fair.c 212.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

182
#define WMULT_CONST	(~0U)
183 184
#define WMULT_SHIFT	32

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
201 202

/*
203 204 205 206 207 208 209 210 211 212
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213
 */
214
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215
{
216 217
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
218

219
	__update_inv_weight(lw);
220

221 222 223 224 225
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
226 227
	}

228 229
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
230

231 232 233 234
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
235

236
	return mul_u64_u32_shr(delta_exec, fact, shift);
237 238 239 240
}


const struct sched_class fair_sched_class;
241

242 243 244 245
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

246
#ifdef CONFIG_FAIR_GROUP_SCHED
247

248
/* cpu runqueue to which this cfs_rq is attached */
249 250
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
251
	return cfs_rq->rq;
252 253
}

254 255
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
256

257 258 259 260 261 262 263 264
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

286 287
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
288

289 290 291
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
292 293 294 295 296 297 298 299 300 301 302 303
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
305
		}
306 307

		cfs_rq->on_list = 1;
308
		/* We should have no load, but we need to update last_decay. */
309
		update_cfs_rq_blocked_load(cfs_rq, 0);
310 311 312 313 314 315 316 317 318 319 320
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
321 322 323 324 325
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
326
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
327 328 329
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
330
		return se->cfs_rq;
P
Peter Zijlstra 已提交
331

P
Peter Zijlstra 已提交
332
	return NULL;
P
Peter Zijlstra 已提交
333 334 335 336 337 338 339
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

340 341 342 343 344 345 346 347 348 349 350 351 352
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
353 354
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

372 373 374 375 376 377
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
378

379 380 381
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
382 383 384 385
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
386 387
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
388

P
Peter Zijlstra 已提交
389
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390
{
P
Peter Zijlstra 已提交
391
	return &task_rq(p)->cfs;
392 393
}

P
Peter Zijlstra 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

408 409 410 411 412 413 414 415
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
416 417 418 419 420 421 422 423
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

424 425 426 427 428
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
429 430
#endif	/* CONFIG_FAIR_GROUP_SCHED */

431
static __always_inline
432
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433 434 435 436 437

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

438
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439
{
440
	s64 delta = (s64)(vruntime - max_vruntime);
441
	if (delta > 0)
442
		max_vruntime = vruntime;
443

444
	return max_vruntime;
445 446
}

447
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
448 449 450 451 452 453 454 455
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

456 457 458 459 460 461
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

462 463 464 465 466 467 468 469 470 471 472 473
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
474
		if (!cfs_rq->curr)
475 476 477 478 479
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

480
	/* ensure we never gain time by being placed backwards. */
481
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 483 484 485
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
486 487
}

488 489 490
/*
 * Enqueue an entity into the rb-tree:
 */
491
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
508
		if (entity_before(se, entry)) {
509 510 511 512 513 514 515 516 517 518 519
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
520
	if (leftmost)
I
Ingo Molnar 已提交
521
		cfs_rq->rb_leftmost = &se->run_node;
522 523 524 525 526

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

527
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528
{
P
Peter Zijlstra 已提交
529 530 531 532 533 534
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
535

536 537 538
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

539
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540
{
541 542 543 544 545 546
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
547 548
}

549 550 551 552 553 554 555 556 557 558 559
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
560
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561
{
562
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563

564 565
	if (!last)
		return NULL;
566 567

	return rb_entry(last, struct sched_entity, run_node);
568 569
}

570 571 572 573
/**************************************************************
 * Scheduling class statistics methods:
 */

574
int sched_proc_update_handler(struct ctl_table *table, int write,
575
		void __user *buffer, size_t *lenp,
576 577
		loff_t *ppos)
{
578
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579
	int factor = get_update_sysctl_factor();
580 581 582 583 584 585 586

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

587 588 589 590 591 592 593
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

594 595 596
	return 0;
}
#endif
597

598
/*
599
 * delta /= w
600
 */
601
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602
{
603
	if (unlikely(se->load.weight != NICE_0_LOAD))
604
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605 606 607 608

	return delta;
}

609 610 611
/*
 * The idea is to set a period in which each task runs once.
 *
612
 * When there are too many tasks (sched_nr_latency) we have to stretch
613 614 615 616
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
617 618 619
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
620
	unsigned long nr_latency = sched_nr_latency;
621 622

	if (unlikely(nr_running > nr_latency)) {
623
		period = sysctl_sched_min_granularity;
624 625 626 627 628 629
		period *= nr_running;
	}

	return period;
}

630 631 632 633
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
634
 * s = p*P[w/rw]
635
 */
P
Peter Zijlstra 已提交
636
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637
{
M
Mike Galbraith 已提交
638
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639

M
Mike Galbraith 已提交
640
	for_each_sched_entity(se) {
L
Lin Ming 已提交
641
		struct load_weight *load;
642
		struct load_weight lw;
L
Lin Ming 已提交
643 644 645

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
646

M
Mike Galbraith 已提交
647
		if (unlikely(!se->on_rq)) {
648
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
649 650 651 652

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
653
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
654 655
	}
	return slice;
656 657
}

658
/*
A
Andrei Epure 已提交
659
 * We calculate the vruntime slice of a to-be-inserted task.
660
 *
661
 * vs = s/w
662
 */
663
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
664
{
665
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 667
}

668
#ifdef CONFIG_SMP
669
static int select_idle_sibling(struct task_struct *p, int cpu);
670 671
static unsigned long task_h_load(struct task_struct *p);

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

690
/*
691
 * Update the current task's runtime statistics.
692
 */
693
static void update_curr(struct cfs_rq *cfs_rq)
694
{
695
	struct sched_entity *curr = cfs_rq->curr;
696
	u64 now = rq_clock_task(rq_of(cfs_rq));
697
	u64 delta_exec;
698 699 700 701

	if (unlikely(!curr))
		return;

702 703
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
704
		return;
705

I
Ingo Molnar 已提交
706
	curr->exec_start = now;
707

708 709 710 711 712 713 714 715 716
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

717 718 719
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

720
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
721
		cpuacct_charge(curtask, delta_exec);
722
		account_group_exec_runtime(curtask, delta_exec);
723
	}
724 725

	account_cfs_rq_runtime(cfs_rq, delta_exec);
726 727
}

728 729 730 731 732
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

733
static inline void
734
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
735
{
736
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
737 738 739 740 741
}

/*
 * Task is being enqueued - update stats:
 */
742
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
743 744 745 746 747
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
748
	if (se != cfs_rq->curr)
749
		update_stats_wait_start(cfs_rq, se);
750 751 752
}

static void
753
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
754
{
755
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
756
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
757 758
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
759
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
760 761 762
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
763
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
764 765
	}
#endif
766
	schedstat_set(se->statistics.wait_start, 0);
767 768 769
}

static inline void
770
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
771 772 773 774 775
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
776
	if (se != cfs_rq->curr)
777
		update_stats_wait_end(cfs_rq, se);
778 779 780 781 782 783
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
784
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
785 786 787 788
{
	/*
	 * We are starting a new run period:
	 */
789
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
790 791 792 793 794 795
}

/**************************************************
 * Scheduling class queueing methods:
 */

796 797
#ifdef CONFIG_NUMA_BALANCING
/*
798 799 800
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
801
 */
802 803
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
804 805 806

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
807

808 809 810
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
835
	unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
836 837 838
	unsigned int scan, floor;
	unsigned int windows = 1;

839 840
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

857 858 859 860 861 862 863 864 865 866 867 868
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

869 870 871 872 873
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
874
	pid_t gid;
875 876

	struct rcu_head rcu;
877
	nodemask_t active_nodes;
878
	unsigned long total_faults;
879 880 881 882 883
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
884
	unsigned long *faults_cpu;
885
	unsigned long faults[0];
886 887
};

888 889 890 891 892 893 894 895 896
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

897 898 899 900 901
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

902 903 904 905 906 907 908
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
909
{
910
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
911 912 913 914
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
915
	if (!p->numa_faults)
916 917
		return 0;

918 919
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
920 921
}

922 923 924 925 926
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

927 928
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
929 930
}

931 932
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
933 934
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
935 936
}

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1002 1003 1004 1005 1006 1007
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1008 1009
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1010
{
1011
	unsigned long faults, total_faults;
1012

1013
	if (!p->numa_faults)
1014 1015 1016 1017 1018 1019 1020
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1021
	faults = task_faults(p, nid);
1022 1023
	faults += score_nearby_nodes(p, nid, dist, true);

1024
	return 1000 * faults / total_faults;
1025 1026
}

1027 1028
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1029
{
1030 1031 1032 1033 1034 1035 1036 1037
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1038 1039
		return 0;

1040
	faults = group_faults(p, nid);
1041 1042
	faults += score_nearby_nodes(p, nid, dist, false);

1043
	return 1000 * faults / total_faults;
1044 1045
}

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Do not migrate if the destination is not a node that
	 * is actively used by this numa group.
	 */
	if (!node_isset(dst_nid, ng->active_nodes))
		return false;

	/*
	 * Source is a node that is not actively used by this
	 * numa group, while the destination is. Migrate.
	 */
	if (!node_isset(src_nid, ng->active_nodes))
		return true;

	/*
	 * Both source and destination are nodes in active
	 * use by this numa group. Maximize memory bandwidth
	 * by migrating from more heavily used groups, to less
	 * heavily used ones, spreading the load around.
	 * Use a 1/4 hysteresis to avoid spurious page movement.
	 */
	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}

1109
static unsigned long weighted_cpuload(const int cpu);
1110 1111
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1112
static unsigned long capacity_of(int cpu);
1113 1114
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1115
/* Cached statistics for all CPUs within a node */
1116
struct numa_stats {
1117
	unsigned long nr_running;
1118
	unsigned long load;
1119 1120

	/* Total compute capacity of CPUs on a node */
1121
	unsigned long compute_capacity;
1122 1123

	/* Approximate capacity in terms of runnable tasks on a node */
1124
	unsigned long task_capacity;
1125
	int has_free_capacity;
1126
};
1127

1128 1129 1130 1131 1132
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1133 1134
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1135 1136 1137 1138 1139 1140 1141

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1142
		ns->compute_capacity += capacity_of(cpu);
1143 1144

		cpus++;
1145 1146
	}

1147 1148 1149 1150 1151
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1152 1153
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1154 1155 1156 1157
	 */
	if (!cpus)
		return;

1158 1159 1160 1161 1162 1163
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1164
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1165 1166
}

1167 1168
struct task_numa_env {
	struct task_struct *p;
1169

1170 1171
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1172

1173
	struct numa_stats src_stats, dst_stats;
1174

1175
	int imbalance_pct;
1176
	int dist;
1177 1178 1179

	struct task_struct *best_task;
	long best_imp;
1180 1181 1182
	int best_cpu;
};

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1196
static bool load_too_imbalanced(long src_load, long dst_load,
1197 1198
				struct task_numa_env *env)
{
1199
	long src_capacity, dst_capacity;
1200 1201 1202 1203
	long orig_src_load;
	long load_a, load_b;
	long moved_load;
	long imb;
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1214 1215

	/* We care about the slope of the imbalance, not the direction. */
1216 1217 1218 1219
	load_a = dst_load;
	load_b = src_load;
	if (load_a < load_b)
		swap(load_a, load_b);
1220 1221

	/* Is the difference below the threshold? */
1222 1223
	imb = load_a * src_capacity * 100 -
		load_b * dst_capacity * env->imbalance_pct;
1224 1225 1226 1227 1228
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1229 1230
	 * Allow a move that brings us closer to a balanced situation,
	 * without moving things past the point of balance.
1231
	 */
1232 1233
	orig_src_load = env->src_stats.load;

1234 1235 1236 1237 1238 1239 1240 1241
	/*
	 * In a task swap, there will be one load moving from src to dst,
	 * and another moving back. This is the net sum of both moves.
	 * A simple task move will always have a positive value.
	 * Allow the move if it brings the system closer to a balanced
	 * situation, without crossing over the balance point.
	 */
	moved_load = orig_src_load - src_load;
1242

1243 1244 1245 1246 1247 1248
	if (moved_load > 0)
		/* Moving src -> dst. Did we overshoot balance? */
		return src_load * dst_capacity < dst_load * src_capacity;
	else
		/* Moving dst -> src. Did we overshoot balance? */
		return dst_load * src_capacity < src_load * dst_capacity;
1249 1250
}

1251 1252 1253 1254 1255 1256
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1257 1258
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1259 1260 1261 1262
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1263
	long src_load, dst_load;
1264
	long load;
1265
	long imp = env->p->numa_group ? groupimp : taskimp;
1266
	long moveimp = imp;
1267
	int dist = env->dist;
1268 1269

	rcu_read_lock();
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

	raw_spin_lock_irq(&dst_rq->lock);
	cur = dst_rq->curr;
	/*
	 * No need to move the exiting task, and this ensures that ->curr
	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
	 * is safe under RCU read lock.
	 * Note that rcu_read_lock() itself can't protect from the final
	 * put_task_struct() after the last schedule().
	 */
	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1281
		cur = NULL;
1282
	raw_spin_unlock_irq(&dst_rq->lock);
1283

1284 1285 1286 1287 1288 1289 1290
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1303 1304
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1305
		 * in any group then look only at task weights.
1306
		 */
1307
		if (cur->numa_group == env->p->numa_group) {
1308 1309
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1310 1311 1312 1313 1314 1315
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1316
		} else {
1317 1318 1319 1320 1321 1322
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1323 1324
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1325
			else
1326 1327
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1328
		}
1329 1330
	}

1331
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1332 1333 1334 1335
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1336
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1337
		    !env->dst_stats.has_free_capacity)
1338 1339 1340 1341 1342 1343
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1344 1345
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1346 1347 1348 1349 1350 1351
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1352 1353 1354
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1373
	if (cur) {
1374 1375 1376
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1377 1378
	}

1379
	if (load_too_imbalanced(src_load, dst_load, env))
1380 1381
		goto unlock;

1382 1383 1384 1385 1386 1387 1388
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur)
		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);

1389 1390 1391 1392 1393 1394
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1395 1396
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1397 1398 1399 1400 1401 1402 1403 1404 1405
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1406
		task_numa_compare(env, taskimp, groupimp);
1407 1408 1409
	}
}

1410 1411 1412 1413
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1414

1415
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1416
		.src_nid = task_node(p),
1417 1418 1419 1420 1421 1422

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1423 1424
	};
	struct sched_domain *sd;
1425
	unsigned long taskweight, groupweight;
1426
	int nid, ret, dist;
1427
	long taskimp, groupimp;
1428

1429
	/*
1430 1431 1432 1433 1434 1435
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1436 1437
	 */
	rcu_read_lock();
1438
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1439 1440
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1441 1442
	rcu_read_unlock();

1443 1444 1445 1446 1447 1448 1449
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1450
		p->numa_preferred_nid = task_node(p);
1451 1452 1453
		return -EINVAL;
	}

1454
	env.dst_nid = p->numa_preferred_nid;
1455 1456 1457 1458 1459 1460
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1461
	update_numa_stats(&env.dst_stats, env.dst_nid);
1462

1463 1464
	/* Try to find a spot on the preferred nid. */
	task_numa_find_cpu(&env, taskimp, groupimp);
1465

1466 1467 1468 1469 1470 1471 1472 1473 1474
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
	if (env.best_cpu == -1 || (p->numa_group &&
			nodes_weight(p->numa_group->active_nodes) > 1)) {
1475 1476 1477
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1478

1479
			dist = node_distance(env.src_nid, env.dst_nid);
1480 1481 1482 1483 1484
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1485

1486
			/* Only consider nodes where both task and groups benefit */
1487 1488
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1489
			if (taskimp < 0 && groupimp < 0)
1490 1491
				continue;

1492
			env.dist = dist;
1493 1494
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1495
			task_numa_find_cpu(&env, taskimp, groupimp);
1496 1497 1498
		}
	}

1499 1500 1501 1502 1503 1504 1505 1506
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	if (p->numa_group) {
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

		if (node_isset(nid, p->numa_group->active_nodes))
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1520

1521 1522 1523 1524 1525 1526
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1527
	if (env.best_task == NULL) {
1528 1529 1530
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1531 1532 1533 1534
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1535 1536
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1537 1538
	put_task_struct(env.best_task);
	return ret;
1539 1540
}

1541 1542 1543
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1544 1545
	unsigned long interval = HZ;

1546
	/* This task has no NUMA fault statistics yet */
1547
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1548 1549
		return;

1550
	/* Periodically retry migrating the task to the preferred node */
1551 1552
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1553 1554

	/* Success if task is already running on preferred CPU */
1555
	if (task_node(p) == p->numa_preferred_nid)
1556 1557 1558
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1559
	task_numa_migrate(p);
1560 1561
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1594 1595 1596
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1597 1598 1599
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1600 1601
 */
#define NUMA_PERIOD_SLOTS 10
1602
#define NUMA_PERIOD_THRESHOLD 7
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
	 * to automatic numa balancing. Scan slower
	 */
	if (local + shared == 0) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1659
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1660 1661 1662 1663 1664 1665 1666 1667
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
		delta = p->se.avg.runnable_avg_sum;
		*period = p->se.avg.runnable_avg_period;
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
1743
		nodemask_t max_group = NODE_MASK_NONE;
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
		nodes = max_group;
	}
	return nid;
}

1782 1783
static void task_numa_placement(struct task_struct *p)
{
1784 1785
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1786
	unsigned long fault_types[2] = { 0, 0 };
1787 1788
	unsigned long total_faults;
	u64 runtime, period;
1789
	spinlock_t *group_lock = NULL;
1790

1791
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1792 1793 1794
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1795
	p->numa_scan_period_max = task_scan_max(p);
1796

1797 1798 1799 1800
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1801 1802 1803
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1804
		spin_lock_irq(group_lock);
1805 1806
	}

1807 1808
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1809 1810
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1811
		unsigned long faults = 0, group_faults = 0;
1812
		int priv;
1813

1814
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1815
			long diff, f_diff, f_weight;
1816

1817 1818 1819 1820
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1821

1822
			/* Decay existing window, copy faults since last scan */
1823 1824 1825
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
1826

1827 1828 1829 1830 1831 1832 1833 1834
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
1835
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1836
				   (total_faults + 1);
1837 1838
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
1839

1840 1841 1842
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
1843
			p->total_numa_faults += diff;
1844
			if (p->numa_group) {
1845 1846 1847 1848 1849 1850 1851 1852 1853
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
1854
				p->numa_group->total_faults += diff;
1855
				group_faults += p->numa_group->faults[mem_idx];
1856
			}
1857 1858
		}

1859 1860 1861 1862
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1863 1864 1865 1866 1867 1868 1869

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1870 1871
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1872
	if (p->numa_group) {
1873
		update_numa_active_node_mask(p->numa_group);
1874
		spin_unlock_irq(group_lock);
1875
		max_nid = preferred_group_nid(p, max_group_nid);
1876 1877
	}

1878 1879 1880 1881 1882 1883 1884
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
1885
	}
1886 1887
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1899 1900
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1901 1902 1903 1904 1905 1906 1907 1908 1909
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1910
				    4*nr_node_ids*sizeof(unsigned long);
1911 1912 1913 1914 1915 1916 1917

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
1918
		grp->gid = p->pid;
1919
		/* Second half of the array tracks nids where faults happen */
1920 1921
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
1922

1923 1924
		node_set(task_node(current), grp->active_nodes);

1925
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1926
			grp->faults[i] = p->numa_faults[i];
1927

1928
		grp->total_faults = p->total_numa_faults;
1929

1930 1931 1932 1933 1934 1935 1936 1937
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
1938
		goto no_join;
1939 1940 1941

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1942
		goto no_join;
1943 1944 1945

	my_grp = p->numa_group;
	if (grp == my_grp)
1946
		goto no_join;
1947 1948 1949 1950 1951 1952

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1953
		goto no_join;
1954 1955 1956 1957 1958

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1959
		goto no_join;
1960

1961 1962 1963 1964 1965 1966 1967
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
1968

1969 1970 1971
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

1972
	if (join && !get_numa_group(grp))
1973
		goto no_join;
1974 1975 1976 1977 1978 1979

	rcu_read_unlock();

	if (!join)
		return;

1980 1981
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
1982

1983
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1984 1985
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
1986
	}
1987 1988
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
1989 1990 1991 1992 1993

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
1994
	spin_unlock_irq(&grp->lock);
1995 1996 1997 1998

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
1999 2000 2001 2002 2003
	return;

no_join:
	rcu_read_unlock();
	return;
2004 2005 2006 2007 2008
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2009
	void *numa_faults = p->numa_faults;
2010 2011
	unsigned long flags;
	int i;
2012 2013

	if (grp) {
2014
		spin_lock_irqsave(&grp->lock, flags);
2015
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2016
			grp->faults[i] -= p->numa_faults[i];
2017
		grp->total_faults -= p->total_numa_faults;
2018

2019
		grp->nr_tasks--;
2020
		spin_unlock_irqrestore(&grp->lock, flags);
2021
		RCU_INIT_POINTER(p->numa_group, NULL);
2022 2023 2024
		put_numa_group(grp);
	}

2025
	p->numa_faults = NULL;
2026
	kfree(numa_faults);
2027 2028
}

2029 2030 2031
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2032
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2033 2034
{
	struct task_struct *p = current;
2035
	bool migrated = flags & TNF_MIGRATED;
2036
	int cpu_node = task_node(current);
2037
	int local = !!(flags & TNF_FAULT_LOCAL);
2038
	int priv;
2039

2040
	if (!numabalancing_enabled)
2041 2042
		return;

2043 2044 2045 2046
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2047
	/* Allocate buffer to track faults on a per-node basis */
2048 2049
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2050
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2051

2052 2053
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2054
			return;
2055

2056
		p->total_numa_faults = 0;
2057
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2058
	}
2059

2060 2061 2062 2063 2064 2065 2066 2067
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2068
		if (!priv && !(flags & TNF_NO_GROUP))
2069
			task_numa_group(p, last_cpupid, flags, &priv);
2070 2071
	}

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
	if (!priv && !local && p->numa_group &&
			node_isset(cpu_node, p->numa_group->active_nodes) &&
			node_isset(mem_node, p->numa_group->active_nodes))
		local = 1;

2083
	task_numa_placement(p);
2084

2085 2086 2087 2088 2089
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2090 2091
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2092 2093 2094
	if (migrated)
		p->numa_pages_migrated += pages;

2095 2096
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2097
	p->numa_faults_locality[local] += pages;
2098 2099
}

2100 2101 2102 2103 2104 2105
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

2106 2107 2108 2109 2110 2111 2112 2113 2114
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2115
	struct vm_area_struct *vma;
2116
	unsigned long start, end;
2117
	unsigned long nr_pte_updates = 0;
2118
	long pages;
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2134
	if (!mm->numa_next_scan) {
2135 2136
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2137 2138
	}

2139 2140 2141 2142 2143 2144 2145
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2146 2147 2148 2149
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2150

2151
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2152 2153 2154
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2155 2156 2157 2158 2159 2160
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2161 2162 2163 2164 2165
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
2166

2167
	down_read(&mm->mmap_sem);
2168
	vma = find_vma(mm, start);
2169 2170
	if (!vma) {
		reset_ptenuma_scan(p);
2171
		start = 0;
2172 2173
		vma = mm->mmap;
	}
2174
	for (; vma; vma = vma->vm_next) {
2175
		if (!vma_migratable(vma) || !vma_policy_mof(vma))
2176 2177
			continue;

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2188 2189 2190 2191 2192 2193
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2194

2195 2196 2197 2198
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2199 2200 2201 2202 2203 2204 2205 2206 2207
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2208

2209 2210 2211
			start = end;
			if (pages <= 0)
				goto out;
2212 2213

			cond_resched();
2214
		} while (end != vma->vm_end);
2215
	}
2216

2217
out:
2218
	/*
P
Peter Zijlstra 已提交
2219 2220 2221 2222
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2223 2224
	 */
	if (vma)
2225
		mm->numa_scan_offset = start;
2226 2227 2228
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
2255
		if (!curr->node_stamp)
2256
			curr->numa_scan_period = task_scan_min(curr);
2257
		curr->node_stamp += period;
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2269 2270 2271 2272 2273 2274 2275 2276

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2277 2278
#endif /* CONFIG_NUMA_BALANCING */

2279 2280 2281 2282
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2283
	if (!parent_entity(se))
2284
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2285
#ifdef CONFIG_SMP
2286 2287 2288 2289 2290 2291
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2292
#endif
2293 2294 2295 2296 2297 2298 2299
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2300
	if (!parent_entity(se))
2301
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2302 2303
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2304
		list_del_init(&se->group_node);
2305
	}
2306 2307 2308
	cfs_rq->nr_running--;
}

2309 2310
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2311 2312 2313 2314 2315 2316 2317 2318 2319
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
2320
	tg_weight = atomic_long_read(&tg->load_avg);
2321
	tg_weight -= cfs_rq->tg_load_contrib;
2322 2323 2324 2325 2326
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

2327
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2328
{
2329
	long tg_weight, load, shares;
2330

2331
	tg_weight = calc_tg_weight(tg, cfs_rq);
2332
	load = cfs_rq->load.weight;
2333 2334

	shares = (tg->shares * load);
2335 2336
	if (tg_weight)
		shares /= tg_weight;
2337 2338 2339 2340 2341 2342 2343 2344 2345

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2346
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2347 2348 2349 2350
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2351 2352 2353
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2354 2355 2356 2357
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2358
		account_entity_dequeue(cfs_rq, se);
2359
	}
P
Peter Zijlstra 已提交
2360 2361 2362 2363 2364 2365 2366

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2367 2368
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2369
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2370 2371 2372
{
	struct task_group *tg;
	struct sched_entity *se;
2373
	long shares;
P
Peter Zijlstra 已提交
2374 2375 2376

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2377
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2378
		return;
2379 2380 2381 2382
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2383
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2384 2385 2386 2387

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2388
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2389 2390 2391 2392
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2393
#ifdef CONFIG_SMP
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2422 2423 2424 2425 2426 2427
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2440 2441
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2442 2443 2444 2445 2446 2447
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2448 2449
	}

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
2515 2516
	u64 delta, periods;
	u32 runnable_contrib;
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

2580
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2581
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2582 2583 2584 2585 2586
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
2587
	se->avg.decay_count = 0;
2588
	if (!decays)
2589
		return 0;
2590 2591

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2592 2593

	return decays;
2594 2595
}

2596 2597 2598 2599 2600
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
2601
	long tg_contrib;
2602 2603 2604 2605

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

2606 2607 2608
	if (!tg_contrib)
		return;

2609 2610
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
2611 2612 2613
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
2614

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
2626
	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2627 2628 2629 2630 2631 2632 2633 2634 2635
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

2636 2637 2638 2639
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
2640 2641
	int runnable_avg;

2642 2643 2644
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
2645 2646
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
2676
}
2677 2678 2679 2680 2681 2682

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
}
2683
#else /* CONFIG_FAIR_GROUP_SCHED */
2684 2685
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
2686 2687
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
2688
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2689
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2690
#endif /* CONFIG_FAIR_GROUP_SCHED */
2691

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

2702 2703 2704 2705 2706
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

2707 2708 2709
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
2710
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2711 2712
		__update_group_entity_contrib(se);
	}
2713 2714 2715 2716

	return se->avg.load_avg_contrib - old_contrib;
}

2717 2718 2719 2720 2721 2722 2723 2724 2725
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

2726 2727
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

2728
/* Update a sched_entity's runnable average */
2729 2730
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
2731
{
2732 2733
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
2734
	u64 now;
2735

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2746 2747 2748
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
2749 2750 2751 2752

	if (!update_cfs_rq)
		return;

2753 2754
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
2755 2756 2757 2758 2759 2760 2761 2762
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
2763
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2764
{
2765
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2766 2767 2768
	u64 decays;

	decays = now - cfs_rq->last_decay;
2769
	if (!decays && !force_update)
2770 2771
		return;

2772 2773 2774
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2775 2776
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
2777

2778 2779 2780 2781 2782 2783
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
2784 2785

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2786
}
2787

2788 2789
/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2790 2791
						  struct sched_entity *se,
						  int wakeup)
2792
{
2793 2794 2795 2796
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
2797 2798 2799 2800
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
2801 2802
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
2803
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
2819 2820
		wakeup = 0;
	} else {
2821
		__synchronize_entity_decay(se);
2822 2823
	}

2824 2825
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
2826
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2827 2828
		update_entity_load_avg(se, 0);
	}
2829

2830
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2831 2832
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2833 2834
}

2835 2836 2837 2838 2839
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
2840
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2841 2842
						  struct sched_entity *se,
						  int sleep)
2843
{
2844
	update_entity_load_avg(se, 1);
2845 2846
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2847

2848
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2849 2850 2851 2852
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2853
}
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

2875 2876
static int idle_balance(struct rq *this_rq);

2877 2878
#else /* CONFIG_SMP */

2879 2880
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
2881
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2882
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2883 2884
					   struct sched_entity *se,
					   int wakeup) {}
2885
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2886 2887
					   struct sched_entity *se,
					   int sleep) {}
2888 2889
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
2890 2891 2892 2893 2894 2895

static inline int idle_balance(struct rq *rq)
{
	return 0;
}

2896
#endif /* CONFIG_SMP */
2897

2898
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2899 2900
{
#ifdef CONFIG_SCHEDSTATS
2901 2902 2903 2904 2905
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2906
	if (se->statistics.sleep_start) {
2907
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2908 2909 2910 2911

		if ((s64)delta < 0)
			delta = 0;

2912 2913
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2914

2915
		se->statistics.sleep_start = 0;
2916
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2917

2918
		if (tsk) {
2919
			account_scheduler_latency(tsk, delta >> 10, 1);
2920 2921
			trace_sched_stat_sleep(tsk, delta);
		}
2922
	}
2923
	if (se->statistics.block_start) {
2924
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2925 2926 2927 2928

		if ((s64)delta < 0)
			delta = 0;

2929 2930
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2931

2932
		se->statistics.block_start = 0;
2933
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2934

2935
		if (tsk) {
2936
			if (tsk->in_iowait) {
2937 2938
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2939
				trace_sched_stat_iowait(tsk, delta);
2940 2941
			}

2942 2943
			trace_sched_stat_blocked(tsk, delta);

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2955
		}
2956 2957 2958 2959
	}
#endif
}

P
Peter Zijlstra 已提交
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2973 2974 2975
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2976
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2977

2978 2979 2980 2981 2982 2983
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2984
	if (initial && sched_feat(START_DEBIT))
2985
		vruntime += sched_vslice(cfs_rq, se);
2986

2987
	/* sleeps up to a single latency don't count. */
2988
	if (!initial) {
2989
		unsigned long thresh = sysctl_sched_latency;
2990

2991 2992 2993 2994 2995 2996
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2997

2998
		vruntime -= thresh;
2999 3000
	}

3001
	/* ensure we never gain time by being placed backwards. */
3002
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3003 3004
}

3005 3006
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3007
static void
3008
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3009
{
3010 3011
	/*
	 * Update the normalized vruntime before updating min_vruntime
3012
	 * through calling update_curr().
3013
	 */
3014
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3015 3016
		se->vruntime += cfs_rq->min_vruntime;

3017
	/*
3018
	 * Update run-time statistics of the 'current'.
3019
	 */
3020
	update_curr(cfs_rq);
3021
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3022 3023
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
3024

3025
	if (flags & ENQUEUE_WAKEUP) {
3026
		place_entity(cfs_rq, se, 0);
3027
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
3028
	}
3029

3030
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
3031
	check_spread(cfs_rq, se);
3032 3033
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3034
	se->on_rq = 1;
3035

3036
	if (cfs_rq->nr_running == 1) {
3037
		list_add_leaf_cfs_rq(cfs_rq);
3038 3039
		check_enqueue_throttle(cfs_rq);
	}
3040 3041
}

3042
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3043
{
3044 3045
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3046
		if (cfs_rq->last != se)
3047
			break;
3048 3049

		cfs_rq->last = NULL;
3050 3051
	}
}
P
Peter Zijlstra 已提交
3052

3053 3054 3055 3056
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3057
		if (cfs_rq->next != se)
3058
			break;
3059 3060

		cfs_rq->next = NULL;
3061
	}
P
Peter Zijlstra 已提交
3062 3063
}

3064 3065 3066 3067
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3068
		if (cfs_rq->skip != se)
3069
			break;
3070 3071

		cfs_rq->skip = NULL;
3072 3073 3074
	}
}

P
Peter Zijlstra 已提交
3075 3076
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3077 3078 3079 3080 3081
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3082 3083 3084

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3085 3086
}

3087
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3088

3089
static void
3090
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3091
{
3092 3093 3094 3095
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3096
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3097

3098
	update_stats_dequeue(cfs_rq, se);
3099
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
3100
#ifdef CONFIG_SCHEDSTATS
3101 3102 3103 3104
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
3105
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3106
			if (tsk->state & TASK_UNINTERRUPTIBLE)
3107
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3108
		}
3109
#endif
P
Peter Zijlstra 已提交
3110 3111
	}

P
Peter Zijlstra 已提交
3112
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3113

3114
	if (se != cfs_rq->curr)
3115
		__dequeue_entity(cfs_rq, se);
3116
	se->on_rq = 0;
3117
	account_entity_dequeue(cfs_rq, se);
3118 3119 3120 3121 3122 3123

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
3124
	if (!(flags & DEQUEUE_SLEEP))
3125
		se->vruntime -= cfs_rq->min_vruntime;
3126

3127 3128 3129
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3130
	update_min_vruntime(cfs_rq);
3131
	update_cfs_shares(cfs_rq);
3132 3133 3134 3135 3136
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3137
static void
I
Ingo Molnar 已提交
3138
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3139
{
3140
	unsigned long ideal_runtime, delta_exec;
3141 3142
	struct sched_entity *se;
	s64 delta;
3143

P
Peter Zijlstra 已提交
3144
	ideal_runtime = sched_slice(cfs_rq, curr);
3145
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3146
	if (delta_exec > ideal_runtime) {
3147
		resched_curr(rq_of(cfs_rq));
3148 3149 3150 3151 3152
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3164 3165
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3166

3167 3168
	if (delta < 0)
		return;
3169

3170
	if (delta > ideal_runtime)
3171
		resched_curr(rq_of(cfs_rq));
3172 3173
}

3174
static void
3175
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3176
{
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

3188
	update_stats_curr_start(cfs_rq, se);
3189
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
3190 3191 3192 3193 3194 3195
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3196
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3197
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
3198 3199 3200
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
3201
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3202 3203
}

3204 3205 3206
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3207 3208 3209 3210 3211 3212 3213
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3214 3215
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3216
{
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3228

3229 3230 3231 3232 3233
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3244 3245 3246
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3247

3248 3249 3250 3251 3252 3253
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3254 3255 3256 3257 3258 3259
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3260
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3261 3262

	return se;
3263 3264
}

3265
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3266

3267
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3268 3269 3270 3271 3272 3273
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3274
		update_curr(cfs_rq);
3275

3276 3277 3278
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
3279
	check_spread(cfs_rq, prev);
3280
	if (prev->on_rq) {
3281
		update_stats_wait_start(cfs_rq, prev);
3282 3283
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3284
		/* in !on_rq case, update occurred at dequeue */
3285
		update_entity_load_avg(prev, 1);
3286
	}
3287
	cfs_rq->curr = NULL;
3288 3289
}

P
Peter Zijlstra 已提交
3290 3291
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3292 3293
{
	/*
3294
	 * Update run-time statistics of the 'current'.
3295
	 */
3296
	update_curr(cfs_rq);
3297

3298 3299 3300
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3301
	update_entity_load_avg(curr, 1);
3302
	update_cfs_rq_blocked_load(cfs_rq, 1);
3303
	update_cfs_shares(cfs_rq);
3304

P
Peter Zijlstra 已提交
3305 3306 3307 3308 3309
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3310
	if (queued) {
3311
		resched_curr(rq_of(cfs_rq));
3312 3313
		return;
	}
P
Peter Zijlstra 已提交
3314 3315 3316 3317 3318 3319 3320 3321
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3322
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3323
		check_preempt_tick(cfs_rq, curr);
3324 3325
}

3326 3327 3328 3329 3330 3331

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3332 3333

#ifdef HAVE_JUMP_LABEL
3334
static struct static_key __cfs_bandwidth_used;
3335 3336 3337

static inline bool cfs_bandwidth_used(void)
{
3338
	return static_key_false(&__cfs_bandwidth_used);
3339 3340
}

3341
void cfs_bandwidth_usage_inc(void)
3342
{
3343 3344 3345 3346 3347 3348
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3349 3350 3351 3352 3353 3354 3355
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3356 3357
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3358 3359
#endif /* HAVE_JUMP_LABEL */

3360 3361 3362 3363 3364 3365 3366 3367
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3368 3369 3370 3371 3372 3373

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3374 3375 3376 3377 3378 3379 3380
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3381
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3393 3394 3395 3396 3397
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3398 3399 3400 3401 3402 3403
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3404
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3405 3406
}

3407 3408
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3409 3410 3411
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3412
	u64 amount = 0, min_amount, expires;
3413 3414 3415 3416 3417 3418 3419

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3420
	else {
P
Paul Turner 已提交
3421 3422 3423 3424 3425 3426 3427 3428
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
3429
			__start_cfs_bandwidth(cfs_b, false);
P
Paul Turner 已提交
3430
		}
3431 3432 3433 3434 3435 3436

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3437
	}
P
Paul Turner 已提交
3438
	expires = cfs_b->runtime_expires;
3439 3440 3441
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3442 3443 3444 3445 3446 3447 3448
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3449 3450

	return cfs_rq->runtime_remaining > 0;
3451 3452
}

P
Paul Turner 已提交
3453 3454 3455 3456 3457
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3458
{
P
Paul Turner 已提交
3459 3460 3461
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3462
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3463 3464
		return;

P
Paul Turner 已提交
3465 3466 3467 3468 3469 3470 3471 3472 3473
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3474 3475 3476
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3477 3478
	 */

3479
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3480 3481 3482 3483 3484 3485 3486 3487
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3488
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3489 3490
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3491
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3492 3493 3494
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3495 3496
		return;

3497 3498 3499 3500 3501
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3502
		resched_curr(rq_of(cfs_rq));
3503 3504
}

3505
static __always_inline
3506
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3507
{
3508
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3509 3510 3511 3512 3513
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3514 3515
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3516
	return cfs_bandwidth_used() && cfs_rq->throttled;
3517 3518
}

3519 3520 3521
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3522
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3551
		/* adjust cfs_rq_clock_task() */
3552
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3553
					     cfs_rq->throttled_clock_task;
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3565 3566
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3567
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3568 3569 3570 3571 3572
	cfs_rq->throttle_count++;

	return 0;
}

3573
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3574 3575 3576 3577 3578 3579 3580 3581
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3582
	/* freeze hierarchy runnable averages while throttled */
3583 3584 3585
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3603
		sub_nr_running(rq, task_delta);
3604 3605

	cfs_rq->throttled = 1;
3606
	cfs_rq->throttled_clock = rq_clock(rq);
3607
	raw_spin_lock(&cfs_b->lock);
3608 3609 3610 3611 3612
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3613
	if (!cfs_b->timer_active)
3614
		__start_cfs_bandwidth(cfs_b, false);
3615 3616 3617
	raw_spin_unlock(&cfs_b->lock);
}

3618
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3619 3620 3621 3622 3623 3624 3625
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3626
	se = cfs_rq->tg->se[cpu_of(rq)];
3627 3628

	cfs_rq->throttled = 0;
3629 3630 3631

	update_rq_clock(rq);

3632
	raw_spin_lock(&cfs_b->lock);
3633
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3634 3635 3636
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3637 3638 3639
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
3658
		add_nr_running(rq, task_delta);
3659 3660 3661

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
3662
		resched_curr(rq);
3663 3664 3665 3666 3667 3668
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
3669 3670
	u64 runtime;
	u64 starting_runtime = remaining;
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

3701
	return starting_runtime - remaining;
3702 3703
}

3704 3705 3706 3707 3708 3709 3710 3711
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3712
	u64 runtime, runtime_expires;
3713
	int throttled;
3714 3715 3716

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
3717
		goto out_deactivate;
3718

3719
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3720
	cfs_b->nr_periods += overrun;
3721

3722 3723 3724 3725 3726 3727
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
3728

3729 3730 3731 3732 3733 3734 3735
	/*
	 * if we have relooped after returning idle once, we need to update our
	 * status as actually running, so that other cpus doing
	 * __start_cfs_bandwidth will stop trying to cancel us.
	 */
	cfs_b->timer_active = 1;

P
Paul Turner 已提交
3736 3737
	__refill_cfs_bandwidth_runtime(cfs_b);

3738 3739 3740
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
3741
		return 0;
3742 3743
	}

3744 3745 3746
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3747 3748 3749
	runtime_expires = cfs_b->runtime_expires;

	/*
3750 3751 3752 3753 3754
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
3755
	 */
3756 3757
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
3758 3759 3760 3761 3762 3763 3764
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3765 3766

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3767
	}
3768

3769 3770 3771 3772 3773 3774 3775
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3776

3777 3778 3779 3780 3781
	return 0;

out_deactivate:
	cfs_b->timer_active = 0;
	return 1;
3782
}
3783

3784 3785 3786 3787 3788 3789 3790
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3791 3792 3793 3794 3795 3796 3797
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3854 3855 3856
	if (!cfs_bandwidth_used())
		return;

3857
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3873 3874 3875
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3876
		return;
3877
	}
3878

3879
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3880
		runtime = cfs_b->runtime;
3881

3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
3892
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3893 3894 3895
	raw_spin_unlock(&cfs_b->lock);
}

3896 3897 3898 3899 3900 3901 3902
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3903 3904 3905
	if (!cfs_bandwidth_used())
		return;

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
3921
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3922
{
3923
	if (!cfs_bandwidth_used())
3924
		return false;
3925

3926
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3927
		return false;
3928 3929 3930 3931 3932 3933

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
3934
		return true;
3935 3936

	throttle_cfs_rq(cfs_rq);
3937
	return true;
3938
}
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

3957
	raw_spin_lock(&cfs_b->lock);
3958 3959 3960 3961 3962 3963 3964 3965 3966
	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
3967
	raw_spin_unlock(&cfs_b->lock);
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
3993
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3994 3995 3996 3997 3998 3999 4000
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
4001 4002 4003
	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
		/* bounce the lock to allow do_sched_cfs_period_timer to run */
4004
		raw_spin_unlock(&cfs_b->lock);
4005
		cpu_relax();
4006 4007
		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
4008
		if (!force && cfs_b->timer_active)
4009 4010 4011 4012 4013 4014 4015 4016 4017
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4018 4019 4020 4021
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4022 4023 4024 4025
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4039
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4051
		cfs_rq->runtime_remaining = 1;
4052 4053 4054 4055 4056 4057
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4058 4059 4060 4061 4062 4063
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4064 4065
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4066
	return rq_clock_task(rq_of(cfs_rq));
4067 4068
}

4069
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4070
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4071
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4072
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4073 4074 4075 4076 4077

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4089 4090 4091 4092 4093

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4094 4095
#endif

4096 4097 4098 4099 4100
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4101
static inline void update_runtime_enabled(struct rq *rq) {}
4102
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4103 4104 4105

#endif /* CONFIG_CFS_BANDWIDTH */

4106 4107 4108 4109
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4110 4111 4112 4113 4114 4115 4116 4117
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

4118
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
4119 4120 4121 4122 4123 4124
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4125
				resched_curr(rq);
P
Peter Zijlstra 已提交
4126 4127
			return;
		}
4128
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4129 4130
	}
}
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4141
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4142 4143 4144 4145 4146
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4147
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4148 4149 4150 4151
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4152 4153 4154 4155

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4156 4157
#endif

4158 4159 4160 4161 4162
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4163
static void
4164
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4165 4166
{
	struct cfs_rq *cfs_rq;
4167
	struct sched_entity *se = &p->se;
4168 4169

	for_each_sched_entity(se) {
4170
		if (se->on_rq)
4171 4172
			break;
		cfs_rq = cfs_rq_of(se);
4173
		enqueue_entity(cfs_rq, se, flags);
4174 4175 4176 4177 4178 4179 4180 4181 4182

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4183
		cfs_rq->h_nr_running++;
4184

4185
		flags = ENQUEUE_WAKEUP;
4186
	}
P
Peter Zijlstra 已提交
4187

P
Peter Zijlstra 已提交
4188
	for_each_sched_entity(se) {
4189
		cfs_rq = cfs_rq_of(se);
4190
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4191

4192 4193 4194
		if (cfs_rq_throttled(cfs_rq))
			break;

4195
		update_cfs_shares(cfs_rq);
4196
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
4197 4198
	}

4199 4200
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
4201
		add_nr_running(rq, 1);
4202
	}
4203
	hrtick_update(rq);
4204 4205
}

4206 4207
static void set_next_buddy(struct sched_entity *se);

4208 4209 4210 4211 4212
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4213
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4214 4215
{
	struct cfs_rq *cfs_rq;
4216
	struct sched_entity *se = &p->se;
4217
	int task_sleep = flags & DEQUEUE_SLEEP;
4218 4219 4220

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4221
		dequeue_entity(cfs_rq, se, flags);
4222 4223 4224 4225 4226 4227 4228 4229 4230

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4231
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4232

4233
		/* Don't dequeue parent if it has other entities besides us */
4234 4235 4236 4237 4238 4239 4240
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
4241 4242 4243

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
4244
			break;
4245
		}
4246
		flags |= DEQUEUE_SLEEP;
4247
	}
P
Peter Zijlstra 已提交
4248

P
Peter Zijlstra 已提交
4249
	for_each_sched_entity(se) {
4250
		cfs_rq = cfs_rq_of(se);
4251
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4252

4253 4254 4255
		if (cfs_rq_throttled(cfs_rq))
			break;

4256
		update_cfs_shares(cfs_rq);
4257
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
4258 4259
	}

4260
	if (!se) {
4261
		sub_nr_running(rq, 1);
4262 4263
		update_rq_runnable_avg(rq, 1);
	}
4264
	hrtick_update(rq);
4265 4266
}

4267
#ifdef CONFIG_SMP
4268 4269 4270
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
4271
	return cpu_rq(cpu)->cfs.runnable_load_avg;
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4307
static unsigned long capacity_of(int cpu)
4308
{
4309
	return cpu_rq(cpu)->cpu_capacity;
4310 4311 4312 4313 4314
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4315
	unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4316
	unsigned long load_avg = rq->cfs.runnable_load_avg;
4317 4318

	if (nr_running)
4319
		return load_avg / nr_running;
4320 4321 4322 4323

	return 0;
}

4324 4325 4326 4327 4328 4329 4330
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
4331
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4332
		current->wakee_flips >>= 1;
4333 4334 4335 4336 4337 4338 4339 4340
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4341

4342
static void task_waking_fair(struct task_struct *p)
4343 4344 4345
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4346 4347 4348 4349
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4350

4351 4352 4353 4354 4355 4356 4357 4358
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4359

4360
	se->vruntime -= min_vruntime;
4361
	record_wakee(p);
4362 4363
}

4364
#ifdef CONFIG_FAIR_GROUP_SCHED
4365 4366 4367 4368 4369 4370
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4414
 */
P
Peter Zijlstra 已提交
4415
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4416
{
P
Peter Zijlstra 已提交
4417
	struct sched_entity *se = tg->se[cpu];
4418

4419
	if (!tg->parent)	/* the trivial, non-cgroup case */
4420 4421
		return wl;

P
Peter Zijlstra 已提交
4422
	for_each_sched_entity(se) {
4423
		long w, W;
P
Peter Zijlstra 已提交
4424

4425
		tg = se->my_q->tg;
4426

4427 4428 4429 4430
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4431

4432 4433 4434 4435
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
4436

4437 4438 4439 4440
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
4441
			wl = (w * (long)tg->shares) / W;
4442 4443
		else
			wl = tg->shares;
4444

4445 4446 4447 4448 4449
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4450 4451
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4452 4453 4454 4455

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4456
		wl -= se->load.weight;
4457 4458 4459 4460 4461 4462 4463 4464

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4465 4466
		wg = 0;
	}
4467

P
Peter Zijlstra 已提交
4468
	return wl;
4469 4470
}
#else
P
Peter Zijlstra 已提交
4471

4472
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4473
{
4474
	return wl;
4475
}
P
Peter Zijlstra 已提交
4476

4477 4478
#endif

4479 4480
static int wake_wide(struct task_struct *p)
{
4481
	int factor = this_cpu_read(sd_llc_size);
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

4501
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4502
{
4503
	s64 this_load, load;
4504
	s64 this_eff_load, prev_eff_load;
4505 4506
	int idx, this_cpu, prev_cpu;
	struct task_group *tg;
4507
	unsigned long weight;
4508
	int balanced;
4509

4510 4511 4512 4513 4514 4515 4516
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

4517 4518 4519 4520 4521
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4522

4523 4524 4525 4526 4527
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4528 4529 4530 4531
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

4532
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4533 4534
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4535

4536 4537
	tg = task_group(p);
	weight = p->se.load.weight;
4538

4539 4540
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4541 4542 4543
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4544 4545 4546 4547
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4548 4549
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
4550

4551 4552
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
4553

4554
	if (this_load > 0) {
4555 4556 4557 4558
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4559
	}
4560

4561
	balanced = this_eff_load <= prev_eff_load;
4562

4563
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4564

4565 4566
	if (!balanced)
		return 0;
4567

4568 4569 4570 4571
	schedstat_inc(sd, ttwu_move_affine);
	schedstat_inc(p, se.statistics.nr_wakeups_affine);

	return 1;
4572 4573
}

4574 4575 4576 4577 4578
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4579
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4580
		  int this_cpu, int sd_flag)
4581
{
4582
	struct sched_group *idlest = NULL, *group = sd->groups;
4583
	unsigned long min_load = ULONG_MAX, this_load = 0;
4584
	int load_idx = sd->forkexec_idx;
4585
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4586

4587 4588 4589
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4590 4591 4592 4593
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4594

4595 4596
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4597
					tsk_cpus_allowed(p)))
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

4616
		/* Adjust by relative CPU capacity of the group */
4617
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
4639 4640 4641 4642
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
4643 4644 4645
	int i;

	/* Traverse only the allowed CPUs */
4646
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
4669
		} else if (shallowest_idle_cpu == -1) {
4670 4671 4672 4673 4674
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
4675 4676 4677
		}
	}

4678
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4679
}
4680

4681 4682 4683
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4684
static int select_idle_sibling(struct task_struct *p, int target)
4685
{
4686
	struct sched_domain *sd;
4687
	struct sched_group *sg;
4688
	int i = task_cpu(p);
4689

4690 4691
	if (idle_cpu(target))
		return target;
4692 4693

	/*
4694
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4695
	 */
4696 4697
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4698 4699

	/*
4700
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4701
	 */
4702
	sd = rcu_dereference(per_cpu(sd_llc, target));
4703
	for_each_lower_domain(sd) {
4704 4705 4706 4707 4708 4709 4710
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4711
				if (i == target || !idle_cpu(i))
4712 4713
					goto next;
			}
4714

4715 4716 4717 4718 4719 4720 4721 4722
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4723 4724 4725
	return target;
}

4726
/*
4727 4728 4729
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4730
 *
4731 4732
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4733
 *
4734
 * Returns the target cpu number.
4735 4736 4737
 *
 * preempt must be disabled.
 */
4738
static int
4739
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4740
{
4741
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4742 4743
	int cpu = smp_processor_id();
	int new_cpu = cpu;
4744
	int want_affine = 0;
4745
	int sync = wake_flags & WF_SYNC;
4746

4747 4748
	if (sd_flag & SD_BALANCE_WAKE)
		want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4749

4750
	rcu_read_lock();
4751
	for_each_domain(cpu, tmp) {
4752 4753 4754
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

4755
		/*
4756 4757
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4758
		 */
4759 4760 4761
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4762
			break;
4763
		}
4764

4765
		if (tmp->flags & sd_flag)
4766 4767 4768
			sd = tmp;
	}

4769 4770
	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
		prev_cpu = cpu;
4771

4772
	if (sd_flag & SD_BALANCE_WAKE) {
4773 4774
		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
4775
	}
4776

4777 4778
	while (sd) {
		struct sched_group *group;
4779
		int weight;
4780

4781
		if (!(sd->flags & sd_flag)) {
4782 4783 4784
			sd = sd->child;
			continue;
		}
4785

4786
		group = find_idlest_group(sd, p, cpu, sd_flag);
4787 4788 4789 4790
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4791

4792
		new_cpu = find_idlest_cpu(group, p, cpu);
4793 4794 4795 4796
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4797
		}
4798 4799 4800

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4801
		weight = sd->span_weight;
4802 4803
		sd = NULL;
		for_each_domain(cpu, tmp) {
4804
			if (weight <= tmp->span_weight)
4805
				break;
4806
			if (tmp->flags & sd_flag)
4807 4808 4809
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4810
	}
4811 4812
unlock:
	rcu_read_unlock();
4813

4814
	return new_cpu;
4815
}
4816 4817 4818 4819 4820 4821 4822 4823 4824 4825

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
4837 4838
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
4839
	}
4840 4841 4842

	/* We have migrated, no longer consider this task hot */
	se->exec_start = 0;
4843
}
4844 4845
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
4846 4847
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4848 4849 4850 4851
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
4852 4853
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
4854 4855 4856 4857 4858 4859 4860 4861 4862
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
4863
	 */
4864
	return calc_delta_fair(gran, se);
4865 4866
}

4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
4889
	gran = wakeup_gran(curr, se);
4890 4891 4892 4893 4894 4895
	if (vdiff > gran)
		return 1;

	return 0;
}

4896 4897
static void set_last_buddy(struct sched_entity *se)
{
4898 4899 4900 4901 4902
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
4903 4904 4905 4906
}

static void set_next_buddy(struct sched_entity *se)
{
4907 4908 4909 4910 4911
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
4912 4913
}

4914 4915
static void set_skip_buddy(struct sched_entity *se)
{
4916 4917
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
4918 4919
}

4920 4921 4922
/*
 * Preempt the current task with a newly woken task if needed:
 */
4923
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4924 4925
{
	struct task_struct *curr = rq->curr;
4926
	struct sched_entity *se = &curr->se, *pse = &p->se;
4927
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4928
	int scale = cfs_rq->nr_running >= sched_nr_latency;
4929
	int next_buddy_marked = 0;
4930

I
Ingo Molnar 已提交
4931 4932 4933
	if (unlikely(se == pse))
		return;

4934
	/*
4935
	 * This is possible from callers such as attach_tasks(), in which we
4936 4937 4938 4939 4940 4941 4942
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

4943
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
4944
		set_next_buddy(pse);
4945 4946
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
4947

4948 4949 4950
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
4951 4952 4953 4954 4955 4956
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
4957 4958 4959 4960
	 */
	if (test_tsk_need_resched(curr))
		return;

4961 4962 4963 4964 4965
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

4966
	/*
4967 4968
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
4969
	 */
4970
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4971
		return;
4972

4973
	find_matching_se(&se, &pse);
4974
	update_curr(cfs_rq_of(se));
4975
	BUG_ON(!pse);
4976 4977 4978 4979 4980 4981 4982
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
4983
		goto preempt;
4984
	}
4985

4986
	return;
4987

4988
preempt:
4989
	resched_curr(rq);
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
5004 5005
}

5006 5007
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5008 5009 5010
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
5011
	struct task_struct *p;
5012
	int new_tasks;
5013

5014
again:
5015 5016
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
5017
		goto idle;
5018

5019
	if (prev->sched_class != &fair_sched_class)
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
		if (curr && curr->on_rq)
			update_curr(cfs_rq);
		else
			curr = NULL;

		/*
		 * This call to check_cfs_rq_runtime() will do the throttle and
		 * dequeue its entity in the parent(s). Therefore the 'simple'
		 * nr_running test will indeed be correct.
		 */
		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
			goto simple;

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
5091

5092
	if (!cfs_rq->nr_running)
5093
		goto idle;
5094

5095
	put_prev_task(rq, prev);
5096

5097
	do {
5098
		se = pick_next_entity(cfs_rq, NULL);
5099
		set_next_entity(cfs_rq, se);
5100 5101 5102
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
5103
	p = task_of(se);
5104

5105 5106
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
5107 5108

	return p;
5109 5110

idle:
5111
	new_tasks = idle_balance(rq);
5112 5113 5114 5115 5116
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
5117
	if (new_tasks < 0)
5118 5119
		return RETRY_TASK;

5120
	if (new_tasks > 0)
5121 5122 5123
		goto again;

	return NULL;
5124 5125 5126 5127 5128
}

/*
 * Account for a descheduled task:
 */
5129
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5130 5131 5132 5133 5134 5135
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5136
		put_prev_entity(cfs_rq, se);
5137 5138 5139
	}
}

5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
5165 5166 5167 5168 5169
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
5170
		rq_clock_skip_update(rq, true);
5171 5172 5173 5174 5175
	}

	set_skip_buddy(se);
}

5176 5177 5178 5179
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

5180 5181
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

5192
#ifdef CONFIG_SMP
5193
/**************************************************
P
Peter Zijlstra 已提交
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
5217
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
5218 5219 5220 5221 5222 5223
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5224
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5310

5311 5312
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5313 5314
enum fbq_type { regular, remote, all };

5315
#define LBF_ALL_PINNED	0x01
5316
#define LBF_NEED_BREAK	0x02
5317 5318
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5319 5320 5321 5322 5323

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5324
	int			src_cpu;
5325 5326 5327 5328

	int			dst_cpu;
	struct rq		*dst_rq;

5329 5330
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5331
	enum cpu_idle_type	idle;
5332
	long			imbalance;
5333 5334 5335
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5336
	unsigned int		flags;
5337 5338 5339 5340

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5341 5342

	enum fbq_type		fbq_type;
5343
	struct list_head	tasks;
5344 5345
};

5346 5347 5348
/*
 * Is this task likely cache-hot:
 */
5349
static int task_hot(struct task_struct *p, struct lb_env *env)
5350 5351 5352
{
	s64 delta;

5353 5354
	lockdep_assert_held(&env->src_rq->lock);

5355 5356 5357 5358 5359 5360 5361 5362 5363
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
5364
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5365 5366 5367 5368 5369 5370 5371 5372 5373
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

5374
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5375 5376 5377 5378

	return delta < (s64)sysctl_sched_migration_cost;
}

5379 5380 5381 5382
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
5383
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5384 5385
	int src_nid, dst_nid;

5386
	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5387 5388 5389 5390 5391 5392 5393
	    !(env->sd->flags & SD_NUMA)) {
		return false;
	}

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5394
	if (src_nid == dst_nid)
5395 5396
		return false;

5397 5398 5399 5400
	if (numa_group) {
		/* Task is already in the group's interleave set. */
		if (node_isset(src_nid, numa_group->active_nodes))
			return false;
5401

5402 5403 5404
		/* Task is moving into the group's interleave set. */
		if (node_isset(dst_nid, numa_group->active_nodes))
			return true;
5405

5406 5407 5408 5409 5410
		return group_faults(p, dst_nid) > group_faults(p, src_nid);
	}

	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
5411 5412
		return true;

5413
	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5414
}
5415 5416 5417 5418


static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
5419
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5420 5421 5422 5423 5424
	int src_nid, dst_nid;

	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
		return false;

5425
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5426 5427 5428 5429 5430
		return false;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5431
	if (src_nid == dst_nid)
5432 5433
		return false;

5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
	if (numa_group) {
		/* Task is moving within/into the group's interleave set. */
		if (node_isset(dst_nid, numa_group->active_nodes))
			return false;

		/* Task is moving out of the group's interleave set. */
		if (node_isset(src_nid, numa_group->active_nodes))
			return true;

		return group_faults(p, dst_nid) < group_faults(p, src_nid);
	}

5446 5447 5448 5449
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid)
		return true;

5450
	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5451 5452
}

5453 5454 5455 5456 5457 5458
#else
static inline bool migrate_improves_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5459 5460 5461 5462 5463 5464

static inline bool migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5465 5466
#endif

5467 5468 5469 5470
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5471
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5472 5473
{
	int tsk_cache_hot = 0;
5474 5475 5476

	lockdep_assert_held(&env->src_rq->lock);

5477 5478
	/*
	 * We do not migrate tasks that are:
5479
	 * 1) throttled_lb_pair, or
5480
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5481 5482
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5483
	 */
5484 5485 5486
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5487
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5488
		int cpu;
5489

5490
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5491

5492 5493
		env->flags |= LBF_SOME_PINNED;

5494 5495 5496 5497 5498 5499 5500 5501
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5502
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5503 5504
			return 0;

5505 5506 5507
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5508
				env->flags |= LBF_DST_PINNED;
5509 5510 5511
				env->new_dst_cpu = cpu;
				break;
			}
5512
		}
5513

5514 5515
		return 0;
	}
5516 5517

	/* Record that we found atleast one task that could run on dst_cpu */
5518
	env->flags &= ~LBF_ALL_PINNED;
5519

5520
	if (task_running(env->src_rq, p)) {
5521
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5522 5523 5524 5525 5526
		return 0;
	}

	/*
	 * Aggressive migration if:
5527 5528 5529
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5530
	 */
5531
	tsk_cache_hot = task_hot(p, env);
5532 5533
	if (!tsk_cache_hot)
		tsk_cache_hot = migrate_degrades_locality(p, env);
5534

5535 5536
	if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5537 5538 5539 5540
		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
5541 5542 5543
		return 1;
	}

Z
Zhang Hang 已提交
5544 5545
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5546 5547
}

5548
/*
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	deactivate_task(env->src_rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, env->dst_cpu);
}

5560
/*
5561
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5562 5563
 * part of active balancing operations within "domain".
 *
5564
 * Returns a task if successful and NULL otherwise.
5565
 */
5566
static struct task_struct *detach_one_task(struct lb_env *env)
5567 5568 5569
{
	struct task_struct *p, *n;

5570 5571
	lockdep_assert_held(&env->src_rq->lock);

5572 5573 5574
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5575

5576
		detach_task(p, env);
5577

5578
		/*
5579
		 * Right now, this is only the second place where
5580
		 * lb_gained[env->idle] is updated (other is detach_tasks)
5581
		 * so we can safely collect stats here rather than
5582
		 * inside detach_tasks().
5583 5584
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
5585
		return p;
5586
	}
5587
	return NULL;
5588 5589
}

5590 5591
static const unsigned int sched_nr_migrate_break = 32;

5592
/*
5593 5594
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
5595
 *
5596
 * Returns number of detached tasks if successful and 0 otherwise.
5597
 */
5598
static int detach_tasks(struct lb_env *env)
5599
{
5600 5601
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5602
	unsigned long load;
5603 5604 5605
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
5606

5607
	if (env->imbalance <= 0)
5608
		return 0;
5609

5610 5611
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5612

5613 5614
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5615
		if (env->loop > env->loop_max)
5616
			break;
5617 5618

		/* take a breather every nr_migrate tasks */
5619
		if (env->loop > env->loop_break) {
5620
			env->loop_break += sched_nr_migrate_break;
5621
			env->flags |= LBF_NEED_BREAK;
5622
			break;
5623
		}
5624

5625
		if (!can_migrate_task(p, env))
5626 5627 5628
			goto next;

		load = task_h_load(p);
5629

5630
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5631 5632
			goto next;

5633
		if ((load / 2) > env->imbalance)
5634
			goto next;
5635

5636 5637 5638 5639
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
5640
		env->imbalance -= load;
5641 5642

#ifdef CONFIG_PREEMPT
5643 5644
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
5645
		 * kernels will stop after the first task is detached to minimize
5646 5647
		 * the critical section.
		 */
5648
		if (env->idle == CPU_NEWLY_IDLE)
5649
			break;
5650 5651
#endif

5652 5653 5654 5655
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5656
		if (env->imbalance <= 0)
5657
			break;
5658 5659 5660

		continue;
next:
5661
		list_move_tail(&p->se.group_node, tasks);
5662
	}
5663

5664
	/*
5665 5666 5667
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
5668
	 */
5669
	schedstat_add(env->sd, lb_gained[env->idle], detached);
5670

5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	p->on_rq = TASK_ON_RQ_QUEUED;
	activate_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
5712

5713 5714 5715 5716
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
5717 5718
}

P
Peter Zijlstra 已提交
5719
#ifdef CONFIG_FAIR_GROUP_SCHED
5720 5721 5722
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
5723
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5724
{
5725 5726
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5727

5728 5729 5730
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
5731

5732
	update_cfs_rq_blocked_load(cfs_rq, 1);
5733

5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
5748
		struct rq *rq = rq_of(cfs_rq);
5749 5750
		update_rq_runnable_avg(rq, rq->nr_running);
	}
5751 5752
}

5753
static void update_blocked_averages(int cpu)
5754 5755
{
	struct rq *rq = cpu_rq(cpu);
5756 5757
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5758

5759 5760
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5761 5762 5763 5764
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5765
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5766 5767 5768 5769 5770 5771
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5772
	}
5773 5774

	raw_spin_unlock_irqrestore(&rq->lock, flags);
5775 5776
}

5777
/*
5778
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5779 5780 5781
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5782
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5783
{
5784 5785
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5786
	unsigned long now = jiffies;
5787
	unsigned long load;
5788

5789
	if (cfs_rq->last_h_load_update == now)
5790 5791
		return;

5792 5793 5794 5795 5796 5797 5798
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5799

5800
	if (!se) {
5801
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5813 5814
}

5815
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5816
{
5817
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5818

5819
	update_cfs_rq_h_load(cfs_rq);
5820 5821
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
5822 5823
}
#else
5824
static inline void update_blocked_averages(int cpu)
5825 5826 5827
{
}

5828
static unsigned long task_h_load(struct task_struct *p)
5829
{
5830
	return p->se.avg.load_avg_contrib;
5831
}
P
Peter Zijlstra 已提交
5832
#endif
5833 5834

/********** Helpers for find_busiest_group ************************/
5835 5836 5837 5838 5839 5840 5841

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

5842 5843 5844 5845 5846 5847 5848
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5849
	unsigned long load_per_task;
5850
	unsigned long group_capacity;
5851
	unsigned int sum_nr_running; /* Nr tasks running in the group */
5852
	unsigned int group_capacity_factor;
5853 5854
	unsigned int idle_cpus;
	unsigned int group_weight;
5855
	enum group_type group_type;
5856
	int group_has_free_capacity;
5857 5858 5859 5860
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
5861 5862
};

J
Joonsoo Kim 已提交
5863 5864 5865 5866 5867 5868 5869 5870
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
5871
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
5872 5873 5874
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5875
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5876 5877
};

5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
5890
		.total_capacity = 0UL,
5891 5892
		.busiest_stat = {
			.avg_load = 0UL,
5893 5894
			.sum_nr_running = 0,
			.group_type = group_other,
5895 5896 5897 5898
		},
	};
}

5899 5900 5901
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
5902
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5903 5904
 *
 * Return: The load index.
5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

5927
static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5928
{
5929
	return SCHED_CAPACITY_SCALE;
5930 5931
}

5932
unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5933
{
5934
	return default_scale_capacity(sd, cpu);
5935 5936
}

5937
static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5938
{
5939 5940
	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
		return sd->smt_gain / sd->span_weight;
5941

5942
	return SCHED_CAPACITY_SCALE;
5943 5944
}

5945
unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5946
{
5947
	return default_scale_cpu_capacity(sd, cpu);
5948 5949
}

5950
static unsigned long scale_rt_capacity(int cpu)
5951 5952
{
	struct rq *rq = cpu_rq(cpu);
5953
	u64 total, available, age_stamp, avg;
5954
	s64 delta;
5955

5956 5957 5958 5959 5960 5961
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);
5962
	delta = __rq_clock_broken(rq) - age_stamp;
5963

5964 5965 5966 5967
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
5968

5969
	if (unlikely(total < avg)) {
5970
		/* Ensures that capacity won't end up being negative */
5971 5972
		available = 0;
	} else {
5973
		available = total - avg;
5974
	}
5975

5976 5977
	if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
		total = SCHED_CAPACITY_SCALE;
5978

5979
	total >>= SCHED_CAPACITY_SHIFT;
5980 5981 5982 5983

	return div_u64(available, total);
}

5984
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5985
{
5986
	unsigned long capacity = SCHED_CAPACITY_SCALE;
5987 5988
	struct sched_group *sdg = sd->groups;

5989 5990 5991 5992
	if (sched_feat(ARCH_CAPACITY))
		capacity *= arch_scale_cpu_capacity(sd, cpu);
	else
		capacity *= default_scale_cpu_capacity(sd, cpu);
5993

5994
	capacity >>= SCHED_CAPACITY_SHIFT;
5995

5996
	sdg->sgc->capacity_orig = capacity;
5997

5998
	if (sched_feat(ARCH_CAPACITY))
5999
		capacity *= arch_scale_freq_capacity(sd, cpu);
6000
	else
6001
		capacity *= default_scale_capacity(sd, cpu);
6002

6003
	capacity >>= SCHED_CAPACITY_SHIFT;
6004

6005
	capacity *= scale_rt_capacity(cpu);
6006
	capacity >>= SCHED_CAPACITY_SHIFT;
6007

6008 6009
	if (!capacity)
		capacity = 1;
6010

6011 6012
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
6013 6014
}

6015
void update_group_capacity(struct sched_domain *sd, int cpu)
6016 6017 6018
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
6019
	unsigned long capacity, capacity_orig;
6020 6021 6022 6023
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
6024
	sdg->sgc->next_update = jiffies + interval;
6025 6026

	if (!child) {
6027
		update_cpu_capacity(sd, cpu);
6028 6029 6030
		return;
	}

6031
	capacity_orig = capacity = 0;
6032

P
Peter Zijlstra 已提交
6033 6034 6035 6036 6037 6038
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

6039
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6040
			struct sched_group_capacity *sgc;
6041
			struct rq *rq = cpu_rq(cpu);
6042

6043
			/*
6044
			 * build_sched_domains() -> init_sched_groups_capacity()
6045 6046 6047
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
6048 6049
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
6050
			 *
6051
			 * This avoids capacity/capacity_orig from being 0 and
6052 6053
			 * causing divide-by-zero issues on boot.
			 *
6054
			 * Runtime updates will correct capacity_orig.
6055 6056
			 */
			if (unlikely(!rq->sd)) {
6057 6058
				capacity_orig += capacity_of(cpu);
				capacity += capacity_of(cpu);
6059 6060
				continue;
			}
6061

6062 6063 6064
			sgc = rq->sd->groups->sgc;
			capacity_orig += sgc->capacity_orig;
			capacity += sgc->capacity;
6065
		}
P
Peter Zijlstra 已提交
6066 6067 6068 6069 6070 6071 6072 6073
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
6074 6075
			capacity_orig += group->sgc->capacity_orig;
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
6076 6077 6078
			group = group->next;
		} while (group != child->groups);
	}
6079

6080 6081
	sdg->sgc->capacity_orig = capacity_orig;
	sdg->sgc->capacity = capacity;
6082 6083
}

6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
6095
	 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
6096
	 */
6097
	if (!(sd->flags & SD_SHARE_CPUCAPACITY))
6098 6099 6100
		return 0;

	/*
6101
	 * If ~90% of the cpu_capacity is still there, we're good.
6102
	 */
6103
	if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
6104 6105 6106 6107 6108
		return 1;

	return 0;
}

6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
6125 6126
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
6127 6128
 *
 * When this is so detected; this group becomes a candidate for busiest; see
6129
 * update_sd_pick_busiest(). And calculate_imbalance() and
6130
 * find_busiest_group() avoid some of the usual balance conditions to allow it
6131 6132 6133 6134 6135 6136 6137
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

6138
static inline int sg_imbalanced(struct sched_group *group)
6139
{
6140
	return group->sgc->imbalance;
6141 6142
}

6143
/*
6144
 * Compute the group capacity factor.
6145
 *
6146
 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
6147
 * first dividing out the smt factor and computing the actual number of cores
6148
 * and limit unit capacity with that.
6149
 */
6150
static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
6151
{
6152
	unsigned int capacity_factor, smt, cpus;
6153
	unsigned int capacity, capacity_orig;
6154

6155 6156
	capacity = group->sgc->capacity;
	capacity_orig = group->sgc->capacity_orig;
6157
	cpus = group->group_weight;
6158

6159
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
6160
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
6161
	capacity_factor = cpus / smt; /* cores */
6162

6163
	capacity_factor = min_t(unsigned,
6164
		capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
6165 6166
	if (!capacity_factor)
		capacity_factor = fix_small_capacity(env->sd, group);
6167

6168
	return capacity_factor;
6169 6170
}

6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
static enum group_type
group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->group_capacity_factor)
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

6183 6184
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6185
 * @env: The load balancing environment.
6186 6187 6188 6189
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
6190
 * @overload: Indicate more than one runnable task for any CPU.
6191
 */
6192 6193
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
6194 6195
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
6196
{
6197
	unsigned long load;
6198
	int i;
6199

6200 6201
	memset(sgs, 0, sizeof(*sgs));

6202
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6203 6204 6205
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
6206
		if (local_group)
6207
			load = target_load(i, load_idx);
6208
		else
6209 6210 6211
			load = source_load(i, load_idx);

		sgs->group_load += load;
6212
		sgs->sum_nr_running += rq->cfs.h_nr_running;
6213 6214 6215 6216

		if (rq->nr_running > 1)
			*overload = true;

6217 6218 6219 6220
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
6221
		sgs->sum_weighted_load += weighted_cpuload(i);
6222 6223
		if (idle_cpu(i))
			sgs->idle_cpus++;
6224 6225
	}

6226 6227
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
6228
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6229

6230
	if (sgs->sum_nr_running)
6231
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6232

6233
	sgs->group_weight = group->group_weight;
6234
	sgs->group_capacity_factor = sg_capacity_factor(env, group);
6235
	sgs->group_type = group_classify(group, sgs);
6236

6237
	if (sgs->group_capacity_factor > sgs->sum_nr_running)
6238
		sgs->group_has_free_capacity = 1;
6239 6240
}

6241 6242
/**
 * update_sd_pick_busiest - return 1 on busiest group
6243
 * @env: The load balancing environment.
6244 6245
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
6246
 * @sgs: sched_group statistics
6247 6248 6249
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
6250 6251 6252
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
6253
 */
6254
static bool update_sd_pick_busiest(struct lb_env *env,
6255 6256
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
6257
				   struct sg_lb_stats *sgs)
6258
{
6259
	struct sg_lb_stats *busiest = &sds->busiest_stat;
6260

6261
	if (sgs->group_type > busiest->group_type)
6262 6263
		return true;

6264 6265 6266 6267 6268 6269 6270 6271
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
6272 6273 6274 6275 6276 6277 6278
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
6279
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6280 6281 6282 6283 6284 6285 6286 6287 6288 6289
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6320
/**
6321
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6322
 * @env: The load balancing environment.
6323 6324
 * @sds: variable to hold the statistics for this sched_domain.
 */
6325
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6326
{
6327 6328
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6329
	struct sg_lb_stats tmp_sgs;
6330
	int load_idx, prefer_sibling = 0;
6331
	bool overload = false;
6332 6333 6334 6335

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6336
	load_idx = get_sd_load_idx(env->sd, env->idle);
6337 6338

	do {
J
Joonsoo Kim 已提交
6339
		struct sg_lb_stats *sgs = &tmp_sgs;
6340 6341
		int local_group;

6342
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6343 6344 6345
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6346 6347

			if (env->idle != CPU_NEWLY_IDLE ||
6348 6349
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6350
		}
6351

6352 6353
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6354

6355 6356 6357
		if (local_group)
			goto next_group;

6358 6359
		/*
		 * In case the child domain prefers tasks go to siblings
6360
		 * first, lower the sg capacity factor to one so that we'll try
6361 6362
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6363
		 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6364 6365 6366
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
6367
		 */
6368
		if (prefer_sibling && sds->local &&
6369
		    sds->local_stat.group_has_free_capacity) {
6370
			sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6371 6372
			sgs->group_type = group_classify(sg, sgs);
		}
6373

6374
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6375
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6376
			sds->busiest_stat = *sgs;
6377 6378
		}

6379 6380 6381
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6382
		sds->total_capacity += sgs->group_capacity;
6383

6384
		sg = sg->next;
6385
	} while (sg != env->sd->groups);
6386 6387 6388

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6389 6390 6391 6392 6393 6394 6395

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6415
 * Return: 1 when packing is required and a task should be moved to
6416 6417
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6418
 * @env: The load balancing environment.
6419 6420
 * @sds: Statistics of the sched_domain which is to be packed
 */
6421
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6422 6423 6424
{
	int busiest_cpu;

6425
	if (!(env->sd->flags & SD_ASYM_PACKING))
6426 6427 6428 6429 6430 6431
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6432
	if (env->dst_cpu > busiest_cpu)
6433 6434
		return 0;

6435
	env->imbalance = DIV_ROUND_CLOSEST(
6436
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6437
		SCHED_CAPACITY_SCALE);
6438

6439
	return 1;
6440 6441 6442 6443 6444 6445
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6446
 * @env: The load balancing environment.
6447 6448
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6449 6450
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6451
{
6452
	unsigned long tmp, capa_now = 0, capa_move = 0;
6453
	unsigned int imbn = 2;
6454
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6455
	struct sg_lb_stats *local, *busiest;
6456

J
Joonsoo Kim 已提交
6457 6458
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6459

J
Joonsoo Kim 已提交
6460 6461 6462 6463
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6464

J
Joonsoo Kim 已提交
6465
	scaled_busy_load_per_task =
6466
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6467
		busiest->group_capacity;
J
Joonsoo Kim 已提交
6468

6469 6470
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6471
		env->imbalance = busiest->load_per_task;
6472 6473 6474 6475 6476
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
6477
	 * however we may be able to increase total CPU capacity used by
6478 6479 6480
	 * moving them.
	 */

6481
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
6482
			min(busiest->load_per_task, busiest->avg_load);
6483
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
6484
			min(local->load_per_task, local->avg_load);
6485
	capa_now /= SCHED_CAPACITY_SCALE;
6486 6487

	/* Amount of load we'd subtract */
6488
	if (busiest->avg_load > scaled_busy_load_per_task) {
6489
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
6490
			    min(busiest->load_per_task,
6491
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
6492
	}
6493 6494

	/* Amount of load we'd add */
6495
	if (busiest->avg_load * busiest->group_capacity <
6496
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6497 6498
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
6499
	} else {
6500
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6501
		      local->group_capacity;
J
Joonsoo Kim 已提交
6502
	}
6503
	capa_move += local->group_capacity *
6504
		    min(local->load_per_task, local->avg_load + tmp);
6505
	capa_move /= SCHED_CAPACITY_SCALE;
6506 6507

	/* Move if we gain throughput */
6508
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
6509
		env->imbalance = busiest->load_per_task;
6510 6511 6512 6513 6514
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
6515
 * @env: load balance environment
6516 6517
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
6518
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6519
{
6520
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
6521 6522 6523 6524
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6525

6526
	if (busiest->group_type == group_imbalanced) {
6527 6528 6529 6530
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
6531 6532
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
6533 6534
	}

6535 6536 6537
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
6538
	 * its cpu_capacity, while calculating max_load..)
6539
	 */
6540 6541
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6542 6543
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6544 6545
	}

6546 6547 6548 6549 6550
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
J
Joonsoo Kim 已提交
6551
		load_above_capacity =
6552
			(busiest->sum_nr_running - busiest->group_capacity_factor);
6553

6554
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6555
		load_above_capacity /= busiest->group_capacity;
6556 6557 6558 6559 6560 6561 6562 6563 6564 6565
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6566
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6567 6568

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6569
	env->imbalance = min(
6570 6571
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
6572
	) / SCHED_CAPACITY_SCALE;
6573 6574 6575

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6576
	 * there is no guarantee that any tasks will be moved so we'll have
6577 6578 6579
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6580
	if (env->imbalance < busiest->load_per_task)
6581
		return fix_small_imbalance(env, sds);
6582
}
6583

6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6596
 * @env: The load balancing environment.
6597
 *
6598
 * Return:	- The busiest group if imbalance exists.
6599 6600 6601 6602
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6603
static struct sched_group *find_busiest_group(struct lb_env *env)
6604
{
J
Joonsoo Kim 已提交
6605
	struct sg_lb_stats *local, *busiest;
6606 6607
	struct sd_lb_stats sds;

6608
	init_sd_lb_stats(&sds);
6609 6610 6611 6612 6613

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6614
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6615 6616
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6617

6618 6619
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6620 6621
		return sds.busiest;

6622
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6623
	if (!sds.busiest || busiest->sum_nr_running == 0)
6624 6625
		goto out_balanced;

6626 6627
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
6628

P
Peter Zijlstra 已提交
6629 6630
	/*
	 * If the busiest group is imbalanced the below checks don't
6631
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6632 6633
	 * isn't true due to cpus_allowed constraints and the like.
	 */
6634
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
6635 6636
		goto force_balance;

6637
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6638 6639
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
	    !busiest->group_has_free_capacity)
6640 6641
		goto force_balance;

6642
	/*
6643
	 * If the local group is busier than the selected busiest group
6644 6645
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
6646
	if (local->avg_load >= busiest->avg_load)
6647 6648
		goto out_balanced;

6649 6650 6651 6652
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
6653
	if (local->avg_load >= sds.avg_load)
6654 6655
		goto out_balanced;

6656
	if (env->idle == CPU_IDLE) {
6657
		/*
6658 6659 6660 6661 6662
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
6663
		 */
6664 6665
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6666
			goto out_balanced;
6667 6668 6669 6670 6671
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6672 6673
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6674
			goto out_balanced;
6675
	}
6676

6677
force_balance:
6678
	/* Looks like there is an imbalance. Compute it */
6679
	calculate_imbalance(env, &sds);
6680 6681 6682
	return sds.busiest;

out_balanced:
6683
	env->imbalance = 0;
6684 6685 6686 6687 6688 6689
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6690
static struct rq *find_busiest_queue(struct lb_env *env,
6691
				     struct sched_group *group)
6692 6693
{
	struct rq *busiest = NULL, *rq;
6694
	unsigned long busiest_load = 0, busiest_capacity = 1;
6695 6696
	int i;

6697
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6698
		unsigned long capacity, capacity_factor, wl;
6699 6700 6701 6702
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6703

6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

6726
		capacity = capacity_of(i);
6727
		capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6728 6729
		if (!capacity_factor)
			capacity_factor = fix_small_capacity(env->sd, group);
6730

6731
		wl = weighted_cpuload(i);
6732

6733 6734
		/*
		 * When comparing with imbalance, use weighted_cpuload()
6735
		 * which is not scaled with the cpu capacity.
6736
		 */
6737
		if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6738 6739
			continue;

6740 6741
		/*
		 * For the load comparisons with the other cpu's, consider
6742 6743 6744
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
6745
		 *
6746
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6747
		 * multiplication to rid ourselves of the division works out
6748 6749
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
6750
		 */
6751
		if (wl * busiest_capacity > busiest_load * capacity) {
6752
			busiest_load = wl;
6753
			busiest_capacity = capacity;
6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6768
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6769

6770
static int need_active_balance(struct lb_env *env)
6771
{
6772 6773 6774
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6775 6776 6777 6778 6779 6780

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6781
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6782
			return 1;
6783 6784 6785 6786 6787
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6788 6789
static int active_load_balance_cpu_stop(void *data);

6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6821
	return balance_cpu == env->dst_cpu;
6822 6823
}

6824 6825 6826 6827 6828 6829
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6830
			int *continue_balancing)
6831
{
6832
	int ld_moved, cur_ld_moved, active_balance = 0;
6833
	struct sched_domain *sd_parent = sd->parent;
6834 6835 6836
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6837
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6838

6839 6840
	struct lb_env env = {
		.sd		= sd,
6841 6842
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6843
		.dst_grpmask    = sched_group_cpus(sd->groups),
6844
		.idle		= idle,
6845
		.loop_break	= sched_nr_migrate_break,
6846
		.cpus		= cpus,
6847
		.fbq_type	= all,
6848
		.tasks		= LIST_HEAD_INIT(env.tasks),
6849 6850
	};

6851 6852 6853 6854
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6855
	if (idle == CPU_NEWLY_IDLE)
6856 6857
		env.dst_grpmask = NULL;

6858 6859 6860 6861 6862
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6863 6864
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6865
		goto out_balanced;
6866
	}
6867

6868
	group = find_busiest_group(&env);
6869 6870 6871 6872 6873
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6874
	busiest = find_busiest_queue(&env, group);
6875 6876 6877 6878 6879
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

6880
	BUG_ON(busiest == env.dst_rq);
6881

6882
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6883 6884 6885 6886 6887 6888 6889 6890 6891

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
6892
		env.flags |= LBF_ALL_PINNED;
6893 6894 6895
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6896

6897
more_balance:
6898
		raw_spin_lock_irqsave(&busiest->lock, flags);
6899 6900 6901 6902 6903

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
6904
		cur_ld_moved = detach_tasks(&env);
6905 6906

		/*
6907 6908 6909 6910 6911
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
6912
		 */
6913 6914 6915 6916 6917 6918 6919 6920

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

6921
		local_irq_restore(flags);
6922

6923 6924 6925 6926 6927
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
6947
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6948

6949 6950 6951
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

6952
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6953
			env.dst_cpu	 = env.new_dst_cpu;
6954
			env.flags	&= ~LBF_DST_PINNED;
6955 6956
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
6957

6958 6959 6960 6961 6962 6963
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
6964

6965 6966 6967 6968
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
6969
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6970

6971
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6972 6973 6974
				*group_imbalance = 1;
		}

6975
		/* All tasks on this runqueue were pinned by CPU affinity */
6976
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6977
			cpumask_clear_cpu(cpu_of(busiest), cpus);
6978 6979 6980
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
6981
				goto redo;
6982
			}
6983
			goto out_all_pinned;
6984 6985 6986 6987 6988
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
6989 6990 6991 6992 6993 6994 6995 6996
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
6997

6998
		if (need_active_balance(&env)) {
6999 7000
			raw_spin_lock_irqsave(&busiest->lock, flags);

7001 7002 7003
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
7004 7005
			 */
			if (!cpumask_test_cpu(this_cpu,
7006
					tsk_cpus_allowed(busiest->curr))) {
7007 7008
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
7009
				env.flags |= LBF_ALL_PINNED;
7010 7011 7012
				goto out_one_pinned;
			}

7013 7014 7015 7016 7017
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
7018 7019 7020 7021 7022 7023
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7024

7025
			if (active_balance) {
7026 7027 7028
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
7029
			}
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
7048
		 * detach_tasks).
7049 7050 7051 7052 7053 7054 7055 7056
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
7074 7075 7076 7077 7078 7079
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
7080
	if (((env.flags & LBF_ALL_PINNED) &&
7081
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7082 7083 7084
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

7085
	ld_moved = 0;
7086 7087 7088 7089
out:
	return ld_moved;
}

7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

7117 7118 7119 7120
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
7121
static int idle_balance(struct rq *this_rq)
7122
{
7123 7124
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
7125 7126
	struct sched_domain *sd;
	int pulled_task = 0;
7127
	u64 curr_cost = 0;
7128

7129
	idle_enter_fair(this_rq);
7130

7131 7132 7133 7134 7135 7136
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

7137 7138
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
7139 7140 7141 7142 7143 7144
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

7145
		goto out;
7146
	}
7147

7148 7149 7150 7151 7152
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

7153
	update_blocked_averages(this_cpu);
7154
	rcu_read_lock();
7155
	for_each_domain(this_cpu, sd) {
7156
		int continue_balancing = 1;
7157
		u64 t0, domain_cost;
7158 7159 7160 7161

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7162 7163
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
7164
			break;
7165
		}
7166

7167
		if (sd->flags & SD_BALANCE_NEWIDLE) {
7168 7169
			t0 = sched_clock_cpu(this_cpu);

7170
			pulled_task = load_balance(this_cpu, this_rq,
7171 7172
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
7173 7174 7175 7176 7177 7178

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
7179
		}
7180

7181
		update_next_balance(sd, 0, &next_balance);
7182 7183 7184 7185 7186 7187

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
7188 7189
			break;
	}
7190
	rcu_read_unlock();
7191 7192 7193

	raw_spin_lock(&this_rq->lock);

7194 7195 7196
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

7197
	/*
7198 7199 7200
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
7201
	 */
7202
	if (this_rq->cfs.h_nr_running && !pulled_task)
7203
		pulled_task = 1;
7204

7205 7206 7207
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
7208
		this_rq->next_balance = next_balance;
7209

7210
	/* Is there a task of a high priority class? */
7211
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7212 7213 7214 7215
		pulled_task = -1;

	if (pulled_task) {
		idle_exit_fair(this_rq);
7216
		this_rq->idle_stamp = 0;
7217
	}
7218

7219
	return pulled_task;
7220 7221 7222
}

/*
7223 7224 7225 7226
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
7227
 */
7228
static int active_load_balance_cpu_stop(void *data)
7229
{
7230 7231
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
7232
	int target_cpu = busiest_rq->push_cpu;
7233
	struct rq *target_rq = cpu_rq(target_cpu);
7234
	struct sched_domain *sd;
7235
	struct task_struct *p = NULL;
7236 7237 7238 7239 7240 7241 7242

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
7243 7244 7245

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
7246
		goto out_unlock;
7247 7248 7249 7250 7251 7252 7253 7254 7255

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
7256
	rcu_read_lock();
7257 7258 7259 7260 7261 7262 7263
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
7264 7265
		struct lb_env env = {
			.sd		= sd,
7266 7267 7268 7269
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
7270 7271 7272
			.idle		= CPU_IDLE,
		};

7273 7274
		schedstat_inc(sd, alb_count);

7275 7276
		p = detach_one_task(&env);
		if (p)
7277 7278 7279 7280
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
7281
	rcu_read_unlock();
7282 7283
out_unlock:
	busiest_rq->active_balance = 0;
7284 7285 7286 7287 7288 7289 7290
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

7291
	return 0;
7292 7293
}

7294 7295 7296 7297 7298
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

7299
#ifdef CONFIG_NO_HZ_COMMON
7300 7301 7302 7303 7304 7305
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
7306
static struct {
7307
	cpumask_var_t idle_cpus_mask;
7308
	atomic_t nr_cpus;
7309 7310
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
7311

7312
static inline int find_new_ilb(void)
7313
{
7314
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7315

7316 7317 7318 7319
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7320 7321
}

7322 7323 7324 7325 7326
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7327
static void nohz_balancer_kick(void)
7328 7329 7330 7331 7332
{
	int ilb_cpu;

	nohz.next_balance++;

7333
	ilb_cpu = find_new_ilb();
7334

7335 7336
	if (ilb_cpu >= nr_cpu_ids)
		return;
7337

7338
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7339 7340 7341 7342 7343 7344 7345 7346
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7347 7348 7349
	return;
}

7350
static inline void nohz_balance_exit_idle(int cpu)
7351 7352
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7353 7354 7355 7356 7357 7358 7359
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
7360 7361 7362 7363
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

7364 7365 7366
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
7367
	int cpu = smp_processor_id();
7368 7369

	rcu_read_lock();
7370
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7371 7372 7373 7374 7375

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7376
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7377
unlock:
7378 7379 7380 7381 7382 7383
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7384
	int cpu = smp_processor_id();
7385 7386

	rcu_read_lock();
7387
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7388 7389 7390 7391 7392

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7393
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7394
unlock:
7395 7396 7397
	rcu_read_unlock();
}

7398
/*
7399
 * This routine will record that the cpu is going idle with tick stopped.
7400
 * This info will be used in performing idle load balancing in the future.
7401
 */
7402
void nohz_balance_enter_idle(int cpu)
7403
{
7404 7405 7406 7407 7408 7409
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

7410 7411
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
7412

7413 7414 7415 7416 7417 7418
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

7419 7420 7421
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7422
}
7423

7424
static int sched_ilb_notifier(struct notifier_block *nfb,
7425 7426 7427 7428
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
7429
		nohz_balance_exit_idle(smp_processor_id());
7430 7431 7432 7433 7434
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
7435 7436 7437 7438
#endif

static DEFINE_SPINLOCK(balancing);

7439 7440 7441 7442
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
7443
void update_max_interval(void)
7444 7445 7446 7447
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

7448 7449 7450 7451
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7452
 * Balancing parameters are set up in init_sched_domains.
7453
 */
7454
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7455
{
7456
	int continue_balancing = 1;
7457
	int cpu = rq->cpu;
7458
	unsigned long interval;
7459
	struct sched_domain *sd;
7460 7461 7462
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7463 7464
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7465

7466
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7467

7468
	rcu_read_lock();
7469
	for_each_domain(cpu, sd) {
7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7482 7483 7484
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

7496
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7497 7498 7499 7500 7501 7502 7503 7504

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7505
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7506
				/*
7507
				 * The LBF_DST_PINNED logic could have changed
7508 7509
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
7510
				 */
7511
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7512 7513
			}
			sd->last_balance = jiffies;
7514
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7515 7516 7517 7518 7519 7520 7521 7522
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
7523 7524
	}
	if (need_decay) {
7525
		/*
7526 7527
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
7528
		 */
7529 7530
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
7531
	}
7532
	rcu_read_unlock();
7533 7534 7535 7536 7537 7538 7539 7540 7541 7542

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

7543
#ifdef CONFIG_NO_HZ_COMMON
7544
/*
7545
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7546 7547
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
7548
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7549
{
7550
	int this_cpu = this_rq->cpu;
7551 7552 7553
	struct rq *rq;
	int balance_cpu;

7554 7555 7556
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
7557 7558

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7559
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7560 7561 7562 7563 7564 7565 7566
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
7567
		if (need_resched())
7568 7569
			break;

V
Vincent Guittot 已提交
7570 7571
		rq = cpu_rq(balance_cpu);

7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
			update_idle_cpu_load(rq);
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
7583 7584 7585 7586 7587

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
7588 7589
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7590 7591 7592
}

/*
7593 7594 7595 7596
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
7597
 *     busy cpu's exceeding the group's capacity.
7598 7599
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
7600
 */
7601
static inline int nohz_kick_needed(struct rq *rq)
7602 7603
{
	unsigned long now = jiffies;
7604
	struct sched_domain *sd;
7605
	struct sched_group_capacity *sgc;
7606
	int nr_busy, cpu = rq->cpu;
7607

7608
	if (unlikely(rq->idle_balance))
7609 7610
		return 0;

7611 7612 7613 7614
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
7615
	set_cpu_sd_state_busy();
7616
	nohz_balance_exit_idle(cpu);
7617 7618 7619 7620 7621 7622 7623

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
7624 7625

	if (time_before(now, nohz.next_balance))
7626 7627
		return 0;

7628 7629
	if (rq->nr_running >= 2)
		goto need_kick;
7630

7631
	rcu_read_lock();
7632
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7633

7634
	if (sd) {
7635 7636
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7637

7638
		if (nr_busy > 1)
7639
			goto need_kick_unlock;
7640
	}
7641 7642 7643 7644 7645 7646 7647

	sd = rcu_dereference(per_cpu(sd_asym, cpu));

	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
				  sched_domain_span(sd)) < cpu))
		goto need_kick_unlock;

7648
	rcu_read_unlock();
7649
	return 0;
7650 7651 7652

need_kick_unlock:
	rcu_read_unlock();
7653 7654
need_kick:
	return 1;
7655 7656
}
#else
7657
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7658 7659 7660 7661 7662 7663
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
7664 7665
static void run_rebalance_domains(struct softirq_action *h)
{
7666
	struct rq *this_rq = this_rq();
7667
	enum cpu_idle_type idle = this_rq->idle_balance ?
7668 7669
						CPU_IDLE : CPU_NOT_IDLE;

7670
	rebalance_domains(this_rq, idle);
7671 7672

	/*
7673
	 * If this cpu has a pending nohz_balance_kick, then do the
7674 7675 7676
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
7677
	nohz_idle_balance(this_rq, idle);
7678 7679 7680 7681 7682
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
7683
void trigger_load_balance(struct rq *rq)
7684 7685
{
	/* Don't need to rebalance while attached to NULL domain */
7686 7687 7688 7689
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
7690
		raise_softirq(SCHED_SOFTIRQ);
7691
#ifdef CONFIG_NO_HZ_COMMON
7692
	if (nohz_kick_needed(rq))
7693
		nohz_balancer_kick();
7694
#endif
7695 7696
}

7697 7698 7699
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
7700 7701

	update_runtime_enabled(rq);
7702 7703 7704 7705 7706
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
7707 7708 7709

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
7710 7711
}

7712
#endif /* CONFIG_SMP */
7713

7714 7715 7716
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
7717
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7718 7719 7720 7721 7722 7723
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
7724
		entity_tick(cfs_rq, se, queued);
7725
	}
7726

7727
	if (numabalancing_enabled)
7728
		task_tick_numa(rq, curr);
7729

7730
	update_rq_runnable_avg(rq, 1);
7731 7732 7733
}

/*
P
Peter Zijlstra 已提交
7734 7735 7736
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
7737
 */
P
Peter Zijlstra 已提交
7738
static void task_fork_fair(struct task_struct *p)
7739
{
7740 7741
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
7742
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
7743 7744 7745
	struct rq *rq = this_rq();
	unsigned long flags;

7746
	raw_spin_lock_irqsave(&rq->lock, flags);
7747

7748 7749
	update_rq_clock(rq);

7750 7751 7752
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

7753 7754 7755 7756 7757 7758 7759 7760 7761
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
7762

7763
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
7764

7765 7766
	if (curr)
		se->vruntime = curr->vruntime;
7767
	place_entity(cfs_rq, se, 1);
7768

P
Peter Zijlstra 已提交
7769
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
7770
		/*
7771 7772 7773
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
7774
		swap(curr->vruntime, se->vruntime);
7775
		resched_curr(rq);
7776
	}
7777

7778 7779
	se->vruntime -= cfs_rq->min_vruntime;

7780
	raw_spin_unlock_irqrestore(&rq->lock, flags);
7781 7782
}

7783 7784 7785 7786
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
7787 7788
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7789
{
7790
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
7791 7792
		return;

7793 7794 7795 7796 7797
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
7798
	if (rq->curr == p) {
7799
		if (p->prio > oldprio)
7800
			resched_curr(rq);
7801
	} else
7802
		check_preempt_curr(rq, p, 0);
7803 7804
}

P
Peter Zijlstra 已提交
7805 7806 7807 7808 7809 7810
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
7811
	 * Ensure the task's vruntime is normalized, so that when it's
P
Peter Zijlstra 已提交
7812 7813 7814
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
7815 7816
	 * If it's queued, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it's !queued, then only when
P
Peter Zijlstra 已提交
7817 7818
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
7819
	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
P
Peter Zijlstra 已提交
7820 7821 7822 7823 7824 7825 7826
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
7827

7828
#ifdef CONFIG_SMP
7829 7830 7831 7832 7833
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
7834 7835 7836
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7837 7838
	}
#endif
P
Peter Zijlstra 已提交
7839 7840
}

7841 7842 7843
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
7844
static void switched_to_fair(struct rq *rq, struct task_struct *p)
7845
{
7846
#ifdef CONFIG_FAIR_GROUP_SCHED
7847
	struct sched_entity *se = &p->se;
7848 7849 7850 7851 7852 7853
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
7854
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
7855 7856
		return;

7857 7858 7859 7860 7861
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
7862
	if (rq->curr == p)
7863
		resched_curr(rq);
7864
	else
7865
		check_preempt_curr(rq, p, 0);
7866 7867
}

7868 7869 7870 7871 7872 7873 7874 7875 7876
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

7877 7878 7879 7880 7881 7882 7883
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
7884 7885
}

7886 7887 7888 7889 7890 7891 7892
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
7893
#ifdef CONFIG_SMP
7894
	atomic64_set(&cfs_rq->decay_counter, 1);
7895
	atomic_long_set(&cfs_rq->removed_load, 0);
7896
#endif
7897 7898
}

P
Peter Zijlstra 已提交
7899
#ifdef CONFIG_FAIR_GROUP_SCHED
7900
static void task_move_group_fair(struct task_struct *p, int queued)
P
Peter Zijlstra 已提交
7901
{
P
Peter Zijlstra 已提交
7902
	struct sched_entity *se = &p->se;
7903
	struct cfs_rq *cfs_rq;
P
Peter Zijlstra 已提交
7904

7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
7918
	/*
7919
	 * When !queued, vruntime of the task has usually NOT been normalized.
7920 7921 7922 7923
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
7924 7925
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
7926 7927 7928 7929
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
7930 7931
	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
		queued = 1;
7932

7933
	if (!queued)
P
Peter Zijlstra 已提交
7934
		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7935
	set_task_rq(p, task_cpu(p));
P
Peter Zijlstra 已提交
7936
	se->depth = se->parent ? se->parent->depth + 1 : 0;
7937
	if (!queued) {
P
Peter Zijlstra 已提交
7938 7939
		cfs_rq = cfs_rq_of(se);
		se->vruntime += cfs_rq->min_vruntime;
7940 7941 7942 7943 7944 7945
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
P
Peter Zijlstra 已提交
7946 7947
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7948 7949
#endif
	}
P
Peter Zijlstra 已提交
7950
}
7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
8043
	if (!parent) {
8044
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
8045 8046
		se->depth = 0;
	} else {
8047
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
8048 8049
		se->depth = parent->depth + 1;
	}
8050 8051

	se->my_q = cfs_rq;
8052 8053
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
8084 8085 8086

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
8087
		for_each_sched_entity(se)
8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
8109

8110
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8111 8112 8113 8114 8115 8116 8117 8118 8119
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
8120
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8121 8122 8123 8124

	return rr_interval;
}

8125 8126 8127
/*
 * All the scheduling class methods:
 */
8128
const struct sched_class fair_sched_class = {
8129
	.next			= &idle_sched_class,
8130 8131 8132
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
8133
	.yield_to_task		= yield_to_task_fair,
8134

I
Ingo Molnar 已提交
8135
	.check_preempt_curr	= check_preempt_wakeup,
8136 8137 8138 8139

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

8140
#ifdef CONFIG_SMP
L
Li Zefan 已提交
8141
	.select_task_rq		= select_task_rq_fair,
8142
	.migrate_task_rq	= migrate_task_rq_fair,
8143

8144 8145
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
8146 8147

	.task_waking		= task_waking_fair,
8148
#endif
8149

8150
	.set_curr_task          = set_curr_task_fair,
8151
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
8152
	.task_fork		= task_fork_fair,
8153 8154

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
8155
	.switched_from		= switched_from_fair,
8156
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
8157

8158 8159
	.get_rr_interval	= get_rr_interval_fair,

8160 8161
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
8162
#ifdef CONFIG_FAIR_GROUP_SCHED
8163
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
8164
#endif
8165 8166 8167
};

#ifdef CONFIG_SCHED_DEBUG
8168
void print_cfs_stats(struct seq_file *m, int cpu)
8169 8170 8171
{
	struct cfs_rq *cfs_rq;

8172
	rcu_read_lock();
8173
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8174
		print_cfs_rq(m, cpu, cfs_rq);
8175
	rcu_read_unlock();
8176 8177
}
#endif
8178 8179 8180 8181 8182 8183

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

8184
#ifdef CONFIG_NO_HZ_COMMON
8185
	nohz.next_balance = jiffies;
8186
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8187
	cpu_notifier(sched_ilb_notifier, 0);
8188 8189 8190 8191
#endif
#endif /* SMP */

}