fair.c 218.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

135 136 137 138 139 140 141 142 143
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
144
static unsigned int get_update_sysctl_factor(void)
145
{
146
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

182
#define WMULT_CONST	(~0U)
183 184
#define WMULT_SHIFT	32

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
201 202

/*
203 204 205 206 207 208 209 210 211 212
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213
 */
214
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215
{
216 217
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
218

219
	__update_inv_weight(lw);
220

221 222 223 224 225
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
226 227
	}

228 229
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
230

231 232 233 234
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
235

236
	return mul_u64_u32_shr(delta_exec, fact, shift);
237 238 239 240
}


const struct sched_class fair_sched_class;
241

242 243 244 245
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

246
#ifdef CONFIG_FAIR_GROUP_SCHED
247

248
/* cpu runqueue to which this cfs_rq is attached */
249 250
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
251
	return cfs_rq->rq;
252 253
}

254 255
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
256

257 258 259 260 261 262 263 264
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

286 287 288
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302
		}
303 304 305 306 307 308 309 310 311 312 313 314 315

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
316 317 318 319 320
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
321
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
322 323 324
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
325
		return se->cfs_rq;
P
Peter Zijlstra 已提交
326

P
Peter Zijlstra 已提交
327
	return NULL;
P
Peter Zijlstra 已提交
328 329 330 331 332 333 334
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

335 336 337 338 339 340 341 342 343 344 345 346 347
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
348 349
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

367 368 369 370 371 372
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
373

374 375 376
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
377 378 379 380
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
381 382
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
383

P
Peter Zijlstra 已提交
384
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385
{
P
Peter Zijlstra 已提交
386
	return &task_rq(p)->cfs;
387 388
}

P
Peter Zijlstra 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

403 404 405 406 407 408 409 410
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
411 412 413 414 415 416 417 418
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

419 420 421 422 423
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
424 425
#endif	/* CONFIG_FAIR_GROUP_SCHED */

426
static __always_inline
427
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428 429 430 431 432

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

433
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434
{
435
	s64 delta = (s64)(vruntime - max_vruntime);
436
	if (delta > 0)
437
		max_vruntime = vruntime;
438

439
	return max_vruntime;
440 441
}

442
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

451 452 453 454 455 456
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

457 458 459 460 461 462 463 464 465 466 467 468
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
469
		if (!cfs_rq->curr)
470 471 472 473 474
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

475
	/* ensure we never gain time by being placed backwards. */
476
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 478 479 480
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
481 482
}

483 484 485
/*
 * Enqueue an entity into the rb-tree:
 */
486
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
503
		if (entity_before(se, entry)) {
504 505 506 507 508 509 510 511 512 513 514
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
515
	if (leftmost)
I
Ingo Molnar 已提交
516
		cfs_rq->rb_leftmost = &se->run_node;
517 518 519 520 521

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

522
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523
{
P
Peter Zijlstra 已提交
524 525 526 527 528 529
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
530

531 532 533
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

534
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535
{
536 537 538 539 540 541
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
542 543
}

544 545 546 547 548 549 550 551 552 553 554
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
555
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556
{
557
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558

559 560
	if (!last)
		return NULL;
561 562

	return rb_entry(last, struct sched_entity, run_node);
563 564
}

565 566 567 568
/**************************************************************
 * Scheduling class statistics methods:
 */

569
int sched_proc_update_handler(struct ctl_table *table, int write,
570
		void __user *buffer, size_t *lenp,
571 572
		loff_t *ppos)
{
573
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574
	unsigned int factor = get_update_sysctl_factor();
575 576 577 578 579 580 581

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

582 583 584 585 586 587 588
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

589 590 591
	return 0;
}
#endif
592

593
/*
594
 * delta /= w
595
 */
596
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597
{
598
	if (unlikely(se->load.weight != NICE_0_LOAD))
599
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600 601 602 603

	return delta;
}

604 605 606
/*
 * The idea is to set a period in which each task runs once.
 *
607
 * When there are too many tasks (sched_nr_latency) we have to stretch
608 609 610 611
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
612 613
static u64 __sched_period(unsigned long nr_running)
{
614 615 616 617
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
618 619
}

620 621 622 623
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
624
 * s = p*P[w/rw]
625
 */
P
Peter Zijlstra 已提交
626
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627
{
M
Mike Galbraith 已提交
628
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629

M
Mike Galbraith 已提交
630
	for_each_sched_entity(se) {
L
Lin Ming 已提交
631
		struct load_weight *load;
632
		struct load_weight lw;
L
Lin Ming 已提交
633 634 635

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
636

M
Mike Galbraith 已提交
637
		if (unlikely(!se->on_rq)) {
638
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
639 640 641 642

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
643
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
644 645
	}
	return slice;
646 647
}

648
/*
A
Andrei Epure 已提交
649
 * We calculate the vruntime slice of a to-be-inserted task.
650
 *
651
 * vs = s/w
652
 */
653
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
654
{
655
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 657
}

658
#ifdef CONFIG_SMP
659
static int select_idle_sibling(struct task_struct *p, int cpu);
660 661
static unsigned long task_h_load(struct task_struct *p);

662 663
/*
 * We choose a half-life close to 1 scheduling period.
664 665
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
666 667 668
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670

671 672
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
673
{
674
	struct sched_avg *sa = &se->avg;
675

676 677 678 679 680 681 682
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
683
	sa->load_avg = scale_load_down(se->load.weight);
684 685
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
	sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
686
	sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
687
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
688
}
689 690 691

static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
692
#else
693
void init_entity_runnable_average(struct sched_entity *se)
694 695 696 697
{
}
#endif

698
/*
699
 * Update the current task's runtime statistics.
700
 */
701
static void update_curr(struct cfs_rq *cfs_rq)
702
{
703
	struct sched_entity *curr = cfs_rq->curr;
704
	u64 now = rq_clock_task(rq_of(cfs_rq));
705
	u64 delta_exec;
706 707 708 709

	if (unlikely(!curr))
		return;

710 711
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
712
		return;
713

I
Ingo Molnar 已提交
714
	curr->exec_start = now;
715

716 717 718 719 720 721 722 723 724
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

725 726 727
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

728
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
729
		cpuacct_charge(curtask, delta_exec);
730
		account_group_exec_runtime(curtask, delta_exec);
731
	}
732 733

	account_cfs_rq_runtime(cfs_rq, delta_exec);
734 735
}

736 737 738 739 740
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

741
static inline void
742
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
743
{
744
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
745 746 747 748 749
}

/*
 * Task is being enqueued - update stats:
 */
750
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
751 752 753 754 755
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
756
	if (se != cfs_rq->curr)
757
		update_stats_wait_start(cfs_rq, se);
758 759 760
}

static void
761
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
762
{
763
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
764
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
765 766
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
767
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768 769 770
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
771
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
772 773
	}
#endif
774
	schedstat_set(se->statistics.wait_start, 0);
775 776 777
}

static inline void
778
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 780 781 782 783
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
784
	if (se != cfs_rq->curr)
785
		update_stats_wait_end(cfs_rq, se);
786 787 788 789 790 791
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
792
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
793 794 795 796
{
	/*
	 * We are starting a new run period:
	 */
797
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
798 799 800 801 802 803
}

/**************************************************
 * Scheduling class queueing methods:
 */

804 805
#ifdef CONFIG_NUMA_BALANCING
/*
806 807 808
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
809
 */
810 811
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
812 813 814

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
815

816 817 818
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
843
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
844 845 846
	unsigned int scan, floor;
	unsigned int windows = 1;

847 848
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

865 866 867 868 869 870 871 872 873 874 875 876
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

877 878 879 880 881
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
882
	pid_t gid;
883 884

	struct rcu_head rcu;
885
	nodemask_t active_nodes;
886
	unsigned long total_faults;
887 888 889 890 891
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
892
	unsigned long *faults_cpu;
893
	unsigned long faults[0];
894 895
};

896 897 898 899 900 901 902 903 904
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

905 906 907 908 909
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

910 911 912 913 914 915 916
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
917
{
918
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
919 920 921 922
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
923
	if (!p->numa_faults)
924 925
		return 0;

926 927
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
928 929
}

930 931 932 933 934
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

935 936
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
937 938
}

939 940
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
941 942
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
943 944
}

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1010 1011 1012 1013 1014 1015
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1016 1017
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1018
{
1019
	unsigned long faults, total_faults;
1020

1021
	if (!p->numa_faults)
1022 1023 1024 1025 1026 1027 1028
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1029
	faults = task_faults(p, nid);
1030 1031
	faults += score_nearby_nodes(p, nid, dist, true);

1032
	return 1000 * faults / total_faults;
1033 1034
}

1035 1036
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1037
{
1038 1039 1040 1041 1042 1043 1044 1045
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1046 1047
		return 0;

1048
	faults = group_faults(p, nid);
1049 1050
	faults += score_nearby_nodes(p, nid, dist, false);

1051
	return 1000 * faults / total_faults;
1052 1053
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Do not migrate if the destination is not a node that
	 * is actively used by this numa group.
	 */
	if (!node_isset(dst_nid, ng->active_nodes))
		return false;

	/*
	 * Source is a node that is not actively used by this
	 * numa group, while the destination is. Migrate.
	 */
	if (!node_isset(src_nid, ng->active_nodes))
		return true;

	/*
	 * Both source and destination are nodes in active
	 * use by this numa group. Maximize memory bandwidth
	 * by migrating from more heavily used groups, to less
	 * heavily used ones, spreading the load around.
	 * Use a 1/4 hysteresis to avoid spurious page movement.
	 */
	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}

1117
static unsigned long weighted_cpuload(const int cpu);
1118 1119
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1120
static unsigned long capacity_of(int cpu);
1121 1122
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1123
/* Cached statistics for all CPUs within a node */
1124
struct numa_stats {
1125
	unsigned long nr_running;
1126
	unsigned long load;
1127 1128

	/* Total compute capacity of CPUs on a node */
1129
	unsigned long compute_capacity;
1130 1131

	/* Approximate capacity in terms of runnable tasks on a node */
1132
	unsigned long task_capacity;
1133
	int has_free_capacity;
1134
};
1135

1136 1137 1138 1139 1140
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1141 1142
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1143 1144 1145 1146 1147 1148 1149

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1150
		ns->compute_capacity += capacity_of(cpu);
1151 1152

		cpus++;
1153 1154
	}

1155 1156 1157 1158 1159
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1160 1161
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1162 1163 1164 1165
	 */
	if (!cpus)
		return;

1166 1167 1168 1169 1170 1171
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1172
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1173 1174
}

1175 1176
struct task_numa_env {
	struct task_struct *p;
1177

1178 1179
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1180

1181
	struct numa_stats src_stats, dst_stats;
1182

1183
	int imbalance_pct;
1184
	int dist;
1185 1186 1187

	struct task_struct *best_task;
	long best_imp;
1188 1189 1190
	int best_cpu;
};

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1204
static bool load_too_imbalanced(long src_load, long dst_load,
1205 1206
				struct task_numa_env *env)
{
1207 1208
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1220 1221

	/* We care about the slope of the imbalance, not the direction. */
1222 1223
	if (dst_load < src_load)
		swap(dst_load, src_load);
1224 1225

	/* Is the difference below the threshold? */
1226 1227
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1228 1229 1230 1231 1232
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1233
	 * Compare it with the old imbalance.
1234
	 */
1235
	orig_src_load = env->src_stats.load;
1236
	orig_dst_load = env->dst_stats.load;
1237

1238 1239
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1240

1241 1242 1243 1244 1245
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1246 1247
}

1248 1249 1250 1251 1252 1253
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1254 1255
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1256 1257 1258 1259
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1260
	long src_load, dst_load;
1261
	long load;
1262
	long imp = env->p->numa_group ? groupimp : taskimp;
1263
	long moveimp = imp;
1264
	int dist = env->dist;
1265 1266

	rcu_read_lock();
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

	raw_spin_lock_irq(&dst_rq->lock);
	cur = dst_rq->curr;
	/*
	 * No need to move the exiting task, and this ensures that ->curr
	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
	 * is safe under RCU read lock.
	 * Note that rcu_read_lock() itself can't protect from the final
	 * put_task_struct() after the last schedule().
	 */
	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1278
		cur = NULL;
1279
	raw_spin_unlock_irq(&dst_rq->lock);
1280

1281 1282 1283 1284 1285 1286 1287
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1300 1301
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1302
		 * in any group then look only at task weights.
1303
		 */
1304
		if (cur->numa_group == env->p->numa_group) {
1305 1306
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1307 1308 1309 1310 1311 1312
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1313
		} else {
1314 1315 1316 1317 1318 1319
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1320 1321
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1322
			else
1323 1324
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1325
		}
1326 1327
	}

1328
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1329 1330 1331 1332
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1333
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1334
		    !env->dst_stats.has_free_capacity)
1335 1336 1337 1338 1339 1340
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1341 1342
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1343 1344 1345 1346 1347 1348
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1349 1350 1351
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1352

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1370
	if (cur) {
1371 1372 1373
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1374 1375
	}

1376
	if (load_too_imbalanced(src_load, dst_load, env))
1377 1378
		goto unlock;

1379 1380 1381 1382 1383 1384 1385
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur)
		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);

1386 1387 1388 1389 1390 1391
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1392 1393
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1394 1395 1396 1397 1398 1399 1400 1401 1402
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1403
		task_numa_compare(env, taskimp, groupimp);
1404 1405 1406
	}
}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1424 1425 1426
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1427 1428 1429 1430 1431
		return true;

	return false;
}

1432 1433 1434 1435
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1436

1437
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1438
		.src_nid = task_node(p),
1439 1440 1441 1442 1443 1444

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1445 1446
	};
	struct sched_domain *sd;
1447
	unsigned long taskweight, groupweight;
1448
	int nid, ret, dist;
1449
	long taskimp, groupimp;
1450

1451
	/*
1452 1453 1454 1455 1456 1457
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1458 1459
	 */
	rcu_read_lock();
1460
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1461 1462
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1463 1464
	rcu_read_unlock();

1465 1466 1467 1468 1469 1470 1471
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1472
		p->numa_preferred_nid = task_node(p);
1473 1474 1475
		return -EINVAL;
	}

1476
	env.dst_nid = p->numa_preferred_nid;
1477 1478 1479 1480 1481 1482
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1483
	update_numa_stats(&env.dst_stats, env.dst_nid);
1484

1485
	/* Try to find a spot on the preferred nid. */
1486 1487
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1488

1489 1490 1491 1492 1493 1494 1495 1496 1497
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
	if (env.best_cpu == -1 || (p->numa_group &&
			nodes_weight(p->numa_group->active_nodes) > 1)) {
1498 1499 1500
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1501

1502
			dist = node_distance(env.src_nid, env.dst_nid);
1503 1504 1505 1506 1507
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1508

1509
			/* Only consider nodes where both task and groups benefit */
1510 1511
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1512
			if (taskimp < 0 && groupimp < 0)
1513 1514
				continue;

1515
			env.dist = dist;
1516 1517
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1518 1519
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1520 1521 1522
		}
	}

1523 1524 1525 1526 1527 1528 1529 1530
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	if (p->numa_group) {
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

		if (node_isset(nid, p->numa_group->active_nodes))
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1544

1545 1546 1547 1548 1549 1550
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1551
	if (env.best_task == NULL) {
1552 1553 1554
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1555 1556 1557 1558
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1559 1560
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1561 1562
	put_task_struct(env.best_task);
	return ret;
1563 1564
}

1565 1566 1567
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1568 1569
	unsigned long interval = HZ;

1570
	/* This task has no NUMA fault statistics yet */
1571
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1572 1573
		return;

1574
	/* Periodically retry migrating the task to the preferred node */
1575 1576
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1577 1578

	/* Success if task is already running on preferred CPU */
1579
	if (task_node(p) == p->numa_preferred_nid)
1580 1581 1582
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1583
	task_numa_migrate(p);
1584 1585
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1618 1619 1620
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1621 1622 1623
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1624 1625
 */
#define NUMA_PERIOD_SLOTS 10
1626
#define NUMA_PERIOD_THRESHOLD 7
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1647 1648 1649
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1650
	 */
1651
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1685
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1686 1687 1688 1689 1690 1691 1692 1693
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1712 1713
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1714 1715 1716 1717 1718 1719 1720 1721
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
1769
		nodemask_t max_group = NODE_MASK_NONE;
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
1803 1804
		if (!max_faults)
			break;
1805 1806 1807 1808 1809
		nodes = max_group;
	}
	return nid;
}

1810 1811
static void task_numa_placement(struct task_struct *p)
{
1812 1813
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1814
	unsigned long fault_types[2] = { 0, 0 };
1815 1816
	unsigned long total_faults;
	u64 runtime, period;
1817
	spinlock_t *group_lock = NULL;
1818

1819 1820 1821 1822 1823
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
1824
	seq = READ_ONCE(p->mm->numa_scan_seq);
1825 1826 1827
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1828
	p->numa_scan_period_max = task_scan_max(p);
1829

1830 1831 1832 1833
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1834 1835 1836
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1837
		spin_lock_irq(group_lock);
1838 1839
	}

1840 1841
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1842 1843
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1844
		unsigned long faults = 0, group_faults = 0;
1845
		int priv;
1846

1847
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1848
			long diff, f_diff, f_weight;
1849

1850 1851 1852 1853
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1854

1855
			/* Decay existing window, copy faults since last scan */
1856 1857 1858
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
1859

1860 1861 1862 1863 1864 1865 1866 1867
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
1868
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1869
				   (total_faults + 1);
1870 1871
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
1872

1873 1874 1875
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
1876
			p->total_numa_faults += diff;
1877
			if (p->numa_group) {
1878 1879 1880 1881 1882 1883 1884 1885 1886
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
1887
				p->numa_group->total_faults += diff;
1888
				group_faults += p->numa_group->faults[mem_idx];
1889
			}
1890 1891
		}

1892 1893 1894 1895
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1896 1897 1898 1899 1900 1901 1902

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1903 1904
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1905
	if (p->numa_group) {
1906
		update_numa_active_node_mask(p->numa_group);
1907
		spin_unlock_irq(group_lock);
1908
		max_nid = preferred_group_nid(p, max_group_nid);
1909 1910
	}

1911 1912 1913 1914 1915 1916 1917
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
1918
	}
1919 1920
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1932 1933
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1934 1935 1936 1937 1938 1939 1940 1941 1942
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1943
				    4*nr_node_ids*sizeof(unsigned long);
1944 1945 1946 1947 1948 1949 1950

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
1951
		grp->gid = p->pid;
1952
		/* Second half of the array tracks nids where faults happen */
1953 1954
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
1955

1956 1957
		node_set(task_node(current), grp->active_nodes);

1958
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1959
			grp->faults[i] = p->numa_faults[i];
1960

1961
		grp->total_faults = p->total_numa_faults;
1962

1963 1964 1965 1966 1967
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
1968
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
1969 1970

	if (!cpupid_match_pid(tsk, cpupid))
1971
		goto no_join;
1972 1973 1974

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1975
		goto no_join;
1976 1977 1978

	my_grp = p->numa_group;
	if (grp == my_grp)
1979
		goto no_join;
1980 1981 1982 1983 1984 1985

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1986
		goto no_join;
1987 1988 1989 1990 1991

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1992
		goto no_join;
1993

1994 1995 1996 1997 1998 1999 2000
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2001

2002 2003 2004
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2005
	if (join && !get_numa_group(grp))
2006
		goto no_join;
2007 2008 2009 2010 2011 2012

	rcu_read_unlock();

	if (!join)
		return;

2013 2014
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2015

2016
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2017 2018
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2019
	}
2020 2021
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2022 2023 2024 2025 2026

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2027
	spin_unlock_irq(&grp->lock);
2028 2029 2030 2031

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2032 2033 2034 2035 2036
	return;

no_join:
	rcu_read_unlock();
	return;
2037 2038 2039 2040 2041
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2042
	void *numa_faults = p->numa_faults;
2043 2044
	unsigned long flags;
	int i;
2045 2046

	if (grp) {
2047
		spin_lock_irqsave(&grp->lock, flags);
2048
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2049
			grp->faults[i] -= p->numa_faults[i];
2050
		grp->total_faults -= p->total_numa_faults;
2051

2052
		grp->nr_tasks--;
2053
		spin_unlock_irqrestore(&grp->lock, flags);
2054
		RCU_INIT_POINTER(p->numa_group, NULL);
2055 2056 2057
		put_numa_group(grp);
	}

2058
	p->numa_faults = NULL;
2059
	kfree(numa_faults);
2060 2061
}

2062 2063 2064
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2065
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2066 2067
{
	struct task_struct *p = current;
2068
	bool migrated = flags & TNF_MIGRATED;
2069
	int cpu_node = task_node(current);
2070
	int local = !!(flags & TNF_FAULT_LOCAL);
2071
	int priv;
2072

2073
	if (!static_branch_likely(&sched_numa_balancing))
2074 2075
		return;

2076 2077 2078 2079
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2080
	/* Allocate buffer to track faults on a per-node basis */
2081 2082
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2083
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2084

2085 2086
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2087
			return;
2088

2089
		p->total_numa_faults = 0;
2090
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2091
	}
2092

2093 2094 2095 2096 2097 2098 2099 2100
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2101
		if (!priv && !(flags & TNF_NO_GROUP))
2102
			task_numa_group(p, last_cpupid, flags, &priv);
2103 2104
	}

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
	if (!priv && !local && p->numa_group &&
			node_isset(cpu_node, p->numa_group->active_nodes) &&
			node_isset(mem_node, p->numa_group->active_nodes))
		local = 1;

2116
	task_numa_placement(p);
2117

2118 2119 2120 2121 2122
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2123 2124
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2125 2126
	if (migrated)
		p->numa_pages_migrated += pages;
2127 2128
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2129

2130 2131
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2132
	p->numa_faults_locality[local] += pages;
2133 2134
}

2135 2136
static void reset_ptenuma_scan(struct task_struct *p)
{
2137 2138 2139 2140 2141 2142 2143 2144
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2145
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2146 2147 2148
	p->mm->numa_scan_offset = 0;
}

2149 2150 2151 2152 2153 2154 2155 2156 2157
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2158
	struct vm_area_struct *vma;
2159
	unsigned long start, end;
2160
	unsigned long nr_pte_updates = 0;
2161
	long pages, virtpages;
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2177
	if (!mm->numa_next_scan) {
2178 2179
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2180 2181
	}

2182 2183 2184 2185 2186 2187 2188
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2189 2190 2191 2192
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2193

2194
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2195 2196 2197
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2198 2199 2200 2201 2202 2203
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2204 2205 2206
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2207
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2208 2209
	if (!pages)
		return;
2210

2211

2212
	down_read(&mm->mmap_sem);
2213
	vma = find_vma(mm, start);
2214 2215
	if (!vma) {
		reset_ptenuma_scan(p);
2216
		start = 0;
2217 2218
		vma = mm->mmap;
	}
2219
	for (; vma; vma = vma->vm_next) {
2220
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2221
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2222
			continue;
2223
		}
2224

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2235 2236 2237 2238 2239 2240
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2241

2242 2243 2244 2245
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2246
			nr_pte_updates = change_prot_numa(vma, start, end);
2247 2248

			/*
2249 2250 2251 2252 2253 2254
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2255 2256 2257
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2258
			virtpages -= (end - start) >> PAGE_SHIFT;
2259

2260
			start = end;
2261
			if (pages <= 0 || virtpages <= 0)
2262
				goto out;
2263 2264

			cond_resched();
2265
		} while (end != vma->vm_end);
2266
	}
2267

2268
out:
2269
	/*
P
Peter Zijlstra 已提交
2270 2271 2272 2273
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2274 2275
	 */
	if (vma)
2276
		mm->numa_scan_offset = start;
2277 2278 2279
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2305
	if (now > curr->node_stamp + period) {
2306
		if (!curr->node_stamp)
2307
			curr->numa_scan_period = task_scan_min(curr);
2308
		curr->node_stamp += period;
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2320 2321 2322 2323 2324 2325 2326 2327

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2328 2329
#endif /* CONFIG_NUMA_BALANCING */

2330 2331 2332 2333
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2334
	if (!parent_entity(se))
2335
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2336
#ifdef CONFIG_SMP
2337 2338 2339 2340 2341 2342
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2343
#endif
2344 2345 2346 2347 2348 2349 2350
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2351
	if (!parent_entity(se))
2352
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2353 2354
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2355
		list_del_init(&se->group_node);
2356
	}
2357 2358 2359
	cfs_rq->nr_running--;
}

2360 2361
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2362 2363 2364 2365 2366
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
2367 2368 2369
	 * Use this CPU's real-time load instead of the last load contribution
	 * as the updating of the contribution is delayed, and we will use the
	 * the real-time load to calc the share. See update_tg_load_avg().
2370
	 */
2371
	tg_weight = atomic_long_read(&tg->load_avg);
2372
	tg_weight -= cfs_rq->tg_load_avg_contrib;
2373
	tg_weight += cfs_rq->load.weight;
2374 2375 2376 2377

	return tg_weight;
}

2378
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2379
{
2380
	long tg_weight, load, shares;
2381

2382
	tg_weight = calc_tg_weight(tg, cfs_rq);
2383
	load = cfs_rq->load.weight;
2384 2385

	shares = (tg->shares * load);
2386 2387
	if (tg_weight)
		shares /= tg_weight;
2388 2389 2390 2391 2392 2393 2394 2395 2396

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2397
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2398 2399 2400 2401
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2402 2403 2404
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2405 2406 2407 2408
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2409
		account_entity_dequeue(cfs_rq, se);
2410
	}
P
Peter Zijlstra 已提交
2411 2412 2413 2414 2415 2416 2417

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2418 2419
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2420
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2421 2422 2423
{
	struct task_group *tg;
	struct sched_entity *se;
2424
	long shares;
P
Peter Zijlstra 已提交
2425 2426 2427

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2428
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2429
		return;
2430 2431 2432 2433
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2434
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2435 2436 2437 2438

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2439
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2440 2441 2442 2443
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2444
#ifdef CONFIG_SMP
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2465 2466 2467 2468 2469 2470
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2483 2484
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2485 2486 2487 2488 2489 2490
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2491 2492
	}

2493 2494
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2523 2524
}

2525 2526 2527 2528
#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
#error "load tracking assumes 2^10 as unit"
#endif

2529
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2530

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2559 2560
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2561
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2562
{
2563
	u64 delta, scaled_delta, periods;
2564
	u32 contrib;
2565
	unsigned int delta_w, scaled_delta_w, decayed = 0;
2566
	unsigned long scale_freq, scale_cpu;
2567

2568
	delta = now - sa->last_update_time;
2569 2570 2571 2572 2573
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2574
		sa->last_update_time = now;
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2585
	sa->last_update_time = now;
2586

2587 2588 2589
	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

2590
	/* delta_w is the amount already accumulated against our next period */
2591
	delta_w = sa->period_contrib;
2592 2593 2594
	if (delta + delta_w >= 1024) {
		decayed = 1;

2595 2596 2597
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2598 2599 2600 2601 2602 2603
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2604
		scaled_delta_w = cap_scale(delta_w, scale_freq);
2605
		if (weight) {
2606 2607 2608 2609 2610
			sa->load_sum += weight * scaled_delta_w;
			if (cfs_rq) {
				cfs_rq->runnable_load_sum +=
						weight * scaled_delta_w;
			}
2611
		}
2612
		if (running)
2613
			sa->util_sum += scaled_delta_w * scale_cpu;
2614 2615 2616 2617 2618 2619 2620

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2621
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2622 2623 2624 2625
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2626
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2627 2628

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2629
		contrib = __compute_runnable_contrib(periods);
2630
		contrib = cap_scale(contrib, scale_freq);
2631
		if (weight) {
2632
			sa->load_sum += weight * contrib;
2633 2634 2635
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2636
		if (running)
2637
			sa->util_sum += contrib * scale_cpu;
2638 2639 2640
	}

	/* Remainder of delta accrued against u_0` */
2641
	scaled_delta = cap_scale(delta, scale_freq);
2642
	if (weight) {
2643
		sa->load_sum += weight * scaled_delta;
2644
		if (cfs_rq)
2645
			cfs_rq->runnable_load_sum += weight * scaled_delta;
2646
	}
2647
	if (running)
2648
		sa->util_sum += scaled_delta * scale_cpu;
2649

2650
	sa->period_contrib += delta;
2651

2652 2653
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2654 2655 2656 2657
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2658
		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2659
	}
2660

2661
	return decayed;
2662 2663
}

2664
#ifdef CONFIG_FAIR_GROUP_SCHED
2665
/*
2666 2667
 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
 * and effective_load (which is not done because it is too costly).
2668
 */
2669
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2670
{
2671
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2672

2673 2674 2675
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2676
	}
2677
}
2678

2679
#else /* CONFIG_FAIR_GROUP_SCHED */
2680
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2681
#endif /* CONFIG_FAIR_GROUP_SCHED */
2682

2683
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2684

2685 2686
/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2687
{
2688
	struct sched_avg *sa = &cfs_rq->avg;
2689
	int decayed, removed = 0;
2690

2691 2692 2693 2694
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
		sa->load_avg = max_t(long, sa->load_avg - r, 0);
		sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2695
		removed = 1;
2696
	}
2697

2698 2699 2700
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
		sa->util_avg = max_t(long, sa->util_avg - r, 0);
2701
		sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2702
	}
2703

2704
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2705
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2706

2707 2708 2709 2710
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
2711

2712
	return decayed || removed;
2713 2714
}

2715 2716
/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct sched_entity *se, int update_tg)
2717
{
2718
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2719
	u64 now = cfs_rq_clock_task(cfs_rq);
2720
	int cpu = cpu_of(rq_of(cfs_rq));
2721

2722
	/*
2723 2724
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
2725
	 */
2726
	__update_load_avg(now, cpu, &se->avg,
2727 2728
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);
2729

2730 2731
	if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
		update_tg_load_avg(cfs_rq, 0);
2732 2733
}

2734 2735
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2736 2737 2738
	if (!sched_feat(ATTACH_AGE_LOAD))
		goto skip_aging;

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	/*
	 * If we got migrated (either between CPUs or between cgroups) we'll
	 * have aged the average right before clearing @last_update_time.
	 */
	if (se->avg.last_update_time) {
		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
				  &se->avg, 0, 0, NULL);

		/*
		 * XXX: we could have just aged the entire load away if we've been
		 * absent from the fair class for too long.
		 */
	}

2753
skip_aging:
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
}

static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

	cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
	cfs_rq->avg.load_sum = max_t(s64,  cfs_rq->avg.load_sum - se->avg.load_sum, 0);
	cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
	cfs_rq->avg.util_sum = max_t(s32,  cfs_rq->avg.util_sum - se->avg.util_sum, 0);
}

2773 2774 2775
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2776
{
2777 2778
	struct sched_avg *sa = &se->avg;
	u64 now = cfs_rq_clock_task(cfs_rq);
2779
	int migrated, decayed;
2780

2781 2782
	migrated = !sa->last_update_time;
	if (!migrated) {
2783
		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2784 2785
			se->on_rq * scale_load_down(se->load.weight),
			cfs_rq->curr == se, NULL);
2786
	}
2787

2788
	decayed = update_cfs_rq_load_avg(now, cfs_rq);
2789

2790 2791 2792
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

2793 2794
	if (migrated)
		attach_entity_load_avg(cfs_rq, se);
2795

2796 2797
	if (decayed || migrated)
		update_tg_load_avg(cfs_rq, 0);
2798 2799
}

2800 2801 2802 2803 2804 2805 2806 2807 2808
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_avg(se, 1);

	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
2809
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2810 2811
}

2812
/*
2813 2814
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
2815
 */
2816
void remove_entity_load_avg(struct sched_entity *se)
2817
{
2818 2819 2820 2821 2822
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

#ifndef CONFIG_64BIT
	u64 last_update_time_copy;
2823

2824 2825 2826 2827 2828 2829 2830 2831 2832
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
#else
	last_update_time = cfs_rq->avg.last_update_time;
#endif

2833
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2834 2835
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2836
}
2837

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

2848 2849
static int idle_balance(struct rq *this_rq);

2850 2851
#else /* CONFIG_SMP */

2852 2853 2854
static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2855 2856
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2857
static inline void remove_entity_load_avg(struct sched_entity *se) {}
2858

2859 2860 2861 2862 2863
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

2864 2865 2866 2867 2868
static inline int idle_balance(struct rq *rq)
{
	return 0;
}

2869
#endif /* CONFIG_SMP */
2870

2871
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2872 2873
{
#ifdef CONFIG_SCHEDSTATS
2874 2875 2876 2877 2878
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2879
	if (se->statistics.sleep_start) {
2880
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2881 2882 2883 2884

		if ((s64)delta < 0)
			delta = 0;

2885 2886
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2887

2888
		se->statistics.sleep_start = 0;
2889
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2890

2891
		if (tsk) {
2892
			account_scheduler_latency(tsk, delta >> 10, 1);
2893 2894
			trace_sched_stat_sleep(tsk, delta);
		}
2895
	}
2896
	if (se->statistics.block_start) {
2897
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2898 2899 2900 2901

		if ((s64)delta < 0)
			delta = 0;

2902 2903
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2904

2905
		se->statistics.block_start = 0;
2906
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2907

2908
		if (tsk) {
2909
			if (tsk->in_iowait) {
2910 2911
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2912
				trace_sched_stat_iowait(tsk, delta);
2913 2914
			}

2915 2916
			trace_sched_stat_blocked(tsk, delta);

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2928
		}
2929 2930 2931 2932
	}
#endif
}

P
Peter Zijlstra 已提交
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2946 2947 2948
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2949
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2950

2951 2952 2953 2954 2955 2956
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2957
	if (initial && sched_feat(START_DEBIT))
2958
		vruntime += sched_vslice(cfs_rq, se);
2959

2960
	/* sleeps up to a single latency don't count. */
2961
	if (!initial) {
2962
		unsigned long thresh = sysctl_sched_latency;
2963

2964 2965 2966 2967 2968 2969
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2970

2971
		vruntime -= thresh;
2972 2973
	}

2974
	/* ensure we never gain time by being placed backwards. */
2975
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2976 2977
}

2978 2979
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2980
static void
2981
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2982
{
2983 2984
	/*
	 * Update the normalized vruntime before updating min_vruntime
2985
	 * through calling update_curr().
2986
	 */
2987
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2988 2989
		se->vruntime += cfs_rq->min_vruntime;

2990
	/*
2991
	 * Update run-time statistics of the 'current'.
2992
	 */
2993
	update_curr(cfs_rq);
2994
	enqueue_entity_load_avg(cfs_rq, se);
2995 2996
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
2997

2998
	if (flags & ENQUEUE_WAKEUP) {
2999
		place_entity(cfs_rq, se, 0);
3000
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
3001
	}
3002

3003
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
3004
	check_spread(cfs_rq, se);
3005 3006
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3007
	se->on_rq = 1;
3008

3009
	if (cfs_rq->nr_running == 1) {
3010
		list_add_leaf_cfs_rq(cfs_rq);
3011 3012
		check_enqueue_throttle(cfs_rq);
	}
3013 3014
}

3015
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3016
{
3017 3018
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3019
		if (cfs_rq->last != se)
3020
			break;
3021 3022

		cfs_rq->last = NULL;
3023 3024
	}
}
P
Peter Zijlstra 已提交
3025

3026 3027 3028 3029
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3030
		if (cfs_rq->next != se)
3031
			break;
3032 3033

		cfs_rq->next = NULL;
3034
	}
P
Peter Zijlstra 已提交
3035 3036
}

3037 3038 3039 3040
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3041
		if (cfs_rq->skip != se)
3042
			break;
3043 3044

		cfs_rq->skip = NULL;
3045 3046 3047
	}
}

P
Peter Zijlstra 已提交
3048 3049
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3050 3051 3052 3053 3054
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3055 3056 3057

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3058 3059
}

3060
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3061

3062
static void
3063
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3064
{
3065 3066 3067 3068
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3069
	dequeue_entity_load_avg(cfs_rq, se);
3070

3071
	update_stats_dequeue(cfs_rq, se);
3072
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
3073
#ifdef CONFIG_SCHEDSTATS
3074 3075 3076 3077
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
3078
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3079
			if (tsk->state & TASK_UNINTERRUPTIBLE)
3080
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3081
		}
3082
#endif
P
Peter Zijlstra 已提交
3083 3084
	}

P
Peter Zijlstra 已提交
3085
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3086

3087
	if (se != cfs_rq->curr)
3088
		__dequeue_entity(cfs_rq, se);
3089
	se->on_rq = 0;
3090
	account_entity_dequeue(cfs_rq, se);
3091 3092 3093 3094 3095 3096

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
3097
	if (!(flags & DEQUEUE_SLEEP))
3098
		se->vruntime -= cfs_rq->min_vruntime;
3099

3100 3101 3102
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3103
	update_min_vruntime(cfs_rq);
3104
	update_cfs_shares(cfs_rq);
3105 3106 3107 3108 3109
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3110
static void
I
Ingo Molnar 已提交
3111
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3112
{
3113
	unsigned long ideal_runtime, delta_exec;
3114 3115
	struct sched_entity *se;
	s64 delta;
3116

P
Peter Zijlstra 已提交
3117
	ideal_runtime = sched_slice(cfs_rq, curr);
3118
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3119
	if (delta_exec > ideal_runtime) {
3120
		resched_curr(rq_of(cfs_rq));
3121 3122 3123 3124 3125
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3137 3138
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3139

3140 3141
	if (delta < 0)
		return;
3142

3143
	if (delta > ideal_runtime)
3144
		resched_curr(rq_of(cfs_rq));
3145 3146
}

3147
static void
3148
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3149
{
3150 3151 3152 3153 3154 3155 3156 3157 3158
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
3159
		update_load_avg(se, 1);
3160 3161
	}

3162
	update_stats_curr_start(cfs_rq, se);
3163
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
3164 3165 3166 3167 3168 3169
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3170
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3171
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
3172 3173 3174
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
3175
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3176 3177
}

3178 3179 3180
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3181 3182 3183 3184 3185 3186 3187
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3188 3189
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3190
{
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3202

3203 3204 3205 3206 3207
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3218 3219 3220
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3221

3222 3223 3224 3225 3226 3227
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3228 3229 3230 3231 3232 3233
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3234
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3235 3236

	return se;
3237 3238
}

3239
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3240

3241
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3242 3243 3244 3245 3246 3247
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3248
		update_curr(cfs_rq);
3249

3250 3251 3252
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
3253
	check_spread(cfs_rq, prev);
3254
	if (prev->on_rq) {
3255
		update_stats_wait_start(cfs_rq, prev);
3256 3257
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3258
		/* in !on_rq case, update occurred at dequeue */
3259
		update_load_avg(prev, 0);
3260
	}
3261
	cfs_rq->curr = NULL;
3262 3263
}

P
Peter Zijlstra 已提交
3264 3265
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3266 3267
{
	/*
3268
	 * Update run-time statistics of the 'current'.
3269
	 */
3270
	update_curr(cfs_rq);
3271

3272 3273 3274
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3275
	update_load_avg(curr, 1);
3276
	update_cfs_shares(cfs_rq);
3277

P
Peter Zijlstra 已提交
3278 3279 3280 3281 3282
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3283
	if (queued) {
3284
		resched_curr(rq_of(cfs_rq));
3285 3286
		return;
	}
P
Peter Zijlstra 已提交
3287 3288 3289 3290 3291 3292 3293 3294
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3295
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3296
		check_preempt_tick(cfs_rq, curr);
3297 3298
}

3299 3300 3301 3302 3303 3304

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3305 3306

#ifdef HAVE_JUMP_LABEL
3307
static struct static_key __cfs_bandwidth_used;
3308 3309 3310

static inline bool cfs_bandwidth_used(void)
{
3311
	return static_key_false(&__cfs_bandwidth_used);
3312 3313
}

3314
void cfs_bandwidth_usage_inc(void)
3315
{
3316 3317 3318 3319 3320 3321
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3322 3323 3324 3325 3326 3327 3328
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3329 3330
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3331 3332
#endif /* HAVE_JUMP_LABEL */

3333 3334 3335 3336 3337 3338 3339 3340
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3341 3342 3343 3344 3345 3346

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3347 3348 3349 3350 3351 3352 3353
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3354
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3366 3367 3368 3369 3370
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3371 3372 3373 3374 3375 3376
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3377
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3378 3379
}

3380 3381
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3382 3383 3384
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3385
	u64 amount = 0, min_amount, expires;
3386 3387 3388 3389 3390 3391 3392

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3393
	else {
P
Peter Zijlstra 已提交
3394
		start_cfs_bandwidth(cfs_b);
3395 3396 3397 3398 3399 3400

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3401
	}
P
Paul Turner 已提交
3402
	expires = cfs_b->runtime_expires;
3403 3404 3405
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3406 3407 3408 3409 3410 3411 3412
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3413 3414

	return cfs_rq->runtime_remaining > 0;
3415 3416
}

P
Paul Turner 已提交
3417 3418 3419 3420 3421
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3422
{
P
Paul Turner 已提交
3423 3424 3425
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3426
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3427 3428
		return;

P
Paul Turner 已提交
3429 3430 3431 3432 3433 3434 3435 3436 3437
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3438 3439 3440
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3441 3442
	 */

3443
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3444 3445 3446 3447 3448 3449 3450 3451
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3452
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3453 3454
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3455
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3456 3457 3458
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3459 3460
		return;

3461 3462 3463 3464 3465
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3466
		resched_curr(rq_of(cfs_rq));
3467 3468
}

3469
static __always_inline
3470
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3471
{
3472
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3473 3474 3475 3476 3477
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3478 3479
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3480
	return cfs_bandwidth_used() && cfs_rq->throttled;
3481 3482
}

3483 3484 3485
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3486
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3515
		/* adjust cfs_rq_clock_task() */
3516
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3517
					     cfs_rq->throttled_clock_task;
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3529 3530
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3531
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3532 3533 3534 3535 3536
	cfs_rq->throttle_count++;

	return 0;
}

3537
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3538 3539 3540 3541 3542
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
3543
	bool empty;
3544 3545 3546

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3547
	/* freeze hierarchy runnable averages while throttled */
3548 3549 3550
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3568
		sub_nr_running(rq, task_delta);
3569 3570

	cfs_rq->throttled = 1;
3571
	cfs_rq->throttled_clock = rq_clock(rq);
3572
	raw_spin_lock(&cfs_b->lock);
3573
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3574

3575 3576 3577 3578 3579
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3580 3581 3582 3583 3584 3585 3586 3587

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

3588 3589 3590
	raw_spin_unlock(&cfs_b->lock);
}

3591
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3592 3593 3594 3595 3596 3597 3598
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3599
	se = cfs_rq->tg->se[cpu_of(rq)];
3600 3601

	cfs_rq->throttled = 0;
3602 3603 3604

	update_rq_clock(rq);

3605
	raw_spin_lock(&cfs_b->lock);
3606
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3607 3608 3609
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3610 3611 3612
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
3631
		add_nr_running(rq, task_delta);
3632 3633 3634

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
3635
		resched_curr(rq);
3636 3637 3638 3639 3640 3641
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
3642 3643
	u64 runtime;
	u64 starting_runtime = remaining;
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

3674
	return starting_runtime - remaining;
3675 3676
}

3677 3678 3679 3680 3681 3682 3683 3684
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3685
	u64 runtime, runtime_expires;
3686
	int throttled;
3687 3688 3689

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
3690
		goto out_deactivate;
3691

3692
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3693
	cfs_b->nr_periods += overrun;
3694

3695 3696 3697 3698 3699 3700
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
3701 3702 3703

	__refill_cfs_bandwidth_runtime(cfs_b);

3704 3705 3706
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
3707
		return 0;
3708 3709
	}

3710 3711 3712
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3713 3714 3715
	runtime_expires = cfs_b->runtime_expires;

	/*
3716 3717 3718 3719 3720
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
3721
	 */
3722 3723
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
3724 3725 3726 3727 3728 3729 3730
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3731 3732

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3733
	}
3734

3735 3736 3737 3738 3739 3740 3741
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3742

3743 3744 3745 3746
	return 0;

out_deactivate:
	return 1;
3747
}
3748

3749 3750 3751 3752 3753 3754 3755
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3756 3757 3758 3759
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3760
 * hrtimer base being cleared by hrtimer_start. In the case of
3761 3762
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
3788 3789 3790
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3820 3821 3822
	if (!cfs_bandwidth_used())
		return;

3823
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3839 3840 3841
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3842
		return;
3843
	}
3844

3845
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3846
		runtime = cfs_b->runtime;
3847

3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
3858
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3859 3860 3861
	raw_spin_unlock(&cfs_b->lock);
}

3862 3863 3864 3865 3866 3867 3868
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3869 3870 3871
	if (!cfs_bandwidth_used())
		return;

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
3887
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3888
{
3889
	if (!cfs_bandwidth_used())
3890
		return false;
3891

3892
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3893
		return false;
3894 3895 3896 3897 3898 3899

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
3900
		return true;
3901 3902

	throttle_cfs_rq(cfs_rq);
3903
	return true;
3904
}
3905 3906 3907 3908 3909

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
3910

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

3923
	raw_spin_lock(&cfs_b->lock);
3924
	for (;;) {
P
Peter Zijlstra 已提交
3925
		overrun = hrtimer_forward_now(timer, cfs_b->period);
3926 3927 3928 3929 3930
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
3931 3932
	if (idle)
		cfs_b->period_active = 0;
3933
	raw_spin_unlock(&cfs_b->lock);
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3946
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
3958
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3959
{
P
Peter Zijlstra 已提交
3960
	lockdep_assert_held(&cfs_b->lock);
3961

P
Peter Zijlstra 已提交
3962 3963 3964 3965 3966
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
3967 3968 3969 3970
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
3971 3972 3973 3974
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

3975 3976 3977 3978
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

3992
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4004
		cfs_rq->runtime_remaining = 1;
4005 4006 4007 4008 4009 4010
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4011 4012 4013 4014 4015 4016
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4017 4018
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4019
	return rq_clock_task(rq_of(cfs_rq));
4020 4021
}

4022
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4023
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4024
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4025
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4026 4027 4028 4029 4030

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4042 4043 4044 4045 4046

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4047 4048
#endif

4049 4050 4051 4052 4053
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4054
static inline void update_runtime_enabled(struct rq *rq) {}
4055
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4056 4057 4058

#endif /* CONFIG_CFS_BANDWIDTH */

4059 4060 4061 4062
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4063 4064 4065 4066 4067 4068 4069 4070
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

4071
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
4072 4073 4074 4075 4076 4077
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4078
				resched_curr(rq);
P
Peter Zijlstra 已提交
4079 4080
			return;
		}
4081
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4082 4083
	}
}
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4094
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4095 4096 4097 4098 4099
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4100
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4101 4102 4103 4104
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4105 4106 4107 4108

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4109 4110
#endif

4111 4112 4113 4114 4115
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4116
static void
4117
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4118 4119
{
	struct cfs_rq *cfs_rq;
4120
	struct sched_entity *se = &p->se;
4121 4122

	for_each_sched_entity(se) {
4123
		if (se->on_rq)
4124 4125
			break;
		cfs_rq = cfs_rq_of(se);
4126
		enqueue_entity(cfs_rq, se, flags);
4127 4128 4129 4130 4131 4132 4133 4134 4135

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4136
		cfs_rq->h_nr_running++;
4137

4138
		flags = ENQUEUE_WAKEUP;
4139
	}
P
Peter Zijlstra 已提交
4140

P
Peter Zijlstra 已提交
4141
	for_each_sched_entity(se) {
4142
		cfs_rq = cfs_rq_of(se);
4143
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4144

4145 4146 4147
		if (cfs_rq_throttled(cfs_rq))
			break;

4148
		update_load_avg(se, 1);
4149
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4150 4151
	}

Y
Yuyang Du 已提交
4152
	if (!se)
4153
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4154

4155
	hrtick_update(rq);
4156 4157
}

4158 4159
static void set_next_buddy(struct sched_entity *se);

4160 4161 4162 4163 4164
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4165
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4166 4167
{
	struct cfs_rq *cfs_rq;
4168
	struct sched_entity *se = &p->se;
4169
	int task_sleep = flags & DEQUEUE_SLEEP;
4170 4171 4172

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4173
		dequeue_entity(cfs_rq, se, flags);
4174 4175 4176 4177 4178 4179 4180 4181 4182

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4183
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4184

4185
		/* Don't dequeue parent if it has other entities besides us */
4186 4187 4188 4189 4190 4191 4192
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
4193 4194 4195

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
4196
			break;
4197
		}
4198
		flags |= DEQUEUE_SLEEP;
4199
	}
P
Peter Zijlstra 已提交
4200

P
Peter Zijlstra 已提交
4201
	for_each_sched_entity(se) {
4202
		cfs_rq = cfs_rq_of(se);
4203
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4204

4205 4206 4207
		if (cfs_rq_throttled(cfs_rq))
			break;

4208
		update_load_avg(se, 1);
4209
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4210 4211
	}

Y
Yuyang Du 已提交
4212
	if (!se)
4213
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4214

4215
	hrtick_update(rq);
4216 4217
}

4218
#ifdef CONFIG_SMP
4219 4220 4221 4222 4223 4224

/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4225
 * The exact cpuload calculated at every tick would be:
4226
 *
4227 4228 4229 4230 4231 4232 4233
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4234 4235 4236
 *
 * decay_load_missed() below does efficient calculation of
 *
4237 4238 4239 4240 4241 4242
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4243
 *
4244
 * The calculation is approximated on a 128 point scale.
4245 4246
 */
#define DEGRADE_SHIFT		7
4247 4248 4249 4250 4251 4252 4253 4254 4255

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

4286 4287 4288 4289 4290 4291 4292
/**
 * __update_cpu_load - update the rq->cpu_load[] statistics
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 * @active: !0 for NOHZ_FULL
 *
4293
 * Update rq->cpu_load[] statistics. This function is usually called every
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
 * term. See the @active paramter.
4321 4322
 */
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4323
			      unsigned long pending_updates, int active)
4324
{
4325
	unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

4337
		old_load = this_rq->cpu_load[i] - tickless_load;
4338
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4339
		old_load += tickless_load;
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

4355 4356 4357 4358 4359 4360
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
#ifdef CONFIG_NO_HZ_COMMON
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
static void update_idle_cpu_load(struct rq *this_rq)
{
4381
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4382
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
	unsigned long pending_updates;

	/*
	 * bail if there's load or we're actually up-to-date.
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

4394
	__update_cpu_load(this_rq, load, pending_updates, 0);
4395 4396 4397 4398 4399
}

/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
4400
void update_cpu_load_nohz(int active)
4401 4402
{
	struct rq *this_rq = this_rq();
4403
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4404
	unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
4415 4416 4417
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
4418
		 */
4419
		__update_cpu_load(this_rq, load, pending_updates, active);
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

/*
 * Called from scheduler_tick()
 */
void update_cpu_load_active(struct rq *this_rq)
{
4430
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4431 4432 4433 4434
	/*
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
	 */
	this_rq->last_load_update_tick = jiffies;
4435
	__update_cpu_load(this_rq, load, 1, 1);
4436 4437
}

4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4471
static unsigned long capacity_of(int cpu)
4472
{
4473
	return cpu_rq(cpu)->cpu_capacity;
4474 4475
}

4476 4477 4478 4479 4480
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

4481 4482 4483
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4484
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4485
	unsigned long load_avg = weighted_cpuload(cpu);
4486 4487

	if (nr_running)
4488
		return load_avg / nr_running;
4489 4490 4491 4492

	return 0;
}

4493 4494 4495 4496 4497 4498 4499
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
4500
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4501
		current->wakee_flips >>= 1;
4502 4503 4504 4505 4506 4507 4508 4509
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4510

4511
static void task_waking_fair(struct task_struct *p)
4512 4513 4514
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4515 4516 4517 4518
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4519

4520 4521 4522 4523 4524 4525 4526 4527
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4528

4529
	se->vruntime -= min_vruntime;
4530
	record_wakee(p);
4531 4532
}

4533
#ifdef CONFIG_FAIR_GROUP_SCHED
4534 4535 4536 4537 4538 4539
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4583
 */
P
Peter Zijlstra 已提交
4584
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4585
{
P
Peter Zijlstra 已提交
4586
	struct sched_entity *se = tg->se[cpu];
4587

4588
	if (!tg->parent)	/* the trivial, non-cgroup case */
4589 4590
		return wl;

P
Peter Zijlstra 已提交
4591
	for_each_sched_entity(se) {
4592
		long w, W;
P
Peter Zijlstra 已提交
4593

4594
		tg = se->my_q->tg;
4595

4596 4597 4598 4599
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4600

4601 4602 4603
		/*
		 * w = rw_i + @wl
		 */
4604
		w = cfs_rq_load_avg(se->my_q) + wl;
4605

4606 4607 4608 4609
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
4610
			wl = (w * (long)tg->shares) / W;
4611 4612
		else
			wl = tg->shares;
4613

4614 4615 4616 4617 4618
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4619 4620
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4621 4622 4623 4624

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4625
		wl -= se->avg.load_avg;
4626 4627 4628 4629 4630 4631 4632 4633

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4634 4635
		wg = 0;
	}
4636

P
Peter Zijlstra 已提交
4637
	return wl;
4638 4639
}
#else
P
Peter Zijlstra 已提交
4640

4641
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4642
{
4643
	return wl;
4644
}
P
Peter Zijlstra 已提交
4645

4646 4647
#endif

M
Mike Galbraith 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
 * A waker of many should wake a different task than the one last awakened
 * at a frequency roughly N times higher than one of its wakees.  In order
 * to determine whether we should let the load spread vs consolodating to
 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.  With
 * both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.  Waker/wakee
 * being client/server, worker/dispatcher, interrupt source or whatever is
 * irrelevant, spread criteria is apparent partner count exceeds socket size.
 */
4660 4661
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
4662 4663
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
4664
	int factor = this_cpu_read(sd_llc_size);
4665

M
Mike Galbraith 已提交
4666 4667 4668 4669 4670
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
4671 4672
}

4673
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4674
{
4675
	s64 this_load, load;
4676
	s64 this_eff_load, prev_eff_load;
4677 4678
	int idx, this_cpu, prev_cpu;
	struct task_group *tg;
4679
	unsigned long weight;
4680
	int balanced;
4681

4682 4683 4684 4685 4686
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4687

4688 4689 4690 4691 4692
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4693 4694
	if (sync) {
		tg = task_group(current);
4695
		weight = current->se.avg.load_avg;
4696

4697
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4698 4699
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4700

4701
	tg = task_group(p);
4702
	weight = p->se.avg.load_avg;
4703

4704 4705
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4706 4707 4708
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4709 4710 4711 4712
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4713 4714
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
4715

4716 4717
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
4718

4719
	if (this_load > 0) {
4720 4721 4722 4723
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4724
	}
4725

4726
	balanced = this_eff_load <= prev_eff_load;
4727

4728
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4729

4730 4731
	if (!balanced)
		return 0;
4732

4733 4734 4735 4736
	schedstat_inc(sd, ttwu_move_affine);
	schedstat_inc(p, se.statistics.nr_wakeups_affine);

	return 1;
4737 4738
}

4739 4740 4741 4742 4743
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4744
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4745
		  int this_cpu, int sd_flag)
4746
{
4747
	struct sched_group *idlest = NULL, *group = sd->groups;
4748
	unsigned long min_load = ULONG_MAX, this_load = 0;
4749
	int load_idx = sd->forkexec_idx;
4750
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4751

4752 4753 4754
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4755 4756 4757 4758
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4759

4760 4761
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4762
					tsk_cpus_allowed(p)))
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

4781
		/* Adjust by relative CPU capacity of the group */
4782
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
4804 4805 4806 4807
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
4808 4809 4810
	int i;

	/* Traverse only the allowed CPUs */
4811
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
4834
		} else if (shallowest_idle_cpu == -1) {
4835 4836 4837 4838 4839
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
4840 4841 4842
		}
	}

4843
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4844
}
4845

4846 4847 4848
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4849
static int select_idle_sibling(struct task_struct *p, int target)
4850
{
4851
	struct sched_domain *sd;
4852
	struct sched_group *sg;
4853
	int i = task_cpu(p);
4854

4855 4856
	if (idle_cpu(target))
		return target;
4857 4858

	/*
4859
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4860
	 */
4861 4862
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4863 4864

	/*
4865
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4866
	 */
4867
	sd = rcu_dereference(per_cpu(sd_llc, target));
4868
	for_each_lower_domain(sd) {
4869 4870 4871 4872 4873 4874 4875
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4876
				if (i == target || !idle_cpu(i))
4877 4878
					goto next;
			}
4879

4880 4881 4882 4883 4884 4885 4886 4887
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4888 4889
	return target;
}
4890

4891
/*
4892
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
4893
 * tasks. The unit of the return value must be the one of capacity so we can
4894 4895
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
4916
 */
4917
static int cpu_util(int cpu)
4918
{
4919
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
4920 4921
	unsigned long capacity = capacity_orig_of(cpu);

4922
	return (util >= capacity) ? capacity : util;
4923
}
4924

4925
/*
4926 4927 4928
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4929
 *
4930 4931
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4932
 *
4933
 * Returns the target cpu number.
4934 4935 4936
 *
 * preempt must be disabled.
 */
4937
static int
4938
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4939
{
4940
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4941
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
4942
	int new_cpu = prev_cpu;
4943
	int want_affine = 0;
4944
	int sync = wake_flags & WF_SYNC;
4945

4946
	if (sd_flag & SD_BALANCE_WAKE)
M
Mike Galbraith 已提交
4947
		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4948

4949
	rcu_read_lock();
4950
	for_each_domain(cpu, tmp) {
4951
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
4952
			break;
4953

4954
		/*
4955 4956
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4957
		 */
4958 4959 4960
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4961
			break;
4962
		}
4963

4964
		if (tmp->flags & sd_flag)
4965
			sd = tmp;
M
Mike Galbraith 已提交
4966 4967
		else if (!want_affine)
			break;
4968 4969
	}

M
Mike Galbraith 已提交
4970 4971 4972 4973
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
			new_cpu = cpu;
4974
	}
4975

M
Mike Galbraith 已提交
4976 4977 4978 4979 4980
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
			new_cpu = select_idle_sibling(p, new_cpu);

	} else while (sd) {
4981
		struct sched_group *group;
4982
		int weight;
4983

4984
		if (!(sd->flags & sd_flag)) {
4985 4986 4987
			sd = sd->child;
			continue;
		}
4988

4989
		group = find_idlest_group(sd, p, cpu, sd_flag);
4990 4991 4992 4993
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4994

4995
		new_cpu = find_idlest_cpu(group, p, cpu);
4996 4997 4998 4999
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
5000
		}
5001 5002 5003

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
5004
		weight = sd->span_weight;
5005 5006
		sd = NULL;
		for_each_domain(cpu, tmp) {
5007
			if (weight <= tmp->span_weight)
5008
				break;
5009
			if (tmp->flags & sd_flag)
5010 5011 5012
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
5013
	}
5014
	rcu_read_unlock();
5015

5016
	return new_cpu;
5017
}
5018 5019 5020 5021 5022 5023 5024

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
5025
static void migrate_task_rq_fair(struct task_struct *p)
5026
{
5027
	/*
5028 5029 5030 5031 5032
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
5033
	 */
5034 5035 5036 5037
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
5038 5039

	/* We have migrated, no longer consider this task hot */
5040
	p->se.exec_start = 0;
5041
}
5042 5043 5044 5045 5046

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
5047 5048
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
5049 5050
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5051 5052 5053 5054
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
5055 5056
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
5057 5058 5059 5060 5061 5062 5063 5064 5065
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
5066
	 */
5067
	return calc_delta_fair(gran, se);
5068 5069
}

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
5092
	gran = wakeup_gran(curr, se);
5093 5094 5095 5096 5097 5098
	if (vdiff > gran)
		return 1;

	return 0;
}

5099 5100
static void set_last_buddy(struct sched_entity *se)
{
5101 5102 5103 5104 5105
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
5106 5107 5108 5109
}

static void set_next_buddy(struct sched_entity *se)
{
5110 5111 5112 5113 5114
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
5115 5116
}

5117 5118
static void set_skip_buddy(struct sched_entity *se)
{
5119 5120
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
5121 5122
}

5123 5124 5125
/*
 * Preempt the current task with a newly woken task if needed:
 */
5126
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5127 5128
{
	struct task_struct *curr = rq->curr;
5129
	struct sched_entity *se = &curr->se, *pse = &p->se;
5130
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5131
	int scale = cfs_rq->nr_running >= sched_nr_latency;
5132
	int next_buddy_marked = 0;
5133

I
Ingo Molnar 已提交
5134 5135 5136
	if (unlikely(se == pse))
		return;

5137
	/*
5138
	 * This is possible from callers such as attach_tasks(), in which we
5139 5140 5141 5142 5143 5144 5145
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

5146
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
5147
		set_next_buddy(pse);
5148 5149
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
5150

5151 5152 5153
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
5154 5155 5156 5157 5158 5159
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
5160 5161 5162 5163
	 */
	if (test_tsk_need_resched(curr))
		return;

5164 5165 5166 5167 5168
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

5169
	/*
5170 5171
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
5172
	 */
5173
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5174
		return;
5175

5176
	find_matching_se(&se, &pse);
5177
	update_curr(cfs_rq_of(se));
5178
	BUG_ON(!pse);
5179 5180 5181 5182 5183 5184 5185
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
5186
		goto preempt;
5187
	}
5188

5189
	return;
5190

5191
preempt:
5192
	resched_curr(rq);
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
5207 5208
}

5209 5210
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5211 5212 5213
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
5214
	struct task_struct *p;
5215
	int new_tasks;
5216

5217
again:
5218 5219
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
5220
		goto idle;
5221

5222
	if (prev->sched_class != &fair_sched_class)
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
5242 5243 5244 5245 5246
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
5247

5248 5249 5250 5251 5252 5253 5254 5255 5256
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
5297

5298
	if (!cfs_rq->nr_running)
5299
		goto idle;
5300

5301
	put_prev_task(rq, prev);
5302

5303
	do {
5304
		se = pick_next_entity(cfs_rq, NULL);
5305
		set_next_entity(cfs_rq, se);
5306 5307 5308
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
5309
	p = task_of(se);
5310

5311 5312
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
5313 5314

	return p;
5315 5316

idle:
5317 5318 5319 5320 5321 5322 5323
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	lockdep_unpin_lock(&rq->lock);
5324
	new_tasks = idle_balance(rq);
5325
	lockdep_pin_lock(&rq->lock);
5326 5327 5328 5329 5330
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
5331
	if (new_tasks < 0)
5332 5333
		return RETRY_TASK;

5334
	if (new_tasks > 0)
5335 5336 5337
		goto again;

	return NULL;
5338 5339 5340 5341 5342
}

/*
 * Account for a descheduled task:
 */
5343
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5344 5345 5346 5347 5348 5349
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5350
		put_prev_entity(cfs_rq, se);
5351 5352 5353
	}
}

5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
5379 5380 5381 5382 5383
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
5384
		rq_clock_skip_update(rq, true);
5385 5386 5387 5388 5389
	}

	set_skip_buddy(se);
}

5390 5391 5392 5393
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

5394 5395
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

5406
#ifdef CONFIG_SMP
5407
/**************************************************
P
Peter Zijlstra 已提交
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
5431
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
5432 5433 5434 5435 5436 5437
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5438
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5524

5525 5526
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5527 5528
enum fbq_type { regular, remote, all };

5529
#define LBF_ALL_PINNED	0x01
5530
#define LBF_NEED_BREAK	0x02
5531 5532
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5533 5534 5535 5536 5537

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5538
	int			src_cpu;
5539 5540 5541 5542

	int			dst_cpu;
	struct rq		*dst_rq;

5543 5544
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5545
	enum cpu_idle_type	idle;
5546
	long			imbalance;
5547 5548 5549
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5550
	unsigned int		flags;
5551 5552 5553 5554

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5555 5556

	enum fbq_type		fbq_type;
5557
	struct list_head	tasks;
5558 5559
};

5560 5561 5562
/*
 * Is this task likely cache-hot:
 */
5563
static int task_hot(struct task_struct *p, struct lb_env *env)
5564 5565 5566
{
	s64 delta;

5567 5568
	lockdep_assert_held(&env->src_rq->lock);

5569 5570 5571 5572 5573 5574 5575 5576 5577
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
5578
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5579 5580 5581 5582 5583 5584 5585 5586 5587
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

5588
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5589 5590 5591 5592

	return delta < (s64)sysctl_sched_migration_cost;
}

5593
#ifdef CONFIG_NUMA_BALANCING
5594
/*
5595 5596 5597
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
5598
 */
5599
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5600
{
5601
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5602
	unsigned long src_faults, dst_faults;
5603 5604
	int src_nid, dst_nid;

5605
	if (!static_branch_likely(&sched_numa_balancing))
5606 5607
		return -1;

5608
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5609
		return -1;
5610 5611 5612 5613

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5614
	if (src_nid == dst_nid)
5615
		return -1;
5616

5617 5618 5619 5620 5621 5622 5623
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
5624

5625 5626
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
5627
		return 0;
5628

5629 5630 5631 5632 5633 5634
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
5635 5636
	}

5637
	return dst_faults < src_faults;
5638 5639
}

5640
#else
5641
static inline int migrate_degrades_locality(struct task_struct *p,
5642 5643
					     struct lb_env *env)
{
5644
	return -1;
5645
}
5646 5647
#endif

5648 5649 5650 5651
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5652
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5653
{
5654
	int tsk_cache_hot;
5655 5656 5657

	lockdep_assert_held(&env->src_rq->lock);

5658 5659
	/*
	 * We do not migrate tasks that are:
5660
	 * 1) throttled_lb_pair, or
5661
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5662 5663
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5664
	 */
5665 5666 5667
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5668
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5669
		int cpu;
5670

5671
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5672

5673 5674
		env->flags |= LBF_SOME_PINNED;

5675 5676 5677 5678 5679 5680 5681 5682
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5683
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5684 5685
			return 0;

5686 5687 5688
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5689
				env->flags |= LBF_DST_PINNED;
5690 5691 5692
				env->new_dst_cpu = cpu;
				break;
			}
5693
		}
5694

5695 5696
		return 0;
	}
5697 5698

	/* Record that we found atleast one task that could run on dst_cpu */
5699
	env->flags &= ~LBF_ALL_PINNED;
5700

5701
	if (task_running(env->src_rq, p)) {
5702
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5703 5704 5705 5706 5707
		return 0;
	}

	/*
	 * Aggressive migration if:
5708 5709 5710
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5711
	 */
5712 5713 5714
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
5715

5716
	if (tsk_cache_hot <= 0 ||
5717
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5718
		if (tsk_cache_hot == 1) {
5719 5720 5721
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
5722 5723 5724
		return 1;
	}

Z
Zhang Hang 已提交
5725 5726
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5727 5728
}

5729
/*
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	deactivate_task(env->src_rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, env->dst_cpu);
}

5741
/*
5742
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5743 5744
 * part of active balancing operations within "domain".
 *
5745
 * Returns a task if successful and NULL otherwise.
5746
 */
5747
static struct task_struct *detach_one_task(struct lb_env *env)
5748 5749 5750
{
	struct task_struct *p, *n;

5751 5752
	lockdep_assert_held(&env->src_rq->lock);

5753 5754 5755
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5756

5757
		detach_task(p, env);
5758

5759
		/*
5760
		 * Right now, this is only the second place where
5761
		 * lb_gained[env->idle] is updated (other is detach_tasks)
5762
		 * so we can safely collect stats here rather than
5763
		 * inside detach_tasks().
5764 5765
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
5766
		return p;
5767
	}
5768
	return NULL;
5769 5770
}

5771 5772
static const unsigned int sched_nr_migrate_break = 32;

5773
/*
5774 5775
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
5776
 *
5777
 * Returns number of detached tasks if successful and 0 otherwise.
5778
 */
5779
static int detach_tasks(struct lb_env *env)
5780
{
5781 5782
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5783
	unsigned long load;
5784 5785 5786
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
5787

5788
	if (env->imbalance <= 0)
5789
		return 0;
5790

5791
	while (!list_empty(tasks)) {
5792 5793 5794 5795 5796 5797 5798
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

5799
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5800

5801 5802
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5803
		if (env->loop > env->loop_max)
5804
			break;
5805 5806

		/* take a breather every nr_migrate tasks */
5807
		if (env->loop > env->loop_break) {
5808
			env->loop_break += sched_nr_migrate_break;
5809
			env->flags |= LBF_NEED_BREAK;
5810
			break;
5811
		}
5812

5813
		if (!can_migrate_task(p, env))
5814 5815 5816
			goto next;

		load = task_h_load(p);
5817

5818
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5819 5820
			goto next;

5821
		if ((load / 2) > env->imbalance)
5822
			goto next;
5823

5824 5825 5826 5827
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
5828
		env->imbalance -= load;
5829 5830

#ifdef CONFIG_PREEMPT
5831 5832
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
5833
		 * kernels will stop after the first task is detached to minimize
5834 5835
		 * the critical section.
		 */
5836
		if (env->idle == CPU_NEWLY_IDLE)
5837
			break;
5838 5839
#endif

5840 5841 5842 5843
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5844
		if (env->imbalance <= 0)
5845
			break;
5846 5847 5848

		continue;
next:
5849
		list_move_tail(&p->se.group_node, tasks);
5850
	}
5851

5852
	/*
5853 5854 5855
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
5856
	 */
5857
	schedstat_add(env->sd, lb_gained[env->idle], detached);
5858

5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	p->on_rq = TASK_ON_RQ_QUEUED;
	activate_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
5900

5901 5902 5903 5904
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
5905 5906
}

P
Peter Zijlstra 已提交
5907
#ifdef CONFIG_FAIR_GROUP_SCHED
5908
static void update_blocked_averages(int cpu)
5909 5910
{
	struct rq *rq = cpu_rq(cpu);
5911 5912
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5913

5914 5915
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5916

5917 5918 5919 5920
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5921
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5922 5923 5924
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
5925

5926 5927 5928
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
			update_tg_load_avg(cfs_rq, 0);
	}
5929
	raw_spin_unlock_irqrestore(&rq->lock, flags);
5930 5931
}

5932
/*
5933
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5934 5935 5936
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5937
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5938
{
5939 5940
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5941
	unsigned long now = jiffies;
5942
	unsigned long load;
5943

5944
	if (cfs_rq->last_h_load_update == now)
5945 5946
		return;

5947 5948 5949 5950 5951 5952 5953
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5954

5955
	if (!se) {
5956
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
5957 5958 5959 5960 5961
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
5962 5963
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
5964 5965 5966 5967
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5968 5969
}

5970
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5971
{
5972
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5973

5974
	update_cfs_rq_h_load(cfs_rq);
5975
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
5976
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
5977 5978
}
#else
5979
static inline void update_blocked_averages(int cpu)
5980
{
5981 5982 5983 5984 5985 5986 5987 5988
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
5989 5990
}

5991
static unsigned long task_h_load(struct task_struct *p)
5992
{
5993
	return p->se.avg.load_avg;
5994
}
P
Peter Zijlstra 已提交
5995
#endif
5996 5997

/********** Helpers for find_busiest_group ************************/
5998 5999 6000 6001 6002 6003 6004

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

6005 6006 6007 6008 6009 6010 6011
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
6012
	unsigned long load_per_task;
6013
	unsigned long group_capacity;
6014
	unsigned long group_util; /* Total utilization of the group */
6015 6016 6017
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
6018
	enum group_type group_type;
6019
	int group_no_capacity;
6020 6021 6022 6023
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
6024 6025
};

J
Joonsoo Kim 已提交
6026 6027 6028 6029 6030 6031 6032 6033
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
6034
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
6035 6036 6037
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6038
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
6039 6040
};

6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
6053
		.total_capacity = 0UL,
6054 6055
		.busiest_stat = {
			.avg_load = 0UL,
6056 6057
			.sum_nr_running = 0,
			.group_type = group_other,
6058 6059 6060 6061
		},
	};
}

6062 6063 6064
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
6065
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6066 6067
 *
 * Return: The load index.
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

6090
static unsigned long scale_rt_capacity(int cpu)
6091 6092
{
	struct rq *rq = cpu_rq(cpu);
6093
	u64 total, used, age_stamp, avg;
6094
	s64 delta;
6095

6096 6097 6098 6099
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
6100 6101
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
6102
	delta = __rq_clock_broken(rq) - age_stamp;
6103

6104 6105 6106 6107
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
6108

6109
	used = div_u64(avg, total);
6110

6111 6112
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
6113

6114
	return 1;
6115 6116
}

6117
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6118
{
6119
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6120 6121
	struct sched_group *sdg = sd->groups;

6122
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6123

6124
	capacity *= scale_rt_capacity(cpu);
6125
	capacity >>= SCHED_CAPACITY_SHIFT;
6126

6127 6128
	if (!capacity)
		capacity = 1;
6129

6130 6131
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
6132 6133
}

6134
void update_group_capacity(struct sched_domain *sd, int cpu)
6135 6136 6137
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
6138
	unsigned long capacity;
6139 6140 6141 6142
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
6143
	sdg->sgc->next_update = jiffies + interval;
6144 6145

	if (!child) {
6146
		update_cpu_capacity(sd, cpu);
6147 6148 6149
		return;
	}

6150
	capacity = 0;
6151

P
Peter Zijlstra 已提交
6152 6153 6154 6155 6156 6157
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

6158
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6159
			struct sched_group_capacity *sgc;
6160
			struct rq *rq = cpu_rq(cpu);
6161

6162
			/*
6163
			 * build_sched_domains() -> init_sched_groups_capacity()
6164 6165 6166
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
6167 6168
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
6169
			 *
6170
			 * This avoids capacity from being 0 and
6171 6172 6173
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
6174
				capacity += capacity_of(cpu);
6175 6176
				continue;
			}
6177

6178 6179
			sgc = rq->sd->groups->sgc;
			capacity += sgc->capacity;
6180
		}
P
Peter Zijlstra 已提交
6181 6182 6183 6184 6185 6186 6187 6188
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
6189
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
6190 6191 6192
			group = group->next;
		} while (group != child->groups);
	}
6193

6194
	sdg->sgc->capacity = capacity;
6195 6196
}

6197
/*
6198 6199 6200
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
6201 6202
 */
static inline int
6203
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6204
{
6205 6206
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
6207 6208
}

6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
6225 6226
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
6227 6228
 *
 * When this is so detected; this group becomes a candidate for busiest; see
6229
 * update_sd_pick_busiest(). And calculate_imbalance() and
6230
 * find_busiest_group() avoid some of the usual balance conditions to allow it
6231 6232 6233 6234 6235 6236 6237
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

6238
static inline int sg_imbalanced(struct sched_group *group)
6239
{
6240
	return group->sgc->imbalance;
6241 6242
}

6243
/*
6244 6245 6246
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
6247 6248
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
6249 6250 6251 6252 6253
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
6254
 */
6255 6256
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6257
{
6258 6259
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
6260

6261
	if ((sgs->group_capacity * 100) >
6262
			(sgs->group_util * env->sd->imbalance_pct))
6263
		return true;
6264

6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
6281

6282
	if ((sgs->group_capacity * 100) <
6283
			(sgs->group_util * env->sd->imbalance_pct))
6284
		return true;
6285

6286
	return false;
6287 6288
}

6289 6290 6291
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
6292
{
6293
	if (sgs->group_no_capacity)
6294 6295 6296 6297 6298 6299 6300 6301
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

6302 6303
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6304
 * @env: The load balancing environment.
6305 6306 6307 6308
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
6309
 * @overload: Indicate more than one runnable task for any CPU.
6310
 */
6311 6312
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
6313 6314
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
6315
{
6316
	unsigned long load;
6317
	int i;
6318

6319 6320
	memset(sgs, 0, sizeof(*sgs));

6321
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6322 6323 6324
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
6325
		if (local_group)
6326
			load = target_load(i, load_idx);
6327
		else
6328 6329 6330
			load = source_load(i, load_idx);

		sgs->group_load += load;
6331
		sgs->group_util += cpu_util(i);
6332
		sgs->sum_nr_running += rq->cfs.h_nr_running;
6333 6334 6335 6336

		if (rq->nr_running > 1)
			*overload = true;

6337 6338 6339 6340
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
6341
		sgs->sum_weighted_load += weighted_cpuload(i);
6342 6343
		if (idle_cpu(i))
			sgs->idle_cpus++;
6344 6345
	}

6346 6347
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
6348
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6349

6350
	if (sgs->sum_nr_running)
6351
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6352

6353
	sgs->group_weight = group->group_weight;
6354

6355
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6356
	sgs->group_type = group_classify(group, sgs);
6357 6358
}

6359 6360
/**
 * update_sd_pick_busiest - return 1 on busiest group
6361
 * @env: The load balancing environment.
6362 6363
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
6364
 * @sgs: sched_group statistics
6365 6366 6367
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
6368 6369 6370
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
6371
 */
6372
static bool update_sd_pick_busiest(struct lb_env *env,
6373 6374
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
6375
				   struct sg_lb_stats *sgs)
6376
{
6377
	struct sg_lb_stats *busiest = &sds->busiest_stat;
6378

6379
	if (sgs->group_type > busiest->group_type)
6380 6381
		return true;

6382 6383 6384 6385 6386 6387 6388 6389
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
6390 6391 6392 6393 6394 6395 6396
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
6397
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6438
/**
6439
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6440
 * @env: The load balancing environment.
6441 6442
 * @sds: variable to hold the statistics for this sched_domain.
 */
6443
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6444
{
6445 6446
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6447
	struct sg_lb_stats tmp_sgs;
6448
	int load_idx, prefer_sibling = 0;
6449
	bool overload = false;
6450 6451 6452 6453

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6454
	load_idx = get_sd_load_idx(env->sd, env->idle);
6455 6456

	do {
J
Joonsoo Kim 已提交
6457
		struct sg_lb_stats *sgs = &tmp_sgs;
6458 6459
		int local_group;

6460
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6461 6462 6463
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6464 6465

			if (env->idle != CPU_NEWLY_IDLE ||
6466 6467
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6468
		}
6469

6470 6471
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6472

6473 6474 6475
		if (local_group)
			goto next_group;

6476 6477
		/*
		 * In case the child domain prefers tasks go to siblings
6478
		 * first, lower the sg capacity so that we'll try
6479 6480
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6481 6482 6483 6484
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
6485
		 */
6486
		if (prefer_sibling && sds->local &&
6487 6488 6489
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
6490
			sgs->group_type = group_classify(sg, sgs);
6491
		}
6492

6493
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6494
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6495
			sds->busiest_stat = *sgs;
6496 6497
		}

6498 6499 6500
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6501
		sds->total_capacity += sgs->group_capacity;
6502

6503
		sg = sg->next;
6504
	} while (sg != env->sd->groups);
6505 6506 6507

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6508 6509 6510 6511 6512 6513 6514

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6534
 * Return: 1 when packing is required and a task should be moved to
6535 6536
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6537
 * @env: The load balancing environment.
6538 6539
 * @sds: Statistics of the sched_domain which is to be packed
 */
6540
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6541 6542 6543
{
	int busiest_cpu;

6544
	if (!(env->sd->flags & SD_ASYM_PACKING))
6545 6546 6547 6548 6549 6550
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6551
	if (env->dst_cpu > busiest_cpu)
6552 6553
		return 0;

6554
	env->imbalance = DIV_ROUND_CLOSEST(
6555
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6556
		SCHED_CAPACITY_SCALE);
6557

6558
	return 1;
6559 6560 6561 6562 6563 6564
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6565
 * @env: The load balancing environment.
6566 6567
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6568 6569
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6570
{
6571
	unsigned long tmp, capa_now = 0, capa_move = 0;
6572
	unsigned int imbn = 2;
6573
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6574
	struct sg_lb_stats *local, *busiest;
6575

J
Joonsoo Kim 已提交
6576 6577
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6578

J
Joonsoo Kim 已提交
6579 6580 6581 6582
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6583

J
Joonsoo Kim 已提交
6584
	scaled_busy_load_per_task =
6585
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6586
		busiest->group_capacity;
J
Joonsoo Kim 已提交
6587

6588 6589
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6590
		env->imbalance = busiest->load_per_task;
6591 6592 6593 6594 6595
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
6596
	 * however we may be able to increase total CPU capacity used by
6597 6598 6599
	 * moving them.
	 */

6600
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
6601
			min(busiest->load_per_task, busiest->avg_load);
6602
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
6603
			min(local->load_per_task, local->avg_load);
6604
	capa_now /= SCHED_CAPACITY_SCALE;
6605 6606

	/* Amount of load we'd subtract */
6607
	if (busiest->avg_load > scaled_busy_load_per_task) {
6608
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
6609
			    min(busiest->load_per_task,
6610
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
6611
	}
6612 6613

	/* Amount of load we'd add */
6614
	if (busiest->avg_load * busiest->group_capacity <
6615
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6616 6617
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
6618
	} else {
6619
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6620
		      local->group_capacity;
J
Joonsoo Kim 已提交
6621
	}
6622
	capa_move += local->group_capacity *
6623
		    min(local->load_per_task, local->avg_load + tmp);
6624
	capa_move /= SCHED_CAPACITY_SCALE;
6625 6626

	/* Move if we gain throughput */
6627
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
6628
		env->imbalance = busiest->load_per_task;
6629 6630 6631 6632 6633
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
6634
 * @env: load balance environment
6635 6636
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
6637
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6638
{
6639
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
6640 6641 6642 6643
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6644

6645
	if (busiest->group_type == group_imbalanced) {
6646 6647 6648 6649
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
6650 6651
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
6652 6653
	}

6654 6655 6656
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
6657
	 * its cpu_capacity, while calculating max_load..)
6658
	 */
6659 6660
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6661 6662
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6663 6664
	}

6665 6666 6667 6668 6669
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
6670 6671 6672 6673 6674 6675
		load_above_capacity = busiest->sum_nr_running *
					SCHED_LOAD_SCALE;
		if (load_above_capacity > busiest->group_capacity)
			load_above_capacity -= busiest->group_capacity;
		else
			load_above_capacity = ~0UL;
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6686
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6687 6688

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6689
	env->imbalance = min(
6690 6691
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
6692
	) / SCHED_CAPACITY_SCALE;
6693 6694 6695

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6696
	 * there is no guarantee that any tasks will be moved so we'll have
6697 6698 6699
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6700
	if (env->imbalance < busiest->load_per_task)
6701
		return fix_small_imbalance(env, sds);
6702
}
6703

6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6716
 * @env: The load balancing environment.
6717
 *
6718
 * Return:	- The busiest group if imbalance exists.
6719 6720 6721 6722
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6723
static struct sched_group *find_busiest_group(struct lb_env *env)
6724
{
J
Joonsoo Kim 已提交
6725
	struct sg_lb_stats *local, *busiest;
6726 6727
	struct sd_lb_stats sds;

6728
	init_sd_lb_stats(&sds);
6729 6730 6731 6732 6733

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6734
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6735 6736
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6737

6738
	/* ASYM feature bypasses nice load balance check */
6739 6740
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6741 6742
		return sds.busiest;

6743
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6744
	if (!sds.busiest || busiest->sum_nr_running == 0)
6745 6746
		goto out_balanced;

6747 6748
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
6749

P
Peter Zijlstra 已提交
6750 6751
	/*
	 * If the busiest group is imbalanced the below checks don't
6752
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6753 6754
	 * isn't true due to cpus_allowed constraints and the like.
	 */
6755
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
6756 6757
		goto force_balance;

6758
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6759 6760
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
6761 6762
		goto force_balance;

6763
	/*
6764
	 * If the local group is busier than the selected busiest group
6765 6766
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
6767
	if (local->avg_load >= busiest->avg_load)
6768 6769
		goto out_balanced;

6770 6771 6772 6773
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
6774
	if (local->avg_load >= sds.avg_load)
6775 6776
		goto out_balanced;

6777
	if (env->idle == CPU_IDLE) {
6778
		/*
6779 6780 6781 6782 6783
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
6784
		 */
6785 6786
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6787
			goto out_balanced;
6788 6789 6790 6791 6792
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6793 6794
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6795
			goto out_balanced;
6796
	}
6797

6798
force_balance:
6799
	/* Looks like there is an imbalance. Compute it */
6800
	calculate_imbalance(env, &sds);
6801 6802 6803
	return sds.busiest;

out_balanced:
6804
	env->imbalance = 0;
6805 6806 6807 6808 6809 6810
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6811
static struct rq *find_busiest_queue(struct lb_env *env,
6812
				     struct sched_group *group)
6813 6814
{
	struct rq *busiest = NULL, *rq;
6815
	unsigned long busiest_load = 0, busiest_capacity = 1;
6816 6817
	int i;

6818
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6819
		unsigned long capacity, wl;
6820 6821 6822 6823
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6824

6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

6847
		capacity = capacity_of(i);
6848

6849
		wl = weighted_cpuload(i);
6850

6851 6852
		/*
		 * When comparing with imbalance, use weighted_cpuload()
6853
		 * which is not scaled with the cpu capacity.
6854
		 */
6855 6856 6857

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
6858 6859
			continue;

6860 6861
		/*
		 * For the load comparisons with the other cpu's, consider
6862 6863 6864
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
6865
		 *
6866
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6867
		 * multiplication to rid ourselves of the division works out
6868 6869
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
6870
		 */
6871
		if (wl * busiest_capacity > busiest_load * capacity) {
6872
			busiest_load = wl;
6873
			busiest_capacity = capacity;
6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6888
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6889

6890
static int need_active_balance(struct lb_env *env)
6891
{
6892 6893 6894
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6895 6896 6897 6898 6899 6900

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6901
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6902
			return 1;
6903 6904
	}

6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

6918 6919 6920
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6921 6922
static int active_load_balance_cpu_stop(void *data);

6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6954
	return balance_cpu == env->dst_cpu;
6955 6956
}

6957 6958 6959 6960 6961 6962
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6963
			int *continue_balancing)
6964
{
6965
	int ld_moved, cur_ld_moved, active_balance = 0;
6966
	struct sched_domain *sd_parent = sd->parent;
6967 6968 6969
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6970
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6971

6972 6973
	struct lb_env env = {
		.sd		= sd,
6974 6975
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6976
		.dst_grpmask    = sched_group_cpus(sd->groups),
6977
		.idle		= idle,
6978
		.loop_break	= sched_nr_migrate_break,
6979
		.cpus		= cpus,
6980
		.fbq_type	= all,
6981
		.tasks		= LIST_HEAD_INIT(env.tasks),
6982 6983
	};

6984 6985 6986 6987
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6988
	if (idle == CPU_NEWLY_IDLE)
6989 6990
		env.dst_grpmask = NULL;

6991 6992 6993 6994 6995
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6996 6997
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6998
		goto out_balanced;
6999
	}
7000

7001
	group = find_busiest_group(&env);
7002 7003 7004 7005 7006
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

7007
	busiest = find_busiest_queue(&env, group);
7008 7009 7010 7011 7012
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

7013
	BUG_ON(busiest == env.dst_rq);
7014

7015
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7016

7017 7018 7019
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

7020 7021 7022 7023 7024 7025 7026 7027
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
7028
		env.flags |= LBF_ALL_PINNED;
7029
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7030

7031
more_balance:
7032
		raw_spin_lock_irqsave(&busiest->lock, flags);
7033 7034 7035 7036 7037

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
7038
		cur_ld_moved = detach_tasks(&env);
7039 7040

		/*
7041 7042 7043 7044 7045
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
7046
		 */
7047 7048 7049 7050 7051 7052 7053 7054

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

7055
		local_irq_restore(flags);
7056

7057 7058 7059 7060 7061
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
7081
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7082

7083 7084 7085
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

7086
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7087
			env.dst_cpu	 = env.new_dst_cpu;
7088
			env.flags	&= ~LBF_DST_PINNED;
7089 7090
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
7091

7092 7093 7094 7095 7096 7097
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
7098

7099 7100 7101 7102
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
7103
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7104

7105
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7106 7107 7108
				*group_imbalance = 1;
		}

7109
		/* All tasks on this runqueue were pinned by CPU affinity */
7110
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7111
			cpumask_clear_cpu(cpu_of(busiest), cpus);
7112 7113 7114
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
7115
				goto redo;
7116
			}
7117
			goto out_all_pinned;
7118 7119 7120 7121 7122
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
7123 7124 7125 7126 7127 7128 7129 7130
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
7131

7132
		if (need_active_balance(&env)) {
7133 7134
			raw_spin_lock_irqsave(&busiest->lock, flags);

7135 7136 7137
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
7138 7139
			 */
			if (!cpumask_test_cpu(this_cpu,
7140
					tsk_cpus_allowed(busiest->curr))) {
7141 7142
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
7143
				env.flags |= LBF_ALL_PINNED;
7144 7145 7146
				goto out_one_pinned;
			}

7147 7148 7149 7150 7151
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
7152 7153 7154 7155 7156 7157
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7158

7159
			if (active_balance) {
7160 7161 7162
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
7163
			}
7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
7182
		 * detach_tasks).
7183 7184 7185 7186 7187 7188 7189 7190
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
7208 7209 7210 7211 7212 7213
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
7214
	if (((env.flags & LBF_ALL_PINNED) &&
7215
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7216 7217 7218
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

7219
	ld_moved = 0;
7220 7221 7222 7223
out:
	return ld_moved;
}

7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

7251 7252 7253 7254
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
7255
static int idle_balance(struct rq *this_rq)
7256
{
7257 7258
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
7259 7260
	struct sched_domain *sd;
	int pulled_task = 0;
7261
	u64 curr_cost = 0;
7262

7263 7264 7265 7266 7267 7268
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

7269 7270
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
7271 7272 7273 7274 7275 7276
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

7277
		goto out;
7278
	}
7279

7280 7281
	raw_spin_unlock(&this_rq->lock);

7282
	update_blocked_averages(this_cpu);
7283
	rcu_read_lock();
7284
	for_each_domain(this_cpu, sd) {
7285
		int continue_balancing = 1;
7286
		u64 t0, domain_cost;
7287 7288 7289 7290

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7291 7292
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
7293
			break;
7294
		}
7295

7296
		if (sd->flags & SD_BALANCE_NEWIDLE) {
7297 7298
			t0 = sched_clock_cpu(this_cpu);

7299
			pulled_task = load_balance(this_cpu, this_rq,
7300 7301
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
7302 7303 7304 7305 7306 7307

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
7308
		}
7309

7310
		update_next_balance(sd, 0, &next_balance);
7311 7312 7313 7314 7315 7316

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
7317 7318
			break;
	}
7319
	rcu_read_unlock();
7320 7321 7322

	raw_spin_lock(&this_rq->lock);

7323 7324 7325
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

7326
	/*
7327 7328 7329
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
7330
	 */
7331
	if (this_rq->cfs.h_nr_running && !pulled_task)
7332
		pulled_task = 1;
7333

7334 7335 7336
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
7337
		this_rq->next_balance = next_balance;
7338

7339
	/* Is there a task of a high priority class? */
7340
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7341 7342
		pulled_task = -1;

7343
	if (pulled_task)
7344 7345
		this_rq->idle_stamp = 0;

7346
	return pulled_task;
7347 7348 7349
}

/*
7350 7351 7352 7353
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
7354
 */
7355
static int active_load_balance_cpu_stop(void *data)
7356
{
7357 7358
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
7359
	int target_cpu = busiest_rq->push_cpu;
7360
	struct rq *target_rq = cpu_rq(target_cpu);
7361
	struct sched_domain *sd;
7362
	struct task_struct *p = NULL;
7363 7364 7365 7366 7367 7368 7369

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
7370 7371 7372

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
7373
		goto out_unlock;
7374 7375 7376 7377 7378 7379 7380 7381 7382

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
7383
	rcu_read_lock();
7384 7385 7386 7387 7388 7389 7390
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
7391 7392
		struct lb_env env = {
			.sd		= sd,
7393 7394 7395 7396
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
7397 7398 7399
			.idle		= CPU_IDLE,
		};

7400 7401
		schedstat_inc(sd, alb_count);

7402 7403
		p = detach_one_task(&env);
		if (p)
7404 7405 7406 7407
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
7408
	rcu_read_unlock();
7409 7410
out_unlock:
	busiest_rq->active_balance = 0;
7411 7412 7413 7414 7415 7416 7417
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

7418
	return 0;
7419 7420
}

7421 7422 7423 7424 7425
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

7426
#ifdef CONFIG_NO_HZ_COMMON
7427 7428 7429 7430 7431 7432
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
7433
static struct {
7434
	cpumask_var_t idle_cpus_mask;
7435
	atomic_t nr_cpus;
7436 7437
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
7438

7439
static inline int find_new_ilb(void)
7440
{
7441
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7442

7443 7444 7445 7446
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7447 7448
}

7449 7450 7451 7452 7453
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7454
static void nohz_balancer_kick(void)
7455 7456 7457 7458 7459
{
	int ilb_cpu;

	nohz.next_balance++;

7460
	ilb_cpu = find_new_ilb();
7461

7462 7463
	if (ilb_cpu >= nr_cpu_ids)
		return;
7464

7465
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7466 7467 7468 7469 7470 7471 7472 7473
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7474 7475 7476
	return;
}

7477
static inline void nohz_balance_exit_idle(int cpu)
7478 7479
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7480 7481 7482 7483 7484 7485 7486
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
7487 7488 7489 7490
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

7491 7492 7493
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
7494
	int cpu = smp_processor_id();
7495 7496

	rcu_read_lock();
7497
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7498 7499 7500 7501 7502

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7503
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7504
unlock:
7505 7506 7507 7508 7509 7510
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7511
	int cpu = smp_processor_id();
7512 7513

	rcu_read_lock();
7514
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7515 7516 7517 7518 7519

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7520
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7521
unlock:
7522 7523 7524
	rcu_read_unlock();
}

7525
/*
7526
 * This routine will record that the cpu is going idle with tick stopped.
7527
 * This info will be used in performing idle load balancing in the future.
7528
 */
7529
void nohz_balance_enter_idle(int cpu)
7530
{
7531 7532 7533 7534 7535 7536
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

7537 7538
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
7539

7540 7541 7542 7543 7544 7545
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

7546 7547 7548
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7549
}
7550

7551
static int sched_ilb_notifier(struct notifier_block *nfb,
7552 7553 7554 7555
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
7556
		nohz_balance_exit_idle(smp_processor_id());
7557 7558 7559 7560 7561
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
7562 7563 7564 7565
#endif

static DEFINE_SPINLOCK(balancing);

7566 7567 7568 7569
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
7570
void update_max_interval(void)
7571 7572 7573 7574
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

7575 7576 7577 7578
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7579
 * Balancing parameters are set up in init_sched_domains.
7580
 */
7581
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7582
{
7583
	int continue_balancing = 1;
7584
	int cpu = rq->cpu;
7585
	unsigned long interval;
7586
	struct sched_domain *sd;
7587 7588 7589
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7590 7591
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7592

7593
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7594

7595
	rcu_read_lock();
7596
	for_each_domain(cpu, sd) {
7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7609 7610 7611
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

7623
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7624 7625 7626 7627 7628 7629 7630 7631

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7632
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7633
				/*
7634
				 * The LBF_DST_PINNED logic could have changed
7635 7636
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
7637
				 */
7638
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7639 7640
			}
			sd->last_balance = jiffies;
7641
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7642 7643 7644 7645 7646 7647 7648 7649
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
7650 7651
	}
	if (need_decay) {
7652
		/*
7653 7654
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
7655
		 */
7656 7657
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
7658
	}
7659
	rcu_read_unlock();
7660 7661 7662 7663 7664 7665

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
7666
	if (likely(update_next_balance)) {
7667
		rq->next_balance = next_balance;
7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
7682 7683
}

7684
#ifdef CONFIG_NO_HZ_COMMON
7685
/*
7686
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7687 7688
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
7689
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7690
{
7691
	int this_cpu = this_rq->cpu;
7692 7693
	struct rq *rq;
	int balance_cpu;
7694 7695 7696
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7697

7698 7699 7700
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
7701 7702

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7703
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7704 7705 7706 7707 7708 7709 7710
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
7711
		if (need_resched())
7712 7713
			break;

V
Vincent Guittot 已提交
7714 7715
		rq = cpu_rq(balance_cpu);

7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
			update_idle_cpu_load(rq);
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
7727

7728 7729 7730 7731
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
7732
	}
7733 7734 7735 7736 7737 7738 7739 7740

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
7741 7742
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7743 7744 7745
}

/*
7746
 * Current heuristic for kicking the idle load balancer in the presence
7747
 * of an idle cpu in the system.
7748
 *   - This rq has more than one task.
7749 7750 7751 7752
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
7753 7754
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
7755
 */
7756
static inline bool nohz_kick_needed(struct rq *rq)
7757 7758
{
	unsigned long now = jiffies;
7759
	struct sched_domain *sd;
7760
	struct sched_group_capacity *sgc;
7761
	int nr_busy, cpu = rq->cpu;
7762
	bool kick = false;
7763

7764
	if (unlikely(rq->idle_balance))
7765
		return false;
7766

7767 7768 7769 7770
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
7771
	set_cpu_sd_state_busy();
7772
	nohz_balance_exit_idle(cpu);
7773 7774 7775 7776 7777 7778

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
7779
		return false;
7780 7781

	if (time_before(now, nohz.next_balance))
7782
		return false;
7783

7784
	if (rq->nr_running >= 2)
7785
		return true;
7786

7787
	rcu_read_lock();
7788 7789
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
	if (sd) {
7790 7791
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7792

7793 7794 7795 7796 7797
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

7798
	}
7799

7800 7801 7802 7803 7804 7805 7806 7807
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
7808

7809
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7810
	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7811 7812 7813 7814
				  sched_domain_span(sd)) < cpu)) {
		kick = true;
		goto unlock;
	}
7815

7816
unlock:
7817
	rcu_read_unlock();
7818
	return kick;
7819 7820
}
#else
7821
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7822 7823 7824 7825 7826 7827
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
7828 7829
static void run_rebalance_domains(struct softirq_action *h)
{
7830
	struct rq *this_rq = this_rq();
7831
	enum cpu_idle_type idle = this_rq->idle_balance ?
7832 7833 7834
						CPU_IDLE : CPU_NOT_IDLE;

	/*
7835
	 * If this cpu has a pending nohz_balance_kick, then do the
7836
	 * balancing on behalf of the other idle cpus whose ticks are
7837 7838 7839 7840
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
7841
	 */
7842
	nohz_idle_balance(this_rq, idle);
7843
	rebalance_domains(this_rq, idle);
7844 7845 7846 7847 7848
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
7849
void trigger_load_balance(struct rq *rq)
7850 7851
{
	/* Don't need to rebalance while attached to NULL domain */
7852 7853 7854 7855
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
7856
		raise_softirq(SCHED_SOFTIRQ);
7857
#ifdef CONFIG_NO_HZ_COMMON
7858
	if (nohz_kick_needed(rq))
7859
		nohz_balancer_kick();
7860
#endif
7861 7862
}

7863 7864 7865
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
7866 7867

	update_runtime_enabled(rq);
7868 7869 7870 7871 7872
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
7873 7874 7875

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
7876 7877
}

7878
#endif /* CONFIG_SMP */
7879

7880 7881 7882
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
7883
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7884 7885 7886 7887 7888 7889
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
7890
		entity_tick(cfs_rq, se, queued);
7891
	}
7892

7893
	if (static_branch_unlikely(&sched_numa_balancing))
7894
		task_tick_numa(rq, curr);
7895 7896 7897
}

/*
P
Peter Zijlstra 已提交
7898 7899 7900
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
7901
 */
P
Peter Zijlstra 已提交
7902
static void task_fork_fair(struct task_struct *p)
7903
{
7904 7905
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
7906
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
7907 7908 7909
	struct rq *rq = this_rq();
	unsigned long flags;

7910
	raw_spin_lock_irqsave(&rq->lock, flags);
7911

7912 7913
	update_rq_clock(rq);

7914 7915 7916
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

7917 7918 7919 7920 7921 7922 7923 7924 7925
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
7926

7927
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
7928

7929 7930
	if (curr)
		se->vruntime = curr->vruntime;
7931
	place_entity(cfs_rq, se, 1);
7932

P
Peter Zijlstra 已提交
7933
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
7934
		/*
7935 7936 7937
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
7938
		swap(curr->vruntime, se->vruntime);
7939
		resched_curr(rq);
7940
	}
7941

7942 7943
	se->vruntime -= cfs_rq->min_vruntime;

7944
	raw_spin_unlock_irqrestore(&rq->lock, flags);
7945 7946
}

7947 7948 7949 7950
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
7951 7952
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7953
{
7954
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
7955 7956
		return;

7957 7958 7959 7960 7961
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
7962
	if (rq->curr == p) {
7963
		if (p->prio > oldprio)
7964
			resched_curr(rq);
7965
	} else
7966
		check_preempt_curr(rq, p, 0);
7967 7968
}

7969
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
7970 7971 7972 7973
{
	struct sched_entity *se = &p->se;

	/*
7974 7975 7976 7977 7978 7979 7980 7981 7982 7983
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
7984
	 *
7985 7986 7987 7988
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
7989
	 */
7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
P
Peter Zijlstra 已提交
8002 8003 8004 8005 8006 8007 8008
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
8009

8010
	/* Catch up with the cfs_rq and remove our load when we leave */
8011
	detach_entity_load_avg(cfs_rq, se);
P
Peter Zijlstra 已提交
8012 8013
}

8014
static void attach_task_cfs_rq(struct task_struct *p)
8015
{
8016
	struct sched_entity *se = &p->se;
8017
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8018 8019

#ifdef CONFIG_FAIR_GROUP_SCHED
8020 8021 8022 8023 8024 8025
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
8026

8027
	/* Synchronize task with its cfs_rq */
8028 8029 8030 8031 8032
	attach_entity_load_avg(cfs_rq, se);

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
8033

8034 8035 8036 8037 8038 8039 8040 8041
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
8042

8043
	if (task_on_rq_queued(p)) {
8044
		/*
8045 8046 8047
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
8048
		 */
8049 8050 8051 8052
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
8053
	}
8054 8055
}

8056 8057 8058 8059 8060 8061 8062 8063 8064
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

8065 8066 8067 8068 8069 8070 8071
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
8072 8073
}

8074 8075 8076 8077 8078 8079 8080
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
8081
#ifdef CONFIG_SMP
8082 8083
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8084
#endif
8085 8086
}

P
Peter Zijlstra 已提交
8087
#ifdef CONFIG_FAIR_GROUP_SCHED
8088
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
8089
{
8090
	detach_task_cfs_rq(p);
8091
	set_task_rq(p, task_cpu(p));
8092 8093 8094 8095 8096

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
8097
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
8098
}
8099 8100 8101 8102 8103 8104 8105 8106 8107 8108

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
8109 8110 8111
		if (tg->se) {
			if (tg->se[i])
				remove_entity_load_avg(tg->se[i]);
8112
			kfree(tg->se[i]);
8113
		}
8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8150
		init_entity_runnable_average(se);
8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
8195
	if (!parent) {
8196
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
8197 8198
		se->depth = 0;
	} else {
8199
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
8200 8201
		se->depth = parent->depth + 1;
	}
8202 8203

	se->my_q = cfs_rq;
8204 8205
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
8236 8237 8238

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
8239
		for_each_sched_entity(se)
8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
8261

8262
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8263 8264 8265 8266 8267 8268 8269 8270 8271
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
8272
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8273 8274 8275 8276

	return rr_interval;
}

8277 8278 8279
/*
 * All the scheduling class methods:
 */
8280
const struct sched_class fair_sched_class = {
8281
	.next			= &idle_sched_class,
8282 8283 8284
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
8285
	.yield_to_task		= yield_to_task_fair,
8286

I
Ingo Molnar 已提交
8287
	.check_preempt_curr	= check_preempt_wakeup,
8288 8289 8290 8291

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

8292
#ifdef CONFIG_SMP
L
Li Zefan 已提交
8293
	.select_task_rq		= select_task_rq_fair,
8294
	.migrate_task_rq	= migrate_task_rq_fair,
8295

8296 8297
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
8298 8299

	.task_waking		= task_waking_fair,
8300
	.task_dead		= task_dead_fair,
8301
	.set_cpus_allowed	= set_cpus_allowed_common,
8302
#endif
8303

8304
	.set_curr_task          = set_curr_task_fair,
8305
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
8306
	.task_fork		= task_fork_fair,
8307 8308

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
8309
	.switched_from		= switched_from_fair,
8310
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
8311

8312 8313
	.get_rr_interval	= get_rr_interval_fair,

8314 8315
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
8316
#ifdef CONFIG_FAIR_GROUP_SCHED
8317
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
8318
#endif
8319 8320 8321
};

#ifdef CONFIG_SCHED_DEBUG
8322
void print_cfs_stats(struct seq_file *m, int cpu)
8323 8324 8325
{
	struct cfs_rq *cfs_rq;

8326
	rcu_read_lock();
8327
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8328
		print_cfs_rq(m, cpu, cfs_rq);
8329
	rcu_read_unlock();
8330
}
8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
8352 8353 8354 8355 8356 8357

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

8358
#ifdef CONFIG_NO_HZ_COMMON
8359
	nohz.next_balance = jiffies;
8360
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8361
	cpu_notifier(sched_ilb_notifier, 0);
8362 8363 8364 8365
#endif
#endif /* SMP */

}