/*
	 * If the busiest group is imbalanced the below checks don't
7156
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7157 7158
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7159
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7160 7161
		goto force_balance;

7162
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7163 7164
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7165 7166
		goto force_balance;

7167
	/*
7168
	 * If the local group is busier than the selected busiest group
7169 7170
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7171
	if (local->avg_load >= busiest->avg_load)
7172 7173
		goto out_balanced;

7174 7175 7176 7177
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7178
	if (local->avg_load >= sds.avg_load)
7179 7180
		goto out_balanced;

7181
	if (env->idle == CPU_IDLE) {
7182
		/*
7183 7184 7185 7186 7187
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7188
		 */
7189 7190
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7191
			goto out_balanced;
7192 7193 7194 7195 7196
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7197 7198
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7199
			goto out_balanced;
7200
	}
7201

7202
force_balance:
7203
	/* Looks like there is an imbalance. Compute it */
7204
	calculate_imbalance(env, &sds);
7205 7206 7207
	return sds.busiest;

out_balanced:
7208
	env->imbalance = 0;
7209 7210 7211 7212 7213 7214
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7215
static struct rq *find_busiest_queue(struct lb_env *env,
7216
				     struct sched_group *group)
7217 7218
{
	struct rq *busiest = NULL, *rq;
7219
	unsigned long busiest_load = 0, busiest_capacity = 1;
7220 7221
	int i;

7222
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7223
		unsigned long capacity, wl;
7224 7225 7226 7227
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7228

7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7251
		capacity = capacity_of(i);
7252

7253
		wl = weighted_cpuload(i);
7254

7255 7256
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7257
		 * which is not scaled with the cpu capacity.
7258
		 */
7259 7260 7261

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7262 7263
			continue;

7264 7265
		/*
		 * For the load comparisons with the other cpu's, consider
7266 7267 7268
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7269
		 *
7270
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7271
		 * multiplication to rid ourselves of the division works out
7272 7273
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
7274
		 */
7275
		if (wl * busiest_capacity > busiest_load * capacity) {
7276
			busiest_load = wl;
7277
			busiest_capacity = capacity;
7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
7292
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7293

7294
static int need_active_balance(struct lb_env *env)
7295
{
7296 7297 7298
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
7299 7300 7301 7302 7303 7304

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
7305
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7306
			return 1;
7307 7308
	}

7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

7322 7323 7324
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

7325 7326
static int active_load_balance_cpu_stop(void *data);

7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
7358
	return balance_cpu == env->dst_cpu;
7359 7360
}

7361 7362 7363 7364 7365 7366
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
7367
			int *continue_balancing)
7368
{
7369
	int ld_moved, cur_ld_moved, active_balance = 0;
7370
	struct sched_domain *sd_parent = sd->parent;
7371 7372 7373
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
7374
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7375

7376 7377
	struct lb_env env = {
		.sd		= sd,
7378 7379
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
7380
		.dst_grpmask    = sched_group_cpus(sd->groups),
7381
		.idle		= idle,
7382
		.loop_break	= sched_nr_migrate_break,
7383
		.cpus		= cpus,
7384
		.fbq_type	= all,
7385
		.tasks		= LIST_HEAD_INIT(env.tasks),
7386 7387
	};

7388 7389 7390 7391
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
7392
	if (idle == CPU_NEWLY_IDLE)
7393 7394
		env.dst_grpmask = NULL;

7395 7396 7397 7398 7399
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
7400 7401
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
7402
		goto out_balanced;
7403
	}
7404

7405
	group = find_busiest_group(&env);
7406 7407 7408 7409 7410
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

7411
	busiest = find_busiest_queue(&env, group);
7412 7413 7414 7415 7416
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

7417
	BUG_ON(busiest == env.dst_rq);
7418

7419
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7420

7421 7422 7423
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

7424 7425 7426 7427 7428 7429 7430 7431
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
7432
		env.flags |= LBF_ALL_PINNED;
7433
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7434

7435
more_balance:
7436
		raw_spin_lock_irqsave(&busiest->lock, flags);
7437 7438 7439 7440 7441

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
7442
		cur_ld_moved = detach_tasks(&env);
7443 7444

		/*
7445 7446 7447 7448 7449
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
7450
		 */
7451 7452 7453 7454 7455 7456 7457 7458

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

7459
		local_irq_restore(flags);
7460

7461 7462 7463 7464 7465
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
7485
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7486

7487 7488 7489
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

7490
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7491
			env.dst_cpu	 = env.new_dst_cpu;
7492
			env.flags	&= ~LBF_DST_PINNED;
7493 7494
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
7495

7496 7497 7498 7499 7500 7501
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
7502

7503 7504 7505 7506
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
7507
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7508

7509
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7510 7511 7512
				*group_imbalance = 1;
		}

7513
		/* All tasks on this runqueue were pinned by CPU affinity */
7514
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7515
			cpumask_clear_cpu(cpu_of(busiest), cpus);
7516 7517 7518
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
7519
				goto redo;
7520
			}
7521
			goto out_all_pinned;
7522 7523 7524 7525 7526
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
7527 7528 7529 7530 7531 7532 7533 7534
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
7535

7536
		if (need_active_balance(&env)) {
7537 7538
			raw_spin_lock_irqsave(&busiest->lock, flags);

7539 7540 7541
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
7542 7543
			 */
			if (!cpumask_test_cpu(this_cpu,
7544
					tsk_cpus_allowed(busiest->curr))) {
7545 7546
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
7547
				env.flags |= LBF_ALL_PINNED;
7548 7549 7550
				goto out_one_pinned;
			}

7551 7552 7553 7554 7555
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
7556 7557 7558 7559 7560 7561
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7562

7563
			if (active_balance) {
7564 7565 7566
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
7567
			}
7568

7569
			/* We've kicked active balancing, force task migration. */
7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
7583
		 * detach_tasks).
7584 7585 7586 7587 7588 7589 7590 7591
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
7609 7610 7611 7612 7613 7614
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
7615
	if (((env.flags & LBF_ALL_PINNED) &&
7616
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7617 7618 7619
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

7620
	ld_moved = 0;
7621 7622 7623 7624
out:
	return ld_moved;
}

7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

7652 7653 7654 7655
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
7656
static int idle_balance(struct rq *this_rq)
7657
{
7658 7659
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
7660 7661
	struct sched_domain *sd;
	int pulled_task = 0;
7662
	u64 curr_cost = 0;
7663

7664 7665 7666 7667 7668 7669
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

7670 7671
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
7672 7673 7674 7675 7676 7677
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

7678
		goto out;
7679
	}
7680

7681 7682
	raw_spin_unlock(&this_rq->lock);

7683
	update_blocked_averages(this_cpu);
7684
	rcu_read_lock();
7685
	for_each_domain(this_cpu, sd) {
7686
		int continue_balancing = 1;
7687
		u64 t0, domain_cost;
7688 7689 7690 7691

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7692 7693
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
7694
			break;
7695
		}
7696

7697
		if (sd->flags & SD_BALANCE_NEWIDLE) {
7698 7699
			t0 = sched_clock_cpu(this_cpu);

7700
			pulled_task = load_balance(this_cpu, this_rq,
7701 7702
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
7703 7704 7705 7706 7707 7708

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
7709
		}
7710

7711
		update_next_balance(sd, 0, &next_balance);
7712 7713 7714 7715 7716 7717

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
7718 7719
			break;
	}
7720
	rcu_read_unlock();
7721 7722 7723

	raw_spin_lock(&this_rq->lock);

7724 7725 7726
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

7727
	/*
7728 7729 7730
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
7731
	 */
7732
	if (this_rq->cfs.h_nr_running && !pulled_task)
7733
		pulled_task = 1;
7734

7735 7736 7737
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
7738
		this_rq->next_balance = next_balance;
7739

7740
	/* Is there a task of a high priority class? */
7741
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7742 7743
		pulled_task = -1;

7744
	if (pulled_task)
7745 7746
		this_rq->idle_stamp = 0;

7747
	return pulled_task;
7748 7749 7750
}

/*
7751 7752 7753 7754
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
7755
 */
7756
static int active_load_balance_cpu_stop(void *data)
7757
{
7758 7759
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
7760
	int target_cpu = busiest_rq->push_cpu;
7761
	struct rq *target_rq = cpu_rq(target_cpu);
7762
	struct sched_domain *sd;
7763
	struct task_struct *p = NULL;
7764 7765 7766 7767 7768 7769 7770

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
7771 7772 7773

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
7774
		goto out_unlock;
7775 7776 7777 7778 7779 7780 7781 7782 7783

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
7784
	rcu_read_lock();
7785 7786 7787 7788 7789 7790 7791
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
7792 7793
		struct lb_env env = {
			.sd		= sd,
7794 7795 7796 7797
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
7798 7799 7800
			.idle		= CPU_IDLE,
		};

7801 7802
		schedstat_inc(sd, alb_count);

7803
		p = detach_one_task(&env);
7804
		if (p) {
7805
			schedstat_inc(sd, alb_pushed);
7806 7807 7808
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
7809
			schedstat_inc(sd, alb_failed);
7810
		}
7811
	}
7812
	rcu_read_unlock();
7813 7814
out_unlock:
	busiest_rq->active_balance = 0;
7815 7816 7817 7818 7819 7820 7821
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

7822
	return 0;
7823 7824
}

7825 7826 7827 7828 7829
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

7830
#ifdef CONFIG_NO_HZ_COMMON
7831 7832 7833 7834 7835 7836
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
7837
static struct {
7838
	cpumask_var_t idle_cpus_mask;
7839
	atomic_t nr_cpus;
7840 7841
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
7842

7843
static inline int find_new_ilb(void)
7844
{
7845
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7846

7847 7848 7849 7850
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7851 7852
}

7853 7854 7855 7856 7857
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7858
static void nohz_balancer_kick(void)
7859 7860 7861 7862 7863
{
	int ilb_cpu;

	nohz.next_balance++;

7864
	ilb_cpu = find_new_ilb();
7865

7866 7867
	if (ilb_cpu >= nr_cpu_ids)
		return;
7868

7869
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7870 7871 7872 7873 7874 7875 7876 7877
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7878 7879 7880
	return;
}

7881
void nohz_balance_exit_idle(unsigned int cpu)
7882 7883
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7884 7885 7886 7887 7888 7889 7890
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
7891 7892 7893 7894
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

7895 7896 7897
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
7898
	int cpu = smp_processor_id();
7899 7900

	rcu_read_lock();
7901
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7902 7903 7904 7905 7906

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7907
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7908
unlock:
7909 7910 7911 7912 7913 7914
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7915
	int cpu = smp_processor_id();
7916 7917

	rcu_read_lock();
7918
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7919 7920 7921 7922 7923

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7924
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7925
unlock:
7926 7927 7928
	rcu_read_unlock();
}

7929
/*
7930
 * This routine will record that the cpu is going idle with tick stopped.
7931
 * This info will be used in performing idle load balancing in the future.
7932
 */
7933
void nohz_balance_enter_idle(int cpu)
7934
{
7935 7936 7937 7938 7939 7940
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

7941 7942
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
7943

7944 7945 7946 7947 7948 7949
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

7950 7951 7952
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7953 7954 7955 7956 7957
}
#endif

static DEFINE_SPINLOCK(balancing);

7958 7959 7960 7961
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
7962
void update_max_interval(void)
7963 7964 7965 7966
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

7967 7968 7969 7970
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7971
 * Balancing parameters are set up in init_sched_domains.
7972
 */
7973
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7974
{
7975
	int continue_balancing = 1;
7976
	int cpu = rq->cpu;
7977
	unsigned long interval;
7978
	struct sched_domain *sd;
7979 7980 7981
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7982 7983
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7984

7985
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7986

7987
	rcu_read_lock();
7988
	for_each_domain(cpu, sd) {
7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8001 8002 8003
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8015
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8016 8017 8018 8019 8020 8021 8022 8023

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8024
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8025
				/*
8026
				 * The LBF_DST_PINNED logic could have changed
8027 8028
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8029
				 */
8030
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8031 8032
			}
			sd->last_balance = jiffies;
8033
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8034 8035 8036 8037 8038 8039 8040 8041
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8042 8043
	}
	if (need_decay) {
8044
		/*
8045 8046
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8047
		 */
8048 8049
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8050
	}
8051
	rcu_read_unlock();
8052 8053 8054 8055 8056 8057

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8058
	if (likely(update_next_balance)) {
8059
		rq->next_balance = next_balance;
8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8074 8075
}

8076
#ifdef CONFIG_NO_HZ_COMMON
8077
/*
8078
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8079 8080
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8081
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8082
{
8083
	int this_cpu = this_rq->cpu;
8084 8085
	struct rq *rq;
	int balance_cpu;
8086 8087 8088
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8089

8090 8091 8092
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8093 8094

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8095
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8096 8097 8098 8099 8100 8101 8102
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8103
		if (need_resched())
8104 8105
			break;

V
Vincent Guittot 已提交
8106 8107
		rq = cpu_rq(balance_cpu);

8108 8109 8110 8111 8112 8113 8114
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
8115
			cpu_load_update_idle(rq);
8116 8117 8118
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
8119

8120 8121 8122 8123
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8124
	}
8125 8126 8127 8128 8129 8130 8131 8132

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8133 8134
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8135 8136 8137
}

/*
8138
 * Current heuristic for kicking the idle load balancer in the presence
8139
 * of an idle cpu in the system.
8140
 *   - This rq has more than one task.
8141 8142 8143 8144
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8145 8146
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8147
 */
8148
static inline bool nohz_kick_needed(struct rq *rq)
8149 8150
{
	unsigned long now = jiffies;
8151
	struct sched_domain *sd;
8152
	struct sched_group_capacity *sgc;
8153
	int nr_busy, cpu = rq->cpu;
8154
	bool kick = false;
8155

8156
	if (unlikely(rq->idle_balance))
8157
		return false;
8158

8159 8160 8161 8162
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8163
	set_cpu_sd_state_busy();
8164
	nohz_balance_exit_idle(cpu);
8165 8166 8167 8168 8169 8170

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8171
		return false;
8172 8173

	if (time_before(now, nohz.next_balance))
8174
		return false;
8175

8176
	if (rq->nr_running >= 2)
8177
		return true;
8178

8179
	rcu_read_lock();
8180 8181
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
	if (sd) {
8182 8183
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
8184

8185 8186 8187 8188 8189
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8190
	}
8191

8192 8193 8194 8195 8196 8197 8198 8199
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8200

8201
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8202
	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8203 8204 8205 8206
				  sched_domain_span(sd)) < cpu)) {
		kick = true;
		goto unlock;
	}
8207

8208
unlock:
8209
	rcu_read_unlock();
8210
	return kick;
8211 8212
}
#else
8213
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8214 8215 8216 8217 8218 8219
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8220 8221
static void run_rebalance_domains(struct softirq_action *h)
{
8222
	struct rq *this_rq = this_rq();
8223
	enum cpu_idle_type idle = this_rq->idle_balance ?
8224 8225 8226
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8227
	 * If this cpu has a pending nohz_balance_kick, then do the
8228
	 * balancing on behalf of the other idle cpus whose ticks are
8229 8230 8231 8232
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8233
	 */
8234
	nohz_idle_balance(this_rq, idle);
8235
	rebalance_domains(this_rq, idle);
8236 8237 8238 8239 8240
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
8241
void trigger_load_balance(struct rq *rq)
8242 8243
{
	/* Don't need to rebalance while attached to NULL domain */
8244 8245 8246 8247
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
8248
		raise_softirq(SCHED_SOFTIRQ);
8249
#ifdef CONFIG_NO_HZ_COMMON
8250
	if (nohz_kick_needed(rq))
8251
		nohz_balancer_kick();
8252
#endif
8253 8254
}

8255 8256 8257
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
8258 8259

	update_runtime_enabled(rq);
8260 8261 8262 8263 8264
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
8265 8266 8267

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
8268 8269
}

8270
#endif /* CONFIG_SMP */
8271

8272 8273 8274
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
8275
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8276 8277 8278 8279 8280 8281
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
8282
		entity_tick(cfs_rq, se, queued);
8283
	}
8284

8285
	if (static_branch_unlikely(&sched_numa_balancing))
8286
		task_tick_numa(rq, curr);
8287 8288 8289
}

/*
P
Peter Zijlstra 已提交
8290 8291 8292
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
8293
 */
P
Peter Zijlstra 已提交
8294
static void task_fork_fair(struct task_struct *p)
8295
{
8296 8297
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
8298
	struct rq *rq = this_rq();
8299

8300
	raw_spin_lock(&rq->lock);
8301 8302
	update_rq_clock(rq);

8303 8304
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
8305 8306
	if (curr) {
		update_curr(cfs_rq);
8307
		se->vruntime = curr->vruntime;
8308
	}
8309
	place_entity(cfs_rq, se, 1);
8310

P
Peter Zijlstra 已提交
8311
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
8312
		/*
8313 8314 8315
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
8316
		swap(curr->vruntime, se->vruntime);
8317
		resched_curr(rq);
8318
	}
8319

8320
	se->vruntime -= cfs_rq->min_vruntime;
8321
	raw_spin_unlock(&rq->lock);
8322 8323
}

8324 8325 8326 8327
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
8328 8329
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8330
{
8331
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
8332 8333
		return;

8334 8335 8336 8337 8338
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
8339
	if (rq->curr == p) {
8340
		if (p->prio > oldprio)
8341
			resched_curr(rq);
8342
	} else
8343
		check_preempt_curr(rq, p, 0);
8344 8345
}

8346
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
8347 8348 8349 8350
{
	struct sched_entity *se = &p->se;

	/*
8351 8352 8353 8354 8355 8356 8357 8358 8359 8360
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
8361
	 *
8362 8363 8364 8365
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
8366
	 */
8367 8368 8369 8370 8371 8372 8373 8374 8375 8376
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8377
	u64 now = cfs_rq_clock_task(cfs_rq);
8378 8379

	if (!vruntime_normalized(p)) {
P
Peter Zijlstra 已提交
8380 8381 8382 8383 8384 8385 8386
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
8387

8388
	/* Catch up with the cfs_rq and remove our load when we leave */
8389
	update_cfs_rq_load_avg(now, cfs_rq, false);
8390
	detach_entity_load_avg(cfs_rq, se);
P
Peter Zijlstra 已提交
8391 8392
}

8393
static void attach_task_cfs_rq(struct task_struct *p)
8394
{
8395
	struct sched_entity *se = &p->se;
8396
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8397
	u64 now = cfs_rq_clock_task(cfs_rq);
8398 8399

#ifdef CONFIG_FAIR_GROUP_SCHED
8400 8401 8402 8403 8404 8405
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
8406

8407
	/* Synchronize task with its cfs_rq */
8408
	update_cfs_rq_load_avg(now, cfs_rq, false);
8409 8410 8411 8412 8413
	attach_entity_load_avg(cfs_rq, se);

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
8414

8415 8416 8417 8418 8419 8420 8421 8422
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
8423

8424
	if (task_on_rq_queued(p)) {
8425
		/*
8426 8427 8428
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
8429
		 */
8430 8431 8432 8433
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
8434
	}
8435 8436
}

8437 8438 8439 8440 8441 8442 8443 8444 8445
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

8446 8447 8448 8449 8450 8451 8452
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
8453 8454
}

8455 8456 8457 8458 8459 8460 8461
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
8462
#ifdef CONFIG_SMP
8463 8464
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8465
#endif
8466 8467
}

P
Peter Zijlstra 已提交
8468
#ifdef CONFIG_FAIR_GROUP_SCHED
8469 8470 8471 8472 8473 8474 8475 8476
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

8477
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
8478
{
8479
	detach_task_cfs_rq(p);
8480
	set_task_rq(p, task_cpu(p));
8481 8482 8483 8484 8485

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
8486
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
8487
}
8488

8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

8502 8503 8504 8505 8506 8507 8508 8509 8510
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
8511
		if (tg->se)
8512 8513 8514 8515 8516 8517 8518 8519 8520 8521
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
8522 8523
	struct cfs_rq *cfs_rq;
	struct rq *rq;
8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
8538 8539
		rq = cpu_rq(i);

8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8552
		init_entity_runnable_average(se);
8553 8554

		raw_spin_lock_irq(&rq->lock);
8555
		post_init_entity_util_avg(se);
8556
		raw_spin_unlock_irq(&rq->lock);
8557 8558 8559 8560 8561 8562 8563 8564 8565 8566
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

8567
void unregister_fair_sched_group(struct task_group *tg)
8568 8569
{
	unsigned long flags;
8570 8571
	struct rq *rq;
	int cpu;
8572

8573 8574 8575
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
8576

8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
8609
	if (!parent) {
8610
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
8611 8612
		se->depth = 0;
	} else {
8613
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
8614 8615
		se->depth = parent->depth + 1;
	}
8616 8617

	se->my_q = cfs_rq;
8618 8619
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
8650 8651 8652

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
8653
		for_each_sched_entity(se)
8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

8671
void unregister_fair_sched_group(struct task_group *tg) { }
8672 8673 8674

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
8675

8676
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8677 8678 8679 8680 8681 8682 8683 8684 8685
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
8686
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8687 8688 8689 8690

	return rr_interval;
}

8691 8692 8693
/*
 * All the scheduling class methods:
 */
8694
const struct sched_class fair_sched_class = {
8695
	.next			= &idle_sched_class,
8696 8697 8698
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
8699
	.yield_to_task		= yield_to_task_fair,
8700

I
Ingo Molnar 已提交
8701
	.check_preempt_curr	= check_preempt_wakeup,
8702 8703 8704 8705

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

8706
#ifdef CONFIG_SMP
L
Li Zefan 已提交
8707
	.select_task_rq		= select_task_rq_fair,
8708
	.migrate_task_rq	= migrate_task_rq_fair,
8709

8710 8711
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
8712

8713
	.task_dead		= task_dead_fair,
8714
	.set_cpus_allowed	= set_cpus_allowed_common,
8715
#endif
8716

8717
	.set_curr_task          = set_curr_task_fair,
8718
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
8719
	.task_fork		= task_fork_fair,
8720 8721

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
8722
	.switched_from		= switched_from_fair,
8723
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
8724

8725 8726
	.get_rr_interval	= get_rr_interval_fair,

8727 8728
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
8729
#ifdef CONFIG_FAIR_GROUP_SCHED
8730
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
8731
#endif
8732 8733 8734
};

#ifdef CONFIG_SCHED_DEBUG
8735
void print_cfs_stats(struct seq_file *m, int cpu)
8736 8737 8738
{
	struct cfs_rq *cfs_rq;

8739
	rcu_read_lock();
8740
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8741
		print_cfs_rq(m, cpu, cfs_rq);
8742
	rcu_read_unlock();
8743
}
8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
8765 8766 8767 8768 8769 8770

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

8771
#ifdef CONFIG_NO_HZ_COMMON
8772
	nohz.next_balance = jiffies;
8773 8774 8775 8776 8777
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}