fair.c 201.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29
#include <linux/mempolicy.h>
30
#include <linux/migrate.h>
31
#include <linux/task_work.h>
32 33 34 35

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
36

37
/*
38
 * Targeted preemption latency for CPU-bound tasks:
39
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48
 */
49 50
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

64
/*
65
 * Minimal preemption granularity for CPU-bound tasks:
66
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67
 */
68 69
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 71

/*
72 73
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
74
static unsigned int sched_nr_latency = 8;
75 76

/*
77
 * After fork, child runs first. If set to 0 (default) then
78
 * parent will (try to) run first.
79
 */
80
unsigned int sysctl_sched_child_runs_first __read_mostly;
81 82 83

/*
 * SCHED_OTHER wake-up granularity.
84
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 86 87 88 89
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
90
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92

93 94
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

95 96 97 98 99 100 101
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

102 103 104 105 106 107 108 109 110 111 112 113 114 115
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

181
#define WMULT_CONST	(~0U)
182 183
#define WMULT_SHIFT	32

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
200 201

/*
202 203 204 205 206 207 208 209 210 211
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212
 */
213
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214
{
215 216
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
217

218
	__update_inv_weight(lw);
219

220 221 222 223 224
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
225 226
	}

227 228
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
229

230 231 232 233
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
234

235
	return mul_u64_u32_shr(delta_exec, fact, shift);
236 237 238 239
}


const struct sched_class fair_sched_class;
240

241 242 243 244
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

245
#ifdef CONFIG_FAIR_GROUP_SCHED
246

247
/* cpu runqueue to which this cfs_rq is attached */
248 249
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
250
	return cfs_rq->rq;
251 252
}

253 254
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
255

256 257 258 259 260 261 262 263
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
287

288 289 290
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
291 292 293 294 295 296 297 298 299 300 301 302
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
304
		}
305 306

		cfs_rq->on_list = 1;
307
		/* We should have no load, but we need to update last_decay. */
308
		update_cfs_rq_blocked_load(cfs_rq, 0);
309 310 311 312 313 314 315 316 317 318 319
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
320 321 322 323 324
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
325
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
326 327 328
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
329
		return se->cfs_rq;
P
Peter Zijlstra 已提交
330

P
Peter Zijlstra 已提交
331
	return NULL;
P
Peter Zijlstra 已提交
332 333 334 335 336 337 338
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

339 340 341 342 343 344 345 346 347 348 349 350 351
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
352 353
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

371 372 373 374 375 376
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
377

378 379 380
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
381 382 383 384
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
385 386
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
387

P
Peter Zijlstra 已提交
388
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389
{
P
Peter Zijlstra 已提交
390
	return &task_rq(p)->cfs;
391 392
}

P
Peter Zijlstra 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

407 408 409 410 411 412 413 414
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
415 416 417 418 419 420 421 422
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

423 424 425 426 427
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
428 429
#endif	/* CONFIG_FAIR_GROUP_SCHED */

430
static __always_inline
431
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432 433 434 435 436

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

437
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438
{
439
	s64 delta = (s64)(vruntime - max_vruntime);
440
	if (delta > 0)
441
		max_vruntime = vruntime;
442

443
	return max_vruntime;
444 445
}

446
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
447 448 449 450 451 452 453 454
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

455 456 457 458 459 460
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

461 462 463 464 465 466 467 468 469 470 471 472
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
473
		if (!cfs_rq->curr)
474 475 476 477 478
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

479
	/* ensure we never gain time by being placed backwards. */
480
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481 482 483 484
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
485 486
}

487 488 489
/*
 * Enqueue an entity into the rb-tree:
 */
490
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
507
		if (entity_before(se, entry)) {
508 509 510 511 512 513 514 515 516 517 518
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
519
	if (leftmost)
I
Ingo Molnar 已提交
520
		cfs_rq->rb_leftmost = &se->run_node;
521 522 523 524 525

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

526
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527
{
P
Peter Zijlstra 已提交
528 529 530 531 532 533
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
534

535 536 537
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

538
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539
{
540 541 542 543 544 545
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
546 547
}

548 549 550 551 552 553 554 555 556 557 558
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
559
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560
{
561
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562

563 564
	if (!last)
		return NULL;
565 566

	return rb_entry(last, struct sched_entity, run_node);
567 568
}

569 570 571 572
/**************************************************************
 * Scheduling class statistics methods:
 */

573
int sched_proc_update_handler(struct ctl_table *table, int write,
574
		void __user *buffer, size_t *lenp,
575 576
		loff_t *ppos)
{
577
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578
	int factor = get_update_sysctl_factor();
579 580 581 582 583 584 585

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

586 587 588 589 590 591 592
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

593 594 595
	return 0;
}
#endif
596

597
/*
598
 * delta /= w
599
 */
600
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601
{
602
	if (unlikely(se->load.weight != NICE_0_LOAD))
603
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604 605 606 607

	return delta;
}

608 609 610
/*
 * The idea is to set a period in which each task runs once.
 *
611
 * When there are too many tasks (sched_nr_latency) we have to stretch
612 613 614 615
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
616 617 618
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
619
	unsigned long nr_latency = sched_nr_latency;
620 621

	if (unlikely(nr_running > nr_latency)) {
622
		period = sysctl_sched_min_granularity;
623 624 625 626 627 628
		period *= nr_running;
	}

	return period;
}

629 630 631 632
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
633
 * s = p*P[w/rw]
634
 */
P
Peter Zijlstra 已提交
635
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
636
{
M
Mike Galbraith 已提交
637
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
638

M
Mike Galbraith 已提交
639
	for_each_sched_entity(se) {
L
Lin Ming 已提交
640
		struct load_weight *load;
641
		struct load_weight lw;
L
Lin Ming 已提交
642 643 644

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
645

M
Mike Galbraith 已提交
646
		if (unlikely(!se->on_rq)) {
647
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
648 649 650 651

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
652
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
653 654
	}
	return slice;
655 656
}

657
/*
A
Andrei Epure 已提交
658
 * We calculate the vruntime slice of a to-be-inserted task.
659
 *
660
 * vs = s/w
661
 */
662
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
663
{
664
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
665 666
}

667
#ifdef CONFIG_SMP
668 669
static unsigned long task_h_load(struct task_struct *p);

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

689
/*
690
 * Update the current task's runtime statistics.
691
 */
692
static void update_curr(struct cfs_rq *cfs_rq)
693
{
694
	struct sched_entity *curr = cfs_rq->curr;
695
	u64 now = rq_clock_task(rq_of(cfs_rq));
696
	u64 delta_exec;
697 698 699 700

	if (unlikely(!curr))
		return;

701 702
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
703
		return;
704

I
Ingo Molnar 已提交
705
	curr->exec_start = now;
706

707 708 709 710 711 712 713 714 715
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

716 717 718
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

719
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720
		cpuacct_charge(curtask, delta_exec);
721
		account_group_exec_runtime(curtask, delta_exec);
722
	}
723 724

	account_cfs_rq_runtime(cfs_rq, delta_exec);
725 726 727
}

static inline void
728
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
729
{
730
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
731 732 733 734 735
}

/*
 * Task is being enqueued - update stats:
 */
736
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 738 739 740 741
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
742
	if (se != cfs_rq->curr)
743
		update_stats_wait_start(cfs_rq, se);
744 745 746
}

static void
747
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
748
{
749
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 752
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754 755 756
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
757
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
758 759
	}
#endif
760
	schedstat_set(se->statistics.wait_start, 0);
761 762 763
}

static inline void
764
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 766 767 768 769
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
770
	if (se != cfs_rq->curr)
771
		update_stats_wait_end(cfs_rq, se);
772 773 774 775 776 777
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
778
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 780 781 782
{
	/*
	 * We are starting a new run period:
	 */
783
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
784 785 786 787 788 789
}

/**************************************************
 * Scheduling class queueing methods:
 */

790 791
#ifdef CONFIG_NUMA_BALANCING
/*
792 793 794
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
795
 */
796 797
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
798 799 800

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
801

802 803 804
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
	unsigned int scan, floor;
	unsigned int windows = 1;

	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

850 851 852 853 854 855 856 857 858 859 860 861
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

862 863 864 865 866
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
867
	pid_t gid;
868 869 870
	struct list_head task_list;

	struct rcu_head rcu;
871
	nodemask_t active_nodes;
872
	unsigned long total_faults;
873 874 875 876 877
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
878
	unsigned long *faults_cpu;
879
	unsigned long faults[0];
880 881
};

882 883 884 885 886 887 888 889 890
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

891 892 893 894 895
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

896 897
static inline int task_faults_idx(int nid, int priv)
{
898
	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
899 900 901 902
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
903
	if (!p->numa_faults_memory)
904 905
		return 0;

906 907
	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
		p->numa_faults_memory[task_faults_idx(nid, 1)];
908 909
}

910 911 912 913 914
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

915 916
	return p->numa_group->faults[task_faults_idx(nid, 0)] +
		p->numa_group->faults[task_faults_idx(nid, 1)];
917 918
}

919 920 921 922 923 924
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
	return group->faults_cpu[task_faults_idx(nid, 0)] +
		group->faults_cpu[task_faults_idx(nid, 1)];
}

925 926 927 928 929 930 931 932 933 934
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
static inline unsigned long task_weight(struct task_struct *p, int nid)
{
	unsigned long total_faults;

935
	if (!p->numa_faults_memory)
936 937 938 939 940 941 942 943 944 945 946 947
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

	return 1000 * task_faults(p, nid) / total_faults;
}

static inline unsigned long group_weight(struct task_struct *p, int nid)
{
948
	if (!p->numa_group || !p->numa_group->total_faults)
949 950
		return 0;

951
	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
952 953
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Do not migrate if the destination is not a node that
	 * is actively used by this numa group.
	 */
	if (!node_isset(dst_nid, ng->active_nodes))
		return false;

	/*
	 * Source is a node that is not actively used by this
	 * numa group, while the destination is. Migrate.
	 */
	if (!node_isset(src_nid, ng->active_nodes))
		return true;

	/*
	 * Both source and destination are nodes in active
	 * use by this numa group. Maximize memory bandwidth
	 * by migrating from more heavily used groups, to less
	 * heavily used ones, spreading the load around.
	 * Use a 1/4 hysteresis to avoid spurious page movement.
	 */
	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}

1017
static unsigned long weighted_cpuload(const int cpu);
1018 1019
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1020
static unsigned long capacity_of(int cpu);
1021 1022
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1023
/* Cached statistics for all CPUs within a node */
1024
struct numa_stats {
1025
	unsigned long nr_running;
1026
	unsigned long load;
1027 1028

	/* Total compute capacity of CPUs on a node */
1029
	unsigned long compute_capacity;
1030 1031

	/* Approximate capacity in terms of runnable tasks on a node */
1032
	unsigned long task_capacity;
1033
	int has_free_capacity;
1034
};
1035

1036 1037 1038 1039 1040
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1041
	int cpu, cpus = 0;
1042 1043 1044 1045 1046 1047 1048

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1049
		ns->compute_capacity += capacity_of(cpu);
1050 1051

		cpus++;
1052 1053
	}

1054 1055 1056 1057 1058
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1059 1060
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1061 1062 1063 1064
	 */
	if (!cpus)
		return;

1065
	ns->load = (ns->load * SCHED_CAPACITY_SCALE) / ns->compute_capacity;
1066
	ns->task_capacity =
1067
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE);
1068
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1069 1070
}

1071 1072
struct task_numa_env {
	struct task_struct *p;
1073

1074 1075
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1076

1077
	struct numa_stats src_stats, dst_stats;
1078

1079
	int imbalance_pct;
1080 1081 1082

	struct task_struct *best_task;
	long best_imp;
1083 1084 1085
	int best_cpu;
};

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
static bool load_too_imbalanced(long orig_src_load, long orig_dst_load,
				long src_load, long dst_load,
				struct task_numa_env *env)
{
	long imb, old_imb;

	/* We care about the slope of the imbalance, not the direction. */
	if (dst_load < src_load)
		swap(dst_load, src_load);

	/* Is the difference below the threshold? */
	imb = dst_load * 100 - src_load * env->imbalance_pct;
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
	 * Compare it with the old imbalance.
	 */
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);

	old_imb = orig_dst_load * 100 - orig_src_load * env->imbalance_pct;

	/* Would this change make things worse? */
1124
	return (imb > old_imb);
1125 1126
}

1127 1128 1129 1130 1131 1132
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1133 1134
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1135 1136 1137 1138
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1139 1140
	long orig_src_load, src_load;
	long orig_dst_load, dst_load;
1141
	long load;
1142
	long imp = (groupimp > 0) ? groupimp : taskimp;
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

	rcu_read_lock();
	cur = ACCESS_ONCE(dst_rq->curr);
	if (cur->pid == 0) /* idle */
		cur = NULL;

	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1161 1162
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1163
		 * in any group then look only at task weights.
1164
		 */
1165
		if (cur->numa_group == env->p->numa_group) {
1166 1167
			imp = taskimp + task_weight(cur, env->src_nid) -
			      task_weight(cur, env->dst_nid);
1168 1169 1170 1171 1172 1173
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1174
		} else {
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (env->p->numa_group)
				imp = groupimp;
			else
				imp = taskimp;

			if (cur->numa_group)
				imp += group_weight(cur, env->src_nid) -
				       group_weight(cur, env->dst_nid);
			else
				imp += task_weight(cur, env->src_nid) -
				       task_weight(cur, env->dst_nid);
1191
		}
1192 1193 1194 1195 1196 1197 1198
	}

	if (imp < env->best_imp)
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1199 1200
		if (env->src_stats.has_free_capacity &&
		    !env->dst_stats.has_free_capacity)
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
	if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1214 1215
	orig_dst_load = env->dst_stats.load;
	orig_src_load = env->src_stats.load;
1216

1217
	/* XXX missing capacity terms */
1218
	load = task_h_load(env->p);
1219 1220
	dst_load = orig_dst_load + load;
	src_load = orig_src_load - load;
1221 1222 1223 1224 1225 1226 1227

	if (cur) {
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
	}

1228 1229
	if (load_too_imbalanced(orig_src_load, orig_dst_load,
				src_load, dst_load, env))
1230 1231 1232 1233 1234 1235 1236 1237
		goto unlock;

assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1238 1239
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1240 1241 1242 1243 1244 1245 1246 1247 1248
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1249
		task_numa_compare(env, taskimp, groupimp);
1250 1251 1252
	}
}

1253 1254 1255 1256
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1257

1258
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1259
		.src_nid = task_node(p),
1260 1261 1262 1263 1264 1265

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1266 1267
	};
	struct sched_domain *sd;
1268
	unsigned long taskweight, groupweight;
1269
	int nid, ret;
1270
	long taskimp, groupimp;
1271

1272
	/*
1273 1274 1275 1276 1277 1278
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1279 1280
	 */
	rcu_read_lock();
1281
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1282 1283
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1284 1285
	rcu_read_unlock();

1286 1287 1288 1289 1290 1291 1292
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1293
		p->numa_preferred_nid = task_node(p);
1294 1295 1296
		return -EINVAL;
	}

1297 1298
	taskweight = task_weight(p, env.src_nid);
	groupweight = group_weight(p, env.src_nid);
1299
	update_numa_stats(&env.src_stats, env.src_nid);
1300
	env.dst_nid = p->numa_preferred_nid;
1301 1302
	taskimp = task_weight(p, env.dst_nid) - taskweight;
	groupimp = group_weight(p, env.dst_nid) - groupweight;
1303
	update_numa_stats(&env.dst_stats, env.dst_nid);
1304

1305 1306
	/* Try to find a spot on the preferred nid. */
	task_numa_find_cpu(&env, taskimp, groupimp);
1307 1308 1309

	/* No space available on the preferred nid. Look elsewhere. */
	if (env.best_cpu == -1) {
1310 1311 1312
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1313

1314
			/* Only consider nodes where both task and groups benefit */
1315 1316 1317
			taskimp = task_weight(p, nid) - taskweight;
			groupimp = group_weight(p, nid) - groupweight;
			if (taskimp < 0 && groupimp < 0)
1318 1319
				continue;

1320 1321
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1322
			task_numa_find_cpu(&env, taskimp, groupimp);
1323 1324 1325
		}
	}

1326 1327 1328 1329
	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
	if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes))
		sched_setnuma(p, env.dst_nid);
1340

1341 1342 1343 1344 1345 1346
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1347
	if (env.best_task == NULL) {
1348 1349 1350
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1351 1352 1353 1354
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1355 1356
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1357 1358
	put_task_struct(env.best_task);
	return ret;
1359 1360
}

1361 1362 1363
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1364 1365
	unsigned long interval = HZ;

1366
	/* This task has no NUMA fault statistics yet */
1367
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1368 1369
		return;

1370
	/* Periodically retry migrating the task to the preferred node */
1371 1372
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1373 1374

	/* Success if task is already running on preferred CPU */
1375
	if (task_node(p) == p->numa_preferred_nid)
1376 1377 1378
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1379
	task_numa_migrate(p);
1380 1381
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
 * period will be for the next scan window. If local/remote ratio is below
 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
 * scan period will decrease
 */
#define NUMA_PERIOD_SLOTS 10
#define NUMA_PERIOD_THRESHOLD 3

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
	 * to automatic numa balancing. Scan slower
	 */
	if (local + shared == 0) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
		delta = p->se.avg.runnable_avg_sum;
		*period = p->se.avg.runnable_avg_period;
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1516 1517
static void task_numa_placement(struct task_struct *p)
{
1518 1519
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1520
	unsigned long fault_types[2] = { 0, 0 };
1521 1522
	unsigned long total_faults;
	u64 runtime, period;
1523
	spinlock_t *group_lock = NULL;
1524

1525
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1526 1527 1528
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1529
	p->numa_scan_period_max = task_scan_max(p);
1530

1531 1532 1533 1534
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1535 1536 1537
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1538
		spin_lock_irq(group_lock);
1539 1540
	}

1541 1542
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1543
		unsigned long faults = 0, group_faults = 0;
1544
		int priv, i;
1545

1546
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1547
			long diff, f_diff, f_weight;
1548

1549
			i = task_faults_idx(nid, priv);
1550

1551
			/* Decay existing window, copy faults since last scan */
1552
			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1553 1554
			fault_types[priv] += p->numa_faults_buffer_memory[i];
			p->numa_faults_buffer_memory[i] = 0;
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
				   (total_faults + 1);
1566
			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1567 1568
			p->numa_faults_buffer_cpu[i] = 0;

1569 1570
			p->numa_faults_memory[i] += diff;
			p->numa_faults_cpu[i] += f_diff;
1571
			faults += p->numa_faults_memory[i];
1572
			p->total_numa_faults += diff;
1573 1574
			if (p->numa_group) {
				/* safe because we can only change our own group */
1575
				p->numa_group->faults[i] += diff;
1576
				p->numa_group->faults_cpu[i] += f_diff;
1577 1578
				p->numa_group->total_faults += diff;
				group_faults += p->numa_group->faults[i];
1579
			}
1580 1581
		}

1582 1583 1584 1585
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1586 1587 1588 1589 1590 1591 1592

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1593 1594
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1595
	if (p->numa_group) {
1596
		update_numa_active_node_mask(p->numa_group);
1597
		spin_unlock_irq(group_lock);
1598
		max_nid = max_group_nid;
1599 1600
	}

1601 1602 1603 1604 1605 1606 1607
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
1608
	}
1609 1610
}

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1622 1623
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1624 1625 1626 1627 1628 1629 1630 1631 1632
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1633
				    4*nr_node_ids*sizeof(unsigned long);
1634 1635 1636 1637 1638 1639 1640 1641

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
		INIT_LIST_HEAD(&grp->task_list);
1642
		grp->gid = p->pid;
1643
		/* Second half of the array tracks nids where faults happen */
1644 1645
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
1646

1647 1648
		node_set(task_node(current), grp->active_nodes);

1649
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1650
			grp->faults[i] = p->numa_faults_memory[i];
1651

1652
		grp->total_faults = p->total_numa_faults;
1653

1654 1655 1656 1657 1658 1659 1660 1661 1662
		list_add(&p->numa_entry, &grp->task_list);
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
1663
		goto no_join;
1664 1665 1666

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1667
		goto no_join;
1668 1669 1670

	my_grp = p->numa_group;
	if (grp == my_grp)
1671
		goto no_join;
1672 1673 1674 1675 1676 1677

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1678
		goto no_join;
1679 1680 1681 1682 1683

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1684
		goto no_join;
1685

1686 1687 1688 1689 1690 1691 1692
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
1693

1694 1695 1696
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

1697
	if (join && !get_numa_group(grp))
1698
		goto no_join;
1699 1700 1701 1702 1703 1704

	rcu_read_unlock();

	if (!join)
		return;

1705 1706
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
1707

1708
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1709 1710
		my_grp->faults[i] -= p->numa_faults_memory[i];
		grp->faults[i] += p->numa_faults_memory[i];
1711
	}
1712 1713
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
1714 1715 1716 1717 1718 1719

	list_move(&p->numa_entry, &grp->task_list);
	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
1720
	spin_unlock_irq(&grp->lock);
1721 1722 1723 1724

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
1725 1726 1727 1728 1729
	return;

no_join:
	rcu_read_unlock();
	return;
1730 1731 1732 1733 1734
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
1735
	void *numa_faults = p->numa_faults_memory;
1736 1737
	unsigned long flags;
	int i;
1738 1739

	if (grp) {
1740
		spin_lock_irqsave(&grp->lock, flags);
1741
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1742
			grp->faults[i] -= p->numa_faults_memory[i];
1743
		grp->total_faults -= p->total_numa_faults;
1744

1745 1746
		list_del(&p->numa_entry);
		grp->nr_tasks--;
1747
		spin_unlock_irqrestore(&grp->lock, flags);
1748 1749 1750 1751
		rcu_assign_pointer(p->numa_group, NULL);
		put_numa_group(grp);
	}

1752 1753
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1754 1755
	p->numa_faults_cpu= NULL;
	p->numa_faults_buffer_cpu = NULL;
1756
	kfree(numa_faults);
1757 1758
}

1759 1760 1761
/*
 * Got a PROT_NONE fault for a page on @node.
 */
1762
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1763 1764
{
	struct task_struct *p = current;
1765
	bool migrated = flags & TNF_MIGRATED;
1766
	int cpu_node = task_node(current);
1767
	int local = !!(flags & TNF_FAULT_LOCAL);
1768
	int priv;
1769

1770
	if (!numabalancing_enabled)
1771 1772
		return;

1773 1774 1775 1776
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

1777 1778 1779 1780
	/* Do not worry about placement if exiting */
	if (p->state == TASK_DEAD)
		return;

1781
	/* Allocate buffer to track faults on a per-node basis */
1782
	if (unlikely(!p->numa_faults_memory)) {
1783 1784
		int size = sizeof(*p->numa_faults_memory) *
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1785

1786
		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1787
		if (!p->numa_faults_memory)
1788
			return;
1789

1790
		BUG_ON(p->numa_faults_buffer_memory);
1791 1792 1793 1794 1795 1796
		/*
		 * The averaged statistics, shared & private, memory & cpu,
		 * occupy the first half of the array. The second half of the
		 * array is for current counters, which are averaged into the
		 * first set by task_numa_placement.
		 */
1797 1798 1799
		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1800
		p->total_numa_faults = 0;
1801
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1802
	}
1803

1804 1805 1806 1807 1808 1809 1810 1811
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
1812
		if (!priv && !(flags & TNF_NO_GROUP))
1813
			task_numa_group(p, last_cpupid, flags, &priv);
1814 1815
	}

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
	if (!priv && !local && p->numa_group &&
			node_isset(cpu_node, p->numa_group->active_nodes) &&
			node_isset(mem_node, p->numa_group->active_nodes))
		local = 1;

1827
	task_numa_placement(p);
1828

1829 1830 1831 1832 1833
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
1834 1835
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
1836 1837 1838
	if (migrated)
		p->numa_pages_migrated += pages;

1839 1840
	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1841
	p->numa_faults_locality[local] += pages;
1842 1843
}

1844 1845 1846 1847 1848 1849
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

1850 1851 1852 1853 1854 1855 1856 1857 1858
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
1859
	struct vm_area_struct *vma;
1860
	unsigned long start, end;
1861
	unsigned long nr_pte_updates = 0;
1862
	long pages;
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

1878
	if (!mm->numa_next_scan) {
1879 1880
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1881 1882
	}

1883 1884 1885 1886 1887 1888 1889
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

1890 1891 1892 1893
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
1894

1895
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1896 1897 1898
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

1899 1900 1901 1902 1903 1904
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

1905 1906 1907 1908 1909
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
1910

1911
	down_read(&mm->mmap_sem);
1912
	vma = find_vma(mm, start);
1913 1914
	if (!vma) {
		reset_ptenuma_scan(p);
1915
		start = 0;
1916 1917
		vma = mm->mmap;
	}
1918
	for (; vma; vma = vma->vm_next) {
1919
		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1920 1921
			continue;

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
1932 1933 1934 1935 1936 1937
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
1938

1939 1940 1941 1942
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
1943 1944 1945 1946 1947 1948 1949 1950 1951
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
1952

1953 1954 1955
			start = end;
			if (pages <= 0)
				goto out;
1956 1957

			cond_resched();
1958
		} while (end != vma->vm_end);
1959
	}
1960

1961
out:
1962
	/*
P
Peter Zijlstra 已提交
1963 1964 1965 1966
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
1967 1968
	 */
	if (vma)
1969
		mm->numa_scan_offset = start;
1970 1971 1972
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
1999
		if (!curr->node_stamp)
2000
			curr->numa_scan_period = task_scan_min(curr);
2001
		curr->node_stamp += period;
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2013 2014 2015 2016 2017 2018 2019 2020

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2021 2022
#endif /* CONFIG_NUMA_BALANCING */

2023 2024 2025 2026
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2027
	if (!parent_entity(se))
2028
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2029
#ifdef CONFIG_SMP
2030 2031 2032 2033 2034 2035
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2036
#endif
2037 2038 2039 2040 2041 2042 2043
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2044
	if (!parent_entity(se))
2045
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2046 2047
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2048
		list_del_init(&se->group_node);
2049
	}
2050 2051 2052
	cfs_rq->nr_running--;
}

2053 2054
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2055 2056 2057 2058 2059 2060 2061 2062 2063
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
2064
	tg_weight = atomic_long_read(&tg->load_avg);
2065
	tg_weight -= cfs_rq->tg_load_contrib;
2066 2067 2068 2069 2070
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

2071
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2072
{
2073
	long tg_weight, load, shares;
2074

2075
	tg_weight = calc_tg_weight(tg, cfs_rq);
2076
	load = cfs_rq->load.weight;
2077 2078

	shares = (tg->shares * load);
2079 2080
	if (tg_weight)
		shares /= tg_weight;
2081 2082 2083 2084 2085 2086 2087 2088 2089

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2090
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2091 2092 2093 2094
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2095 2096 2097
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2098 2099 2100 2101
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2102
		account_entity_dequeue(cfs_rq, se);
2103
	}
P
Peter Zijlstra 已提交
2104 2105 2106 2107 2108 2109 2110

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2111 2112
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2113
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2114 2115 2116
{
	struct task_group *tg;
	struct sched_entity *se;
2117
	long shares;
P
Peter Zijlstra 已提交
2118 2119 2120

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2121
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2122
		return;
2123 2124 2125 2126
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2127
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2128 2129 2130 2131

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2132
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2133 2134 2135 2136
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2137
#ifdef CONFIG_SMP
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2166 2167 2168 2169 2170 2171
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
	 * With a look-up table which covers k^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2192 2193
	}

2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
2259 2260
	u64 delta, periods;
	u32 runnable_contrib;
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

2324
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2325
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2326 2327 2328 2329 2330 2331
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
2332
		return 0;
2333 2334 2335

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
2336 2337

	return decays;
2338 2339
}

2340 2341 2342 2343 2344
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
2345
	long tg_contrib;
2346 2347 2348 2349

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

2350 2351
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
2352 2353 2354
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
2355

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
2367
	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2368 2369 2370 2371 2372 2373 2374 2375 2376
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

2377 2378 2379 2380
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
2381 2382
	int runnable_avg;

2383 2384 2385
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
2386 2387
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
2417
}
2418 2419 2420 2421 2422 2423

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
}
2424
#else /* CONFIG_FAIR_GROUP_SCHED */
2425 2426
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
2427 2428
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
2429
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2430
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2431
#endif /* CONFIG_FAIR_GROUP_SCHED */
2432

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

2443 2444 2445 2446 2447
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

2448 2449 2450
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
2451
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2452 2453
		__update_group_entity_contrib(se);
	}
2454 2455 2456 2457

	return se->avg.load_avg_contrib - old_contrib;
}

2458 2459 2460 2461 2462 2463 2464 2465 2466
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

2467 2468
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

2469
/* Update a sched_entity's runnable average */
2470 2471
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
2472
{
2473 2474
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
2475
	u64 now;
2476

2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2487 2488 2489
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
2490 2491 2492 2493

	if (!update_cfs_rq)
		return;

2494 2495
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
2496 2497 2498 2499 2500 2501 2502 2503
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
2504
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2505
{
2506
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2507 2508 2509
	u64 decays;

	decays = now - cfs_rq->last_decay;
2510
	if (!decays && !force_update)
2511 2512
		return;

2513 2514 2515
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2516 2517
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
2518

2519 2520 2521 2522 2523 2524
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
2525 2526

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2527
}
2528

2529 2530
/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2531 2532
						  struct sched_entity *se,
						  int wakeup)
2533
{
2534 2535 2536 2537
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
2538 2539 2540 2541
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
2542 2543
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
2544
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
2560 2561
		wakeup = 0;
	} else {
2562
		__synchronize_entity_decay(se);
2563 2564
	}

2565 2566
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
2567
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2568 2569
		update_entity_load_avg(se, 0);
	}
2570

2571
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2572 2573
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2574 2575
}

2576 2577 2578 2579 2580
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
2581
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2582 2583
						  struct sched_entity *se,
						  int sleep)
2584
{
2585
	update_entity_load_avg(se, 1);
2586 2587
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2588

2589
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2590 2591 2592 2593
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2594
}
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

2616 2617
static int idle_balance(struct rq *this_rq);

2618 2619
#else /* CONFIG_SMP */

2620 2621
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
2622
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2623
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2624 2625
					   struct sched_entity *se,
					   int wakeup) {}
2626
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2627 2628
					   struct sched_entity *se,
					   int sleep) {}
2629 2630
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
2631 2632 2633 2634 2635 2636

static inline int idle_balance(struct rq *rq)
{
	return 0;
}

2637
#endif /* CONFIG_SMP */
2638

2639
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2640 2641
{
#ifdef CONFIG_SCHEDSTATS
2642 2643 2644 2645 2646
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2647
	if (se->statistics.sleep_start) {
2648
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2649 2650 2651 2652

		if ((s64)delta < 0)
			delta = 0;

2653 2654
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2655

2656
		se->statistics.sleep_start = 0;
2657
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2658

2659
		if (tsk) {
2660
			account_scheduler_latency(tsk, delta >> 10, 1);
2661 2662
			trace_sched_stat_sleep(tsk, delta);
		}
2663
	}
2664
	if (se->statistics.block_start) {
2665
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2666 2667 2668 2669

		if ((s64)delta < 0)
			delta = 0;

2670 2671
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2672

2673
		se->statistics.block_start = 0;
2674
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2675

2676
		if (tsk) {
2677
			if (tsk->in_iowait) {
2678 2679
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2680
				trace_sched_stat_iowait(tsk, delta);
2681 2682
			}

2683 2684
			trace_sched_stat_blocked(tsk, delta);

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2696
		}
2697 2698 2699 2700
	}
#endif
}

P
Peter Zijlstra 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2714 2715 2716
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2717
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2718

2719 2720 2721 2722 2723 2724
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2725
	if (initial && sched_feat(START_DEBIT))
2726
		vruntime += sched_vslice(cfs_rq, se);
2727

2728
	/* sleeps up to a single latency don't count. */
2729
	if (!initial) {
2730
		unsigned long thresh = sysctl_sched_latency;
2731

2732 2733 2734 2735 2736 2737
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2738

2739
		vruntime -= thresh;
2740 2741
	}

2742
	/* ensure we never gain time by being placed backwards. */
2743
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2744 2745
}

2746 2747
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2748
static void
2749
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2750
{
2751 2752
	/*
	 * Update the normalized vruntime before updating min_vruntime
2753
	 * through calling update_curr().
2754
	 */
2755
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2756 2757
		se->vruntime += cfs_rq->min_vruntime;

2758
	/*
2759
	 * Update run-time statistics of the 'current'.
2760
	 */
2761
	update_curr(cfs_rq);
2762
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2763 2764
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
2765

2766
	if (flags & ENQUEUE_WAKEUP) {
2767
		place_entity(cfs_rq, se, 0);
2768
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
2769
	}
2770

2771
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
2772
	check_spread(cfs_rq, se);
2773 2774
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
2775
	se->on_rq = 1;
2776

2777
	if (cfs_rq->nr_running == 1) {
2778
		list_add_leaf_cfs_rq(cfs_rq);
2779 2780
		check_enqueue_throttle(cfs_rq);
	}
2781 2782
}

2783
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
2784
{
2785 2786
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2787
		if (cfs_rq->last != se)
2788
			break;
2789 2790

		cfs_rq->last = NULL;
2791 2792
	}
}
P
Peter Zijlstra 已提交
2793

2794 2795 2796 2797
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2798
		if (cfs_rq->next != se)
2799
			break;
2800 2801

		cfs_rq->next = NULL;
2802
	}
P
Peter Zijlstra 已提交
2803 2804
}

2805 2806 2807 2808
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2809
		if (cfs_rq->skip != se)
2810
			break;
2811 2812

		cfs_rq->skip = NULL;
2813 2814 2815
	}
}

P
Peter Zijlstra 已提交
2816 2817
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2818 2819 2820 2821 2822
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
2823 2824 2825

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
2826 2827
}

2828
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2829

2830
static void
2831
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2832
{
2833 2834 2835 2836
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
2837
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2838

2839
	update_stats_dequeue(cfs_rq, se);
2840
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
2841
#ifdef CONFIG_SCHEDSTATS
2842 2843 2844 2845
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
2846
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2847
			if (tsk->state & TASK_UNINTERRUPTIBLE)
2848
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2849
		}
2850
#endif
P
Peter Zijlstra 已提交
2851 2852
	}

P
Peter Zijlstra 已提交
2853
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2854

2855
	if (se != cfs_rq->curr)
2856
		__dequeue_entity(cfs_rq, se);
2857
	se->on_rq = 0;
2858
	account_entity_dequeue(cfs_rq, se);
2859 2860 2861 2862 2863 2864

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
2865
	if (!(flags & DEQUEUE_SLEEP))
2866
		se->vruntime -= cfs_rq->min_vruntime;
2867

2868 2869 2870
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

2871
	update_min_vruntime(cfs_rq);
2872
	update_cfs_shares(cfs_rq);
2873 2874 2875 2876 2877
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
2878
static void
I
Ingo Molnar 已提交
2879
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2880
{
2881
	unsigned long ideal_runtime, delta_exec;
2882 2883
	struct sched_entity *se;
	s64 delta;
2884

P
Peter Zijlstra 已提交
2885
	ideal_runtime = sched_slice(cfs_rq, curr);
2886
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2887
	if (delta_exec > ideal_runtime) {
2888
		resched_task(rq_of(cfs_rq)->curr);
2889 2890 2891 2892 2893
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

2905 2906
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
2907

2908 2909
	if (delta < 0)
		return;
2910

2911 2912
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
2913 2914
}

2915
static void
2916
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2917
{
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

2929
	update_stats_curr_start(cfs_rq, se);
2930
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
2931 2932 2933 2934 2935 2936
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
2937
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2938
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
2939 2940 2941
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
2942
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2943 2944
}

2945 2946 2947
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

2948 2949 2950 2951 2952 2953 2954
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
2955 2956
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2957
{
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
2969

2970 2971 2972 2973 2974
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

2985 2986 2987
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
2988

2989 2990 2991 2992 2993 2994
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

2995 2996 2997 2998 2999 3000
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3001
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3002 3003

	return se;
3004 3005
}

3006
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3007

3008
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3009 3010 3011 3012 3013 3014
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3015
		update_curr(cfs_rq);
3016

3017 3018 3019
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
3020
	check_spread(cfs_rq, prev);
3021
	if (prev->on_rq) {
3022
		update_stats_wait_start(cfs_rq, prev);
3023 3024
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3025
		/* in !on_rq case, update occurred at dequeue */
3026
		update_entity_load_avg(prev, 1);
3027
	}
3028
	cfs_rq->curr = NULL;
3029 3030
}

P
Peter Zijlstra 已提交
3031 3032
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3033 3034
{
	/*
3035
	 * Update run-time statistics of the 'current'.
3036
	 */
3037
	update_curr(cfs_rq);
3038

3039 3040 3041
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3042
	update_entity_load_avg(curr, 1);
3043
	update_cfs_rq_blocked_load(cfs_rq, 1);
3044
	update_cfs_shares(cfs_rq);
3045

P
Peter Zijlstra 已提交
3046 3047 3048 3049 3050
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3051 3052 3053 3054
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
3055 3056 3057 3058 3059 3060 3061 3062
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3063
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3064
		check_preempt_tick(cfs_rq, curr);
3065 3066
}

3067 3068 3069 3070 3071 3072

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3073 3074

#ifdef HAVE_JUMP_LABEL
3075
static struct static_key __cfs_bandwidth_used;
3076 3077 3078

static inline bool cfs_bandwidth_used(void)
{
3079
	return static_key_false(&__cfs_bandwidth_used);
3080 3081
}

3082
void cfs_bandwidth_usage_inc(void)
3083
{
3084 3085 3086 3087 3088 3089
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3090 3091 3092 3093 3094 3095 3096
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3097 3098
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3099 3100
#endif /* HAVE_JUMP_LABEL */

3101 3102 3103 3104 3105 3106 3107 3108
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3109 3110 3111 3112 3113 3114

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3115 3116 3117 3118 3119 3120 3121
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3122
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3134 3135 3136 3137 3138
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3139 3140 3141 3142 3143 3144
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3145
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3146 3147
}

3148 3149
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3150 3151 3152
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3153
	u64 amount = 0, min_amount, expires;
3154 3155 3156 3157 3158 3159 3160

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3161
	else {
P
Paul Turner 已提交
3162 3163 3164 3165 3166 3167 3168 3169
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
3170
			__start_cfs_bandwidth(cfs_b, false);
P
Paul Turner 已提交
3171
		}
3172 3173 3174 3175 3176 3177

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3178
	}
P
Paul Turner 已提交
3179
	expires = cfs_b->runtime_expires;
3180 3181 3182
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3183 3184 3185 3186 3187 3188 3189
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3190 3191

	return cfs_rq->runtime_remaining > 0;
3192 3193
}

P
Paul Turner 已提交
3194 3195 3196 3197 3198
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3199
{
P
Paul Turner 已提交
3200 3201 3202
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3203
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3204 3205
		return;

P
Paul Turner 已提交
3206 3207 3208 3209 3210 3211 3212 3213 3214
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3215 3216 3217
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3218 3219
	 */

3220
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3221 3222 3223 3224 3225 3226 3227 3228
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3229
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3230 3231
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3232
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3233 3234 3235
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3236 3237
		return;

3238 3239 3240 3241 3242 3243
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
3244 3245
}

3246
static __always_inline
3247
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3248
{
3249
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3250 3251 3252 3253 3254
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3255 3256
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3257
	return cfs_bandwidth_used() && cfs_rq->throttled;
3258 3259
}

3260 3261 3262
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3263
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3292
		/* adjust cfs_rq_clock_task() */
3293
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3294
					     cfs_rq->throttled_clock_task;
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3306 3307
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3308
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3309 3310 3311 3312 3313
	cfs_rq->throttle_count++;

	return 0;
}

3314
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3315 3316 3317 3318 3319 3320 3321 3322
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3323
	/* freeze hierarchy runnable averages while throttled */
3324 3325 3326
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3344
		sub_nr_running(rq, task_delta);
3345 3346

	cfs_rq->throttled = 1;
3347
	cfs_rq->throttled_clock = rq_clock(rq);
3348
	raw_spin_lock(&cfs_b->lock);
3349 3350 3351 3352 3353
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3354
	if (!cfs_b->timer_active)
3355
		__start_cfs_bandwidth(cfs_b, false);
3356 3357 3358
	raw_spin_unlock(&cfs_b->lock);
}

3359
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3360 3361 3362 3363 3364 3365 3366
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3367
	se = cfs_rq->tg->se[cpu_of(rq)];
3368 3369

	cfs_rq->throttled = 0;
3370 3371 3372

	update_rq_clock(rq);

3373
	raw_spin_lock(&cfs_b->lock);
3374
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3375 3376 3377
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3378 3379 3380
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
3399
		add_nr_running(rq, task_delta);
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
3410 3411
	u64 runtime;
	u64 starting_runtime = remaining;
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

3442
	return starting_runtime - remaining;
3443 3444
}

3445 3446 3447 3448 3449 3450 3451 3452
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3453
	u64 runtime, runtime_expires;
3454
	int throttled;
3455 3456 3457

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
3458
		goto out_deactivate;
3459

3460
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3461
	cfs_b->nr_periods += overrun;
3462

3463 3464 3465 3466 3467 3468
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
3469

3470 3471 3472 3473 3474 3475 3476
	/*
	 * if we have relooped after returning idle once, we need to update our
	 * status as actually running, so that other cpus doing
	 * __start_cfs_bandwidth will stop trying to cancel us.
	 */
	cfs_b->timer_active = 1;

P
Paul Turner 已提交
3477 3478
	__refill_cfs_bandwidth_runtime(cfs_b);

3479 3480 3481
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
3482
		return 0;
3483 3484
	}

3485 3486 3487
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3488 3489 3490
	runtime_expires = cfs_b->runtime_expires;

	/*
3491 3492 3493 3494 3495
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
3496
	 */
3497 3498
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
3499 3500 3501 3502 3503 3504 3505
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3506 3507

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3508
	}
3509

3510 3511 3512 3513 3514 3515 3516
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3517

3518 3519 3520 3521 3522
	return 0;

out_deactivate:
	cfs_b->timer_active = 0;
	return 1;
3523
}
3524

3525 3526 3527 3528 3529 3530 3531
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3532 3533 3534 3535 3536 3537 3538
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3595 3596 3597
	if (!cfs_bandwidth_used())
		return;

3598
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3614 3615 3616
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3617
		return;
3618
	}
3619

3620
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3621
		runtime = cfs_b->runtime;
3622

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
3633
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3634 3635 3636
	raw_spin_unlock(&cfs_b->lock);
}

3637 3638 3639 3640 3641 3642 3643
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3644 3645 3646
	if (!cfs_bandwidth_used())
		return;

3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
3662
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3663
{
3664
	if (!cfs_bandwidth_used())
3665
		return false;
3666

3667
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3668
		return false;
3669 3670 3671 3672 3673 3674

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
3675
		return true;
3676 3677

	throttle_cfs_rq(cfs_rq);
3678
	return true;
3679
}
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

3698
	raw_spin_lock(&cfs_b->lock);
3699 3700 3701 3702 3703 3704 3705 3706 3707
	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
3708
	raw_spin_unlock(&cfs_b->lock);
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
3734
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3735 3736 3737 3738 3739 3740 3741
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
3742 3743 3744
	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3745
		raw_spin_unlock(&cfs_b->lock);
3746
		cpu_relax();
3747 3748
		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
3749
		if (!force && cfs_b->timer_active)
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

3763
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
3775
		cfs_rq->runtime_remaining = 1;
3776 3777 3778 3779 3780 3781
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
3782 3783
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
3784
	return rq_clock_task(rq_of(cfs_rq));
3785 3786
}

3787
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3788
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3789
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3790
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3791 3792 3793 3794 3795

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
3807 3808 3809 3810 3811

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3812 3813
#endif

3814 3815 3816 3817 3818
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3819
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3820 3821 3822

#endif /* CONFIG_CFS_BANDWIDTH */

3823 3824 3825 3826
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
3827 3828 3829 3830 3831 3832 3833 3834
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

3835
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
3850
		if (rq->curr != p)
3851
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
3852

3853
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
3854 3855
	}
}
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

3866
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3867 3868 3869 3870 3871
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
3872
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
3873 3874 3875 3876
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
3877 3878 3879 3880

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
3881 3882
#endif

3883 3884 3885 3886 3887
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
3888
static void
3889
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3890 3891
{
	struct cfs_rq *cfs_rq;
3892
	struct sched_entity *se = &p->se;
3893 3894

	for_each_sched_entity(se) {
3895
		if (se->on_rq)
3896 3897
			break;
		cfs_rq = cfs_rq_of(se);
3898
		enqueue_entity(cfs_rq, se, flags);
3899 3900 3901 3902 3903 3904 3905 3906 3907

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3908
		cfs_rq->h_nr_running++;
3909

3910
		flags = ENQUEUE_WAKEUP;
3911
	}
P
Peter Zijlstra 已提交
3912

P
Peter Zijlstra 已提交
3913
	for_each_sched_entity(se) {
3914
		cfs_rq = cfs_rq_of(se);
3915
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
3916

3917 3918 3919
		if (cfs_rq_throttled(cfs_rq))
			break;

3920
		update_cfs_shares(cfs_rq);
3921
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3922 3923
	}

3924 3925
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
3926
		add_nr_running(rq, 1);
3927
	}
3928
	hrtick_update(rq);
3929 3930
}

3931 3932
static void set_next_buddy(struct sched_entity *se);

3933 3934 3935 3936 3937
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
3938
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3939 3940
{
	struct cfs_rq *cfs_rq;
3941
	struct sched_entity *se = &p->se;
3942
	int task_sleep = flags & DEQUEUE_SLEEP;
3943 3944 3945

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3946
		dequeue_entity(cfs_rq, se, flags);
3947 3948 3949 3950 3951 3952 3953 3954 3955

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3956
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3957

3958
		/* Don't dequeue parent if it has other entities besides us */
3959 3960 3961 3962 3963 3964 3965
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
3966 3967 3968

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
3969
			break;
3970
		}
3971
		flags |= DEQUEUE_SLEEP;
3972
	}
P
Peter Zijlstra 已提交
3973

P
Peter Zijlstra 已提交
3974
	for_each_sched_entity(se) {
3975
		cfs_rq = cfs_rq_of(se);
3976
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3977

3978 3979 3980
		if (cfs_rq_throttled(cfs_rq))
			break;

3981
		update_cfs_shares(cfs_rq);
3982
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3983 3984
	}

3985
	if (!se) {
3986
		sub_nr_running(rq, 1);
3987 3988
		update_rq_runnable_avg(rq, 1);
	}
3989
	hrtick_update(rq);
3990 3991
}

3992
#ifdef CONFIG_SMP
3993 3994 3995
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
3996
	return cpu_rq(cpu)->cfs.runnable_load_avg;
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4032
static unsigned long capacity_of(int cpu)
4033
{
4034
	return cpu_rq(cpu)->cpu_capacity;
4035 4036 4037 4038 4039 4040
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4041
	unsigned long load_avg = rq->cfs.runnable_load_avg;
4042 4043

	if (nr_running)
4044
		return load_avg / nr_running;
4045 4046 4047 4048

	return 0;
}

4049 4050 4051 4052 4053 4054 4055
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
4056
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4057
		current->wakee_flips >>= 1;
4058 4059 4060 4061 4062 4063 4064 4065
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4066

4067
static void task_waking_fair(struct task_struct *p)
4068 4069 4070
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4071 4072 4073 4074
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4075

4076 4077 4078 4079 4080 4081 4082 4083
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4084

4085
	se->vruntime -= min_vruntime;
4086
	record_wakee(p);
4087 4088
}

4089
#ifdef CONFIG_FAIR_GROUP_SCHED
4090 4091 4092 4093 4094 4095
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4139
 */
P
Peter Zijlstra 已提交
4140
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4141
{
P
Peter Zijlstra 已提交
4142
	struct sched_entity *se = tg->se[cpu];
4143

4144
	if (!tg->parent)	/* the trivial, non-cgroup case */
4145 4146
		return wl;

P
Peter Zijlstra 已提交
4147
	for_each_sched_entity(se) {
4148
		long w, W;
P
Peter Zijlstra 已提交
4149

4150
		tg = se->my_q->tg;
4151

4152 4153 4154 4155
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4156

4157 4158 4159 4160
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
4161

4162 4163 4164 4165 4166
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
4167 4168
		else
			wl = tg->shares;
4169

4170 4171 4172 4173 4174
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4175 4176
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4177 4178 4179 4180

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4181
		wl -= se->load.weight;
4182 4183 4184 4185 4186 4187 4188 4189

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4190 4191
		wg = 0;
	}
4192

P
Peter Zijlstra 已提交
4193
	return wl;
4194 4195
}
#else
P
Peter Zijlstra 已提交
4196

4197
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4198
{
4199
	return wl;
4200
}
P
Peter Zijlstra 已提交
4201

4202 4203
#endif

4204 4205
static int wake_wide(struct task_struct *p)
{
4206
	int factor = this_cpu_read(sd_llc_size);
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

4226
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4227
{
4228
	s64 this_load, load;
4229
	int idx, this_cpu, prev_cpu;
4230
	unsigned long tl_per_task;
4231
	struct task_group *tg;
4232
	unsigned long weight;
4233
	int balanced;
4234

4235 4236 4237 4238 4239 4240 4241
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

4242 4243 4244 4245 4246
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4247

4248 4249 4250 4251 4252
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4253 4254 4255 4256
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

4257
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4258 4259
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4260

4261 4262
	tg = task_group(p);
	weight = p->se.load.weight;
4263

4264 4265
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4266 4267 4268
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4269 4270 4271 4272
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4273 4274
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
4275 4276

		this_eff_load = 100;
4277
		this_eff_load *= capacity_of(prev_cpu);
4278 4279 4280 4281
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4282
		prev_eff_load *= capacity_of(this_cpu);
4283 4284 4285 4286 4287
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
4288

4289
	/*
I
Ingo Molnar 已提交
4290 4291 4292
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
4293
	 */
4294 4295
	if (sync && balanced)
		return 1;
4296

4297
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4298 4299
	tl_per_task = cpu_avg_load_per_task(this_cpu);

4300 4301 4302
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4303 4304 4305 4306 4307
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
4308
		schedstat_inc(sd, ttwu_move_affine);
4309
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4310 4311 4312 4313 4314 4315

		return 1;
	}
	return 0;
}

4316 4317 4318 4319 4320
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4321
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4322
		  int this_cpu, int sd_flag)
4323
{
4324
	struct sched_group *idlest = NULL, *group = sd->groups;
4325
	unsigned long min_load = ULONG_MAX, this_load = 0;
4326
	int load_idx = sd->forkexec_idx;
4327
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4328

4329 4330 4331
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4332 4333 4334 4335
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4336

4337 4338
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4339
					tsk_cpus_allowed(p)))
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

4358
		/* Adjust by relative CPU capacity of the group */
4359
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
4385
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4386 4387 4388 4389 4390
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
4391 4392 4393
		}
	}

4394 4395
	return idlest;
}
4396

4397 4398 4399
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4400
static int select_idle_sibling(struct task_struct *p, int target)
4401
{
4402
	struct sched_domain *sd;
4403
	struct sched_group *sg;
4404
	int i = task_cpu(p);
4405

4406 4407
	if (idle_cpu(target))
		return target;
4408 4409

	/*
4410
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4411
	 */
4412 4413
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4414 4415

	/*
4416
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4417
	 */
4418
	sd = rcu_dereference(per_cpu(sd_llc, target));
4419
	for_each_lower_domain(sd) {
4420 4421 4422 4423 4424 4425 4426
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4427
				if (i == target || !idle_cpu(i))
4428 4429
					goto next;
			}
4430

4431 4432 4433 4434 4435 4436 4437 4438
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4439 4440 4441
	return target;
}

4442
/*
4443 4444 4445
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4446
 *
4447 4448
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4449
 *
4450
 * Returns the target cpu number.
4451 4452 4453
 *
 * preempt must be disabled.
 */
4454
static int
4455
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4456
{
4457
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4458 4459
	int cpu = smp_processor_id();
	int new_cpu = cpu;
4460
	int want_affine = 0;
4461
	int sync = wake_flags & WF_SYNC;
4462

4463
	if (p->nr_cpus_allowed == 1)
4464 4465
		return prev_cpu;

4466
	if (sd_flag & SD_BALANCE_WAKE) {
4467
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4468 4469 4470
			want_affine = 1;
		new_cpu = prev_cpu;
	}
4471

4472
	rcu_read_lock();
4473
	for_each_domain(cpu, tmp) {
4474 4475 4476
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

4477
		/*
4478 4479
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4480
		 */
4481 4482 4483
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4484
			break;
4485
		}
4486

4487
		if (tmp->flags & sd_flag)
4488 4489 4490
			sd = tmp;
	}

4491 4492
	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
		prev_cpu = cpu;
4493

4494
	if (sd_flag & SD_BALANCE_WAKE) {
4495 4496
		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
4497
	}
4498

4499 4500
	while (sd) {
		struct sched_group *group;
4501
		int weight;
4502

4503
		if (!(sd->flags & sd_flag)) {
4504 4505 4506
			sd = sd->child;
			continue;
		}
4507

4508
		group = find_idlest_group(sd, p, cpu, sd_flag);
4509 4510 4511 4512
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4513

4514
		new_cpu = find_idlest_cpu(group, p, cpu);
4515 4516 4517 4518
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4519
		}
4520 4521 4522

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4523
		weight = sd->span_weight;
4524 4525
		sd = NULL;
		for_each_domain(cpu, tmp) {
4526
			if (weight <= tmp->span_weight)
4527
				break;
4528
			if (tmp->flags & sd_flag)
4529 4530 4531
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4532
	}
4533 4534
unlock:
	rcu_read_unlock();
4535

4536
	return new_cpu;
4537
}
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
4559 4560
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
4561
	}
4562 4563 4564

	/* We have migrated, no longer consider this task hot */
	se->exec_start = 0;
4565
}
4566 4567
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
4568 4569
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4570 4571 4572 4573
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
4574 4575
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
4576 4577 4578 4579 4580 4581 4582 4583 4584
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
4585
	 */
4586
	return calc_delta_fair(gran, se);
4587 4588
}

4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
4611
	gran = wakeup_gran(curr, se);
4612 4613 4614 4615 4616 4617
	if (vdiff > gran)
		return 1;

	return 0;
}

4618 4619
static void set_last_buddy(struct sched_entity *se)
{
4620 4621 4622 4623 4624
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
4625 4626 4627 4628
}

static void set_next_buddy(struct sched_entity *se)
{
4629 4630 4631 4632 4633
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
4634 4635
}

4636 4637
static void set_skip_buddy(struct sched_entity *se)
{
4638 4639
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
4640 4641
}

4642 4643 4644
/*
 * Preempt the current task with a newly woken task if needed:
 */
4645
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4646 4647
{
	struct task_struct *curr = rq->curr;
4648
	struct sched_entity *se = &curr->se, *pse = &p->se;
4649
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4650
	int scale = cfs_rq->nr_running >= sched_nr_latency;
4651
	int next_buddy_marked = 0;
4652

I
Ingo Molnar 已提交
4653 4654 4655
	if (unlikely(se == pse))
		return;

4656
	/*
4657
	 * This is possible from callers such as move_task(), in which we
4658 4659 4660 4661 4662 4663 4664
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

4665
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
4666
		set_next_buddy(pse);
4667 4668
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
4669

4670 4671 4672
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
4673 4674 4675 4676 4677 4678
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
4679 4680 4681 4682
	 */
	if (test_tsk_need_resched(curr))
		return;

4683 4684 4685 4686 4687
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

4688
	/*
4689 4690
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
4691
	 */
4692
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4693
		return;
4694

4695
	find_matching_se(&se, &pse);
4696
	update_curr(cfs_rq_of(se));
4697
	BUG_ON(!pse);
4698 4699 4700 4701 4702 4703 4704
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
4705
		goto preempt;
4706
	}
4707

4708
	return;
4709

4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
4726 4727
}

4728 4729
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4730 4731 4732
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
4733
	struct task_struct *p;
4734
	int new_tasks;
4735

4736
again:
4737 4738
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
4739
		goto idle;
4740

4741
	if (prev->sched_class != &fair_sched_class)
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
		if (curr && curr->on_rq)
			update_curr(cfs_rq);
		else
			curr = NULL;

		/*
		 * This call to check_cfs_rq_runtime() will do the throttle and
		 * dequeue its entity in the parent(s). Therefore the 'simple'
		 * nr_running test will indeed be correct.
		 */
		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
			goto simple;

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
4813

4814
	if (!cfs_rq->nr_running)
4815
		goto idle;
4816

4817
	put_prev_task(rq, prev);
4818

4819
	do {
4820
		se = pick_next_entity(cfs_rq, NULL);
4821
		set_next_entity(cfs_rq, se);
4822 4823 4824
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
4825
	p = task_of(se);
4826

4827 4828
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
4829 4830

	return p;
4831 4832

idle:
4833
	new_tasks = idle_balance(rq);
4834 4835 4836 4837 4838
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
4839
	if (new_tasks < 0)
4840 4841
		return RETRY_TASK;

4842
	if (new_tasks > 0)
4843 4844 4845
		goto again;

	return NULL;
4846 4847 4848 4849 4850
}

/*
 * Account for a descheduled task:
 */
4851
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4852 4853 4854 4855 4856 4857
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4858
		put_prev_entity(cfs_rq, se);
4859 4860 4861
	}
}

4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
4887 4888 4889 4890 4891 4892
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
4893 4894 4895 4896 4897
	}

	set_skip_buddy(se);
}

4898 4899 4900 4901
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

4902 4903
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

4914
#ifdef CONFIG_SMP
4915
/**************************************************
P
Peter Zijlstra 已提交
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
4939
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
4940 4941 4942 4943 4944 4945
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
4946
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5032

5033 5034
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5035 5036
enum fbq_type { regular, remote, all };

5037
#define LBF_ALL_PINNED	0x01
5038
#define LBF_NEED_BREAK	0x02
5039 5040
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5041 5042 5043 5044 5045

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5046
	int			src_cpu;
5047 5048 5049 5050

	int			dst_cpu;
	struct rq		*dst_rq;

5051 5052
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5053
	enum cpu_idle_type	idle;
5054
	long			imbalance;
5055 5056 5057
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5058
	unsigned int		flags;
5059 5060 5061 5062

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5063 5064

	enum fbq_type		fbq_type;
5065 5066
};

5067
/*
5068
 * move_task - move a task from one runqueue to another runqueue.
5069 5070
 * Both runqueues must be locked.
 */
5071
static void move_task(struct task_struct *p, struct lb_env *env)
5072
{
5073 5074 5075 5076
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
5077 5078
}

5079 5080 5081
/*
 * Is this task likely cache-hot:
 */
5082
static int task_hot(struct task_struct *p, struct lb_env *env)
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
5095
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5096 5097 5098 5099 5100 5101 5102 5103 5104
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

5105
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5106 5107 5108 5109

	return delta < (s64)sysctl_sched_migration_cost;
}

5110 5111 5112 5113
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
5114
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5115 5116
	int src_nid, dst_nid;

5117
	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5118 5119 5120 5121 5122 5123 5124
	    !(env->sd->flags & SD_NUMA)) {
		return false;
	}

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5125
	if (src_nid == dst_nid)
5126 5127
		return false;

5128 5129 5130 5131
	if (numa_group) {
		/* Task is already in the group's interleave set. */
		if (node_isset(src_nid, numa_group->active_nodes))
			return false;
5132

5133 5134 5135
		/* Task is moving into the group's interleave set. */
		if (node_isset(dst_nid, numa_group->active_nodes))
			return true;
5136

5137 5138 5139 5140 5141
		return group_faults(p, dst_nid) > group_faults(p, src_nid);
	}

	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
5142 5143
		return true;

5144
	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5145
}
5146 5147 5148 5149


static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
5150
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5151 5152 5153 5154 5155
	int src_nid, dst_nid;

	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
		return false;

5156
	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5157 5158 5159 5160 5161
		return false;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5162
	if (src_nid == dst_nid)
5163 5164
		return false;

5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
	if (numa_group) {
		/* Task is moving within/into the group's interleave set. */
		if (node_isset(dst_nid, numa_group->active_nodes))
			return false;

		/* Task is moving out of the group's interleave set. */
		if (node_isset(src_nid, numa_group->active_nodes))
			return true;

		return group_faults(p, dst_nid) < group_faults(p, src_nid);
	}

5177 5178 5179 5180
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid)
		return true;

5181
	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5182 5183
}

5184 5185 5186 5187 5188 5189
#else
static inline bool migrate_improves_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5190 5191 5192 5193 5194 5195

static inline bool migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5196 5197
#endif

5198 5199 5200 5201
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5202
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5203 5204 5205 5206
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
5207
	 * 1) throttled_lb_pair, or
5208
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5209 5210
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5211
	 */
5212 5213 5214
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5215
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5216
		int cpu;
5217

5218
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5219

5220 5221
		env->flags |= LBF_SOME_PINNED;

5222 5223 5224 5225 5226 5227 5228 5229
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5230
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5231 5232
			return 0;

5233 5234 5235
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5236
				env->flags |= LBF_DST_PINNED;
5237 5238 5239
				env->new_dst_cpu = cpu;
				break;
			}
5240
		}
5241

5242 5243
		return 0;
	}
5244 5245

	/* Record that we found atleast one task that could run on dst_cpu */
5246
	env->flags &= ~LBF_ALL_PINNED;
5247

5248
	if (task_running(env->src_rq, p)) {
5249
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5250 5251 5252 5253 5254
		return 0;
	}

	/*
	 * Aggressive migration if:
5255 5256 5257
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5258
	 */
5259
	tsk_cache_hot = task_hot(p, env);
5260 5261
	if (!tsk_cache_hot)
		tsk_cache_hot = migrate_degrades_locality(p, env);
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272

	if (migrate_improves_locality(p, env)) {
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
#endif
		return 1;
	}

5273
	if (!tsk_cache_hot ||
5274
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Z
Zhang Hang 已提交
5275

5276
		if (tsk_cache_hot) {
5277
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5278
			schedstat_inc(p, se.statistics.nr_forced_migrations);
5279
		}
Z
Zhang Hang 已提交
5280

5281 5282 5283
		return 1;
	}

Z
Zhang Hang 已提交
5284 5285
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5286 5287
}

5288 5289 5290 5291 5292 5293 5294
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
5295
static int move_one_task(struct lb_env *env)
5296 5297 5298
{
	struct task_struct *p, *n;

5299 5300 5301
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5302

5303 5304 5305 5306 5307 5308 5309 5310
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
5311 5312 5313 5314
	}
	return 0;
}

5315 5316
static const unsigned int sched_nr_migrate_break = 32;

5317
/*
5318
 * move_tasks tries to move up to imbalance weighted load from busiest to
5319 5320 5321 5322 5323 5324
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
5325
{
5326 5327
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5328 5329
	unsigned long load;
	int pulled = 0;
5330

5331
	if (env->imbalance <= 0)
5332
		return 0;
5333

5334 5335
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5336

5337 5338
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5339
		if (env->loop > env->loop_max)
5340
			break;
5341 5342

		/* take a breather every nr_migrate tasks */
5343
		if (env->loop > env->loop_break) {
5344
			env->loop_break += sched_nr_migrate_break;
5345
			env->flags |= LBF_NEED_BREAK;
5346
			break;
5347
		}
5348

5349
		if (!can_migrate_task(p, env))
5350 5351 5352
			goto next;

		load = task_h_load(p);
5353

5354
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5355 5356
			goto next;

5357
		if ((load / 2) > env->imbalance)
5358
			goto next;
5359

5360
		move_task(p, env);
5361
		pulled++;
5362
		env->imbalance -= load;
5363 5364

#ifdef CONFIG_PREEMPT
5365 5366 5367 5368 5369
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
5370
		if (env->idle == CPU_NEWLY_IDLE)
5371
			break;
5372 5373
#endif

5374 5375 5376 5377
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5378
		if (env->imbalance <= 0)
5379
			break;
5380 5381 5382

		continue;
next:
5383
		list_move_tail(&p->se.group_node, tasks);
5384
	}
5385

5386
	/*
5387 5388 5389
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
5390
	 */
5391
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
5392

5393
	return pulled;
5394 5395
}

P
Peter Zijlstra 已提交
5396
#ifdef CONFIG_FAIR_GROUP_SCHED
5397 5398 5399
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
5400
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5401
{
5402 5403
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5404

5405 5406 5407
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
5408

5409
	update_cfs_rq_blocked_load(cfs_rq, 1);
5410

5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
5425
		struct rq *rq = rq_of(cfs_rq);
5426 5427
		update_rq_runnable_avg(rq, rq->nr_running);
	}
5428 5429
}

5430
static void update_blocked_averages(int cpu)
5431 5432
{
	struct rq *rq = cpu_rq(cpu);
5433 5434
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5435

5436 5437
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5438 5439 5440 5441
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5442
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5443 5444 5445 5446 5447 5448
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5449
	}
5450 5451

	raw_spin_unlock_irqrestore(&rq->lock, flags);
5452 5453
}

5454
/*
5455
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5456 5457 5458
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5459
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5460
{
5461 5462
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5463
	unsigned long now = jiffies;
5464
	unsigned long load;
5465

5466
	if (cfs_rq->last_h_load_update == now)
5467 5468
		return;

5469 5470 5471 5472 5473 5474 5475
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5476

5477
	if (!se) {
5478
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5490 5491
}

5492
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5493
{
5494
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5495

5496
	update_cfs_rq_h_load(cfs_rq);
5497 5498
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
5499 5500
}
#else
5501
static inline void update_blocked_averages(int cpu)
5502 5503 5504
{
}

5505
static unsigned long task_h_load(struct task_struct *p)
5506
{
5507
	return p->se.avg.load_avg_contrib;
5508
}
P
Peter Zijlstra 已提交
5509
#endif
5510 5511 5512 5513 5514 5515 5516 5517 5518

/********** Helpers for find_busiest_group ************************/
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5519
	unsigned long load_per_task;
5520
	unsigned long group_capacity;
5521
	unsigned int sum_nr_running; /* Nr tasks running in the group */
5522
	unsigned int group_capacity_factor;
5523 5524
	unsigned int idle_cpus;
	unsigned int group_weight;
5525
	int group_imb; /* Is there an imbalance in the group ? */
5526
	int group_has_free_capacity;
5527 5528 5529 5530
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
5531 5532
};

J
Joonsoo Kim 已提交
5533 5534 5535 5536 5537 5538 5539 5540
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
5541
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
5542 5543 5544
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5545
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5546 5547
};

5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
5560
		.total_capacity = 0UL,
5561 5562 5563 5564 5565 5566
		.busiest_stat = {
			.avg_load = 0UL,
		},
	};
}

5567 5568 5569
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
5570
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5571 5572
 *
 * Return: The load index.
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

5595
static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5596
{
5597
	return SCHED_CAPACITY_SCALE;
5598 5599
}

5600
unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5601
{
5602
	return default_scale_capacity(sd, cpu);
5603 5604
}

5605
static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
5606
{
5607
	unsigned long weight = sd->span_weight;
5608 5609 5610 5611 5612 5613 5614
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

5615
unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
5616
{
5617
	return default_scale_smt_capacity(sd, cpu);
5618 5619
}

5620
static unsigned long scale_rt_capacity(int cpu)
5621 5622
{
	struct rq *rq = cpu_rq(cpu);
5623
	u64 total, available, age_stamp, avg;
5624
	s64 delta;
5625

5626 5627 5628 5629 5630 5631 5632
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

5633 5634 5635 5636 5637
	delta = rq_clock(rq) - age_stamp;
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
5638

5639
	if (unlikely(total < avg)) {
5640
		/* Ensures that capacity won't end up being negative */
5641 5642
		available = 0;
	} else {
5643
		available = total - avg;
5644
	}
5645

5646 5647
	if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
		total = SCHED_CAPACITY_SCALE;
5648

5649
	total >>= SCHED_CAPACITY_SHIFT;
5650 5651 5652 5653

	return div_u64(available, total);
}

5654
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5655
{
5656
	unsigned long weight = sd->span_weight;
5657
	unsigned long capacity = SCHED_CAPACITY_SCALE;
5658 5659
	struct sched_group *sdg = sd->groups;

5660 5661
	if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
		if (sched_feat(ARCH_CAPACITY))
5662
			capacity *= arch_scale_smt_capacity(sd, cpu);
5663
		else
5664
			capacity *= default_scale_smt_capacity(sd, cpu);
5665

5666
		capacity >>= SCHED_CAPACITY_SHIFT;
5667 5668
	}

5669
	sdg->sgc->capacity_orig = capacity;
5670

5671
	if (sched_feat(ARCH_CAPACITY))
5672
		capacity *= arch_scale_freq_capacity(sd, cpu);
5673
	else
5674
		capacity *= default_scale_capacity(sd, cpu);
5675

5676
	capacity >>= SCHED_CAPACITY_SHIFT;
5677

5678
	capacity *= scale_rt_capacity(cpu);
5679
	capacity >>= SCHED_CAPACITY_SHIFT;
5680

5681 5682
	if (!capacity)
		capacity = 1;
5683

5684 5685
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
5686 5687
}

5688
void update_group_capacity(struct sched_domain *sd, int cpu)
5689 5690 5691
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
5692
	unsigned long capacity, capacity_orig;
5693 5694 5695 5696
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
5697
	sdg->sgc->next_update = jiffies + interval;
5698 5699

	if (!child) {
5700
		update_cpu_capacity(sd, cpu);
5701 5702 5703
		return;
	}

5704
	capacity_orig = capacity = 0;
5705

P
Peter Zijlstra 已提交
5706 5707 5708 5709 5710 5711
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

5712
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5713
			struct sched_group_capacity *sgc;
5714
			struct rq *rq = cpu_rq(cpu);
5715

5716
			/*
5717
			 * build_sched_domains() -> init_sched_groups_capacity()
5718 5719 5720
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
5721 5722
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
5723
			 *
5724
			 * This avoids capacity/capacity_orig from being 0 and
5725 5726
			 * causing divide-by-zero issues on boot.
			 *
5727
			 * Runtime updates will correct capacity_orig.
5728 5729
			 */
			if (unlikely(!rq->sd)) {
5730 5731
				capacity_orig += capacity_of(cpu);
				capacity += capacity_of(cpu);
5732 5733
				continue;
			}
5734

5735 5736 5737
			sgc = rq->sd->groups->sgc;
			capacity_orig += sgc->capacity_orig;
			capacity += sgc->capacity;
5738
		}
P
Peter Zijlstra 已提交
5739 5740 5741 5742 5743 5744 5745 5746
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
5747 5748
			capacity_orig += group->sgc->capacity_orig;
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
5749 5750 5751
			group = group->next;
		} while (group != child->groups);
	}
5752

5753 5754
	sdg->sgc->capacity_orig = capacity_orig;
	sdg->sgc->capacity = capacity;
5755 5756
}

5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
5768
	 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
5769
	 */
5770
	if (!(sd->flags & SD_SHARE_CPUCAPACITY))
5771 5772 5773
		return 0;

	/*
5774
	 * If ~90% of the cpu_capacity is still there, we're good.
5775
	 */
5776
	if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
5777 5778 5779 5780 5781
		return 1;

	return 0;
}

5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
5798 5799
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
5800 5801
 *
 * When this is so detected; this group becomes a candidate for busiest; see
5802
 * update_sd_pick_busiest(). And calculate_imbalance() and
5803
 * find_busiest_group() avoid some of the usual balance conditions to allow it
5804 5805 5806 5807 5808 5809 5810
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

5811
static inline int sg_imbalanced(struct sched_group *group)
5812
{
5813
	return group->sgc->imbalance;
5814 5815
}

5816
/*
5817
 * Compute the group capacity factor.
5818
 *
5819
 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
5820
 * first dividing out the smt factor and computing the actual number of cores
5821
 * and limit unit capacity with that.
5822
 */
5823
static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
5824
{
5825
	unsigned int capacity_factor, smt, cpus;
5826
	unsigned int capacity, capacity_orig;
5827

5828 5829
	capacity = group->sgc->capacity;
	capacity_orig = group->sgc->capacity_orig;
5830
	cpus = group->group_weight;
5831

5832
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
5833
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
5834
	capacity_factor = cpus / smt; /* cores */
5835

5836
	capacity_factor = min_t(unsigned,
5837
		capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
5838 5839
	if (!capacity_factor)
		capacity_factor = fix_small_capacity(env->sd, group);
5840

5841
	return capacity_factor;
5842 5843
}

5844 5845
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5846
 * @env: The load balancing environment.
5847 5848 5849 5850 5851
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
 */
5852 5853
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
5854 5855
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
5856
{
5857
	unsigned long load;
5858
	int i;
5859

5860 5861
	memset(sgs, 0, sizeof(*sgs));

5862
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5863 5864 5865
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
5866
		if (local_group)
5867
			load = target_load(i, load_idx);
5868
		else
5869 5870 5871
			load = source_load(i, load_idx);

		sgs->group_load += load;
5872
		sgs->sum_nr_running += rq->nr_running;
5873 5874 5875 5876

		if (rq->nr_running > 1)
			*overload = true;

5877 5878 5879 5880
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
5881
		sgs->sum_weighted_load += weighted_cpuload(i);
5882 5883
		if (idle_cpu(i))
			sgs->idle_cpus++;
5884 5885
	}

5886 5887
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
5888
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
5889

5890
	if (sgs->sum_nr_running)
5891
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5892

5893
	sgs->group_weight = group->group_weight;
5894

5895
	sgs->group_imb = sg_imbalanced(group);
5896
	sgs->group_capacity_factor = sg_capacity_factor(env, group);
5897

5898
	if (sgs->group_capacity_factor > sgs->sum_nr_running)
5899
		sgs->group_has_free_capacity = 1;
5900 5901
}

5902 5903
/**
 * update_sd_pick_busiest - return 1 on busiest group
5904
 * @env: The load balancing environment.
5905 5906
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
5907
 * @sgs: sched_group statistics
5908 5909 5910
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
5911 5912 5913
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
5914
 */
5915
static bool update_sd_pick_busiest(struct lb_env *env,
5916 5917
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
5918
				   struct sg_lb_stats *sgs)
5919
{
J
Joonsoo Kim 已提交
5920
	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5921 5922
		return false;

5923
	if (sgs->sum_nr_running > sgs->group_capacity_factor)
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
5934 5935
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

5976
/**
5977
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5978
 * @env: The load balancing environment.
5979 5980
 * @sds: variable to hold the statistics for this sched_domain.
 */
5981
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5982
{
5983 5984
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
5985
	struct sg_lb_stats tmp_sgs;
5986
	int load_idx, prefer_sibling = 0;
5987
	bool overload = false;
5988 5989 5990 5991

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

5992
	load_idx = get_sd_load_idx(env->sd, env->idle);
5993 5994

	do {
J
Joonsoo Kim 已提交
5995
		struct sg_lb_stats *sgs = &tmp_sgs;
5996 5997
		int local_group;

5998
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
5999 6000 6001
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6002 6003

			if (env->idle != CPU_NEWLY_IDLE ||
6004 6005
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6006
		}
6007

6008 6009
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6010

6011 6012 6013
		if (local_group)
			goto next_group;

6014 6015
		/*
		 * In case the child domain prefers tasks go to siblings
6016
		 * first, lower the sg capacity factor to one so that we'll try
6017 6018
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6019
		 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6020 6021 6022
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
6023
		 */
6024
		if (prefer_sibling && sds->local &&
6025
		    sds->local_stat.group_has_free_capacity)
6026
			sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6027

6028
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6029
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6030
			sds->busiest_stat = *sgs;
6031 6032
		}

6033 6034 6035
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6036
		sds->total_capacity += sgs->group_capacity;
6037

6038
		sg = sg->next;
6039
	} while (sg != env->sd->groups);
6040 6041 6042

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6043 6044 6045 6046 6047 6048 6049

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6069
 * Return: 1 when packing is required and a task should be moved to
6070 6071
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6072
 * @env: The load balancing environment.
6073 6074
 * @sds: Statistics of the sched_domain which is to be packed
 */
6075
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6076 6077 6078
{
	int busiest_cpu;

6079
	if (!(env->sd->flags & SD_ASYM_PACKING))
6080 6081 6082 6083 6084 6085
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6086
	if (env->dst_cpu > busiest_cpu)
6087 6088
		return 0;

6089
	env->imbalance = DIV_ROUND_CLOSEST(
6090
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6091
		SCHED_CAPACITY_SCALE);
6092

6093
	return 1;
6094 6095 6096 6097 6098 6099
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6100
 * @env: The load balancing environment.
6101 6102
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6103 6104
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6105
{
6106
	unsigned long tmp, capa_now = 0, capa_move = 0;
6107
	unsigned int imbn = 2;
6108
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6109
	struct sg_lb_stats *local, *busiest;
6110

J
Joonsoo Kim 已提交
6111 6112
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6113

J
Joonsoo Kim 已提交
6114 6115 6116 6117
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6118

J
Joonsoo Kim 已提交
6119
	scaled_busy_load_per_task =
6120
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6121
		busiest->group_capacity;
J
Joonsoo Kim 已提交
6122

6123 6124
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6125
		env->imbalance = busiest->load_per_task;
6126 6127 6128 6129 6130
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
6131
	 * however we may be able to increase total CPU capacity used by
6132 6133 6134
	 * moving them.
	 */

6135
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
6136
			min(busiest->load_per_task, busiest->avg_load);
6137
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
6138
			min(local->load_per_task, local->avg_load);
6139
	capa_now /= SCHED_CAPACITY_SCALE;
6140 6141

	/* Amount of load we'd subtract */
6142
	if (busiest->avg_load > scaled_busy_load_per_task) {
6143
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
6144
			    min(busiest->load_per_task,
6145
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
6146
	}
6147 6148

	/* Amount of load we'd add */
6149
	if (busiest->avg_load * busiest->group_capacity <
6150
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6151 6152
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
6153
	} else {
6154
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6155
		      local->group_capacity;
J
Joonsoo Kim 已提交
6156
	}
6157
	capa_move += local->group_capacity *
6158
		    min(local->load_per_task, local->avg_load + tmp);
6159
	capa_move /= SCHED_CAPACITY_SCALE;
6160 6161

	/* Move if we gain throughput */
6162
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
6163
		env->imbalance = busiest->load_per_task;
6164 6165 6166 6167 6168
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
6169
 * @env: load balance environment
6170 6171
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
6172
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6173
{
6174
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
6175 6176 6177 6178
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6179

J
Joonsoo Kim 已提交
6180
	if (busiest->group_imb) {
6181 6182 6183 6184
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
6185 6186
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
6187 6188
	}

6189 6190 6191
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
6192
	 * its cpu_capacity, while calculating max_load..)
6193
	 */
6194 6195
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6196 6197
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6198 6199
	}

J
Joonsoo Kim 已提交
6200
	if (!busiest->group_imb) {
6201 6202
		/*
		 * Don't want to pull so many tasks that a group would go idle.
6203 6204
		 * Except of course for the group_imb case, since then we might
		 * have to drop below capacity to reach cpu-load equilibrium.
6205
		 */
J
Joonsoo Kim 已提交
6206
		load_above_capacity =
6207
			(busiest->sum_nr_running - busiest->group_capacity_factor);
6208

6209
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6210
		load_above_capacity /= busiest->group_capacity;
6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6221
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6222 6223

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6224
	env->imbalance = min(
6225 6226
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
6227
	) / SCHED_CAPACITY_SCALE;
6228 6229 6230

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6231
	 * there is no guarantee that any tasks will be moved so we'll have
6232 6233 6234
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6235
	if (env->imbalance < busiest->load_per_task)
6236
		return fix_small_imbalance(env, sds);
6237
}
6238

6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6251
 * @env: The load balancing environment.
6252
 *
6253
 * Return:	- The busiest group if imbalance exists.
6254 6255 6256 6257
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6258
static struct sched_group *find_busiest_group(struct lb_env *env)
6259
{
J
Joonsoo Kim 已提交
6260
	struct sg_lb_stats *local, *busiest;
6261 6262
	struct sd_lb_stats sds;

6263
	init_sd_lb_stats(&sds);
6264 6265 6266 6267 6268

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6269
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6270 6271
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6272

6273 6274
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6275 6276
		return sds.busiest;

6277
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6278
	if (!sds.busiest || busiest->sum_nr_running == 0)
6279 6280
		goto out_balanced;

6281 6282
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
6283

P
Peter Zijlstra 已提交
6284 6285
	/*
	 * If the busiest group is imbalanced the below checks don't
6286
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6287 6288
	 * isn't true due to cpus_allowed constraints and the like.
	 */
J
Joonsoo Kim 已提交
6289
	if (busiest->group_imb)
P
Peter Zijlstra 已提交
6290 6291
		goto force_balance;

6292
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6293 6294
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
	    !busiest->group_has_free_capacity)
6295 6296
		goto force_balance;

6297 6298 6299 6300
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
6301
	if (local->avg_load >= busiest->avg_load)
6302 6303
		goto out_balanced;

6304 6305 6306 6307
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
6308
	if (local->avg_load >= sds.avg_load)
6309 6310
		goto out_balanced;

6311
	if (env->idle == CPU_IDLE) {
6312 6313 6314 6315 6316 6317
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
J
Joonsoo Kim 已提交
6318 6319
		if ((local->idle_cpus < busiest->idle_cpus) &&
		    busiest->sum_nr_running <= busiest->group_weight)
6320
			goto out_balanced;
6321 6322 6323 6324 6325
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6326 6327
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6328
			goto out_balanced;
6329
	}
6330

6331
force_balance:
6332
	/* Looks like there is an imbalance. Compute it */
6333
	calculate_imbalance(env, &sds);
6334 6335 6336
	return sds.busiest;

out_balanced:
6337
	env->imbalance = 0;
6338 6339 6340 6341 6342 6343
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6344
static struct rq *find_busiest_queue(struct lb_env *env,
6345
				     struct sched_group *group)
6346 6347
{
	struct rq *busiest = NULL, *rq;
6348
	unsigned long busiest_load = 0, busiest_capacity = 1;
6349 6350
	int i;

6351
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6352
		unsigned long capacity, capacity_factor, wl;
6353 6354 6355 6356
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6357

6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

6380
		capacity = capacity_of(i);
6381
		capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6382 6383
		if (!capacity_factor)
			capacity_factor = fix_small_capacity(env->sd, group);
6384

6385
		wl = weighted_cpuload(i);
6386

6387 6388
		/*
		 * When comparing with imbalance, use weighted_cpuload()
6389
		 * which is not scaled with the cpu capacity.
6390
		 */
6391
		if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6392 6393
			continue;

6394 6395
		/*
		 * For the load comparisons with the other cpu's, consider
6396 6397 6398
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
6399
		 *
6400
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6401
		 * multiplication to rid ourselves of the division works out
6402 6403
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
6404
		 */
6405
		if (wl * busiest_capacity > busiest_load * capacity) {
6406
			busiest_load = wl;
6407
			busiest_capacity = capacity;
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6422
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6423

6424
static int need_active_balance(struct lb_env *env)
6425
{
6426 6427 6428
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6429 6430 6431 6432 6433 6434

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6435
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6436
			return 1;
6437 6438 6439 6440 6441
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6442 6443
static int active_load_balance_cpu_stop(void *data);

6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6475
	return balance_cpu == env->dst_cpu;
6476 6477
}

6478 6479 6480 6481 6482 6483
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6484
			int *continue_balancing)
6485
{
6486
	int ld_moved, cur_ld_moved, active_balance = 0;
6487
	struct sched_domain *sd_parent = sd->parent;
6488 6489 6490
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6491
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6492

6493 6494
	struct lb_env env = {
		.sd		= sd,
6495 6496
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6497
		.dst_grpmask    = sched_group_cpus(sd->groups),
6498
		.idle		= idle,
6499
		.loop_break	= sched_nr_migrate_break,
6500
		.cpus		= cpus,
6501
		.fbq_type	= all,
6502 6503
	};

6504 6505 6506 6507
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6508
	if (idle == CPU_NEWLY_IDLE)
6509 6510
		env.dst_grpmask = NULL;

6511 6512 6513 6514 6515
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6516 6517
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6518
		goto out_balanced;
6519
	}
6520

6521
	group = find_busiest_group(&env);
6522 6523 6524 6525 6526
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6527
	busiest = find_busiest_queue(&env, group);
6528 6529 6530 6531 6532
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

6533
	BUG_ON(busiest == env.dst_rq);
6534

6535
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6536 6537 6538 6539 6540 6541 6542 6543 6544

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
6545
		env.flags |= LBF_ALL_PINNED;
6546 6547 6548
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6549

6550
more_balance:
6551
		local_irq_save(flags);
6552
		double_rq_lock(env.dst_rq, busiest);
6553 6554 6555 6556 6557 6558 6559

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
6560
		double_rq_unlock(env.dst_rq, busiest);
6561 6562 6563 6564 6565
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
6566 6567 6568
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

6569 6570 6571 6572 6573
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
6593
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6594

6595 6596 6597
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

6598
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6599
			env.dst_cpu	 = env.new_dst_cpu;
6600
			env.flags	&= ~LBF_DST_PINNED;
6601 6602
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
6603

6604 6605 6606 6607 6608 6609
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
6610

6611 6612 6613 6614
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
6615
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6616 6617 6618 6619 6620 6621 6622

			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
				*group_imbalance = 1;
			} else if (*group_imbalance)
				*group_imbalance = 0;
		}

6623
		/* All tasks on this runqueue were pinned by CPU affinity */
6624
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6625
			cpumask_clear_cpu(cpu_of(busiest), cpus);
6626 6627 6628
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
6629
				goto redo;
6630
			}
6631 6632 6633 6634 6635 6636
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
6637 6638 6639 6640 6641 6642 6643 6644
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
6645

6646
		if (need_active_balance(&env)) {
6647 6648
			raw_spin_lock_irqsave(&busiest->lock, flags);

6649 6650 6651
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
6652 6653
			 */
			if (!cpumask_test_cpu(this_cpu,
6654
					tsk_cpus_allowed(busiest->curr))) {
6655 6656
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
6657
				env.flags |= LBF_ALL_PINNED;
6658 6659 6660
				goto out_one_pinned;
			}

6661 6662 6663 6664 6665
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
6666 6667 6668 6669 6670 6671
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6672

6673
			if (active_balance) {
6674 6675 6676
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
6677
			}
6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
6711
	if (((env.flags & LBF_ALL_PINNED) &&
6712
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6713 6714 6715
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

6716
	ld_moved = 0;
6717 6718 6719 6720
out:
	return ld_moved;
}

6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

6748 6749 6750 6751
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
6752
static int idle_balance(struct rq *this_rq)
6753
{
6754 6755
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
6756 6757
	struct sched_domain *sd;
	int pulled_task = 0;
6758
	u64 curr_cost = 0;
6759

6760
	idle_enter_fair(this_rq);
6761

6762 6763 6764 6765 6766 6767
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

6768 6769
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
6770 6771 6772 6773 6774 6775
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

6776
		goto out;
6777
	}
6778

6779 6780 6781 6782 6783
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

6784
	update_blocked_averages(this_cpu);
6785
	rcu_read_lock();
6786
	for_each_domain(this_cpu, sd) {
6787
		int continue_balancing = 1;
6788
		u64 t0, domain_cost;
6789 6790 6791 6792

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6793 6794
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
6795
			break;
6796
		}
6797

6798
		if (sd->flags & SD_BALANCE_NEWIDLE) {
6799 6800
			t0 = sched_clock_cpu(this_cpu);

6801
			pulled_task = load_balance(this_cpu, this_rq,
6802 6803
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
6804 6805 6806 6807 6808 6809

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
6810
		}
6811

6812
		update_next_balance(sd, 0, &next_balance);
6813 6814 6815 6816 6817 6818

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
6819 6820
			break;
	}
6821
	rcu_read_unlock();
6822 6823 6824

	raw_spin_lock(&this_rq->lock);

6825 6826 6827
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

6828
	/*
6829 6830 6831
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
6832
	 */
6833
	if (this_rq->cfs.h_nr_running && !pulled_task)
6834
		pulled_task = 1;
6835

6836 6837 6838
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
6839
		this_rq->next_balance = next_balance;
6840

6841
	/* Is there a task of a high priority class? */
6842
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
6843 6844 6845 6846
		pulled_task = -1;

	if (pulled_task) {
		idle_exit_fair(this_rq);
6847
		this_rq->idle_stamp = 0;
6848
	}
6849

6850
	return pulled_task;
6851 6852 6853
}

/*
6854 6855 6856 6857
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
6858
 */
6859
static int active_load_balance_cpu_stop(void *data)
6860
{
6861 6862
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
6863
	int target_cpu = busiest_rq->push_cpu;
6864
	struct rq *target_rq = cpu_rq(target_cpu);
6865
	struct sched_domain *sd;
6866 6867 6868 6869 6870 6871 6872

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
6873 6874 6875

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
6876
		goto out_unlock;
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
6889
	rcu_read_lock();
6890 6891 6892 6893 6894 6895 6896
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
6897 6898
		struct lb_env env = {
			.sd		= sd,
6899 6900 6901 6902
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
6903 6904 6905
			.idle		= CPU_IDLE,
		};

6906 6907
		schedstat_inc(sd, alb_count);

6908
		if (move_one_task(&env))
6909 6910 6911 6912
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
6913
	rcu_read_unlock();
6914
	double_unlock_balance(busiest_rq, target_rq);
6915 6916 6917 6918
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
6919 6920
}

6921 6922 6923 6924 6925
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

6926
#ifdef CONFIG_NO_HZ_COMMON
6927 6928 6929 6930 6931 6932
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
6933
static struct {
6934
	cpumask_var_t idle_cpus_mask;
6935
	atomic_t nr_cpus;
6936 6937
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
6938

6939
static inline int find_new_ilb(void)
6940
{
6941
	int ilb = cpumask_first(nohz.idle_cpus_mask);
6942

6943 6944 6945 6946
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
6947 6948
}

6949 6950 6951 6952 6953
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
6954
static void nohz_balancer_kick(void)
6955 6956 6957 6958 6959
{
	int ilb_cpu;

	nohz.next_balance++;

6960
	ilb_cpu = find_new_ilb();
6961

6962 6963
	if (ilb_cpu >= nr_cpu_ids)
		return;
6964

6965
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6966 6967 6968 6969 6970 6971 6972 6973
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
6974 6975 6976
	return;
}

6977
static inline void nohz_balance_exit_idle(int cpu)
6978 6979
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6980 6981 6982 6983 6984 6985 6986
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
6987 6988 6989 6990
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

6991 6992 6993
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
6994
	int cpu = smp_processor_id();
6995 6996

	rcu_read_lock();
6997
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
6998 6999 7000 7001 7002

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7003
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7004
unlock:
7005 7006 7007 7008 7009 7010
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7011
	int cpu = smp_processor_id();
7012 7013

	rcu_read_lock();
7014
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7015 7016 7017 7018 7019

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7020
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7021
unlock:
7022 7023 7024
	rcu_read_unlock();
}

7025
/*
7026
 * This routine will record that the cpu is going idle with tick stopped.
7027
 * This info will be used in performing idle load balancing in the future.
7028
 */
7029
void nohz_balance_enter_idle(int cpu)
7030
{
7031 7032 7033 7034 7035 7036
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

7037 7038
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
7039

7040 7041 7042 7043 7044 7045
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

7046 7047 7048
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7049
}
7050

7051
static int sched_ilb_notifier(struct notifier_block *nfb,
7052 7053 7054 7055
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
7056
		nohz_balance_exit_idle(smp_processor_id());
7057 7058 7059 7060 7061
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
7062 7063 7064 7065
#endif

static DEFINE_SPINLOCK(balancing);

7066 7067 7068 7069
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
7070
void update_max_interval(void)
7071 7072 7073 7074
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

7075 7076 7077 7078
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7079
 * Balancing parameters are set up in init_sched_domains.
7080
 */
7081
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7082
{
7083
	int continue_balancing = 1;
7084
	int cpu = rq->cpu;
7085
	unsigned long interval;
7086
	struct sched_domain *sd;
7087 7088 7089
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7090 7091
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7092

7093
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7094

7095
	rcu_read_lock();
7096
	for_each_domain(cpu, sd) {
7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7109 7110 7111
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

7123
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7124 7125 7126 7127 7128 7129 7130 7131

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7132
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7133
				/*
7134
				 * The LBF_DST_PINNED logic could have changed
7135 7136
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
7137
				 */
7138
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7139 7140
			}
			sd->last_balance = jiffies;
7141
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7142 7143 7144 7145 7146 7147 7148 7149
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
7150 7151
	}
	if (need_decay) {
7152
		/*
7153 7154
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
7155
		 */
7156 7157
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
7158
	}
7159
	rcu_read_unlock();
7160 7161 7162 7163 7164 7165 7166 7167 7168 7169

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

7170
#ifdef CONFIG_NO_HZ_COMMON
7171
/*
7172
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7173 7174
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
7175
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7176
{
7177
	int this_cpu = this_rq->cpu;
7178 7179 7180
	struct rq *rq;
	int balance_cpu;

7181 7182 7183
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
7184 7185

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7186
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7187 7188 7189 7190 7191 7192 7193
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
7194
		if (need_resched())
7195 7196
			break;

V
Vincent Guittot 已提交
7197 7198
		rq = cpu_rq(balance_cpu);

7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
			update_idle_cpu_load(rq);
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
7210 7211 7212 7213 7214

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
7215 7216
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7217 7218 7219
}

/*
7220 7221 7222 7223
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
7224
 *     busy cpu's exceeding the group's capacity.
7225 7226
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
7227
 */
7228
static inline int nohz_kick_needed(struct rq *rq)
7229 7230
{
	unsigned long now = jiffies;
7231
	struct sched_domain *sd;
7232
	struct sched_group_capacity *sgc;
7233
	int nr_busy, cpu = rq->cpu;
7234

7235
	if (unlikely(rq->idle_balance))
7236 7237
		return 0;

7238 7239 7240 7241
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
7242
	set_cpu_sd_state_busy();
7243
	nohz_balance_exit_idle(cpu);
7244 7245 7246 7247 7248 7249 7250

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
7251 7252

	if (time_before(now, nohz.next_balance))
7253 7254
		return 0;

7255 7256
	if (rq->nr_running >= 2)
		goto need_kick;
7257

7258
	rcu_read_lock();
7259
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7260

7261
	if (sd) {
7262 7263
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7264

7265
		if (nr_busy > 1)
7266
			goto need_kick_unlock;
7267
	}
7268 7269 7270 7271 7272 7273 7274

	sd = rcu_dereference(per_cpu(sd_asym, cpu));

	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
				  sched_domain_span(sd)) < cpu))
		goto need_kick_unlock;

7275
	rcu_read_unlock();
7276
	return 0;
7277 7278 7279

need_kick_unlock:
	rcu_read_unlock();
7280 7281
need_kick:
	return 1;
7282 7283
}
#else
7284
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7285 7286 7287 7288 7289 7290
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
7291 7292
static void run_rebalance_domains(struct softirq_action *h)
{
7293
	struct rq *this_rq = this_rq();
7294
	enum cpu_idle_type idle = this_rq->idle_balance ?
7295 7296
						CPU_IDLE : CPU_NOT_IDLE;

7297
	rebalance_domains(this_rq, idle);
7298 7299

	/*
7300
	 * If this cpu has a pending nohz_balance_kick, then do the
7301 7302 7303
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
7304
	nohz_idle_balance(this_rq, idle);
7305 7306 7307 7308 7309
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
7310
void trigger_load_balance(struct rq *rq)
7311 7312
{
	/* Don't need to rebalance while attached to NULL domain */
7313 7314 7315 7316
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
7317
		raise_softirq(SCHED_SOFTIRQ);
7318
#ifdef CONFIG_NO_HZ_COMMON
7319
	if (nohz_kick_needed(rq))
7320
		nohz_balancer_kick();
7321
#endif
7322 7323
}

7324 7325 7326 7327 7328 7329 7330 7331
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
7332 7333 7334

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
7335 7336
}

7337
#endif /* CONFIG_SMP */
7338

7339 7340 7341
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
7342
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7343 7344 7345 7346 7347 7348
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
7349
		entity_tick(cfs_rq, se, queued);
7350
	}
7351

7352
	if (numabalancing_enabled)
7353
		task_tick_numa(rq, curr);
7354

7355
	update_rq_runnable_avg(rq, 1);
7356 7357 7358
}

/*
P
Peter Zijlstra 已提交
7359 7360 7361
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
7362
 */
P
Peter Zijlstra 已提交
7363
static void task_fork_fair(struct task_struct *p)
7364
{
7365 7366
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
7367
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
7368 7369 7370
	struct rq *rq = this_rq();
	unsigned long flags;

7371
	raw_spin_lock_irqsave(&rq->lock, flags);
7372

7373 7374
	update_rq_clock(rq);

7375 7376 7377
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

7378 7379 7380 7381 7382 7383 7384 7385 7386
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
7387

7388
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
7389

7390 7391
	if (curr)
		se->vruntime = curr->vruntime;
7392
	place_entity(cfs_rq, se, 1);
7393

P
Peter Zijlstra 已提交
7394
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
7395
		/*
7396 7397 7398
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
7399
		swap(curr->vruntime, se->vruntime);
7400
		resched_task(rq->curr);
7401
	}
7402

7403 7404
	se->vruntime -= cfs_rq->min_vruntime;

7405
	raw_spin_unlock_irqrestore(&rq->lock, flags);
7406 7407
}

7408 7409 7410 7411
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
7412 7413
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7414
{
P
Peter Zijlstra 已提交
7415 7416 7417
	if (!p->se.on_rq)
		return;

7418 7419 7420 7421 7422
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
7423
	if (rq->curr == p) {
7424 7425 7426
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
7427
		check_preempt_curr(rq, p, 0);
7428 7429
}

P
Peter Zijlstra 已提交
7430 7431 7432 7433 7434 7435
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
7436
	 * Ensure the task's vruntime is normalized, so that when it's
P
Peter Zijlstra 已提交
7437 7438 7439
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
7440 7441
	 * If it's on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it's !on_rq, then only when
P
Peter Zijlstra 已提交
7442 7443
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
7444
	if (!p->on_rq && p->state != TASK_RUNNING) {
P
Peter Zijlstra 已提交
7445 7446 7447 7448 7449 7450 7451
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
7452

7453
#ifdef CONFIG_SMP
7454 7455 7456 7457 7458
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
7459 7460 7461
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7462 7463
	}
#endif
P
Peter Zijlstra 已提交
7464 7465
}

7466 7467 7468
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
7469
static void switched_to_fair(struct rq *rq, struct task_struct *p)
7470
{
7471 7472 7473 7474 7475 7476 7477 7478 7479
	struct sched_entity *se = &p->se;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
	if (!se->on_rq)
P
Peter Zijlstra 已提交
7480 7481
		return;

7482 7483 7484 7485 7486
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
7487
	if (rq->curr == p)
7488 7489
		resched_task(rq->curr);
	else
7490
		check_preempt_curr(rq, p, 0);
7491 7492
}

7493 7494 7495 7496 7497 7498 7499 7500 7501
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

7502 7503 7504 7505 7506 7507 7508
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
7509 7510
}

7511 7512 7513 7514 7515 7516 7517
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
7518
#ifdef CONFIG_SMP
7519
	atomic64_set(&cfs_rq->decay_counter, 1);
7520
	atomic_long_set(&cfs_rq->removed_load, 0);
7521
#endif
7522 7523
}

P
Peter Zijlstra 已提交
7524
#ifdef CONFIG_FAIR_GROUP_SCHED
7525
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
7526
{
P
Peter Zijlstra 已提交
7527
	struct sched_entity *se = &p->se;
7528
	struct cfs_rq *cfs_rq;
P
Peter Zijlstra 已提交
7529

7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
7543 7544 7545 7546 7547 7548
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
7549 7550
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
7551 7552 7553 7554
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
P
Peter Zijlstra 已提交
7555
	if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7556 7557
		on_rq = 1;

7558
	if (!on_rq)
P
Peter Zijlstra 已提交
7559
		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7560
	set_task_rq(p, task_cpu(p));
P
Peter Zijlstra 已提交
7561
	se->depth = se->parent ? se->parent->depth + 1 : 0;
7562
	if (!on_rq) {
P
Peter Zijlstra 已提交
7563 7564
		cfs_rq = cfs_rq_of(se);
		se->vruntime += cfs_rq->min_vruntime;
7565 7566 7567 7568 7569 7570
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
P
Peter Zijlstra 已提交
7571 7572
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7573 7574
#endif
	}
P
Peter Zijlstra 已提交
7575
}
7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
7668
	if (!parent) {
7669
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
7670 7671
		se->depth = 0;
	} else {
7672
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
7673 7674
		se->depth = parent->depth + 1;
	}
7675 7676

	se->my_q = cfs_rq;
7677 7678
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
7709 7710 7711

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
7712
		for_each_sched_entity(se)
7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
7734

7735
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7736 7737 7738 7739 7740 7741 7742 7743 7744
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
7745
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7746 7747 7748 7749

	return rr_interval;
}

7750 7751 7752
/*
 * All the scheduling class methods:
 */
7753
const struct sched_class fair_sched_class = {
7754
	.next			= &idle_sched_class,
7755 7756 7757
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
7758
	.yield_to_task		= yield_to_task_fair,
7759

I
Ingo Molnar 已提交
7760
	.check_preempt_curr	= check_preempt_wakeup,
7761 7762 7763 7764

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

7765
#ifdef CONFIG_SMP
L
Li Zefan 已提交
7766
	.select_task_rq		= select_task_rq_fair,
7767
	.migrate_task_rq	= migrate_task_rq_fair,
7768

7769 7770
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
7771 7772

	.task_waking		= task_waking_fair,
7773
#endif
7774

7775
	.set_curr_task          = set_curr_task_fair,
7776
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
7777
	.task_fork		= task_fork_fair,
7778 7779

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
7780
	.switched_from		= switched_from_fair,
7781
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
7782

7783 7784
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
7785
#ifdef CONFIG_FAIR_GROUP_SCHED
7786
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
7787
#endif
7788 7789 7790
};

#ifdef CONFIG_SCHED_DEBUG
7791
void print_cfs_stats(struct seq_file *m, int cpu)
7792 7793 7794
{
	struct cfs_rq *cfs_rq;

7795
	rcu_read_lock();
7796
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7797
		print_cfs_rq(m, cpu, cfs_rq);
7798
	rcu_read_unlock();
7799 7800
}
#endif
7801 7802 7803 7804 7805 7806

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

7807
#ifdef CONFIG_NO_HZ_COMMON
7808
	nohz.next_balance = jiffies;
7809
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7810
	cpu_notifier(sched_ilb_notifier, 0);
7811 7812 7813 7814
#endif
#endif /* SMP */

}