fair.c 137.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28 29 30 31 32
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
33

34
/*
35
 * Targeted preemption latency for CPU-bound tasks:
36
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37
 *
38
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
39 40 41
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
42
 *
I
Ingo Molnar 已提交
43 44
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
45
 */
46 47
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
48

49 50 51 52 53 54 55 56 57 58 59 60
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

61
/*
62
 * Minimal preemption granularity for CPU-bound tasks:
63
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
64
 */
65 66
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
67 68

/*
69 70
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
71
static unsigned int sched_nr_latency = 8;
72 73

/*
74
 * After fork, child runs first. If set to 0 (default) then
75
 * parent will (try to) run first.
76
 */
77
unsigned int sysctl_sched_child_runs_first __read_mostly;
78 79 80

/*
 * SCHED_OTHER wake-up granularity.
81
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 83 84 85 86
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
87
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89

90 91
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

92 93 94 95 96 97 98
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

99 100 101 102 103 104 105 106 107 108 109 110 111 112
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

/*
 * Shift right and round:
 */
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))

/*
 * delta *= weight / lw
 */
static unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	/*
	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
	 * 2^SCHED_LOAD_RESOLUTION.
	 */
	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
		tmp = (u64)delta_exec * scale_load_down(weight);
	else
		tmp = (u64)delta_exec;

	if (!lw->inv_weight) {
		unsigned long w = scale_load_down(lw->weight);

		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
			lw->inv_weight = 1;
		else if (unlikely(!w))
			lw->inv_weight = WMULT_CONST;
		else
			lw->inv_weight = WMULT_CONST / w;
	}

	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST))
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
			WMULT_SHIFT/2);
	else
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);

	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
}


const struct sched_class fair_sched_class;
217

218 219 220 221
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

222
#ifdef CONFIG_FAIR_GROUP_SCHED
223

224
/* cpu runqueue to which this cfs_rq is attached */
225 226
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
227
	return cfs_rq->rq;
228 229
}

230 231
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
232

233 234 235 236 237 238 239 240
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

262 263 264
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
265 266 267 268 269 270 271 272 273 274 275 276
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
277
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
278
		}
279 280 281 282 283 284 285 286 287 288 289 290 291

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

354 355 356 357 358 359
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
360

361 362 363
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
364 365 366 367
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
368 369
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
370

P
Peter Zijlstra 已提交
371
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
372
{
P
Peter Zijlstra 已提交
373
	return &task_rq(p)->cfs;
374 375
}

P
Peter Zijlstra 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

390 391 392 393 394 395 396 397
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

412 413 414 415 416
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
417 418
#endif	/* CONFIG_FAIR_GROUP_SCHED */

419 420
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
421 422 423 424 425

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

426
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
427
{
428 429
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
430 431 432 433 434
		min_vruntime = vruntime;

	return min_vruntime;
}

435
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
436 437 438 439 440 441 442 443
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

444 445 446 447 448 449
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

450 451 452 453 454 455 456 457 458 459 460 461
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
462
		if (!cfs_rq->curr)
463 464 465 466 467 468
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
469 470 471 472
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
473 474
}

475 476 477
/*
 * Enqueue an entity into the rb-tree:
 */
478
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
495
		if (entity_before(se, entry)) {
496 497 498 499 500 501 502 503 504 505 506
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
507
	if (leftmost)
I
Ingo Molnar 已提交
508
		cfs_rq->rb_leftmost = &se->run_node;
509 510 511 512 513

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

514
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
515
{
P
Peter Zijlstra 已提交
516 517 518 519 520 521
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
522

523 524 525
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

526
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
527
{
528 529 530 531 532 533
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
534 535
}

536 537 538 539 540 541 542 543 544 545 546
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
547
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
548
{
549
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
550

551 552
	if (!last)
		return NULL;
553 554

	return rb_entry(last, struct sched_entity, run_node);
555 556
}

557 558 559 560
/**************************************************************
 * Scheduling class statistics methods:
 */

561
int sched_proc_update_handler(struct ctl_table *table, int write,
562
		void __user *buffer, size_t *lenp,
563 564
		loff_t *ppos)
{
565
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
566
	int factor = get_update_sysctl_factor();
567 568 569 570 571 572 573

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

574 575 576 577 578 579 580
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

581 582 583
	return 0;
}
#endif
584

585
/*
586
 * delta /= w
587 588 589 590
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
591 592
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
593 594 595 596

	return delta;
}

597 598 599
/*
 * The idea is to set a period in which each task runs once.
 *
600
 * When there are too many tasks (sched_nr_latency) we have to stretch
601 602 603 604
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
605 606 607
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
608
	unsigned long nr_latency = sched_nr_latency;
609 610

	if (unlikely(nr_running > nr_latency)) {
611
		period = sysctl_sched_min_granularity;
612 613 614 615 616 617
		period *= nr_running;
	}

	return period;
}

618 619 620 621
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
622
 * s = p*P[w/rw]
623
 */
P
Peter Zijlstra 已提交
624
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
625
{
M
Mike Galbraith 已提交
626
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
627

M
Mike Galbraith 已提交
628
	for_each_sched_entity(se) {
L
Lin Ming 已提交
629
		struct load_weight *load;
630
		struct load_weight lw;
L
Lin Ming 已提交
631 632 633

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
634

M
Mike Galbraith 已提交
635
		if (unlikely(!se->on_rq)) {
636
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
637 638 639 640 641 642 643

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
644 645
}

646
/*
647
 * We calculate the vruntime slice of a to be inserted task
648
 *
649
 * vs = s/w
650
 */
651
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
652
{
653
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
654 655
}

656
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
657
static void update_cfs_shares(struct cfs_rq *cfs_rq);
658

659 660 661 662 663
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
664 665
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
666
{
667
	unsigned long delta_exec_weighted;
668

669 670
	schedstat_set(curr->statistics.exec_max,
		      max((u64)delta_exec, curr->statistics.exec_max));
671 672

	curr->sum_exec_runtime += delta_exec;
673
	schedstat_add(cfs_rq, exec_clock, delta_exec);
674
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
675

I
Ingo Molnar 已提交
676
	curr->vruntime += delta_exec_weighted;
677
	update_min_vruntime(cfs_rq);
678

P
Peter Zijlstra 已提交
679
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
680 681
	cfs_rq->load_unacc_exec_time += delta_exec;
#endif
682 683
}

684
static void update_curr(struct cfs_rq *cfs_rq)
685
{
686
	struct sched_entity *curr = cfs_rq->curr;
687
	u64 now = rq_of(cfs_rq)->clock_task;
688 689 690 691 692 693 694 695 696 697
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
698
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
699 700
	if (!delta_exec)
		return;
701

I
Ingo Molnar 已提交
702 703
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
704 705 706 707

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

708
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
709
		cpuacct_charge(curtask, delta_exec);
710
		account_group_exec_runtime(curtask, delta_exec);
711
	}
712 713

	account_cfs_rq_runtime(cfs_rq, delta_exec);
714 715 716
}

static inline void
717
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
718
{
719
	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
720 721 722 723 724
}

/*
 * Task is being enqueued - update stats:
 */
725
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
726 727 728 729 730
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
731
	if (se != cfs_rq->curr)
732
		update_stats_wait_start(cfs_rq, se);
733 734 735
}

static void
736
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
737
{
738 739 740 741 742
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
			rq_of(cfs_rq)->clock - se->statistics.wait_start));
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
743 744 745
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
746
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
747 748
	}
#endif
749
	schedstat_set(se->statistics.wait_start, 0);
750 751 752
}

static inline void
753
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 755 756 757 758
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
759
	if (se != cfs_rq->curr)
760
		update_stats_wait_end(cfs_rq, se);
761 762 763 764 765 766
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
767
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 769 770 771
{
	/*
	 * We are starting a new run period:
	 */
772
	se->exec_start = rq_of(cfs_rq)->clock_task;
773 774 775 776 777 778
}

/**************************************************
 * Scheduling class queueing methods:
 */

779 780 781 782
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
783
	if (!parent_entity(se))
784
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
785 786
#ifdef CONFIG_SMP
	if (entity_is_task(se))
787
		list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
788
#endif
789 790 791 792 793 794 795
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
796
	if (!parent_entity(se))
797
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
798
	if (entity_is_task(se))
799
		list_del_init(&se->group_node);
800 801 802
	cfs_rq->nr_running--;
}

803
#ifdef CONFIG_FAIR_GROUP_SCHED
804 805
/* we need this in update_cfs_load and load-balance functions below */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
806
# ifdef CONFIG_SMP
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
					    int global_update)
{
	struct task_group *tg = cfs_rq->tg;
	long load_avg;

	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
	load_avg -= cfs_rq->load_contribution;

	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
		atomic_add(load_avg, &tg->load_weight);
		cfs_rq->load_contribution += load_avg;
	}
}

static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
P
Peter Zijlstra 已提交
823
{
824
	u64 period = sysctl_sched_shares_window;
P
Peter Zijlstra 已提交
825
	u64 now, delta;
826
	unsigned long load = cfs_rq->load.weight;
P
Peter Zijlstra 已提交
827

828
	if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
829 830
		return;

831
	now = rq_of(cfs_rq)->clock_task;
P
Peter Zijlstra 已提交
832 833
	delta = now - cfs_rq->load_stamp;

834 835 836 837 838
	/* truncate load history at 4 idle periods */
	if (cfs_rq->load_stamp > cfs_rq->load_last &&
	    now - cfs_rq->load_last > 4 * period) {
		cfs_rq->load_period = 0;
		cfs_rq->load_avg = 0;
839
		delta = period - 1;
840 841
	}

P
Peter Zijlstra 已提交
842
	cfs_rq->load_stamp = now;
843
	cfs_rq->load_unacc_exec_time = 0;
P
Peter Zijlstra 已提交
844
	cfs_rq->load_period += delta;
845 846 847 848
	if (load) {
		cfs_rq->load_last = now;
		cfs_rq->load_avg += delta * load;
	}
P
Peter Zijlstra 已提交
849

850 851 852 853 854
	/* consider updating load contribution on each fold or truncate */
	if (global_update || cfs_rq->load_period > period
	    || !cfs_rq->load_period)
		update_cfs_rq_load_contribution(cfs_rq, global_update);

P
Peter Zijlstra 已提交
855 856 857 858 859 860 861 862 863 864
	while (cfs_rq->load_period > period) {
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (cfs_rq->load_period));
		cfs_rq->load_period /= 2;
		cfs_rq->load_avg /= 2;
	}
865

866 867
	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
		list_del_leaf_cfs_rq(cfs_rq);
P
Peter Zijlstra 已提交
868 869
}

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
	tg_weight = atomic_read(&tg->load_weight);
	tg_weight -= cfs_rq->load_contribution;
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

886
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
887
{
888
	long tg_weight, load, shares;
889

890
	tg_weight = calc_tg_weight(tg, cfs_rq);
891
	load = cfs_rq->load.weight;
892 893

	shares = (tg->shares * load);
894 895
	if (tg_weight)
		shares /= tg_weight;
896 897 898 899 900 901 902 903 904 905 906 907 908

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}

static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
		update_cfs_load(cfs_rq, 0);
909
		update_cfs_shares(cfs_rq);
910 911 912 913 914 915 916
	}
}
# else /* CONFIG_SMP */
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
{
}

917
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
918 919 920 921 922 923 924 925
{
	return tg->shares;
}

static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
926 927 928
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
929 930 931 932
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
933
		account_entity_dequeue(cfs_rq, se);
934
	}
P
Peter Zijlstra 已提交
935 936 937 938 939 940 941

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

942
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
943 944 945
{
	struct task_group *tg;
	struct sched_entity *se;
946
	long shares;
P
Peter Zijlstra 已提交
947 948 949

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
950
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
951
		return;
952 953 954 955
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
956
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
957 958 959 960

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
961
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
P
Peter Zijlstra 已提交
962 963 964
{
}

965
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
966 967
{
}
968 969 970 971

static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
}
P
Peter Zijlstra 已提交
972 973
#endif /* CONFIG_FAIR_GROUP_SCHED */

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
#ifdef CONFIG_SMP
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
	for (; n && val; n--) {
		val *= 4008;
		val >>= 12;
	}

	return val;
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
	u64 delta;
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
		BUG_ON(delta_w > delta);
		do {
			if (runnable)
				sa->runnable_avg_sum += delta_w;
			sa->runnable_avg_period += delta_w;

			/*
			 * Remainder of delta initiates a new period, roll over
			 * the previous.
			 */
			sa->runnable_avg_sum =
				decay_load(sa->runnable_avg_sum, 1);
			sa->runnable_avg_period =
				decay_load(sa->runnable_avg_period, 1);

			delta -= delta_w;
			/* New period is empty */
			delta_w = 1024;
		} while (delta >= 1024);
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

	if (!entity_is_task(se))
		return 0;

	se->avg.load_avg_contrib = div64_u64(se->avg.runnable_avg_sum *
					     se->load.weight,
					     se->avg.runnable_avg_period + 1);

	return se->avg.load_avg_contrib - old_contrib;
}

1099 1100 1101
/* Update a sched_entity's runnable average */
static inline void update_entity_load_avg(struct sched_entity *se)
{
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;

	if (!__update_entity_runnable_avg(rq_of(cfs_rq)->clock_task, &se->avg,
					  se->on_rq))
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
1112
}
1113 1114 1115 1116 1117

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
	__update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
}
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
						  struct sched_entity *se)
{
	update_entity_load_avg(se);
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
}

/* Remove se's load from this cfs_rq child load-average */
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
						  struct sched_entity *se)
{
	update_entity_load_avg(se);
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
}
1134 1135
#else
static inline void update_entity_load_avg(struct sched_entity *se) {}
1136
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1137 1138 1139 1140
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
						  struct sched_entity *se) {}
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
						  struct sched_entity *se) {}
1141 1142
#endif

1143
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1144 1145
{
#ifdef CONFIG_SCHEDSTATS
1146 1147 1148 1149 1150
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

1151 1152
	if (se->statistics.sleep_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1153 1154 1155 1156

		if ((s64)delta < 0)
			delta = 0;

1157 1158
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
1159

1160
		se->statistics.sleep_start = 0;
1161
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
1162

1163
		if (tsk) {
1164
			account_scheduler_latency(tsk, delta >> 10, 1);
1165 1166
			trace_sched_stat_sleep(tsk, delta);
		}
1167
	}
1168 1169
	if (se->statistics.block_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1170 1171 1172 1173

		if ((s64)delta < 0)
			delta = 0;

1174 1175
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
1176

1177
		se->statistics.block_start = 0;
1178
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
1179

1180
		if (tsk) {
1181
			if (tsk->in_iowait) {
1182 1183
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
1184
				trace_sched_stat_iowait(tsk, delta);
1185 1186
			}

1187 1188
			trace_sched_stat_blocked(tsk, delta);

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
1200
		}
1201 1202 1203 1204
	}
#endif
}

P
Peter Zijlstra 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

1218 1219 1220
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
1221
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
1222

1223 1224 1225 1226 1227 1228
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
1229
	if (initial && sched_feat(START_DEBIT))
1230
		vruntime += sched_vslice(cfs_rq, se);
1231

1232
	/* sleeps up to a single latency don't count. */
1233
	if (!initial) {
1234
		unsigned long thresh = sysctl_sched_latency;
1235

1236 1237 1238 1239 1240 1241
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
1242

1243
		vruntime -= thresh;
1244 1245
	}

1246 1247 1248
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

P
Peter Zijlstra 已提交
1249
	se->vruntime = vruntime;
1250 1251
}

1252 1253
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

1254
static void
1255
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1256
{
1257 1258 1259 1260
	/*
	 * Update the normalized vruntime before updating min_vruntime
	 * through callig update_curr().
	 */
1261
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1262 1263
		se->vruntime += cfs_rq->min_vruntime;

1264
	/*
1265
	 * Update run-time statistics of the 'current'.
1266
	 */
1267
	update_curr(cfs_rq);
1268
	update_cfs_load(cfs_rq, 0);
1269
	enqueue_entity_load_avg(cfs_rq, se);
P
Peter Zijlstra 已提交
1270
	account_entity_enqueue(cfs_rq, se);
1271
	update_cfs_shares(cfs_rq);
1272

1273
	if (flags & ENQUEUE_WAKEUP) {
1274
		place_entity(cfs_rq, se, 0);
1275
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
1276
	}
1277

1278
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
1279
	check_spread(cfs_rq, se);
1280 1281
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
1282
	se->on_rq = 1;
1283

1284
	if (cfs_rq->nr_running == 1) {
1285
		list_add_leaf_cfs_rq(cfs_rq);
1286 1287
		check_enqueue_throttle(cfs_rq);
	}
1288 1289
}

1290
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
1291
{
1292 1293 1294 1295 1296 1297 1298 1299
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}
}
P
Peter Zijlstra 已提交
1300

1301 1302 1303 1304 1305 1306 1307 1308 1309
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next == se)
			cfs_rq->next = NULL;
		else
			break;
	}
P
Peter Zijlstra 已提交
1310 1311
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip == se)
			cfs_rq->skip = NULL;
		else
			break;
	}
}

P
Peter Zijlstra 已提交
1323 1324
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
1325 1326 1327 1328 1329
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
1330 1331 1332

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
1333 1334
}

1335
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1336

1337
static void
1338
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1339
{
1340 1341 1342 1343
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
1344
	dequeue_entity_load_avg(cfs_rq, se);
1345

1346
	update_stats_dequeue(cfs_rq, se);
1347
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
1348
#ifdef CONFIG_SCHEDSTATS
1349 1350 1351 1352
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
1353
				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1354
			if (tsk->state & TASK_UNINTERRUPTIBLE)
1355
				se->statistics.block_start = rq_of(cfs_rq)->clock;
1356
		}
1357
#endif
P
Peter Zijlstra 已提交
1358 1359
	}

P
Peter Zijlstra 已提交
1360
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1361

1362
	if (se != cfs_rq->curr)
1363
		__dequeue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
1364
	se->on_rq = 0;
1365
	update_cfs_load(cfs_rq, 0);
1366
	account_entity_dequeue(cfs_rq, se);
1367 1368 1369 1370 1371 1372

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
1373
	if (!(flags & DEQUEUE_SLEEP))
1374
		se->vruntime -= cfs_rq->min_vruntime;
1375

1376 1377 1378
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

1379 1380
	update_min_vruntime(cfs_rq);
	update_cfs_shares(cfs_rq);
1381 1382 1383 1384 1385
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
1386
static void
I
Ingo Molnar 已提交
1387
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1388
{
1389
	unsigned long ideal_runtime, delta_exec;
1390 1391
	struct sched_entity *se;
	s64 delta;
1392

P
Peter Zijlstra 已提交
1393
	ideal_runtime = sched_slice(cfs_rq, curr);
1394
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1395
	if (delta_exec > ideal_runtime) {
1396
		resched_task(rq_of(cfs_rq)->curr);
1397 1398 1399 1400 1401
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

1413 1414
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
1415

1416 1417
	if (delta < 0)
		return;
1418

1419 1420
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
1421 1422
}

1423
static void
1424
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1425
{
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

1437
	update_stats_curr_start(cfs_rq, se);
1438
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
1439 1440 1441 1442 1443 1444
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
1445
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1446
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
1447 1448 1449
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
1450
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1451 1452
}

1453 1454 1455
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

1456 1457 1458 1459 1460 1461 1462
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
1463
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1464
{
1465
	struct sched_entity *se = __pick_first_entity(cfs_rq);
1466
	struct sched_entity *left = se;
1467

1468 1469 1470 1471 1472 1473 1474 1475 1476
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second = __pick_next_entity(se);
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
1477

1478 1479 1480 1481 1482 1483
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

1484 1485 1486 1487 1488 1489
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

1490
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1491 1492

	return se;
1493 1494
}

1495 1496
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

1497
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1498 1499 1500 1501 1502 1503
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
1504
		update_curr(cfs_rq);
1505

1506 1507 1508
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
1509
	check_spread(cfs_rq, prev);
1510
	if (prev->on_rq) {
1511
		update_stats_wait_start(cfs_rq, prev);
1512 1513
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
1514 1515
		/* in !on_rq case, update occurred at dequeue */
		update_entity_load_avg(prev);
1516
	}
1517
	cfs_rq->curr = NULL;
1518 1519
}

P
Peter Zijlstra 已提交
1520 1521
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1522 1523
{
	/*
1524
	 * Update run-time statistics of the 'current'.
1525
	 */
1526
	update_curr(cfs_rq);
1527

1528 1529 1530 1531 1532
	/*
	 * Ensure that runnable average is periodically updated.
	 */
	update_entity_load_avg(curr);

1533 1534 1535 1536 1537
	/*
	 * Update share accounting for long-running entities.
	 */
	update_entity_shares_tick(cfs_rq);

P
Peter Zijlstra 已提交
1538 1539 1540 1541 1542
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
1543 1544 1545 1546
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
1547 1548 1549 1550 1551 1552 1553 1554
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
1555
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
1556
		check_preempt_tick(cfs_rq, curr);
1557 1558
}

1559 1560 1561 1562 1563 1564

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
1565 1566

#ifdef HAVE_JUMP_LABEL
1567
static struct static_key __cfs_bandwidth_used;
1568 1569 1570

static inline bool cfs_bandwidth_used(void)
{
1571
	return static_key_false(&__cfs_bandwidth_used);
1572 1573 1574 1575 1576 1577
}

void account_cfs_bandwidth_used(int enabled, int was_enabled)
{
	/* only need to count groups transitioning between enabled/!enabled */
	if (enabled && !was_enabled)
1578
		static_key_slow_inc(&__cfs_bandwidth_used);
1579
	else if (!enabled && was_enabled)
1580
		static_key_slow_dec(&__cfs_bandwidth_used);
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
#endif /* HAVE_JUMP_LABEL */

1591 1592 1593 1594 1595 1596 1597 1598
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
1599 1600 1601 1602 1603 1604

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
1605 1606 1607 1608 1609 1610 1611
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
1612
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

1624 1625 1626 1627 1628
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

1629 1630
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1631 1632 1633
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
1634
	u64 amount = 0, min_amount, expires;
1635 1636 1637 1638 1639 1640 1641

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
1642
	else {
P
Paul Turner 已提交
1643 1644 1645 1646 1647 1648 1649 1650
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
1651
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
1652
		}
1653 1654 1655 1656 1657 1658

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
1659
	}
P
Paul Turner 已提交
1660
	expires = cfs_b->runtime_expires;
1661 1662 1663
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
1664 1665 1666 1667 1668 1669 1670
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
1671 1672

	return cfs_rq->runtime_remaining > 0;
1673 1674
}

P
Paul Turner 已提交
1675 1676 1677 1678 1679
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1680
{
P
Paul Turner 已提交
1681 1682 1683 1684 1685
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct rq *rq = rq_of(cfs_rq);

	/* if the deadline is ahead of our clock, nothing to do */
	if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1686 1687
		return;

P
Paul Turner 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec)
{
	/* dock delta_exec before expiring quota (as it could span periods) */
1713
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
1714 1715 1716
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
1717 1718
		return;

1719 1720 1721 1722 1723 1724
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
1725 1726
}

1727 1728
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
1729
{
1730
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1731 1732 1733 1734 1735
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

1736 1737
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
1738
	return cfs_bandwidth_used() && cfs_rq->throttled;
1739 1740
}

1741 1742 1743
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
1744
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
		u64 delta = rq->clock_task - cfs_rq->load_stamp;

		/* leaving throttled state, advance shares averaging windows */
		cfs_rq->load_stamp += delta;
		cfs_rq->load_last += delta;

		/* update entity weight now that we are on_rq again */
		update_cfs_shares(cfs_rq);
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	/* group is entering throttled state, record last load */
	if (!cfs_rq->throttle_count)
		update_cfs_load(cfs_rq, 0);
	cfs_rq->throttle_count++;

	return 0;
}

1800
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1801 1802 1803 1804 1805 1806 1807 1808 1809
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

	/* account load preceding throttle */
1810 1811 1812
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
1833
	cfs_rq->throttled_timestamp = rq->clock;
1834 1835 1836 1837 1838
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
	raw_spin_unlock(&cfs_b->lock);
}

1839
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

	cfs_rq->throttled = 0;
	raw_spin_lock(&cfs_b->lock);
1851
	cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1852 1853
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);
1854
	cfs_rq->throttled_timestamp = 0;
1855

1856 1857 1858 1859
	update_rq_clock(rq);
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

1923 1924 1925 1926 1927 1928 1929 1930
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
1931 1932
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
1933 1934 1935 1936 1937 1938

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

1939 1940 1941
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
1942
	cfs_b->nr_periods += overrun;
1943

P
Paul Turner 已提交
1944 1945 1946 1947 1948 1949
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

	__refill_cfs_bandwidth_runtime(cfs_b);

1950 1951 1952 1953 1954 1955
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

1956 1957 1958
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
1983

1984 1985 1986 1987 1988 1989 1990 1991 1992
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
1993 1994 1995 1996 1997 1998 1999
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
2000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

/* are we near the end of the current quota period? */
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
2065 2066 2067
	if (!cfs_bandwidth_used())
		return;

2068
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

2106 2107 2108 2109 2110 2111 2112
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
2113 2114 2115
	if (!cfs_bandwidth_used())
		return;

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
2133 2134 2135
	if (!cfs_bandwidth_used())
		return;

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return;

	throttle_cfs_rq(cfs_rq);
}
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

static inline u64 default_cfs_period(void);
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
		raw_spin_unlock(&cfs_b->lock);
		/* ensure cfs_b->lock is available while we wait */
		hrtimer_cancel(&cfs_b->period_timer);

		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

2233
static void unthrottle_offline_cfs_rqs(struct rq *rq)
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
2254 2255
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
2256 2257
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2258
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2259 2260 2261 2262 2263

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
2275 2276 2277 2278 2279

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2280 2281
#endif

2282 2283 2284 2285 2286
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2287
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2288 2289 2290

#endif /* CONFIG_CFS_BANDWIDTH */

2291 2292 2293 2294
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
2295 2296 2297 2298 2299 2300 2301 2302
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

2303
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
2318
		if (rq->curr != p)
2319
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
2320

2321
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
2322 2323
	}
}
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

2334
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2335 2336 2337 2338 2339
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
2340
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
2341 2342 2343 2344
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
2345 2346 2347 2348

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
2349 2350
#endif

2351 2352 2353 2354 2355
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
2356
static void
2357
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2358 2359
{
	struct cfs_rq *cfs_rq;
2360
	struct sched_entity *se = &p->se;
2361 2362

	for_each_sched_entity(se) {
2363
		if (se->on_rq)
2364 2365
			break;
		cfs_rq = cfs_rq_of(se);
2366
		enqueue_entity(cfs_rq, se, flags);
2367 2368 2369 2370 2371 2372 2373 2374 2375

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
2376
		cfs_rq->h_nr_running++;
2377

2378
		flags = ENQUEUE_WAKEUP;
2379
	}
P
Peter Zijlstra 已提交
2380

P
Peter Zijlstra 已提交
2381
	for_each_sched_entity(se) {
2382
		cfs_rq = cfs_rq_of(se);
2383
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
2384

2385 2386 2387
		if (cfs_rq_throttled(cfs_rq))
			break;

2388
		update_cfs_load(cfs_rq, 0);
2389
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
2390 2391
	}

2392 2393
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
2394
		inc_nr_running(rq);
2395
	}
2396
	hrtick_update(rq);
2397 2398
}

2399 2400
static void set_next_buddy(struct sched_entity *se);

2401 2402 2403 2404 2405
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
2406
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2407 2408
{
	struct cfs_rq *cfs_rq;
2409
	struct sched_entity *se = &p->se;
2410
	int task_sleep = flags & DEQUEUE_SLEEP;
2411 2412 2413

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
2414
		dequeue_entity(cfs_rq, se, flags);
2415 2416 2417 2418 2419 2420 2421 2422 2423

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
2424
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2425

2426
		/* Don't dequeue parent if it has other entities besides us */
2427 2428 2429 2430 2431 2432 2433
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
2434 2435 2436

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
2437
			break;
2438
		}
2439
		flags |= DEQUEUE_SLEEP;
2440
	}
P
Peter Zijlstra 已提交
2441

P
Peter Zijlstra 已提交
2442
	for_each_sched_entity(se) {
2443
		cfs_rq = cfs_rq_of(se);
2444
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2445

2446 2447 2448
		if (cfs_rq_throttled(cfs_rq))
			break;

2449
		update_cfs_load(cfs_rq, 0);
2450
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
2451 2452
	}

2453
	if (!se) {
2454
		dec_nr_running(rq);
2455 2456
		update_rq_runnable_avg(rq, 1);
	}
2457
	hrtick_update(rq);
2458 2459
}

2460
#ifdef CONFIG_SMP
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);

	if (nr_running)
		return rq->load.weight / nr_running;

	return 0;
}

2516

2517
static void task_waking_fair(struct task_struct *p)
2518 2519 2520
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2521 2522 2523 2524
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
2525

2526 2527 2528 2529 2530 2531 2532 2533
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
2534

2535
	se->vruntime -= min_vruntime;
2536 2537
}

2538
#ifdef CONFIG_FAIR_GROUP_SCHED
2539 2540 2541 2542 2543 2544
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
2588
 */
P
Peter Zijlstra 已提交
2589
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2590
{
P
Peter Zijlstra 已提交
2591
	struct sched_entity *se = tg->se[cpu];
2592

2593
	if (!tg->parent)	/* the trivial, non-cgroup case */
2594 2595
		return wl;

P
Peter Zijlstra 已提交
2596
	for_each_sched_entity(se) {
2597
		long w, W;
P
Peter Zijlstra 已提交
2598

2599
		tg = se->my_q->tg;
2600

2601 2602 2603 2604
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
2605

2606 2607 2608 2609
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
2610

2611 2612 2613 2614 2615
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
2616 2617
		else
			wl = tg->shares;
2618

2619 2620 2621 2622 2623
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
2624 2625
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
2626 2627 2628 2629

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
2630
		wl -= se->load.weight;
2631 2632 2633 2634 2635 2636 2637 2638

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
2639 2640
		wg = 0;
	}
2641

P
Peter Zijlstra 已提交
2642
	return wl;
2643 2644
}
#else
P
Peter Zijlstra 已提交
2645

2646 2647
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
2648
{
2649
	return wl;
2650
}
P
Peter Zijlstra 已提交
2651

2652 2653
#endif

2654
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2655
{
2656
	s64 this_load, load;
2657
	int idx, this_cpu, prev_cpu;
2658
	unsigned long tl_per_task;
2659
	struct task_group *tg;
2660
	unsigned long weight;
2661
	int balanced;
2662

2663 2664 2665 2666 2667
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
2668

2669 2670 2671 2672 2673
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
2674 2675 2676 2677
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

2678
		this_load += effective_load(tg, this_cpu, -weight, -weight);
2679 2680
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
2681

2682 2683
	tg = task_group(p);
	weight = p->se.load.weight;
2684

2685 2686
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2687 2688 2689
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
2690 2691 2692 2693
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
2694 2695
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
2709

2710
	/*
I
Ingo Molnar 已提交
2711 2712 2713
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
2714
	 */
2715 2716
	if (sync && balanced)
		return 1;
2717

2718
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2719 2720
	tl_per_task = cpu_avg_load_per_task(this_cpu);

2721 2722 2723
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2724 2725 2726 2727 2728
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
2729
		schedstat_inc(sd, ttwu_move_affine);
2730
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
2731 2732 2733 2734 2735 2736

		return 1;
	}
	return 0;
}

2737 2738 2739 2740 2741
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
2742
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2743
		  int this_cpu, int load_idx)
2744
{
2745
	struct sched_group *idlest = NULL, *group = sd->groups;
2746 2747
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
2748

2749 2750 2751 2752
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
2753

2754 2755
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
2756
					tsk_cpus_allowed(p)))
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2776
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
2802
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2803 2804 2805 2806 2807
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
2808 2809 2810
		}
	}

2811 2812
	return idlest;
}
2813

2814 2815 2816
/*
 * Try and locate an idle CPU in the sched_domain.
 */
2817
static int select_idle_sibling(struct task_struct *p, int target)
2818 2819 2820
{
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
2821
	struct sched_domain *sd;
2822 2823
	struct sched_group *sg;
	int i;
2824 2825

	/*
2826 2827
	 * If the task is going to be woken-up on this cpu and if it is
	 * already idle, then it is the right target.
2828
	 */
2829 2830 2831 2832 2833 2834 2835 2836
	if (target == cpu && idle_cpu(cpu))
		return cpu;

	/*
	 * If the task is going to be woken-up on the cpu where it previously
	 * ran and if it is currently idle, then it the right target.
	 */
	if (target == prev_cpu && idle_cpu(prev_cpu))
2837
		return prev_cpu;
2838 2839

	/*
2840
	 * Otherwise, iterate the domains and find an elegible idle cpu.
2841
	 */
2842
	sd = rcu_dereference(per_cpu(sd_llc, target));
2843
	for_each_lower_domain(sd) {
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
				if (!idle_cpu(i))
					goto next;
			}
2854

2855 2856 2857 2858 2859 2860 2861 2862
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
2863 2864 2865
	return target;
}

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
2877
static int
2878
select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2879
{
2880
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2881 2882 2883
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
2884
	int want_affine = 0;
2885
	int sync = wake_flags & WF_SYNC;
2886

2887
	if (p->nr_cpus_allowed == 1)
2888 2889
		return prev_cpu;

2890
	if (sd_flag & SD_BALANCE_WAKE) {
2891
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2892 2893 2894
			want_affine = 1;
		new_cpu = prev_cpu;
	}
2895

2896
	rcu_read_lock();
2897
	for_each_domain(cpu, tmp) {
2898 2899 2900
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

2901
		/*
2902 2903
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
2904
		 */
2905 2906 2907
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
2908
			break;
2909
		}
2910

2911
		if (tmp->flags & sd_flag)
2912 2913 2914
			sd = tmp;
	}

2915
	if (affine_sd) {
2916
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
2917 2918 2919 2920
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
2921
	}
2922

2923
	while (sd) {
2924
		int load_idx = sd->forkexec_idx;
2925
		struct sched_group *group;
2926
		int weight;
2927

2928
		if (!(sd->flags & sd_flag)) {
2929 2930 2931
			sd = sd->child;
			continue;
		}
2932

2933 2934
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
2935

2936
		group = find_idlest_group(sd, p, cpu, load_idx);
2937 2938 2939 2940
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
2941

2942
		new_cpu = find_idlest_cpu(group, p, cpu);
2943 2944 2945 2946
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
2947
		}
2948 2949 2950

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
2951
		weight = sd->span_weight;
2952 2953
		sd = NULL;
		for_each_domain(cpu, tmp) {
2954
			if (weight <= tmp->span_weight)
2955
				break;
2956
			if (tmp->flags & sd_flag)
2957 2958 2959
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
2960
	}
2961 2962
unlock:
	rcu_read_unlock();
2963

2964
	return new_cpu;
2965 2966 2967
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
2968 2969
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2970 2971 2972 2973
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
2974 2975
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
2985
	 */
2986
	return calc_delta_fair(gran, se);
2987 2988
}

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
3011
	gran = wakeup_gran(curr, se);
3012 3013 3014 3015 3016 3017
	if (vdiff > gran)
		return 1;

	return 0;
}

3018 3019
static void set_last_buddy(struct sched_entity *se)
{
3020 3021 3022 3023 3024
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
3025 3026 3027 3028
}

static void set_next_buddy(struct sched_entity *se)
{
3029 3030 3031 3032 3033
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
3034 3035
}

3036 3037
static void set_skip_buddy(struct sched_entity *se)
{
3038 3039
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
3040 3041
}

3042 3043 3044
/*
 * Preempt the current task with a newly woken task if needed:
 */
3045
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3046 3047
{
	struct task_struct *curr = rq->curr;
3048
	struct sched_entity *se = &curr->se, *pse = &p->se;
3049
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3050
	int scale = cfs_rq->nr_running >= sched_nr_latency;
3051
	int next_buddy_marked = 0;
3052

I
Ingo Molnar 已提交
3053 3054 3055
	if (unlikely(se == pse))
		return;

3056
	/*
3057
	 * This is possible from callers such as move_task(), in which we
3058 3059 3060 3061 3062 3063 3064
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

3065
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
3066
		set_next_buddy(pse);
3067 3068
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
3069

3070 3071 3072
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
3073 3074 3075 3076 3077 3078
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
3079 3080 3081 3082
	 */
	if (test_tsk_need_resched(curr))
		return;

3083 3084 3085 3086 3087
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

3088
	/*
3089 3090
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
3091
	 */
3092
	if (unlikely(p->policy != SCHED_NORMAL))
3093
		return;
3094

3095
	find_matching_se(&se, &pse);
3096
	update_curr(cfs_rq_of(se));
3097
	BUG_ON(!pse);
3098 3099 3100 3101 3102 3103 3104
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
3105
		goto preempt;
3106
	}
3107

3108
	return;
3109

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
3126 3127
}

3128
static struct task_struct *pick_next_task_fair(struct rq *rq)
3129
{
P
Peter Zijlstra 已提交
3130
	struct task_struct *p;
3131 3132 3133
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

3134
	if (!cfs_rq->nr_running)
3135 3136 3137
		return NULL;

	do {
3138
		se = pick_next_entity(cfs_rq);
3139
		set_next_entity(cfs_rq, se);
3140 3141 3142
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
3143
	p = task_of(se);
3144 3145
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
3146 3147

	return p;
3148 3149 3150 3151 3152
}

/*
 * Account for a descheduled task:
 */
3153
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3154 3155 3156 3157 3158 3159
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3160
		put_prev_entity(cfs_rq, se);
3161 3162 3163
	}
}

3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
3189 3190 3191 3192 3193 3194
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
3195 3196 3197 3198 3199
	}

	set_skip_buddy(se);
}

3200 3201 3202 3203
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

3204 3205
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

3216
#ifdef CONFIG_SMP
3217 3218 3219 3220
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

3221 3222
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

3223
#define LBF_ALL_PINNED	0x01
3224
#define LBF_NEED_BREAK	0x02
3225
#define LBF_SOME_PINNED 0x04
3226 3227 3228 3229 3230

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
3231
	int			src_cpu;
3232 3233 3234 3235

	int			dst_cpu;
	struct rq		*dst_rq;

3236 3237
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
3238
	enum cpu_idle_type	idle;
3239
	long			imbalance;
3240 3241 3242
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

3243
	unsigned int		flags;
3244 3245 3246 3247

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
3248 3249
};

3250
/*
3251
 * move_task - move a task from one runqueue to another runqueue.
3252 3253
 * Both runqueues must be locked.
 */
3254
static void move_task(struct task_struct *p, struct lb_env *env)
3255
{
3256 3257 3258 3259
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
3260 3261
}

3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
/*
 * Is this task likely cache-hot:
 */
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

3294 3295 3296 3297
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
3298
int can_migrate_task(struct task_struct *p, struct lb_env *env)
3299 3300 3301 3302 3303 3304 3305 3306
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3307
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3308 3309
		int new_dst_cpu;

3310
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328

		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
		if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
			return 0;

		new_dst_cpu = cpumask_first_and(env->dst_grpmask,
						tsk_cpus_allowed(p));
		if (new_dst_cpu < nr_cpu_ids) {
			env->flags |= LBF_SOME_PINNED;
			env->new_dst_cpu = new_dst_cpu;
		}
3329 3330
		return 0;
	}
3331 3332

	/* Record that we found atleast one task that could run on dst_cpu */
3333
	env->flags &= ~LBF_ALL_PINNED;
3334

3335
	if (task_running(env->src_rq, p)) {
3336
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3337 3338 3339 3340 3341 3342 3343 3344 3345
		return 0;
	}

	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3346
	tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3347
	if (!tsk_cache_hot ||
3348
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3349 3350
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
3351
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3352
			schedstat_inc(p, se.statistics.nr_forced_migrations);
3353 3354 3355 3356 3357 3358
		}
#endif
		return 1;
	}

	if (tsk_cache_hot) {
3359
		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3360 3361 3362 3363 3364
		return 0;
	}
	return 1;
}

3365 3366 3367 3368 3369 3370 3371
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
3372
static int move_one_task(struct lb_env *env)
3373 3374 3375
{
	struct task_struct *p, *n;

3376 3377 3378
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
			continue;
3379

3380 3381
		if (!can_migrate_task(p, env))
			continue;
3382

3383 3384 3385 3386 3387 3388 3389 3390
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
3391 3392 3393 3394
	}
	return 0;
}

3395 3396
static unsigned long task_h_load(struct task_struct *p);

3397 3398
static const unsigned int sched_nr_migrate_break = 32;

3399
/*
3400
 * move_tasks tries to move up to imbalance weighted load from busiest to
3401 3402 3403 3404 3405 3406
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
3407
{
3408 3409
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
3410 3411
	unsigned long load;
	int pulled = 0;
3412

3413
	if (env->imbalance <= 0)
3414
		return 0;
3415

3416 3417
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
3418

3419 3420
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
3421
		if (env->loop > env->loop_max)
3422
			break;
3423 3424

		/* take a breather every nr_migrate tasks */
3425
		if (env->loop > env->loop_break) {
3426
			env->loop_break += sched_nr_migrate_break;
3427
			env->flags |= LBF_NEED_BREAK;
3428
			break;
3429
		}
3430

3431
		if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3432 3433 3434
			goto next;

		load = task_h_load(p);
3435

3436
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
3437 3438
			goto next;

3439
		if ((load / 2) > env->imbalance)
3440
			goto next;
3441

3442 3443
		if (!can_migrate_task(p, env))
			goto next;
3444

3445
		move_task(p, env);
3446
		pulled++;
3447
		env->imbalance -= load;
3448 3449

#ifdef CONFIG_PREEMPT
3450 3451 3452 3453 3454
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3455
		if (env->idle == CPU_NEWLY_IDLE)
3456
			break;
3457 3458
#endif

3459 3460 3461 3462
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
3463
		if (env->imbalance <= 0)
3464
			break;
3465 3466 3467

		continue;
next:
3468
		list_move_tail(&p->se.group_node, tasks);
3469
	}
3470

3471
	/*
3472 3473 3474
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
3475
	 */
3476
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
3477

3478
	return pulled;
3479 3480
}

P
Peter Zijlstra 已提交
3481
#ifdef CONFIG_FAIR_GROUP_SCHED
3482 3483 3484
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
3485
static int update_shares_cpu(struct task_group *tg, int cpu)
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
{
	struct cfs_rq *cfs_rq;
	unsigned long flags;
	struct rq *rq;

	if (!tg->se[cpu])
		return 0;

	rq = cpu_rq(cpu);
	cfs_rq = tg->cfs_rq[cpu];

	raw_spin_lock_irqsave(&rq->lock, flags);

	update_rq_clock(rq);
3500
	update_cfs_load(cfs_rq, 1);
3501 3502 3503 3504 3505

	/*
	 * We need to update shares after updating tg->load_weight in
	 * order to adjust the weight of groups with long running tasks.
	 */
3506
	update_cfs_shares(cfs_rq);
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518

	raw_spin_unlock_irqrestore(&rq->lock, flags);

	return 0;
}

static void update_shares(int cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(cpu);

	rcu_read_lock();
3519 3520 3521 3522
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
3523 3524 3525 3526 3527
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;

3528
		update_shares_cpu(cfs_rq->tg, cpu);
3529
	}
3530 3531 3532
	rcu_read_unlock();
}

3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
/*
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
static int tg_load_down(struct task_group *tg, void *data)
{
	unsigned long load;
	long cpu = (long)data;

	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->se[cpu]->load.weight;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}

	tg->cfs_rq[cpu]->h_load = load;

	return 0;
}

static void update_h_load(long cpu)
{
3558 3559 3560 3561 3562 3563 3564 3565
	struct rq *rq = cpu_rq(cpu);
	unsigned long now = jiffies;

	if (rq->h_load_throttle == now)
		return;

	rq->h_load_throttle = now;

3566
	rcu_read_lock();
3567
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3568
	rcu_read_unlock();
3569 3570
}

3571
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
3572
{
3573 3574
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
	unsigned long load;
P
Peter Zijlstra 已提交
3575

3576 3577
	load = p->se.load.weight;
	load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
P
Peter Zijlstra 已提交
3578

3579
	return load;
P
Peter Zijlstra 已提交
3580 3581
}
#else
3582 3583 3584 3585
static inline void update_shares(int cpu)
{
}

3586
static inline void update_h_load(long cpu)
P
Peter Zijlstra 已提交
3587 3588 3589
{
}

3590
static unsigned long task_h_load(struct task_struct *p)
3591
{
3592
	return p->se.load.weight;
3593
}
P
Peter Zijlstra 已提交
3594
#endif
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611

/********** Helpers for find_busiest_group ************************/
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;
3612
	unsigned long this_has_capacity;
3613
	unsigned int  this_idle_cpus;
3614 3615

	/* Statistics of the busiest group */
3616
	unsigned int  busiest_idle_cpus;
3617 3618 3619
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;
3620
	unsigned long busiest_group_capacity;
3621
	unsigned long busiest_has_capacity;
3622
	unsigned int  busiest_group_weight;
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635

	int group_imb; /* Is there imbalance in this sd */
};

/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
3636 3637
	unsigned long idle_cpus;
	unsigned long group_weight;
3638
	int group_imb; /* Is there an imbalance in the group ? */
3639
	int group_has_capacity; /* Is there extra capacity in the group? */
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
};

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
3670
	return SCHED_POWER_SCALE;
3671 3672 3673 3674 3675 3676 3677 3678 3679
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
{
3680
	unsigned long weight = sd->span_weight;
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
3696
	u64 total, available, age_stamp, avg;
3697

3698 3699 3700 3701 3702 3703 3704 3705
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

	total = sched_avg_period() + (rq->clock - age_stamp);
3706

3707
	if (unlikely(total < avg)) {
3708 3709 3710
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
3711
		available = total - avg;
3712
	}
3713

3714 3715
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
3716

3717
	total >>= SCHED_POWER_SHIFT;
3718 3719 3720 3721 3722 3723

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
3724
	unsigned long weight = sd->span_weight;
3725
	unsigned long power = SCHED_POWER_SCALE;
3726 3727 3728 3729 3730 3731 3732 3733
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3734
		power >>= SCHED_POWER_SHIFT;
3735 3736
	}

3737
	sdg->sgp->power_orig = power;
3738 3739 3740 3741 3742 3743

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3744
	power >>= SCHED_POWER_SHIFT;
3745

3746
	power *= scale_rt_power(cpu);
3747
	power >>= SCHED_POWER_SHIFT;
3748 3749 3750 3751

	if (!power)
		power = 1;

3752
	cpu_rq(cpu)->cpu_power = power;
3753
	sdg->sgp->power = power;
3754 3755
}

3756
void update_group_power(struct sched_domain *sd, int cpu)
3757 3758 3759 3760
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
	unsigned long power;
3761 3762 3763 3764 3765
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
3766 3767 3768 3769 3770 3771 3772 3773

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

	power = 0;

P
Peter Zijlstra 已提交
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

		for_each_cpu(cpu, sched_group_cpus(sdg))
			power += power_of(cpu);
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
3794

3795
	sdg->sgp->power_orig = sdg->sgp->power = power;
3796 3797
}

3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
3809
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
3810
	 */
P
Peter Zijlstra 已提交
3811
	if (!(sd->flags & SD_SHARE_CPUPOWER))
3812 3813 3814 3815 3816
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
3817
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3818 3819 3820 3821 3822
		return 1;

	return 0;
}

3823 3824
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3825
 * @env: The load balancing environment.
3826 3827 3828 3829 3830 3831
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3832 3833
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
3834
			int local_group, int *balance, struct sg_lb_stats *sgs)
3835
{
3836 3837
	unsigned long nr_running, max_nr_running, min_nr_running;
	unsigned long load, max_cpu_load, min_cpu_load;
3838
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
3839
	unsigned long avg_load_per_task = 0;
3840
	int i;
3841

3842
	if (local_group)
P
Peter Zijlstra 已提交
3843
		balance_cpu = group_balance_cpu(group);
3844 3845 3846 3847

	/* Tally up the load of all CPUs in the group */
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3848
	max_nr_running = 0;
3849
	min_nr_running = ~0UL;
3850

3851
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
3852 3853
		struct rq *rq = cpu_rq(i);

3854 3855
		nr_running = rq->nr_running;

3856 3857
		/* Bias balancing toward cpus of our domain */
		if (local_group) {
P
Peter Zijlstra 已提交
3858 3859
			if (idle_cpu(i) && !first_idle_cpu &&
					cpumask_test_cpu(i, sched_group_mask(group))) {
3860
				first_idle_cpu = 1;
3861 3862
				balance_cpu = i;
			}
3863 3864

			load = target_load(i, load_idx);
3865 3866
		} else {
			load = source_load(i, load_idx);
3867
			if (load > max_cpu_load)
3868 3869 3870
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
3871 3872 3873 3874 3875

			if (nr_running > max_nr_running)
				max_nr_running = nr_running;
			if (min_nr_running > nr_running)
				min_nr_running = nr_running;
3876 3877 3878
		}

		sgs->group_load += load;
3879
		sgs->sum_nr_running += nr_running;
3880
		sgs->sum_weighted_load += weighted_cpuload(i);
3881 3882
		if (idle_cpu(i))
			sgs->idle_cpus++;
3883 3884 3885 3886 3887 3888 3889 3890
	}

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
3891
	if (local_group) {
3892
		if (env->idle != CPU_NEWLY_IDLE) {
3893
			if (balance_cpu != env->dst_cpu) {
3894 3895 3896
				*balance = 0;
				return;
			}
3897
			update_group_power(env->sd, env->dst_cpu);
3898
		} else if (time_after_eq(jiffies, group->sgp->next_update))
3899
			update_group_power(env->sd, env->dst_cpu);
3900 3901 3902
	}

	/* Adjust by relative CPU power of the group */
3903
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3904 3905 3906

	/*
	 * Consider the group unbalanced when the imbalance is larger
P
Peter Zijlstra 已提交
3907
	 * than the average weight of a task.
3908 3909 3910 3911 3912 3913
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3914 3915
	if (sgs->sum_nr_running)
		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3916

3917 3918
	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
	    (max_nr_running - min_nr_running) > 1)
3919 3920
		sgs->group_imb = 1;

3921
	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3922
						SCHED_POWER_SCALE);
3923
	if (!sgs->group_capacity)
3924
		sgs->group_capacity = fix_small_capacity(env->sd, group);
3925
	sgs->group_weight = group->group_weight;
3926 3927 3928

	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
3929 3930
}

3931 3932
/**
 * update_sd_pick_busiest - return 1 on busiest group
3933
 * @env: The load balancing environment.
3934 3935
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
3936
 * @sgs: sched_group statistics
3937 3938 3939 3940
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
 */
3941
static bool update_sd_pick_busiest(struct lb_env *env,
3942 3943
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
3944
				   struct sg_lb_stats *sgs)
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
{
	if (sgs->avg_load <= sds->max_load)
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
3960 3961
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

3972
/**
3973
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3974
 * @env: The load balancing environment.
3975 3976 3977
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
 */
3978
static inline void update_sd_lb_stats(struct lb_env *env,
3979
					int *balance, struct sd_lb_stats *sds)
3980
{
3981 3982
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
3983 3984 3985 3986 3987 3988
	struct sg_lb_stats sgs;
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

3989
	load_idx = get_sd_load_idx(env->sd, env->idle);
3990 3991 3992 3993

	do {
		int local_group;

3994
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
3995
		memset(&sgs, 0, sizeof(sgs));
3996
		update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
3997

P
Peter Zijlstra 已提交
3998
		if (local_group && !(*balance))
3999 4000 4001
			return;

		sds->total_load += sgs.group_load;
4002
		sds->total_pwr += sg->sgp->power;
4003 4004 4005

		/*
		 * In case the child domain prefers tasks go to siblings
4006
		 * first, lower the sg capacity to one so that we'll try
4007 4008 4009 4010 4011 4012
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
4013
		 */
4014
		if (prefer_sibling && !local_group && sds->this_has_capacity)
4015 4016 4017 4018
			sgs.group_capacity = min(sgs.group_capacity, 1UL);

		if (local_group) {
			sds->this_load = sgs.avg_load;
4019
			sds->this = sg;
4020 4021
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
4022
			sds->this_has_capacity = sgs.group_has_capacity;
4023
			sds->this_idle_cpus = sgs.idle_cpus;
4024
		} else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4025
			sds->max_load = sgs.avg_load;
4026
			sds->busiest = sg;
4027
			sds->busiest_nr_running = sgs.sum_nr_running;
4028
			sds->busiest_idle_cpus = sgs.idle_cpus;
4029
			sds->busiest_group_capacity = sgs.group_capacity;
4030
			sds->busiest_load_per_task = sgs.sum_weighted_load;
4031
			sds->busiest_has_capacity = sgs.group_has_capacity;
4032
			sds->busiest_group_weight = sgs.group_weight;
4033 4034 4035
			sds->group_imb = sgs.group_imb;
		}

4036
		sg = sg->next;
4037
	} while (sg != env->sd->groups);
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
4057 4058 4059
 * Returns 1 when packing is required and a task should be moved to
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
4060
 * @env: The load balancing environment.
4061 4062
 * @sds: Statistics of the sched_domain which is to be packed
 */
4063
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4064 4065 4066
{
	int busiest_cpu;

4067
	if (!(env->sd->flags & SD_ASYM_PACKING))
4068 4069 4070 4071 4072 4073
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
4074
	if (env->dst_cpu > busiest_cpu)
4075 4076
		return 0;

4077 4078 4079
	env->imbalance = DIV_ROUND_CLOSEST(
		sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);

4080
	return 1;
4081 4082 4083 4084 4085 4086
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
4087
 * @env: The load balancing environment.
4088 4089
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
4090 4091
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4092 4093 4094
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
4095
	unsigned long scaled_busy_load_per_task;
4096 4097 4098 4099 4100 4101

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
4102
	} else {
4103
		sds->this_load_per_task =
4104 4105
			cpu_avg_load_per_task(env->dst_cpu);
	}
4106

4107
	scaled_busy_load_per_task = sds->busiest_load_per_task
4108
					 * SCHED_POWER_SCALE;
4109
	scaled_busy_load_per_task /= sds->busiest->sgp->power;
4110 4111 4112

	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
			(scaled_busy_load_per_task * imbn)) {
4113
		env->imbalance = sds->busiest_load_per_task;
4114 4115 4116 4117 4118 4119 4120 4121 4122
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

4123
	pwr_now += sds->busiest->sgp->power *
4124
			min(sds->busiest_load_per_task, sds->max_load);
4125
	pwr_now += sds->this->sgp->power *
4126
			min(sds->this_load_per_task, sds->this_load);
4127
	pwr_now /= SCHED_POWER_SCALE;
4128 4129

	/* Amount of load we'd subtract */
4130
	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4131
		sds->busiest->sgp->power;
4132
	if (sds->max_load > tmp)
4133
		pwr_move += sds->busiest->sgp->power *
4134 4135 4136
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
4137
	if (sds->max_load * sds->busiest->sgp->power <
4138
		sds->busiest_load_per_task * SCHED_POWER_SCALE)
4139 4140
		tmp = (sds->max_load * sds->busiest->sgp->power) /
			sds->this->sgp->power;
4141
	else
4142
		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4143 4144
			sds->this->sgp->power;
	pwr_move += sds->this->sgp->power *
4145
			min(sds->this_load_per_task, sds->this_load + tmp);
4146
	pwr_move /= SCHED_POWER_SCALE;
4147 4148 4149

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
4150
		env->imbalance = sds->busiest_load_per_task;
4151 4152 4153 4154 4155
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
4156
 * @env: load balance environment
4157 4158
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
4159
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4160
{
4161 4162 4163 4164 4165 4166 4167 4168
	unsigned long max_pull, load_above_capacity = ~0UL;

	sds->busiest_load_per_task /= sds->busiest_nr_running;
	if (sds->group_imb) {
		sds->busiest_load_per_task =
			min(sds->busiest_load_per_task, sds->avg_load);
	}

4169 4170 4171 4172 4173 4174
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (sds->max_load < sds->avg_load) {
4175 4176
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
4177 4178
	}

4179 4180 4181 4182 4183 4184 4185
	if (!sds->group_imb) {
		/*
		 * Don't want to pull so many tasks that a group would go idle.
		 */
		load_above_capacity = (sds->busiest_nr_running -
						sds->busiest_group_capacity);

4186
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4187

4188
		load_above_capacity /= sds->busiest->sgp->power;
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 * Be careful of negative numbers as they'll appear as very large values
	 * with unsigned longs.
	 */
	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4202 4203

	/* How much load to actually move to equalise the imbalance */
4204
	env->imbalance = min(max_pull * sds->busiest->sgp->power,
4205
		(sds->avg_load - sds->this_load) * sds->this->sgp->power)
4206
			/ SCHED_POWER_SCALE;
4207 4208 4209

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
4210
	 * there is no guarantee that any tasks will be moved so we'll have
4211 4212 4213
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
4214 4215
	if (env->imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(env, sds);
4216 4217

}
4218

4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
4231
 * @env: The load balancing environment.
4232 4233 4234 4235 4236 4237 4238 4239 4240
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
static struct sched_group *
4241
find_busiest_group(struct lb_env *env, int *balance)
4242 4243 4244 4245 4246 4247 4248 4249 4250
{
	struct sd_lb_stats sds;

	memset(&sds, 0, sizeof(sds));

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
4251
	update_sd_lb_stats(env, balance, &sds);
4252

4253 4254 4255
	/*
	 * this_cpu is not the appropriate cpu to perform load balancing at
	 * this level.
4256
	 */
P
Peter Zijlstra 已提交
4257
	if (!(*balance))
4258 4259
		goto ret;

4260 4261
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
4262 4263
		return sds.busiest;

4264
	/* There is no busy sibling group to pull tasks from */
4265 4266 4267
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;

4268
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4269

P
Peter Zijlstra 已提交
4270 4271 4272 4273 4274 4275 4276 4277
	/*
	 * If the busiest group is imbalanced the below checks don't
	 * work because they assumes all things are equal, which typically
	 * isn't true due to cpus_allowed constraints and the like.
	 */
	if (sds.group_imb)
		goto force_balance;

4278
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4279
	if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4280 4281 4282
			!sds.busiest_has_capacity)
		goto force_balance;

4283 4284 4285 4286
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
4287 4288 4289
	if (sds.this_load >= sds.max_load)
		goto out_balanced;

4290 4291 4292 4293
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
4294 4295 4296
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

4297
	if (env->idle == CPU_IDLE) {
4298 4299 4300 4301 4302 4303
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
4304
		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4305 4306
		    sds.busiest_nr_running <= sds.busiest_group_weight)
			goto out_balanced;
4307 4308 4309 4310 4311
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
4312
		if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4313
			goto out_balanced;
4314
	}
4315

4316
force_balance:
4317
	/* Looks like there is an imbalance. Compute it */
4318
	calculate_imbalance(env, &sds);
4319 4320 4321 4322
	return sds.busiest;

out_balanced:
ret:
4323
	env->imbalance = 0;
4324 4325 4326 4327 4328 4329
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4330
static struct rq *find_busiest_queue(struct lb_env *env,
4331
				     struct sched_group *group)
4332 4333 4334 4335 4336 4337 4338
{
	struct rq *busiest = NULL, *rq;
	unsigned long max_load = 0;
	int i;

	for_each_cpu(i, sched_group_cpus(group)) {
		unsigned long power = power_of(i);
4339 4340
		unsigned long capacity = DIV_ROUND_CLOSEST(power,
							   SCHED_POWER_SCALE);
4341 4342
		unsigned long wl;

4343
		if (!capacity)
4344
			capacity = fix_small_capacity(env->sd, group);
4345

4346
		if (!cpumask_test_cpu(i, env->cpus))
4347 4348 4349
			continue;

		rq = cpu_rq(i);
4350
		wl = weighted_cpuload(i);
4351

4352 4353 4354 4355
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
4356
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4357 4358
			continue;

4359 4360 4361 4362 4363 4364
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
		 */
4365
		wl = (wl * SCHED_POWER_SCALE) / power;
4366

4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
		if (wl > max_load) {
			max_load = wl;
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
4383
DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4384

4385
static int need_active_balance(struct lb_env *env)
4386
{
4387 4388 4389
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
4390 4391 4392 4393 4394 4395

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
4396
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4397
			return 1;
4398 4399 4400 4401 4402
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

4403 4404
static int active_load_balance_cpu_stop(void *data);

4405 4406 4407 4408 4409 4410 4411 4412
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
			int *balance)
{
4413 4414
	int ld_moved, cur_ld_moved, active_balance = 0;
	int lb_iterations, max_lb_iterations;
4415 4416 4417 4418 4419
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);

4420 4421
	struct lb_env env = {
		.sd		= sd,
4422 4423
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
4424
		.dst_grpmask    = sched_group_cpus(sd->groups),
4425
		.idle		= idle,
4426
		.loop_break	= sched_nr_migrate_break,
4427
		.cpus		= cpus,
4428 4429
	};

4430
	cpumask_copy(cpus, cpu_active_mask);
4431
	max_lb_iterations = cpumask_weight(env.dst_grpmask);
4432 4433 4434 4435

	schedstat_inc(sd, lb_count[idle]);

redo:
4436
	group = find_busiest_group(&env, balance);
4437 4438 4439 4440 4441 4442 4443 4444 4445

	if (*balance == 0)
		goto out_balanced;

	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4446
	busiest = find_busiest_queue(&env, group);
4447 4448 4449 4450 4451
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

4452
	BUG_ON(busiest == env.dst_rq);
4453

4454
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
4455 4456

	ld_moved = 0;
4457
	lb_iterations = 1;
4458 4459 4460 4461 4462 4463 4464
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
4465
		env.flags |= LBF_ALL_PINNED;
4466 4467 4468
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
4469

4470
		update_h_load(env.src_cpu);
4471
more_balance:
4472
		local_irq_save(flags);
4473
		double_rq_lock(env.dst_rq, busiest);
4474 4475 4476 4477 4478 4479 4480

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
4481
		double_rq_unlock(env.dst_rq, busiest);
4482 4483
		local_irq_restore(flags);

4484 4485 4486 4487 4488
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

4489 4490 4491
		/*
		 * some other cpu did the load balance for us.
		 */
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
		if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
				lb_iterations++ < max_lb_iterations) {

4517
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
			env.dst_cpu	 = env.new_dst_cpu;
			env.flags	&= ~LBF_SOME_PINNED;
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
4528 4529

		/* All tasks on this runqueue were pinned by CPU affinity */
4530
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
4531
			cpumask_clear_cpu(cpu_of(busiest), cpus);
4532 4533 4534
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
4535
				goto redo;
4536
			}
4537 4538 4539 4540 4541 4542
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
4543 4544 4545 4546 4547 4548 4549 4550
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
4551

4552
		if (need_active_balance(&env)) {
4553 4554
			raw_spin_lock_irqsave(&busiest->lock, flags);

4555 4556 4557
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
4558 4559
			 */
			if (!cpumask_test_cpu(this_cpu,
4560
					tsk_cpus_allowed(busiest->curr))) {
4561 4562
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
4563
				env.flags |= LBF_ALL_PINNED;
4564 4565 4566
				goto out_one_pinned;
			}

4567 4568 4569 4570 4571
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
4572 4573 4574 4575 4576 4577
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
4578

4579
			if (active_balance) {
4580 4581 4582
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
4583
			}
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
4617
	if (((env.flags & LBF_ALL_PINNED) &&
4618
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
4619 4620 4621
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

4622
	ld_moved = 0;
4623 4624 4625 4626 4627 4628 4629 4630
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4631
void idle_balance(int this_cpu, struct rq *this_rq)
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;

	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

4642 4643
	update_rq_runnable_avg(this_rq, 1);

4644 4645 4646 4647 4648
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

P
Paul Turner 已提交
4649
	update_shares(this_cpu);
4650
	rcu_read_lock();
4651 4652
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
4653
		int balance = 1;
4654 4655 4656 4657

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

4658
		if (sd->flags & SD_BALANCE_NEWIDLE) {
4659
			/* If we've pulled tasks over stop searching: */
4660 4661 4662
			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE, &balance);
		}
4663 4664 4665 4666

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
N
Nikhil Rao 已提交
4667 4668
		if (pulled_task) {
			this_rq->idle_stamp = 0;
4669
			break;
N
Nikhil Rao 已提交
4670
		}
4671
	}
4672
	rcu_read_unlock();
4673 4674 4675

	raw_spin_lock(&this_rq->lock);

4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
}

/*
4686 4687 4688 4689
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
4690
 */
4691
static int active_load_balance_cpu_stop(void *data)
4692
{
4693 4694
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
4695
	int target_cpu = busiest_rq->push_cpu;
4696
	struct rq *target_rq = cpu_rq(target_cpu);
4697
	struct sched_domain *sd;
4698 4699 4700 4701 4702 4703 4704

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
4705 4706 4707

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
4708
		goto out_unlock;
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
4721
	rcu_read_lock();
4722 4723 4724 4725 4726 4727 4728
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
4729 4730
		struct lb_env env = {
			.sd		= sd,
4731 4732 4733 4734
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
4735 4736 4737
			.idle		= CPU_IDLE,
		};

4738 4739
		schedstat_inc(sd, alb_count);

4740
		if (move_one_task(&env))
4741 4742 4743 4744
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4745
	rcu_read_unlock();
4746
	double_unlock_balance(busiest_rq, target_rq);
4747 4748 4749 4750
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
4751 4752 4753
}

#ifdef CONFIG_NO_HZ
4754 4755 4756 4757 4758 4759
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
4760
static struct {
4761
	cpumask_var_t idle_cpus_mask;
4762
	atomic_t nr_cpus;
4763 4764
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
4765

4766
static inline int find_new_ilb(int call_cpu)
4767
{
4768
	int ilb = cpumask_first(nohz.idle_cpus_mask);
4769

4770 4771 4772 4773
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
4774 4775
}

4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void nohz_balancer_kick(int cpu)
{
	int ilb_cpu;

	nohz.next_balance++;

4787
	ilb_cpu = find_new_ilb(cpu);
4788

4789 4790
	if (ilb_cpu >= nr_cpu_ids)
		return;
4791

4792
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4793 4794 4795 4796 4797 4798 4799 4800
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
4801 4802 4803
	return;
}

4804
static inline void nohz_balance_exit_idle(int cpu)
4805 4806 4807 4808 4809 4810 4811 4812
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
		atomic_dec(&nohz.nr_cpus);
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
	int cpu = smp_processor_id();

	if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
		return;
	clear_bit(NOHZ_IDLE, nohz_flags(cpu));

	rcu_read_lock();
	for_each_domain(cpu, sd)
		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
	int cpu = smp_processor_id();

	if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
		return;
	set_bit(NOHZ_IDLE, nohz_flags(cpu));

	rcu_read_lock();
	for_each_domain(cpu, sd)
		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
	rcu_read_unlock();
}

4843
/*
4844
 * This routine will record that the cpu is going idle with tick stopped.
4845
 * This info will be used in performing idle load balancing in the future.
4846
 */
4847
void nohz_balance_enter_idle(int cpu)
4848
{
4849 4850 4851 4852 4853 4854
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

4855 4856
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
4857

4858 4859 4860
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4861
}
4862 4863 4864 4865 4866 4867

static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
4868
		nohz_balance_exit_idle(smp_processor_id());
4869 4870 4871 4872 4873
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
4874 4875 4876 4877
#endif

static DEFINE_SPINLOCK(balancing);

4878 4879 4880 4881
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
4882
void update_max_interval(void)
4883 4884 4885 4886
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
	unsigned long interval;
4898
	struct sched_domain *sd;
4899 4900 4901 4902 4903
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize;

P
Peter Zijlstra 已提交
4904 4905
	update_shares(cpu);

4906
	rcu_read_lock();
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
	for_each_domain(cpu, sd) {
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
4917
		interval = clamp(interval, 1UL, max_load_balance_interval);
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &balance)) {
				/*
				 * We've pulled tasks over so either we're no
4930
				 * longer idle.
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
				 */
				idle = CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
	}
4952
	rcu_read_unlock();
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

4963
#ifdef CONFIG_NO_HZ
4964
/*
4965
 * In CONFIG_NO_HZ case, the idle balance kickee will do the
4966 4967
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
4968 4969 4970 4971 4972 4973
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
{
	struct rq *this_rq = cpu_rq(this_cpu);
	struct rq *rq;
	int balance_cpu;

4974 4975 4976
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
4977 4978

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4979
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
4980 4981 4982 4983 4984 4985 4986
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
4987
		if (need_resched())
4988 4989
			break;

V
Vincent Guittot 已提交
4990 4991 4992 4993 4994 4995
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
4996 4997 4998 4999 5000 5001 5002

		rebalance_domains(balance_cpu, CPU_IDLE);

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
5003 5004
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5005 5006 5007
}

/*
5008 5009 5010 5011 5012 5013 5014
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
5015 5016 5017 5018
 */
static inline int nohz_kick_needed(struct rq *rq, int cpu)
{
	unsigned long now = jiffies;
5019
	struct sched_domain *sd;
5020

5021
	if (unlikely(idle_cpu(cpu)))
5022 5023
		return 0;

5024 5025 5026 5027
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
5028
	set_cpu_sd_state_busy();
5029
	nohz_balance_exit_idle(cpu);
5030 5031 5032 5033 5034 5035 5036

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
5037 5038

	if (time_before(now, nohz.next_balance))
5039 5040
		return 0;

5041 5042
	if (rq->nr_running >= 2)
		goto need_kick;
5043

5044
	rcu_read_lock();
5045 5046 5047 5048
	for_each_domain(cpu, sd) {
		struct sched_group *sg = sd->groups;
		struct sched_group_power *sgp = sg->sgp;
		int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5049

5050
		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5051
			goto need_kick_unlock;
5052 5053 5054 5055

		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
		    && (cpumask_first_and(nohz.idle_cpus_mask,
					  sched_domain_span(sd)) < cpu))
5056
			goto need_kick_unlock;
5057 5058 5059

		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
			break;
5060
	}
5061
	rcu_read_unlock();
5062
	return 0;
5063 5064 5065

need_kick_unlock:
	rcu_read_unlock();
5066 5067
need_kick:
	return 1;
5068 5069 5070 5071 5072 5073 5074 5075 5076
}
#else
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
5077 5078 5079 5080
static void run_rebalance_domains(struct softirq_action *h)
{
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
5081
	enum cpu_idle_type idle = this_rq->idle_balance ?
5082 5083 5084 5085 5086
						CPU_IDLE : CPU_NOT_IDLE;

	rebalance_domains(this_cpu, idle);

	/*
5087
	 * If this cpu has a pending nohz_balance_kick, then do the
5088 5089 5090
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
5091
	nohz_idle_balance(this_cpu, idle);
5092 5093 5094 5095
}

static inline int on_null_domain(int cpu)
{
5096
	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5097 5098 5099 5100 5101
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
5102
void trigger_load_balance(struct rq *rq, int cpu)
5103 5104 5105 5106 5107
{
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
		raise_softirq(SCHED_SOFTIRQ);
5108
#ifdef CONFIG_NO_HZ
5109
	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5110 5111
		nohz_balancer_kick(cpu);
#endif
5112 5113
}

5114 5115 5116 5117 5118 5119 5120 5121
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
5122 5123 5124

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
5125 5126
}

5127
#endif /* CONFIG_SMP */
5128

5129 5130 5131
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
5132
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5133 5134 5135 5136 5137 5138
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
5139
		entity_tick(cfs_rq, se, queued);
5140
	}
5141 5142

	update_rq_runnable_avg(rq, 1);
5143 5144 5145
}

/*
P
Peter Zijlstra 已提交
5146 5147 5148
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
5149
 */
P
Peter Zijlstra 已提交
5150
static void task_fork_fair(struct task_struct *p)
5151
{
5152 5153
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
5154
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
5155 5156 5157
	struct rq *rq = this_rq();
	unsigned long flags;

5158
	raw_spin_lock_irqsave(&rq->lock, flags);
5159

5160 5161
	update_rq_clock(rq);

5162 5163 5164
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

5165 5166
	if (unlikely(task_cpu(p) != this_cpu)) {
		rcu_read_lock();
P
Peter Zijlstra 已提交
5167
		__set_task_cpu(p, this_cpu);
5168 5169
		rcu_read_unlock();
	}
5170

5171
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
5172

5173 5174
	if (curr)
		se->vruntime = curr->vruntime;
5175
	place_entity(cfs_rq, se, 1);
5176

P
Peter Zijlstra 已提交
5177
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
5178
		/*
5179 5180 5181
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
5182
		swap(curr->vruntime, se->vruntime);
5183
		resched_task(rq->curr);
5184
	}
5185

5186 5187
	se->vruntime -= cfs_rq->min_vruntime;

5188
	raw_spin_unlock_irqrestore(&rq->lock, flags);
5189 5190
}

5191 5192 5193 5194
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
5195 5196
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5197
{
P
Peter Zijlstra 已提交
5198 5199 5200
	if (!p->se.on_rq)
		return;

5201 5202 5203 5204 5205
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
5206
	if (rq->curr == p) {
5207 5208 5209
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
5210
		check_preempt_curr(rq, p, 0);
5211 5212
}

P
Peter Zijlstra 已提交
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Ensure the task's vruntime is normalized, so that when its
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it was !on_rq, then only when
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
	if (!se->on_rq && p->state != TASK_RUNNING) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
}

5237 5238 5239
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
5240
static void switched_to_fair(struct rq *rq, struct task_struct *p)
5241
{
P
Peter Zijlstra 已提交
5242 5243 5244
	if (!p->se.on_rq)
		return;

5245 5246 5247 5248 5249
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
5250
	if (rq->curr == p)
5251 5252
		resched_task(rq->curr);
	else
5253
		check_preempt_curr(rq, p, 0);
5254 5255
}

5256 5257 5258 5259 5260 5261 5262 5263 5264
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

5265 5266 5267 5268 5269 5270 5271
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
5272 5273
}

5274 5275 5276 5277 5278 5279 5280 5281 5282
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
}

P
Peter Zijlstra 已提交
5283
#ifdef CONFIG_FAIR_GROUP_SCHED
5284
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
5285
{
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
5299 5300 5301 5302 5303 5304
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
5305 5306
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
5307 5308 5309 5310
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
5311
	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5312 5313
		on_rq = 1;

5314 5315 5316
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
5317
	if (!on_rq)
5318
		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
P
Peter Zijlstra 已提交
5319
}
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
#ifdef CONFIG_SMP
	/* allow initial update_cfs_load() to truncate */
	cfs_rq->load_stamp = 1;
P
Peter Zijlstra 已提交
5406
#endif
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

	se->my_q = cfs_rq;
	update_load_set(&se->load, 0);
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
5475

5476
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));

	return rr_interval;
}

5491 5492 5493
/*
 * All the scheduling class methods:
 */
5494
const struct sched_class fair_sched_class = {
5495
	.next			= &idle_sched_class,
5496 5497 5498
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
5499
	.yield_to_task		= yield_to_task_fair,
5500

I
Ingo Molnar 已提交
5501
	.check_preempt_curr	= check_preempt_wakeup,
5502 5503 5504 5505

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

5506
#ifdef CONFIG_SMP
L
Li Zefan 已提交
5507 5508
	.select_task_rq		= select_task_rq_fair,

5509 5510
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
5511 5512

	.task_waking		= task_waking_fair,
5513
#endif
5514

5515
	.set_curr_task          = set_curr_task_fair,
5516
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
5517
	.task_fork		= task_fork_fair,
5518 5519

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
5520
	.switched_from		= switched_from_fair,
5521
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
5522

5523 5524
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
5525
#ifdef CONFIG_FAIR_GROUP_SCHED
5526
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
5527
#endif
5528 5529 5530
};

#ifdef CONFIG_SCHED_DEBUG
5531
void print_cfs_stats(struct seq_file *m, int cpu)
5532 5533 5534
{
	struct cfs_rq *cfs_rq;

5535
	rcu_read_lock();
5536
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5537
		print_cfs_rq(m, cpu, cfs_rq);
5538
	rcu_read_unlock();
5539 5540
}
#endif
5541 5542 5543 5544 5545 5546 5547

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

#ifdef CONFIG_NO_HZ
5548
	nohz.next_balance = jiffies;
5549
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5550
	cpu_notifier(sched_ilb_notifier, 0);
5551 5552 5553 5554
#endif
#endif /* SMP */

}