fair.c 211.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

182
#define WMULT_CONST	(~0U)
183 184
#define WMULT_SHIFT	32

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
201 202

/*
203 204 205 206 207 208 209 210 211 212
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213
 */
214
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215
{
216 217
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
218

219
	__update_inv_weight(lw);
220

221 222 223 224 225
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
226 227
	}

228 229
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
230

231 232 233 234
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
235

236
	return mul_u64_u32_shr(delta_exec, fact, shift);
237 238 239 240
}


const struct sched_class fair_sched_class;
241

242 243 244 245
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

246
#ifdef CONFIG_FAIR_GROUP_SCHED
247

248
/* cpu runqueue to which this cfs_rq is attached */
249 250
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
251
	return cfs_rq->rq;
252 253
}

254 255
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
256

257 258 259 260 261 262 263 264
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

286 287
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
288

289 290 291
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
292 293 294 295 296 297 298 299 300 301 302 303
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
305
		}
306 307

		cfs_rq->on_list = 1;
308
		/* We should have no load, but we need to update last_decay. */
309
		update_cfs_rq_blocked_load(cfs_rq, 0);
310 311 312 313 314 315 316 317 318 319 320
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
321 322 323 324 325
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
326
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
327 328 329
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
330
		return se->cfs_rq;
P
Peter Zijlstra 已提交
331

P
Peter Zijlstra 已提交
332
	return NULL;
P
Peter Zijlstra 已提交
333 334 335 336 337 338 339
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

340 341 342 343 344 345 346 347 348 349 350 351 352
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
353 354
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

372 373 374 375 376 377
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
378

379 380 381
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
382 383 384 385
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
386 387
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
388

P
Peter Zijlstra 已提交
389
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390
{
P
Peter Zijlstra 已提交
391
	return &task_rq(p)->cfs;
392 393
}

P
Peter Zijlstra 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

408 409 410 411 412 413 414 415
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
416 417 418 419 420 421 422 423
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

424 425 426 427 428
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
429 430
#endif	/* CONFIG_FAIR_GROUP_SCHED */

431
static __always_inline
432
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433 434 435 436 437

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

438
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439
{
440
	s64 delta = (s64)(vruntime - max_vruntime);
441
	if (delta > 0)
442
		max_vruntime = vruntime;
443

444
	return max_vruntime;
445 446
}

447
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
448 449 450 451 452 453 454 455
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

456 457 458 459 460 461
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

462 463 464 465 466 467 468 469 470 471 472 473
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
474
		if (!cfs_rq->curr)
475 476 477 478 479
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

480
	/* ensure we never gain time by being placed backwards. */
481
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 483 484 485
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
486 487
}

488 489 490
/*
 * Enqueue an entity into the rb-tree:
 */
491
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
508
		if (entity_before(se, entry)) {
509 510 511 512 513 514 515 516 517 518 519
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
520
	if (leftmost)
I
Ingo Molnar 已提交
521
		cfs_rq->rb_leftmost = &se->run_node;
522 523 524 525 526

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

527
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528
{
P
Peter Zijlstra 已提交
529 530 531 532 533 534
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
535

536 537 538
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

539
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540
{
541 542 543 544 545 546
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
547 548
}

549 550 551 552 553 554 555 556 557 558 559
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
560
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561
{
562
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563

564 565
	if (!last)
		return NULL;
566 567

	return rb_entry(last, struct sched_entity, run_node);
568 569
}

570 571 572 573
/**************************************************************
 * Scheduling class statistics methods:
 */

574
int sched_proc_update_handler(struct ctl_table *table, int write,
575
		void __user *buffer, size_t *lenp,
576 577
		loff_t *ppos)
{
578
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579
	int factor = get_update_sysctl_factor();
580 581 582 583 584 585 586

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

587 588 589 590 591 592 593
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

594 595 596
	return 0;
}
#endif
597

598
/*
599
 * delta /= w
600
 */
601
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602
{
603
	if (unlikely(se->load.weight != NICE_0_LOAD))
604
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605 606 607 608

	return delta;
}

609 610 611
/*
 * The idea is to set a period in which each task runs once.
 *
612
 * When there are too many tasks (sched_nr_latency) we have to stretch
613 614 615 616
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
617 618 619
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
620
	unsigned long nr_latency = sched_nr_latency;
621 622

	if (unlikely(nr_running > nr_latency)) {
623
		period = sysctl_sched_min_granularity;
624 625 626 627 628 629
		period *= nr_running;
	}

	return period;
}

630 631 632 633
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
634
 * s = p*P[w/rw]
635
 */
P
Peter Zijlstra 已提交
636
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637
{
M
Mike Galbraith 已提交
638
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639

M
Mike Galbraith 已提交
640
	for_each_sched_entity(se) {
L
Lin Ming 已提交
641
		struct load_weight *load;
642
		struct load_weight lw;
L
Lin Ming 已提交
643 644 645

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
646

M
Mike Galbraith 已提交
647
		if (unlikely(!se->on_rq)) {
648
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
649 650 651 652

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
653
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
654 655
	}
	return slice;
656 657
}

658
/*
A
Andrei Epure 已提交
659
 * We calculate the vruntime slice of a to-be-inserted task.
660
 *
661
 * vs = s/w
662
 */
663
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
664
{
665
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 667
}

668
#ifdef CONFIG_SMP
669
static int select_idle_sibling(struct task_struct *p, int cpu);
670 671
static unsigned long task_h_load(struct task_struct *p);

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

690
/*
691
 * Update the current task's runtime statistics.
692
 */
693
static void update_curr(struct cfs_rq *cfs_rq)
694
{
695
	struct sched_entity *curr = cfs_rq->curr;
696
	u64 now = rq_clock_task(rq_of(cfs_rq));
697
	u64 delta_exec;
698 699 700 701

	if (unlikely(!curr))
		return;

702 703
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
704
		return;
705

I
Ingo Molnar 已提交
706
	curr->exec_start = now;
707

708 709 710 711 712 713 714 715 716
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

717 718 719
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

720
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
721
		cpuacct_charge(curtask, delta_exec);
722
		account_group_exec_runtime(curtask, delta_exec);
723
	}
724 725

	account_cfs_rq_runtime(cfs_rq, delta_exec);
726 727
}

728 729 730 731 732
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

733
static inline void
734
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
735
{
736
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
737 738 739 740 741
}

/*
 * Task is being enqueued - update stats:
 */
742
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
743 744 745 746 747
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
748
	if (se != cfs_rq->curr)
749
		update_stats_wait_start(cfs_rq, se);
750 751 752
}

static void
753
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
754
{
755
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
756
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
757 758
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
759
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
760 761 762
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
763
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
764 765
	}
#endif
766
	schedstat_set(se->statistics.wait_start, 0);
767 768 769
}

static inline void
770
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
771 772 773 774 775
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
776
	if (se != cfs_rq->curr)
777
		update_stats_wait_end(cfs_rq, se);
778 779 780 781 782 783
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
784
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
785 786 787 788
{
	/*
	 * We are starting a new run period:
	 */
789
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
790 791 792 793 794 795
}

/**************************************************
 * Scheduling class queueing methods:
 */

796 797
#ifdef CONFIG_NUMA_BALANCING
/*
798 799 800
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
801
 */
802 803
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
804 805 806

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
807

808 809 810
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
835
	unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
836 837 838
	unsigned int scan, floor;
	unsigned int windows = 1;

839 840
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

857 858 859 860 861 862 863 864 865 866 867 868
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

869 870 871 872 873
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
874
	pid_t gid;
875 876

	struct rcu_head rcu;
877
	nodemask_t active_nodes;
878
	unsigned long total_faults;
879 880 881 882 883
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
884
	unsigned long *faults_cpu;
885
	unsigned long faults[0];
886 887
};

888 889 890 891 892 893 894 895 896
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

897 898 899 900 901
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

902 903 904 905 906 907 908
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
909
{
910
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
911 912 913 914
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
915
	if (!p->numa_faults)
916 917
		return 0;

918 919
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
920 921
}

922 923 924 925 926
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

927 928
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
929 930
}

931 932
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
933 934
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
935 936
}

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1002 1003 1004 1005 1006 1007
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1008 1009
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1010
{
1011
	unsigned long faults, total_faults;
1012

1013
	if (!p->numa_faults)
1014 1015 1016 1017 1018 1019 1020
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1021
	faults = task_faults(p, nid);
1022 1023
	faults += score_nearby_nodes(p, nid, dist, true);

1024
	return 1000 * faults / total_faults;
1025 1026
}

1027 1028
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1029
{
1030 1031 1032 1033 1034 1035 1036 1037
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1038 1039
		return 0;

1040
	faults = group_faults(p, nid);
1041 1042
	faults += score_nearby_nodes(p, nid, dist, false);

1043
	return 1000 * faults / total_faults;
1044 1045
}

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Do not migrate if the destination is not a node that
	 * is actively used by this numa group.
	 */
	if (!node_isset(dst_nid, ng->active_nodes))
		return false;

	/*
	 * Source is a node that is not actively used by this
	 * numa group, while the destination is. Migrate.
	 */
	if (!node_isset(src_nid, ng->active_nodes))
		return true;

	/*
	 * Both source and destination are nodes in active
	 * use by this numa group. Maximize memory bandwidth
	 * by migrating from more heavily used groups, to less
	 * heavily used ones, spreading the load around.
	 * Use a 1/4 hysteresis to avoid spurious page movement.
	 */
	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}

1109
static unsigned long weighted_cpuload(const int cpu);
1110 1111
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1112
static unsigned long capacity_of(int cpu);
1113 1114
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1115
/* Cached statistics for all CPUs within a node */
1116
struct numa_stats {
1117
	unsigned long nr_running;
1118
	unsigned long load;
1119 1120

	/* Total compute capacity of CPUs on a node */
1121
	unsigned long compute_capacity;
1122 1123

	/* Approximate capacity in terms of runnable tasks on a node */
1124
	unsigned long task_capacity;
1125
	int has_free_capacity;
1126
};
1127

1128 1129 1130 1131 1132
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1133 1134
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1135 1136 1137 1138 1139 1140 1141

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1142
		ns->compute_capacity += capacity_of(cpu);
1143 1144

		cpus++;
1145 1146
	}

1147 1148 1149 1150 1151
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1152 1153
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1154 1155 1156 1157
	 */
	if (!cpus)
		return;

1158 1159 1160 1161 1162 1163
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1164
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1165 1166
}

1167 1168
struct task_numa_env {
	struct task_struct *p;
1169

1170 1171
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1172

1173
	struct numa_stats src_stats, dst_stats;
1174

1175
	int imbalance_pct;
1176
	int dist;
1177 1178 1179

	struct task_struct *best_task;
	long best_imp;
1180 1181 1182
	int best_cpu;
};

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1196
static bool load_too_imbalanced(long src_load, long dst_load,
1197 1198 1199
				struct task_numa_env *env)
{
	long imb, old_imb;
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	long orig_src_load, orig_dst_load;
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1212 1213 1214 1215 1216 1217

	/* We care about the slope of the imbalance, not the direction. */
	if (dst_load < src_load)
		swap(dst_load, src_load);

	/* Is the difference below the threshold? */
1218 1219
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1220 1221 1222 1223 1224 1225 1226
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
	 * Compare it with the old imbalance.
	 */
1227 1228 1229
	orig_src_load = env->src_stats.load;
	orig_dst_load = env->dst_stats.load;

1230 1231 1232
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);

1233 1234
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;
1235 1236

	/* Would this change make things worse? */
1237
	return (imb > old_imb);
1238 1239
}

1240 1241 1242 1243 1244 1245
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1246 1247
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1248 1249 1250 1251
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1252
	long src_load, dst_load;
1253
	long load;
1254
	long imp = env->p->numa_group ? groupimp : taskimp;
1255
	long moveimp = imp;
1256
	int dist = env->dist;
1257 1258

	rcu_read_lock();
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

	raw_spin_lock_irq(&dst_rq->lock);
	cur = dst_rq->curr;
	/*
	 * No need to move the exiting task, and this ensures that ->curr
	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
	 * is safe under RCU read lock.
	 * Note that rcu_read_lock() itself can't protect from the final
	 * put_task_struct() after the last schedule().
	 */
	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1270
		cur = NULL;
1271
	raw_spin_unlock_irq(&dst_rq->lock);
1272

1273 1274 1275 1276 1277 1278 1279
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1292 1293
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1294
		 * in any group then look only at task weights.
1295
		 */
1296
		if (cur->numa_group == env->p->numa_group) {
1297 1298
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1299 1300 1301 1302 1303 1304
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1305
		} else {
1306 1307 1308 1309 1310 1311
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1312 1313
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1314
			else
1315 1316
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1317
		}
1318 1319
	}

1320
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1321 1322 1323 1324
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1325
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1326
		    !env->dst_stats.has_free_capacity)
1327 1328 1329 1330 1331 1332
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1333 1334
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1335 1336 1337 1338 1339 1340
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1341 1342 1343
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1344

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1362
	if (cur) {
1363 1364 1365
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1366 1367
	}

1368
	if (load_too_imbalanced(src_load, dst_load, env))
1369 1370
		goto unlock;

1371 1372 1373 1374 1375 1376 1377
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur)
		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);

1378 1379 1380 1381 1382 1383
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1384 1385
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1386 1387 1388 1389 1390 1391 1392 1393 1394
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1395
		task_numa_compare(env, taskimp, groupimp);
1396 1397 1398
	}
}

1399 1400 1401 1402
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1403

1404
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1405
		.src_nid = task_node(p),
1406 1407 1408 1409 1410 1411

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1412 1413
	};
	struct sched_domain *sd;
1414
	unsigned long taskweight, groupweight;
1415
	int nid, ret, dist;
1416
	long taskimp, groupimp;
1417

1418
	/*
1419 1420 1421 1422 1423 1424
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1425 1426
	 */
	rcu_read_lock();
1427
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1428 1429
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1430 1431
	rcu_read_unlock();

1432 1433 1434 1435 1436 1437 1438
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1439
		p->numa_preferred_nid = task_node(p);
1440 1441 1442
		return -EINVAL;
	}

1443
	env.dst_nid = p->numa_preferred_nid;
1444 1445 1446 1447 1448 1449
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1450
	update_numa_stats(&env.dst_stats, env.dst_nid);
1451

1452 1453
	/* Try to find a spot on the preferred nid. */
	task_numa_find_cpu(&env, taskimp, groupimp);
1454

1455 1456 1457 1458 1459 1460 1461 1462 1463
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
	if (env.best_cpu == -1 || (p->numa_group &&
			nodes_weight(p->numa_group->active_nodes) > 1)) {
1464 1465 1466
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1467

1468
			dist = node_distance(env.src_nid, env.dst_nid);
1469 1470 1471 1472 1473
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1474

1475
			/* Only consider nodes where both task and groups benefit */
1476 1477
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1478
			if (taskimp < 0 && groupimp < 0)
1479 1480
				continue;

1481
			env.dist = dist;
1482 1483
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1484
			task_numa_find_cpu(&env, taskimp, groupimp);
1485 1486 1487
		}
	}

1488 1489 1490 1491 1492 1493 1494 1495
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	if (p->numa_group) {
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

		if (node_isset(nid, p->numa_group->active_nodes))
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1509

1510 1511 1512 1513 1514 1515
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1516
	if (env.best_task == NULL) {
1517 1518 1519
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1520 1521 1522 1523
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1524 1525
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1526 1527
	put_task_struct(env.best_task);
	return ret;
1528 1529
}

1530 1531 1532
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1533 1534
	unsigned long interval = HZ;

1535
	/* This task has no NUMA fault statistics yet */
1536
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1537 1538
		return;

1539
	/* Periodically retry migrating the task to the preferred node */
1540 1541
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1542 1543

	/* Success if task is already running on preferred CPU */
1544
	if (task_node(p) == p->numa_preferred_nid)
1545 1546 1547
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1548
	task_numa_migrate(p);
1549 1550
}

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1583 1584 1585
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1586 1587 1588
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1589 1590
 */
#define NUMA_PERIOD_SLOTS 10
1591
#define NUMA_PERIOD_THRESHOLD 7
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
	 * to automatic numa balancing. Scan slower
	 */
	if (local + shared == 0) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1648
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1649 1650 1651 1652 1653 1654 1655 1656
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
		delta = p->se.avg.runnable_avg_sum;
		*period = p->se.avg.runnable_avg_period;
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
		nodemask_t max_group;
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
		nodes = max_group;
	}
	return nid;
}

1771 1772
static void task_numa_placement(struct task_struct *p)
{
1773 1774
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1775
	unsigned long fault_types[2] = { 0, 0 };
1776 1777
	unsigned long total_faults;
	u64 runtime, period;
1778
	spinlock_t *group_lock = NULL;
1779

1780
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1781 1782 1783
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1784
	p->numa_scan_period_max = task_scan_max(p);
1785

1786 1787 1788 1789
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1790 1791 1792
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1793
		spin_lock_irq(group_lock);
1794 1795
	}

1796 1797
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1798 1799
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1800
		unsigned long faults = 0, group_faults = 0;
1801
		int priv;
1802

1803
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1804
			long diff, f_diff, f_weight;
1805

1806 1807 1808 1809
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1810

1811
			/* Decay existing window, copy faults since last scan */
1812 1813 1814
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
1815

1816 1817 1818 1819 1820 1821 1822 1823
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
1824
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1825
				   (total_faults + 1);
1826 1827
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
1828

1829 1830 1831
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
1832
			p->total_numa_faults += diff;
1833
			if (p->numa_group) {
1834 1835 1836 1837 1838 1839 1840 1841 1842
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
1843
				p->numa_group->total_faults += diff;
1844
				group_faults += p->numa_group->faults[mem_idx];
1845
			}
1846 1847
		}

1848 1849 1850 1851
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1852 1853 1854 1855 1856 1857 1858

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1859 1860
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1861
	if (p->numa_group) {
1862
		update_numa_active_node_mask(p->numa_group);
1863
		spin_unlock_irq(group_lock);
1864
		max_nid = preferred_group_nid(p, max_group_nid);
1865 1866
	}

1867 1868 1869 1870 1871 1872 1873
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
1874
	}
1875 1876
}

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1888 1889
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1890 1891 1892 1893 1894 1895 1896 1897 1898
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1899
				    4*nr_node_ids*sizeof(unsigned long);
1900 1901 1902 1903 1904 1905 1906

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
1907
		grp->gid = p->pid;
1908
		/* Second half of the array tracks nids where faults happen */
1909 1910
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
1911

1912 1913
		node_set(task_node(current), grp->active_nodes);

1914
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1915
			grp->faults[i] = p->numa_faults[i];
1916

1917
		grp->total_faults = p->total_numa_faults;
1918

1919 1920 1921 1922 1923 1924 1925 1926
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
1927
		goto no_join;
1928 1929 1930

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1931
		goto no_join;
1932 1933 1934

	my_grp = p->numa_group;
	if (grp == my_grp)
1935
		goto no_join;
1936 1937 1938 1939 1940 1941

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1942
		goto no_join;
1943 1944 1945 1946 1947

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1948
		goto no_join;
1949

1950 1951 1952 1953 1954 1955 1956
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
1957

1958 1959 1960
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

1961
	if (join && !get_numa_group(grp))
1962
		goto no_join;
1963 1964 1965 1966 1967 1968

	rcu_read_unlock();

	if (!join)
		return;

1969 1970
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
1971

1972
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1973 1974
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
1975
	}
1976 1977
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
1978 1979 1980 1981 1982

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
1983
	spin_unlock_irq(&grp->lock);
1984 1985 1986 1987

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
1988 1989 1990 1991 1992
	return;

no_join:
	rcu_read_unlock();
	return;
1993 1994 1995 1996 1997
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
1998
	void *numa_faults = p->numa_faults;
1999 2000
	unsigned long flags;
	int i;
2001 2002

	if (grp) {
2003
		spin_lock_irqsave(&grp->lock, flags);
2004
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2005
			grp->faults[i] -= p->numa_faults[i];
2006
		grp->total_faults -= p->total_numa_faults;
2007

2008
		grp->nr_tasks--;
2009
		spin_unlock_irqrestore(&grp->lock, flags);
2010
		RCU_INIT_POINTER(p->numa_group, NULL);
2011 2012 2013
		put_numa_group(grp);
	}

2014
	p->numa_faults = NULL;
2015
	kfree(numa_faults);
2016 2017
}

2018 2019 2020
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2021
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2022 2023
{
	struct task_struct *p = current;
2024
	bool migrated = flags & TNF_MIGRATED;
2025
	int cpu_node = task_node(current);
2026
	int local = !!(flags & TNF_FAULT_LOCAL);
2027
	int priv;
2028

2029
	if (!numabalancing_enabled)
2030 2031
		return;

2032 2033 2034 2035
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2036
	/* Allocate buffer to track faults on a per-node basis */
2037 2038
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2039
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2040

2041 2042
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2043
			return;
2044

2045
		p->total_numa_faults = 0;
2046
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2047
	}
2048

2049 2050 2051 2052 2053 2054 2055 2056
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2057
		if (!priv && !(flags & TNF_NO_GROUP))
2058
			task_numa_group(p, last_cpupid, flags, &priv);
2059 2060
	}

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
	if (!priv && !local && p->numa_group &&
			node_isset(cpu_node, p->numa_group->active_nodes) &&
			node_isset(mem_node, p->numa_group->active_nodes))
		local = 1;

2072
	task_numa_placement(p);
2073

2074 2075 2076 2077 2078
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2079 2080
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2081 2082 2083
	if (migrated)
		p->numa_pages_migrated += pages;

2084 2085
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2086
	p->numa_faults_locality[local] += pages;
2087 2088
}

2089 2090 2091 2092 2093 2094
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

2095 2096 2097 2098 2099 2100 2101 2102 2103
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2104
	struct vm_area_struct *vma;
2105
	unsigned long start, end;
2106
	unsigned long nr_pte_updates = 0;
2107
	long pages;
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2123
	if (!mm->numa_next_scan) {
2124 2125
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2126 2127
	}

2128 2129 2130 2131 2132 2133 2134
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2135 2136 2137 2138
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2139

2140
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2141 2142 2143
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2144 2145 2146 2147 2148 2149
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2150 2151 2152 2153 2154
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
2155

2156
	down_read(&mm->mmap_sem);
2157
	vma = find_vma(mm, start);
2158 2159
	if (!vma) {
		reset_ptenuma_scan(p);
2160
		start = 0;
2161 2162
		vma = mm->mmap;
	}
2163
	for (; vma; vma = vma->vm_next) {
2164
		if (!vma_migratable(vma) || !vma_policy_mof(vma))
2165 2166
			continue;

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2177 2178 2179 2180 2181 2182
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2183

2184 2185 2186 2187
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2188 2189 2190 2191 2192 2193 2194 2195 2196
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2197

2198 2199 2200
			start = end;
			if (pages <= 0)
				goto out;
2201 2202

			cond_resched();
2203
		} while (end != vma->vm_end);
2204
	}
2205

2206
out:
2207
	/*
P
Peter Zijlstra 已提交
2208 2209 2210 2211
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2212 2213
	 */
	if (vma)
2214
		mm->numa_scan_offset = start;
2215 2216 2217
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
2244
		if (!curr->node_stamp)
2245
			curr->numa_scan_period = task_scan_min(curr);
2246
		curr->node_stamp += period;
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2258 2259 2260 2261 2262 2263 2264 2265

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2266 2267
#endif /* CONFIG_NUMA_BALANCING */

2268 2269 2270 2271
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2272
	if (!parent_entity(se))
2273
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2274
#ifdef CONFIG_SMP
2275 2276 2277 2278 2279 2280
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2281
#endif
2282 2283 2284 2285 2286 2287 2288
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2289
	if (!parent_entity(se))
2290
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2291 2292
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2293
		list_del_init(&se->group_node);
2294
	}
2295 2296 2297
	cfs_rq->nr_running--;
}

2298 2299
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2300 2301 2302 2303 2304 2305 2306 2307 2308
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
2309
	tg_weight = atomic_long_read(&tg->load_avg);
2310
	tg_weight -= cfs_rq->tg_load_contrib;
2311 2312 2313 2314 2315
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

2316
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2317
{
2318
	long tg_weight, load, shares;
2319

2320
	tg_weight = calc_tg_weight(tg, cfs_rq);
2321
	load = cfs_rq->load.weight;
2322 2323

	shares = (tg->shares * load);
2324 2325
	if (tg_weight)
		shares /= tg_weight;
2326 2327 2328 2329 2330 2331 2332 2333 2334

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2335
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2336 2337 2338 2339
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2340 2341 2342
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2343 2344 2345 2346
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2347
		account_entity_dequeue(cfs_rq, se);
2348
	}
P
Peter Zijlstra 已提交
2349 2350 2351 2352 2353 2354 2355

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2356 2357
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2358
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2359 2360 2361
{
	struct task_group *tg;
	struct sched_entity *se;
2362
	long shares;
P
Peter Zijlstra 已提交
2363 2364 2365

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2366
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2367
		return;
2368 2369 2370 2371
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2372
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2373 2374 2375 2376

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2377
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2378 2379 2380 2381
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2382
#ifdef CONFIG_SMP
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2411 2412 2413 2414 2415 2416
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2429 2430
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2431 2432 2433 2434 2435 2436
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2437 2438
	}

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
2504 2505
	u64 delta, periods;
	u32 runnable_contrib;
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

2569
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2570
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2571 2572 2573 2574 2575
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
2576
	se->avg.decay_count = 0;
2577
	if (!decays)
2578
		return 0;
2579 2580

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2581 2582

	return decays;
2583 2584
}

2585 2586 2587 2588 2589
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
2590
	long tg_contrib;
2591 2592 2593 2594

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

2595 2596 2597
	if (!tg_contrib)
		return;

2598 2599
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
2600 2601 2602
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
2603

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
2615
	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2616 2617 2618 2619 2620 2621 2622 2623 2624
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

2625 2626 2627 2628
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
2629 2630
	int runnable_avg;

2631 2632 2633
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
2634 2635
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
2665
}
2666 2667 2668 2669 2670 2671

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
}
2672
#else /* CONFIG_FAIR_GROUP_SCHED */
2673 2674
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
2675 2676
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
2677
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2678
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2679
#endif /* CONFIG_FAIR_GROUP_SCHED */
2680

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

2691 2692 2693 2694 2695
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

2696 2697 2698
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
2699
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2700 2701
		__update_group_entity_contrib(se);
	}
2702 2703 2704 2705

	return se->avg.load_avg_contrib - old_contrib;
}

2706 2707 2708 2709 2710 2711 2712 2713 2714
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

2715 2716
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

2717
/* Update a sched_entity's runnable average */
2718 2719
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
2720
{
2721 2722
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
2723
	u64 now;
2724

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2735 2736 2737
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
2738 2739 2740 2741

	if (!update_cfs_rq)
		return;

2742 2743
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
2744 2745 2746 2747 2748 2749 2750 2751
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
2752
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2753
{
2754
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2755 2756 2757
	u64 decays;

	decays = now - cfs_rq->last_decay;
2758
	if (!decays && !force_update)
2759 2760
		return;

2761 2762 2763
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2764 2765
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
2766

2767 2768 2769 2770 2771 2772
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
2773 2774

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2775
}
2776

2777 2778
/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2779 2780
						  struct sched_entity *se,
						  int wakeup)
2781
{
2782 2783 2784 2785
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
2786 2787 2788 2789
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
2790 2791
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
2792
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
2808 2809
		wakeup = 0;
	} else {
2810
		__synchronize_entity_decay(se);
2811 2812
	}

2813 2814
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
2815
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2816 2817
		update_entity_load_avg(se, 0);
	}
2818

2819
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2820 2821
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2822 2823
}

2824 2825 2826 2827 2828
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
2829
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2830 2831
						  struct sched_entity *se,
						  int sleep)
2832
{
2833
	update_entity_load_avg(se, 1);
2834 2835
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2836

2837
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2838 2839 2840 2841
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2842
}
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

2864 2865
static int idle_balance(struct rq *this_rq);

2866 2867
#else /* CONFIG_SMP */

2868 2869
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
2870
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2871
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2872 2873
					   struct sched_entity *se,
					   int wakeup) {}
2874
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2875 2876
					   struct sched_entity *se,
					   int sleep) {}
2877 2878
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
2879 2880 2881 2882 2883 2884

static inline int idle_balance(struct rq *rq)
{
	return 0;
}

2885
#endif /* CONFIG_SMP */
2886

2887
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2888 2889
{
#ifdef CONFIG_SCHEDSTATS
2890 2891 2892 2893 2894
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2895
	if (se->statistics.sleep_start) {
2896
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2897 2898 2899 2900

		if ((s64)delta < 0)
			delta = 0;

2901 2902
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2903

2904
		se->statistics.sleep_start = 0;
2905
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2906

2907
		if (tsk) {
2908
			account_scheduler_latency(tsk, delta >> 10, 1);
2909 2910
			trace_sched_stat_sleep(tsk, delta);
		}
2911
	}
2912
	if (se->statistics.block_start) {
2913
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2914 2915 2916 2917

		if ((s64)delta < 0)
			delta = 0;

2918 2919
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2920

2921
		se->statistics.block_start = 0;
2922
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2923

2924
		if (tsk) {
2925
			if (tsk->in_iowait) {
2926 2927
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2928
				trace_sched_stat_iowait(tsk, delta);
2929 2930
			}

2931 2932
			trace_sched_stat_blocked(tsk, delta);

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2944
		}
2945 2946 2947 2948
	}
#endif
}

P
Peter Zijlstra 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2962 2963 2964
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2965
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2966

2967 2968 2969 2970 2971 2972
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2973
	if (initial && sched_feat(START_DEBIT))
2974
		vruntime += sched_vslice(cfs_rq, se);
2975

2976
	/* sleeps up to a single latency don't count. */
2977
	if (!initial) {
2978
		unsigned long thresh = sysctl_sched_latency;
2979

2980 2981 2982 2983 2984 2985
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2986

2987
		vruntime -= thresh;
2988 2989
	}

2990
	/* ensure we never gain time by being placed backwards. */
2991
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2992 2993
}

2994 2995
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2996
static void
2997
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2998
{
2999 3000
	/*
	 * Update the normalized vruntime before updating min_vruntime
3001
	 * through calling update_curr().
3002
	 */
3003
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3004 3005
		se->vruntime += cfs_rq->min_vruntime;

3006
	/*
3007
	 * Update run-time statistics of the 'current'.
3008
	 */
3009
	update_curr(cfs_rq);
3010
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3011 3012
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
3013

3014
	if (flags & ENQUEUE_WAKEUP) {
3015
		place_entity(cfs_rq, se, 0);
3016
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
3017
	}
3018

3019
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
3020
	check_spread(cfs_rq, se);
3021 3022
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3023
	se->on_rq = 1;
3024

3025
	if (cfs_rq->nr_running == 1) {
3026
		list_add_leaf_cfs_rq(cfs_rq);
3027 3028
		check_enqueue_throttle(cfs_rq);
	}
3029 3030
}

3031
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3032
{
3033 3034
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3035
		if (cfs_rq->last != se)
3036
			break;
3037 3038

		cfs_rq->last = NULL;
3039 3040
	}
}
P
Peter Zijlstra 已提交
3041

3042 3043 3044 3045
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3046
		if (cfs_rq->next != se)
3047
			break;
3048 3049

		cfs_rq->next = NULL;
3050
	}
P
Peter Zijlstra 已提交
3051 3052
}

3053 3054 3055 3056
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3057
		if (cfs_rq->skip != se)
3058
			break;
3059 3060

		cfs_rq->skip = NULL;
3061 3062 3063
	}
}

P
Peter Zijlstra 已提交
3064 3065
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3066 3067 3068 3069 3070
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3071 3072 3073

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3074 3075
}

3076
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3077

3078
static void
3079
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3080
{
3081 3082 3083 3084
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3085
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3086

3087
	update_stats_dequeue(cfs_rq, se);
3088
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
3089
#ifdef CONFIG_SCHEDSTATS
3090 3091 3092 3093
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
3094
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3095
			if (tsk->state & TASK_UNINTERRUPTIBLE)
3096
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3097
		}
3098
#endif
P
Peter Zijlstra 已提交
3099 3100
	}

P
Peter Zijlstra 已提交
3101
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3102

3103
	if (se != cfs_rq->curr)
3104
		__dequeue_entity(cfs_rq, se);
3105
	se->on_rq = 0;
3106
	account_entity_dequeue(cfs_rq, se);
3107 3108 3109 3110 3111 3112

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
3113
	if (!(flags & DEQUEUE_SLEEP))
3114
		se->vruntime -= cfs_rq->min_vruntime;
3115

3116 3117 3118
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3119
	update_min_vruntime(cfs_rq);
3120
	update_cfs_shares(cfs_rq);
3121 3122 3123 3124 3125
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3126
static void
I
Ingo Molnar 已提交
3127
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3128
{
3129
	unsigned long ideal_runtime, delta_exec;
3130 3131
	struct sched_entity *se;
	s64 delta;
3132

P
Peter Zijlstra 已提交
3133
	ideal_runtime = sched_slice(cfs_rq, curr);
3134
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3135
	if (delta_exec > ideal_runtime) {
3136
		resched_curr(rq_of(cfs_rq));
3137 3138 3139 3140 3141
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3153 3154
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3155

3156 3157
	if (delta < 0)
		return;
3158

3159
	if (delta > ideal_runtime)
3160
		resched_curr(rq_of(cfs_rq));
3161 3162
}

3163
static void
3164
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3165
{
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

3177
	update_stats_curr_start(cfs_rq, se);
3178
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
3179 3180 3181 3182 3183 3184
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3185
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3186
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
3187 3188 3189
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
3190
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3191 3192
}

3193 3194 3195
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3196 3197 3198 3199 3200 3201 3202
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3203 3204
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3205
{
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3217

3218 3219 3220 3221 3222
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3233 3234 3235
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3236

3237 3238 3239 3240 3241 3242
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3243 3244 3245 3246 3247 3248
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3249
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3250 3251

	return se;
3252 3253
}

3254
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3255

3256
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3257 3258 3259 3260 3261 3262
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3263
		update_curr(cfs_rq);
3264

3265 3266 3267
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
3268
	check_spread(cfs_rq, prev);
3269
	if (prev->on_rq) {
3270
		update_stats_wait_start(cfs_rq, prev);
3271 3272
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3273
		/* in !on_rq case, update occurred at dequeue */
3274
		update_entity_load_avg(prev, 1);
3275
	}
3276
	cfs_rq->curr = NULL;
3277 3278
}

P
Peter Zijlstra 已提交
3279 3280
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3281 3282
{
	/*
3283
	 * Update run-time statistics of the 'current'.
3284
	 */
3285
	update_curr(cfs_rq);
3286

3287 3288 3289
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3290
	update_entity_load_avg(curr, 1);
3291
	update_cfs_rq_blocked_load(cfs_rq, 1);
3292
	update_cfs_shares(cfs_rq);
3293

P
Peter Zijlstra 已提交
3294 3295 3296 3297 3298
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3299
	if (queued) {
3300
		resched_curr(rq_of(cfs_rq));
3301 3302
		return;
	}
P
Peter Zijlstra 已提交
3303 3304 3305 3306 3307 3308 3309 3310
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3311
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3312
		check_preempt_tick(cfs_rq, curr);
3313 3314
}

3315 3316 3317 3318 3319 3320

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3321 3322

#ifdef HAVE_JUMP_LABEL
3323
static struct static_key __cfs_bandwidth_used;
3324 3325 3326

static inline bool cfs_bandwidth_used(void)
{
3327
	return static_key_false(&__cfs_bandwidth_used);
3328 3329
}

3330
void cfs_bandwidth_usage_inc(void)
3331
{
3332 3333 3334 3335 3336 3337
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3338 3339 3340 3341 3342 3343 3344
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3345 3346
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3347 3348
#endif /* HAVE_JUMP_LABEL */

3349 3350 3351 3352 3353 3354 3355 3356
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3357 3358 3359 3360 3361 3362

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3363 3364 3365 3366 3367 3368 3369
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3370
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3382 3383 3384 3385 3386
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3387 3388 3389 3390 3391 3392
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3393
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3394 3395
}

3396 3397
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3398 3399 3400
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3401
	u64 amount = 0, min_amount, expires;
3402 3403 3404 3405 3406 3407 3408

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3409
	else {
P
Paul Turner 已提交
3410 3411 3412 3413 3414 3415 3416 3417
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
3418
			__start_cfs_bandwidth(cfs_b, false);
P
Paul Turner 已提交
3419
		}
3420 3421 3422 3423 3424 3425

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3426
	}
P
Paul Turner 已提交
3427
	expires = cfs_b->runtime_expires;
3428 3429 3430
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3431 3432 3433 3434 3435 3436 3437
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3438 3439

	return cfs_rq->runtime_remaining > 0;
3440 3441
}

P
Paul Turner 已提交
3442 3443 3444 3445 3446
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3447
{
P
Paul Turner 已提交
3448 3449 3450
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3451
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3452 3453
		return;

P
Paul Turner 已提交
3454 3455 3456 3457 3458 3459 3460 3461 3462
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3463 3464 3465
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3466 3467
	 */

3468
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3469 3470 3471 3472 3473 3474 3475 3476
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3477
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3478 3479
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3480
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3481 3482 3483
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3484 3485
		return;

3486 3487 3488 3489 3490
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3491
		resched_curr(rq_of(cfs_rq));
3492 3493
}

3494
static __always_inline
3495
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3496
{
3497
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3498 3499 3500 3501 3502
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3503 3504
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3505
	return cfs_bandwidth_used() && cfs_rq->throttled;
3506 3507
}

3508 3509 3510
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3511
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3540
		/* adjust cfs_rq_clock_task() */
3541
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3542
					     cfs_rq->throttled_clock_task;
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3554 3555
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3556
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3557 3558 3559 3560 3561
	cfs_rq->throttle_count++;

	return 0;
}

3562
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3563 3564 3565 3566 3567 3568 3569 3570
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3571
	/* freeze hierarchy runnable averages while throttled */
3572 3573 3574
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3592
		sub_nr_running(rq, task_delta);
3593 3594

	cfs_rq->throttled = 1;
3595
	cfs_rq->throttled_clock = rq_clock(rq);
3596
	raw_spin_lock(&cfs_b->lock);
3597 3598 3599 3600 3601
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3602
	if (!cfs_b->timer_active)
3603
		__start_cfs_bandwidth(cfs_b, false);
3604 3605 3606
	raw_spin_unlock(&cfs_b->lock);
}

3607
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3608 3609 3610 3611 3612 3613 3614
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3615
	se = cfs_rq->tg->se[cpu_of(rq)];
3616 3617

	cfs_rq->throttled = 0;
3618 3619 3620

	update_rq_clock(rq);

3621
	raw_spin_lock(&cfs_b->lock);
3622
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3623 3624 3625
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3626 3627 3628
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
3647
		add_nr_running(rq, task_delta);
3648 3649 3650

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
3651
		resched_curr(rq);
3652 3653 3654 3655 3656 3657
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
3658 3659
	u64 runtime;
	u64 starting_runtime = remaining;
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

3690
	return starting_runtime - remaining;
3691 3692
}

3693 3694 3695 3696 3697 3698 3699 3700
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3701
	u64 runtime, runtime_expires;
3702
	int throttled;
3703 3704 3705

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
3706
		goto out_deactivate;
3707

3708
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3709
	cfs_b->nr_periods += overrun;
3710

3711 3712 3713 3714 3715 3716
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
3717

3718 3719 3720 3721 3722 3723 3724
	/*
	 * if we have relooped after returning idle once, we need to update our
	 * status as actually running, so that other cpus doing
	 * __start_cfs_bandwidth will stop trying to cancel us.
	 */
	cfs_b->timer_active = 1;

P
Paul Turner 已提交
3725 3726
	__refill_cfs_bandwidth_runtime(cfs_b);

3727 3728 3729
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
3730
		return 0;
3731 3732
	}

3733 3734 3735
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3736 3737 3738
	runtime_expires = cfs_b->runtime_expires;

	/*
3739 3740 3741 3742 3743
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
3744
	 */
3745 3746
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
3747 3748 3749 3750 3751 3752 3753
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3754 3755

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3756
	}
3757

3758 3759 3760 3761 3762 3763 3764
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3765

3766 3767 3768 3769 3770
	return 0;

out_deactivate:
	cfs_b->timer_active = 0;
	return 1;
3771
}
3772

3773 3774 3775 3776 3777 3778 3779
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3780 3781 3782 3783 3784 3785 3786
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3843 3844 3845
	if (!cfs_bandwidth_used())
		return;

3846
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3862 3863 3864
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3865
		return;
3866
	}
3867

3868
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3869
		runtime = cfs_b->runtime;
3870

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
3881
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3882 3883 3884
	raw_spin_unlock(&cfs_b->lock);
}

3885 3886 3887 3888 3889 3890 3891
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3892 3893 3894
	if (!cfs_bandwidth_used())
		return;

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
3910
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3911
{
3912
	if (!cfs_bandwidth_used())
3913
		return false;
3914

3915
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3916
		return false;
3917 3918 3919 3920 3921 3922

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
3923
		return true;
3924 3925

	throttle_cfs_rq(cfs_rq);
3926
	return true;
3927
}
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

3946
	raw_spin_lock(&cfs_b->lock);
3947 3948 3949 3950 3951 3952 3953 3954 3955
	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
3956
	raw_spin_unlock(&cfs_b->lock);
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
3982
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3983 3984 3985 3986 3987 3988 3989
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
3990 3991 3992
	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3993
		raw_spin_unlock(&cfs_b->lock);
3994
		cpu_relax();
3995 3996
		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
3997
		if (!force && cfs_b->timer_active)
3998 3999 4000 4001 4002 4003 4004 4005 4006
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4007 4008 4009 4010
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4011 4012 4013 4014
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4028
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4040
		cfs_rq->runtime_remaining = 1;
4041 4042 4043 4044 4045 4046
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4047 4048 4049 4050 4051 4052
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4053 4054
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4055
	return rq_clock_task(rq_of(cfs_rq));
4056 4057
}

4058
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4059
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4060
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4061
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4062 4063 4064 4065 4066

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4078 4079 4080 4081 4082

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4083 4084
#endif

4085 4086 4087 4088 4089
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4090
static inline void update_runtime_enabled(struct rq *rq) {}
4091
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4092 4093 4094

#endif /* CONFIG_CFS_BANDWIDTH */

4095 4096 4097 4098
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4099 4100 4101 4102 4103 4104 4105 4106
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

4107
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
4108 4109 4110 4111 4112 4113
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4114
				resched_curr(rq);
P
Peter Zijlstra 已提交
4115 4116
			return;
		}
4117
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4118 4119
	}
}
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4130
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4131 4132 4133 4134 4135
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4136
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4137 4138 4139 4140
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4141 4142 4143 4144

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4145 4146
#endif

4147 4148 4149 4150 4151
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4152
static void
4153
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4154 4155
{
	struct cfs_rq *cfs_rq;
4156
	struct sched_entity *se = &p->se;
4157 4158

	for_each_sched_entity(se) {
4159
		if (se->on_rq)
4160 4161
			break;
		cfs_rq = cfs_rq_of(se);
4162
		enqueue_entity(cfs_rq, se, flags);
4163 4164 4165 4166 4167 4168 4169 4170 4171

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4172
		cfs_rq->h_nr_running++;
4173

4174
		flags = ENQUEUE_WAKEUP;
4175
	}
P
Peter Zijlstra 已提交
4176

P
Peter Zijlstra 已提交
4177
	for_each_sched_entity(se) {
4178
		cfs_rq = cfs_rq_of(se);
4179
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4180

4181 4182 4183
		if (cfs_rq_throttled(cfs_rq))
			break;

4184
		update_cfs_shares(cfs_rq);
4185
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
4186 4187
	}

4188 4189
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
4190
		add_nr_running(rq, 1);
4191
	}
4192
	hrtick_update(rq);
4193 4194
}

4195 4196
static void set_next_buddy(struct sched_entity *se);

4197 4198 4199 4200 4201
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4202
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4203 4204
{
	struct cfs_rq *cfs_rq;
4205
	struct sched_entity *se = &p->se;
4206
	int task_sleep = flags & DEQUEUE_SLEEP;
4207 4208 4209

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4210
		dequeue_entity(cfs_rq, se, flags);
4211 4212 4213 4214 4215 4216 4217 4218 4219

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4220
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4221

4222
		/* Don't dequeue parent if it has other entities besides us */
4223 4224 4225 4226 4227 4228 4229
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
4230 4231 4232

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
4233
			break;
4234
		}
4235
		flags |= DEQUEUE_SLEEP;
4236
	}
P
Peter Zijlstra 已提交
4237

P
Peter Zijlstra 已提交
4238
	for_each_sched_entity(se) {
4239
		cfs_rq = cfs_rq_of(se);
4240
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4241

4242 4243 4244
		if (cfs_rq_throttled(cfs_rq))
			break;

4245
		update_cfs_shares(cfs_rq);
4246
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
4247 4248
	}

4249
	if (!se) {
4250
		sub_nr_running(rq, 1);
4251 4252
		update_rq_runnable_avg(rq, 1);
	}
4253
	hrtick_update(rq);
4254 4255
}

4256
#ifdef CONFIG_SMP
4257 4258 4259
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
4260
	return cpu_rq(cpu)->cfs.runnable_load_avg;
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4296
static unsigned long capacity_of(int cpu)
4297
{
4298
	return cpu_rq(cpu)->cpu_capacity;
4299 4300 4301 4302 4303
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4304
	unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4305
	unsigned long load_avg = rq->cfs.runnable_load_avg;
4306 4307

	if (nr_running)
4308
		return load_avg / nr_running;
4309 4310 4311 4312

	return 0;
}

4313 4314 4315 4316 4317 4318 4319
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
4320
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4321
		current->wakee_flips >>= 1;
4322 4323 4324 4325 4326 4327 4328 4329
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4330

4331
static void task_waking_fair(struct task_struct *p)
4332 4333 4334
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4335 4336 4337 4338
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4339

4340 4341 4342 4343 4344 4345 4346 4347
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4348

4349
	se->vruntime -= min_vruntime;
4350
	record_wakee(p);
4351 4352
}

4353
#ifdef CONFIG_FAIR_GROUP_SCHED
4354 4355 4356 4357 4358 4359
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4403
 */
P
Peter Zijlstra 已提交
4404
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4405
{
P
Peter Zijlstra 已提交
4406
	struct sched_entity *se = tg->se[cpu];
4407

4408
	if (!tg->parent)	/* the trivial, non-cgroup case */
4409 4410
		return wl;

P
Peter Zijlstra 已提交
4411
	for_each_sched_entity(se) {
4412
		long w, W;
P
Peter Zijlstra 已提交
4413

4414
		tg = se->my_q->tg;
4415

4416 4417 4418 4419
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4420

4421 4422 4423 4424
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
4425

4426 4427 4428 4429
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
4430
			wl = (w * (long)tg->shares) / W;
4431 4432
		else
			wl = tg->shares;
4433

4434 4435 4436 4437 4438
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4439 4440
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4441 4442 4443 4444

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4445
		wl -= se->load.weight;
4446 4447 4448 4449 4450 4451 4452 4453

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4454 4455
		wg = 0;
	}
4456

P
Peter Zijlstra 已提交
4457
	return wl;
4458 4459
}
#else
P
Peter Zijlstra 已提交
4460

4461
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4462
{
4463
	return wl;
4464
}
P
Peter Zijlstra 已提交
4465

4466 4467
#endif

4468 4469
static int wake_wide(struct task_struct *p)
{
4470
	int factor = this_cpu_read(sd_llc_size);
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

4490
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4491
{
4492
	s64 this_load, load;
4493
	s64 this_eff_load, prev_eff_load;
4494 4495
	int idx, this_cpu, prev_cpu;
	struct task_group *tg;
4496
	unsigned long weight;
4497
	int balanced;
4498

4499 4500 4501 4502 4503 4504 4505
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

4506 4507 4508 4509 4510
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4511

4512 4513 4514 4515 4516
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4517 4518 4519 4520
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

4521
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4522 4523
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4524

4525 4526
	tg = task_group(p);
	weight = p->se.load.weight;
4527

4528 4529
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4530 4531 4532
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4533 4534 4535 4536
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4537 4538
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
4539

4540 4541
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
4542

4543
	if (this_load > 0) {
4544 4545 4546 4547
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4548
	}
4549

4550
	balanced = this_eff_load <= prev_eff_load;
4551

4552
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4553

4554 4555
	if (!balanced)
		return 0;
4556

4557 4558 4559 4560
	schedstat_inc(sd, ttwu_move_affine);
	schedstat_inc(p, se.statistics.nr_wakeups_affine);

	return 1;
4561 4562
}

4563 4564 4565 4566 4567
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4568
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4569
		  int this_cpu, int sd_flag)
4570
{
4571
	struct sched_group *idlest = NULL, *group = sd->groups;
4572
	unsigned long min_load = ULONG_MAX, this_load = 0;
4573
	int load_idx = sd->forkexec_idx;
4574
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4575

4576 4577 4578
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4579 4580 4581 4582
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4583

4584 4585
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4586
					tsk_cpus_allowed(p)))
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

4605
		/* Adjust by relative CPU capacity of the group */
4606
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
4628 4629 4630 4631
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
4632 4633 4634
	int i;

	/* Traverse only the allowed CPUs */
4635
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
4658
		} else if (shallowest_idle_cpu == -1) {
4659 4660 4661 4662 4663
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
4664 4665 4666
		}
	}

4667
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4668
}
4669

4670 4671 4672
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4673
static int select_idle_sibling(struct task_struct *p, int target)
4674
{
4675
	struct sched_domain *sd;
4676
	struct sched_group *sg;
4677
	int i = task_cpu(p);
4678

4679 4680
	if (idle_cpu(target))
		return target;
4681 4682

	/*
4683
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4684
	 */
4685 4686
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4687 4688

	/*
4689
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4690
	 */
4691
	sd = rcu_dereference(per_cpu(sd_llc, target));
4692
	for_each_lower_domain(sd) {
4693 4694 4695 4696 4697 4698 4699
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4700
				if (i == target || !idle_cpu(i))
4701 4702
					goto next;
			}
4703

4704 4705 4706 4707 4708 4709 4710 4711
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4712 4713 4714
	return target;
}

4715
/*
4716 4717 4718
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4719
 *
4720 4721
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4722
 *
4723
 * Returns the target cpu number.
4724 4725 4726
 *
 * preempt must be disabled.
 */
4727
static int
4728
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4729
{
4730
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4731 4732
	int cpu = smp_processor_id();
	int new_cpu = cpu;
4733
	int want_affine = 0;
4734
	int sync = wake_flags & WF_SYNC;
4735

4736 4737
	if (sd_flag & SD_BALANCE_WAKE)
		want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4738

4739
	rcu_read_lock();
4740
	for_each_domain(cpu, tmp) {
4741 4742 4743
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

4744
		/*
4745 4746
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4747
		 */
4748 4749 4750
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4751
			break;
4752
		}
4753

4754
		if (tmp->flags & sd_flag)
4755 4756 4757
			sd = tmp;
	}

4758 4759
	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
		prev_cpu = cpu;
4760

4761
	if (sd_flag & SD_BALANCE_WAKE) {
4762 4763
		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
4764
	}
4765

4766 4767
	while (sd) {
		struct sched_group *group;
4768
		int weight;
4769

4770
		if (!(sd->flags & sd_flag)) {
4771 4772 4773
			sd = sd->child;
			continue;
		}
4774

4775
		group = find_idlest_group(sd, p, cpu, sd_flag);
4776 4777 4778 4779
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4780

4781
		new_cpu = find_idlest_cpu(group, p, cpu);
4782 4783 4784 4785
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4786
		}
4787 4788 4789

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4790
		weight = sd->span_weight;
4791 4792
		sd = NULL;
		for_each_domain(cpu, tmp) {
4793
			if (weight <= tmp->span_weight)
4794
				break;
4795
			if (tmp->flags & sd_flag)
4796 4797 4798
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4799
	}
4800 4801
unlock:
	rcu_read_unlock();
4802

4803
	return new_cpu;
4804
}
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
4826 4827
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
4828
	}
4829 4830 4831

	/* We have migrated, no longer consider this task hot */
	se->exec_start = 0;
4832
}
4833 4834
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
4835 4836
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4837 4838 4839 4840
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
4841 4842
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
4843 4844 4845 4846 4847 4848 4849 4850 4851
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
4852
	 */
4853
	return calc_delta_fair(gran, se);
4854 4855
}

4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
4878
	gran = wakeup_gran(curr, se);
4879 4880 4881 4882 4883 4884
	if (vdiff > gran)
		return 1;

	return 0;
}

4885 4886
static void set_last_buddy(struct sched_entity *se)
{
4887 4888 4889 4890 4891
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
4892 4893 4894 4895
}

static void set_next_buddy(struct sched_entity *se)
{
4896 4897 4898 4899 4900
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
4901 4902
}

4903 4904
static void set_skip_buddy(struct sched_entity *se)
{
4905 4906
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
4907 4908
}

4909 4910 4911
/*
 * Preempt the current task with a newly woken task if needed:
 */
4912
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4913 4914
{
	struct task_struct *curr = rq->curr;
4915
	struct sched_entity *se = &curr->se, *pse = &p->se;
4916
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4917
	int scale = cfs_rq->nr_running >= sched_nr_latency;
4918
	int next_buddy_marked = 0;
4919

I
Ingo Molnar 已提交
4920 4921 4922
	if (unlikely(se == pse))
		return;

4923
	/*
4924
	 * This is possible from callers such as attach_tasks(), in which we
4925 4926 4927 4928 4929 4930 4931
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

4932
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
4933
		set_next_buddy(pse);
4934 4935
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
4936

4937 4938 4939
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
4940 4941 4942 4943 4944 4945
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
4946 4947 4948 4949
	 */
	if (test_tsk_need_resched(curr))
		return;

4950 4951 4952 4953 4954
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

4955
	/*
4956 4957
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
4958
	 */
4959
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4960
		return;
4961

4962
	find_matching_se(&se, &pse);
4963
	update_curr(cfs_rq_of(se));
4964
	BUG_ON(!pse);
4965 4966 4967 4968 4969 4970 4971
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
4972
		goto preempt;
4973
	}
4974

4975
	return;
4976

4977
preempt:
4978
	resched_curr(rq);
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
4993 4994
}

4995 4996
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4997 4998 4999
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
5000
	struct task_struct *p;
5001
	int new_tasks;
5002

5003
again:
5004 5005
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
5006
		goto idle;
5007

5008
	if (prev->sched_class != &fair_sched_class)
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
		if (curr && curr->on_rq)
			update_curr(cfs_rq);
		else
			curr = NULL;

		/*
		 * This call to check_cfs_rq_runtime() will do the throttle and
		 * dequeue its entity in the parent(s). Therefore the 'simple'
		 * nr_running test will indeed be correct.
		 */
		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
			goto simple;

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
5080

5081
	if (!cfs_rq->nr_running)
5082
		goto idle;
5083

5084
	put_prev_task(rq, prev);
5085

5086
	do {
5087
		se = pick_next_entity(cfs_rq, NULL);
5088
		set_next_entity(cfs_rq, se);
5089 5090 5091
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
5092
	p = task_of(se);
5093

5094 5095
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
5096 5097

	return p;
5098 5099

idle:
5100
	new_tasks = idle_balance(rq);
5101 5102 5103 5104 5105
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
5106
	if (new_tasks < 0)
5107 5108
		return RETRY_TASK;

5109
	if (new_tasks > 0)
5110 5111 5112
		goto again;

	return NULL;
5113 5114 5115 5116 5117
}

/*
 * Account for a descheduled task:
 */
5118
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5119 5120 5121 5122 5123 5124
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5125
		put_prev_entity(cfs_rq, se);
5126 5127 5128
	}
}

5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
5154 5155 5156 5157 5158 5159
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
5160 5161 5162 5163 5164
	}

	set_skip_buddy(se);
}

5165 5166 5167 5168
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

5169 5170
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

5181
#ifdef CONFIG_SMP
5182
/**************************************************
P
Peter Zijlstra 已提交
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
5206
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
5207 5208 5209 5210 5211 5212
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5213
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5299

5300 5301
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5302 5303
enum fbq_type { regular, remote, all };

5304
#define LBF_ALL_PINNED	0x01
5305
#define LBF_NEED_BREAK	0x02
5306 5307
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5308 5309 5310 5311 5312

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5313
	int			src_cpu;
5314 5315 5316 5317

	int			dst_cpu;
	struct rq		*dst_rq;

5318 5319
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5320
	enum cpu_idle_type	idle;
5321
	long			imbalance;
5322 5323 5324
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5325
	unsigned int		flags;
5326 5327 5328 5329

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5330 5331

	enum fbq_type		fbq_type;
5332
	struct list_head	tasks;
5333 5334
};

5335 5336 5337
/*
 * Is this task likely cache-hot:
 */
5338
static int task_hot(struct task_struct *p, struct lb_env *env)
5339 5340 5341
{
	s64 delta;

5342 5343
	lockdep_assert_held(&env->src_rq->lock);

5344 5345 5346 5347 5348 5349 5350 5351 5352
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
5353
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5354 5355 5356 5357 5358 5359 5360 5361 5362
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

5363
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5364 5365 5366 5367

	return delta < (s64)sysctl_sched_migration_cost;
}

5368 5369 5370 5371
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
5372
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5373 5374
	int src_nid, dst_nid;

5375
	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5376 5377 5378 5379 5380 5381 5382
	    !(env->sd->flags & SD_NUMA)) {
		return false;
	}

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5383
	if (src_nid == dst_nid)
5384 5385
		return false;

5386 5387 5388 5389
	if (numa_group) {
		/* Task is already in the group's interleave set. */
		if (node_isset(src_nid, numa_group->active_nodes))
			return false;
5390

5391 5392 5393
		/* Task is moving into the group's interleave set. */
		if (node_isset(dst_nid, numa_group->active_nodes))
			return true;
5394

5395 5396 5397 5398 5399
		return group_faults(p, dst_nid) > group_faults(p, src_nid);
	}

	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
5400 5401
		return true;

5402
	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5403
}
5404 5405 5406 5407


static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
5408
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5409 5410 5411 5412 5413
	int src_nid, dst_nid;

	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
		return false;

5414
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5415 5416 5417 5418 5419
		return false;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5420
	if (src_nid == dst_nid)
5421 5422
		return false;

5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
	if (numa_group) {
		/* Task is moving within/into the group's interleave set. */
		if (node_isset(dst_nid, numa_group->active_nodes))
			return false;

		/* Task is moving out of the group's interleave set. */
		if (node_isset(src_nid, numa_group->active_nodes))
			return true;

		return group_faults(p, dst_nid) < group_faults(p, src_nid);
	}

5435 5436 5437 5438
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid)
		return true;

5439
	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5440 5441
}

5442 5443 5444 5445 5446 5447
#else
static inline bool migrate_improves_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5448 5449 5450 5451 5452 5453

static inline bool migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5454 5455
#endif

5456 5457 5458 5459
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5460
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5461 5462
{
	int tsk_cache_hot = 0;
5463 5464 5465

	lockdep_assert_held(&env->src_rq->lock);

5466 5467
	/*
	 * We do not migrate tasks that are:
5468
	 * 1) throttled_lb_pair, or
5469
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5470 5471
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5472
	 */
5473 5474 5475
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5476
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5477
		int cpu;
5478

5479
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5480

5481 5482
		env->flags |= LBF_SOME_PINNED;

5483 5484 5485 5486 5487 5488 5489 5490
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5491
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5492 5493
			return 0;

5494 5495 5496
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5497
				env->flags |= LBF_DST_PINNED;
5498 5499 5500
				env->new_dst_cpu = cpu;
				break;
			}
5501
		}
5502

5503 5504
		return 0;
	}
5505 5506

	/* Record that we found atleast one task that could run on dst_cpu */
5507
	env->flags &= ~LBF_ALL_PINNED;
5508

5509
	if (task_running(env->src_rq, p)) {
5510
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5511 5512 5513 5514 5515
		return 0;
	}

	/*
	 * Aggressive migration if:
5516 5517 5518
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5519
	 */
5520
	tsk_cache_hot = task_hot(p, env);
5521 5522
	if (!tsk_cache_hot)
		tsk_cache_hot = migrate_degrades_locality(p, env);
5523

5524 5525
	if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5526 5527 5528 5529
		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
5530 5531 5532
		return 1;
	}

Z
Zhang Hang 已提交
5533 5534
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5535 5536
}

5537
/*
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	deactivate_task(env->src_rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, env->dst_cpu);
}

5549
/*
5550
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5551 5552
 * part of active balancing operations within "domain".
 *
5553
 * Returns a task if successful and NULL otherwise.
5554
 */
5555
static struct task_struct *detach_one_task(struct lb_env *env)
5556 5557 5558
{
	struct task_struct *p, *n;

5559 5560
	lockdep_assert_held(&env->src_rq->lock);

5561 5562 5563
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5564

5565
		detach_task(p, env);
5566

5567
		/*
5568
		 * Right now, this is only the second place where
5569
		 * lb_gained[env->idle] is updated (other is detach_tasks)
5570
		 * so we can safely collect stats here rather than
5571
		 * inside detach_tasks().
5572 5573
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
5574
		return p;
5575
	}
5576
	return NULL;
5577 5578
}

5579 5580
static const unsigned int sched_nr_migrate_break = 32;

5581
/*
5582 5583
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
5584
 *
5585
 * Returns number of detached tasks if successful and 0 otherwise.
5586
 */
5587
static int detach_tasks(struct lb_env *env)
5588
{
5589 5590
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5591
	unsigned long load;
5592 5593 5594
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
5595

5596
	if (env->imbalance <= 0)
5597
		return 0;
5598

5599 5600
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5601

5602 5603
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5604
		if (env->loop > env->loop_max)
5605
			break;
5606 5607

		/* take a breather every nr_migrate tasks */
5608
		if (env->loop > env->loop_break) {
5609
			env->loop_break += sched_nr_migrate_break;
5610
			env->flags |= LBF_NEED_BREAK;
5611
			break;
5612
		}
5613

5614
		if (!can_migrate_task(p, env))
5615 5616 5617
			goto next;

		load = task_h_load(p);
5618

5619
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5620 5621
			goto next;

5622
		if ((load / 2) > env->imbalance)
5623
			goto next;
5624

5625 5626 5627 5628
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
5629
		env->imbalance -= load;
5630 5631

#ifdef CONFIG_PREEMPT
5632 5633
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
5634
		 * kernels will stop after the first task is detached to minimize
5635 5636
		 * the critical section.
		 */
5637
		if (env->idle == CPU_NEWLY_IDLE)
5638
			break;
5639 5640
#endif

5641 5642 5643 5644
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5645
		if (env->imbalance <= 0)
5646
			break;
5647 5648 5649

		continue;
next:
5650
		list_move_tail(&p->se.group_node, tasks);
5651
	}
5652

5653
	/*
5654 5655 5656
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
5657
	 */
5658
	schedstat_add(env->sd, lb_gained[env->idle], detached);
5659

5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	p->on_rq = TASK_ON_RQ_QUEUED;
	activate_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
5701

5702 5703 5704 5705
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
5706 5707
}

P
Peter Zijlstra 已提交
5708
#ifdef CONFIG_FAIR_GROUP_SCHED
5709 5710 5711
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
5712
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5713
{
5714 5715
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5716

5717 5718 5719
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
5720

5721
	update_cfs_rq_blocked_load(cfs_rq, 1);
5722

5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
5737
		struct rq *rq = rq_of(cfs_rq);
5738 5739
		update_rq_runnable_avg(rq, rq->nr_running);
	}
5740 5741
}

5742
static void update_blocked_averages(int cpu)
5743 5744
{
	struct rq *rq = cpu_rq(cpu);
5745 5746
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5747

5748 5749
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5750 5751 5752 5753
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5754
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5755 5756 5757 5758 5759 5760
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5761
	}
5762 5763

	raw_spin_unlock_irqrestore(&rq->lock, flags);
5764 5765
}

5766
/*
5767
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5768 5769 5770
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5771
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5772
{
5773 5774
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5775
	unsigned long now = jiffies;
5776
	unsigned long load;
5777

5778
	if (cfs_rq->last_h_load_update == now)
5779 5780
		return;

5781 5782 5783 5784 5785 5786 5787
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5788

5789
	if (!se) {
5790
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5802 5803
}

5804
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5805
{
5806
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5807

5808
	update_cfs_rq_h_load(cfs_rq);
5809 5810
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
5811 5812
}
#else
5813
static inline void update_blocked_averages(int cpu)
5814 5815 5816
{
}

5817
static unsigned long task_h_load(struct task_struct *p)
5818
{
5819
	return p->se.avg.load_avg_contrib;
5820
}
P
Peter Zijlstra 已提交
5821
#endif
5822 5823

/********** Helpers for find_busiest_group ************************/
5824 5825 5826 5827 5828 5829 5830

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

5831 5832 5833 5834 5835 5836 5837
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5838
	unsigned long load_per_task;
5839
	unsigned long group_capacity;
5840
	unsigned int sum_nr_running; /* Nr tasks running in the group */
5841
	unsigned int group_capacity_factor;
5842 5843
	unsigned int idle_cpus;
	unsigned int group_weight;
5844
	enum group_type group_type;
5845
	int group_has_free_capacity;
5846 5847 5848 5849
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
5850 5851
};

J
Joonsoo Kim 已提交
5852 5853 5854 5855 5856 5857 5858 5859
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
5860
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
5861 5862 5863
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5864
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5865 5866
};

5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
5879
		.total_capacity = 0UL,
5880 5881
		.busiest_stat = {
			.avg_load = 0UL,
5882 5883
			.sum_nr_running = 0,
			.group_type = group_other,
5884 5885 5886 5887
		},
	};
}

5888 5889 5890
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
5891
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5892 5893
 *
 * Return: The load index.
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

5916
static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5917
{
5918
	return SCHED_CAPACITY_SCALE;
5919 5920
}

5921
unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5922
{
5923
	return default_scale_capacity(sd, cpu);
5924 5925
}

5926
static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5927
{
5928 5929
	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
		return sd->smt_gain / sd->span_weight;
5930

5931
	return SCHED_CAPACITY_SCALE;
5932 5933
}

5934
unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5935
{
5936
	return default_scale_cpu_capacity(sd, cpu);
5937 5938
}

5939
static unsigned long scale_rt_capacity(int cpu)
5940 5941
{
	struct rq *rq = cpu_rq(cpu);
5942
	u64 total, available, age_stamp, avg;
5943
	s64 delta;
5944

5945 5946 5947 5948 5949 5950
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);
5951
	delta = __rq_clock_broken(rq) - age_stamp;
5952

5953 5954 5955 5956
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
5957

5958
	if (unlikely(total < avg)) {
5959
		/* Ensures that capacity won't end up being negative */
5960 5961
		available = 0;
	} else {
5962
		available = total - avg;
5963
	}
5964

5965 5966
	if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
		total = SCHED_CAPACITY_SCALE;
5967

5968
	total >>= SCHED_CAPACITY_SHIFT;
5969 5970 5971 5972

	return div_u64(available, total);
}

5973
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5974
{
5975
	unsigned long capacity = SCHED_CAPACITY_SCALE;
5976 5977
	struct sched_group *sdg = sd->groups;

5978 5979 5980 5981
	if (sched_feat(ARCH_CAPACITY))
		capacity *= arch_scale_cpu_capacity(sd, cpu);
	else
		capacity *= default_scale_cpu_capacity(sd, cpu);
5982

5983
	capacity >>= SCHED_CAPACITY_SHIFT;
5984

5985
	sdg->sgc->capacity_orig = capacity;
5986

5987
	if (sched_feat(ARCH_CAPACITY))
5988
		capacity *= arch_scale_freq_capacity(sd, cpu);
5989
	else
5990
		capacity *= default_scale_capacity(sd, cpu);
5991

5992
	capacity >>= SCHED_CAPACITY_SHIFT;
5993

5994
	capacity *= scale_rt_capacity(cpu);
5995
	capacity >>= SCHED_CAPACITY_SHIFT;
5996

5997 5998
	if (!capacity)
		capacity = 1;
5999

6000 6001
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
6002 6003
}

6004
void update_group_capacity(struct sched_domain *sd, int cpu)
6005 6006 6007
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
6008
	unsigned long capacity, capacity_orig;
6009 6010 6011 6012
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
6013
	sdg->sgc->next_update = jiffies + interval;
6014 6015

	if (!child) {
6016
		update_cpu_capacity(sd, cpu);
6017 6018 6019
		return;
	}

6020
	capacity_orig = capacity = 0;
6021

P
Peter Zijlstra 已提交
6022 6023 6024 6025 6026 6027
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

6028
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6029
			struct sched_group_capacity *sgc;
6030
			struct rq *rq = cpu_rq(cpu);
6031

6032
			/*
6033
			 * build_sched_domains() -> init_sched_groups_capacity()
6034 6035 6036
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
6037 6038
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
6039
			 *
6040
			 * This avoids capacity/capacity_orig from being 0 and
6041 6042
			 * causing divide-by-zero issues on boot.
			 *
6043
			 * Runtime updates will correct capacity_orig.
6044 6045
			 */
			if (unlikely(!rq->sd)) {
6046 6047
				capacity_orig += capacity_of(cpu);
				capacity += capacity_of(cpu);
6048 6049
				continue;
			}
6050

6051 6052 6053
			sgc = rq->sd->groups->sgc;
			capacity_orig += sgc->capacity_orig;
			capacity += sgc->capacity;
6054
		}
P
Peter Zijlstra 已提交
6055 6056 6057 6058 6059 6060 6061 6062
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
6063 6064
			capacity_orig += group->sgc->capacity_orig;
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
6065 6066 6067
			group = group->next;
		} while (group != child->groups);
	}
6068

6069 6070
	sdg->sgc->capacity_orig = capacity_orig;
	sdg->sgc->capacity = capacity;
6071 6072
}

6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
6084
	 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
6085
	 */
6086
	if (!(sd->flags & SD_SHARE_CPUCAPACITY))
6087 6088 6089
		return 0;

	/*
6090
	 * If ~90% of the cpu_capacity is still there, we're good.
6091
	 */
6092
	if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
6093 6094 6095 6096 6097
		return 1;

	return 0;
}

6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
6114 6115
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
6116 6117
 *
 * When this is so detected; this group becomes a candidate for busiest; see
6118
 * update_sd_pick_busiest(). And calculate_imbalance() and
6119
 * find_busiest_group() avoid some of the usual balance conditions to allow it
6120 6121 6122 6123 6124 6125 6126
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

6127
static inline int sg_imbalanced(struct sched_group *group)
6128
{
6129
	return group->sgc->imbalance;
6130 6131
}

6132
/*
6133
 * Compute the group capacity factor.
6134
 *
6135
 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
6136
 * first dividing out the smt factor and computing the actual number of cores
6137
 * and limit unit capacity with that.
6138
 */
6139
static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
6140
{
6141
	unsigned int capacity_factor, smt, cpus;
6142
	unsigned int capacity, capacity_orig;
6143

6144 6145
	capacity = group->sgc->capacity;
	capacity_orig = group->sgc->capacity_orig;
6146
	cpus = group->group_weight;
6147

6148
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
6149
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
6150
	capacity_factor = cpus / smt; /* cores */
6151

6152
	capacity_factor = min_t(unsigned,
6153
		capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
6154 6155
	if (!capacity_factor)
		capacity_factor = fix_small_capacity(env->sd, group);
6156

6157
	return capacity_factor;
6158 6159
}

6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171
static enum group_type
group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->group_capacity_factor)
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

6172 6173
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6174
 * @env: The load balancing environment.
6175 6176 6177 6178
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
6179
 * @overload: Indicate more than one runnable task for any CPU.
6180
 */
6181 6182
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
6183 6184
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
6185
{
6186
	unsigned long load;
6187
	int i;
6188

6189 6190
	memset(sgs, 0, sizeof(*sgs));

6191
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6192 6193 6194
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
6195
		if (local_group)
6196
			load = target_load(i, load_idx);
6197
		else
6198 6199 6200
			load = source_load(i, load_idx);

		sgs->group_load += load;
6201
		sgs->sum_nr_running += rq->cfs.h_nr_running;
6202 6203 6204 6205

		if (rq->nr_running > 1)
			*overload = true;

6206 6207 6208 6209
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
6210
		sgs->sum_weighted_load += weighted_cpuload(i);
6211 6212
		if (idle_cpu(i))
			sgs->idle_cpus++;
6213 6214
	}

6215 6216
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
6217
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6218

6219
	if (sgs->sum_nr_running)
6220
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6221

6222
	sgs->group_weight = group->group_weight;
6223
	sgs->group_capacity_factor = sg_capacity_factor(env, group);
6224
	sgs->group_type = group_classify(group, sgs);
6225

6226
	if (sgs->group_capacity_factor > sgs->sum_nr_running)
6227
		sgs->group_has_free_capacity = 1;
6228 6229
}

6230 6231
/**
 * update_sd_pick_busiest - return 1 on busiest group
6232
 * @env: The load balancing environment.
6233 6234
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
6235
 * @sgs: sched_group statistics
6236 6237 6238
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
6239 6240 6241
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
6242
 */
6243
static bool update_sd_pick_busiest(struct lb_env *env,
6244 6245
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
6246
				   struct sg_lb_stats *sgs)
6247
{
6248
	struct sg_lb_stats *busiest = &sds->busiest_stat;
6249

6250
	if (sgs->group_type > busiest->group_type)
6251 6252
		return true;

6253 6254 6255 6256 6257 6258 6259 6260
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
6261 6262 6263 6264 6265 6266 6267
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
6268
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6309
/**
6310
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6311
 * @env: The load balancing environment.
6312 6313
 * @sds: variable to hold the statistics for this sched_domain.
 */
6314
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6315
{
6316 6317
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6318
	struct sg_lb_stats tmp_sgs;
6319
	int load_idx, prefer_sibling = 0;
6320
	bool overload = false;
6321 6322 6323 6324

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6325
	load_idx = get_sd_load_idx(env->sd, env->idle);
6326 6327

	do {
J
Joonsoo Kim 已提交
6328
		struct sg_lb_stats *sgs = &tmp_sgs;
6329 6330
		int local_group;

6331
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6332 6333 6334
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6335 6336

			if (env->idle != CPU_NEWLY_IDLE ||
6337 6338
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6339
		}
6340

6341 6342
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6343

6344 6345 6346
		if (local_group)
			goto next_group;

6347 6348
		/*
		 * In case the child domain prefers tasks go to siblings
6349
		 * first, lower the sg capacity factor to one so that we'll try
6350 6351
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6352
		 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6353 6354 6355
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
6356
		 */
6357
		if (prefer_sibling && sds->local &&
6358
		    sds->local_stat.group_has_free_capacity) {
6359
			sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6360 6361
			sgs->group_type = group_classify(sg, sgs);
		}
6362

6363
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6364
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6365
			sds->busiest_stat = *sgs;
6366 6367
		}

6368 6369 6370
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6371
		sds->total_capacity += sgs->group_capacity;
6372

6373
		sg = sg->next;
6374
	} while (sg != env->sd->groups);
6375 6376 6377

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6378 6379 6380 6381 6382 6383 6384

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6404
 * Return: 1 when packing is required and a task should be moved to
6405 6406
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6407
 * @env: The load balancing environment.
6408 6409
 * @sds: Statistics of the sched_domain which is to be packed
 */
6410
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6411 6412 6413
{
	int busiest_cpu;

6414
	if (!(env->sd->flags & SD_ASYM_PACKING))
6415 6416 6417 6418 6419 6420
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6421
	if (env->dst_cpu > busiest_cpu)
6422 6423
		return 0;

6424
	env->imbalance = DIV_ROUND_CLOSEST(
6425
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6426
		SCHED_CAPACITY_SCALE);
6427

6428
	return 1;
6429 6430 6431 6432 6433 6434
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6435
 * @env: The load balancing environment.
6436 6437
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6438 6439
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6440
{
6441
	unsigned long tmp, capa_now = 0, capa_move = 0;
6442
	unsigned int imbn = 2;
6443
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6444
	struct sg_lb_stats *local, *busiest;
6445

J
Joonsoo Kim 已提交
6446 6447
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6448

J
Joonsoo Kim 已提交
6449 6450 6451 6452
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6453

J
Joonsoo Kim 已提交
6454
	scaled_busy_load_per_task =
6455
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6456
		busiest->group_capacity;
J
Joonsoo Kim 已提交
6457

6458 6459
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6460
		env->imbalance = busiest->load_per_task;
6461 6462 6463 6464 6465
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
6466
	 * however we may be able to increase total CPU capacity used by
6467 6468 6469
	 * moving them.
	 */

6470
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
6471
			min(busiest->load_per_task, busiest->avg_load);
6472
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
6473
			min(local->load_per_task, local->avg_load);
6474
	capa_now /= SCHED_CAPACITY_SCALE;
6475 6476

	/* Amount of load we'd subtract */
6477
	if (busiest->avg_load > scaled_busy_load_per_task) {
6478
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
6479
			    min(busiest->load_per_task,
6480
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
6481
	}
6482 6483

	/* Amount of load we'd add */
6484
	if (busiest->avg_load * busiest->group_capacity <
6485
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6486 6487
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
6488
	} else {
6489
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6490
		      local->group_capacity;
J
Joonsoo Kim 已提交
6491
	}
6492
	capa_move += local->group_capacity *
6493
		    min(local->load_per_task, local->avg_load + tmp);
6494
	capa_move /= SCHED_CAPACITY_SCALE;
6495 6496

	/* Move if we gain throughput */
6497
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
6498
		env->imbalance = busiest->load_per_task;
6499 6500 6501 6502 6503
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
6504
 * @env: load balance environment
6505 6506
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
6507
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6508
{
6509
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
6510 6511 6512 6513
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6514

6515
	if (busiest->group_type == group_imbalanced) {
6516 6517 6518 6519
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
6520 6521
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
6522 6523
	}

6524 6525 6526
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
6527
	 * its cpu_capacity, while calculating max_load..)
6528
	 */
6529 6530
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6531 6532
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6533 6534
	}

6535 6536 6537 6538 6539
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
J
Joonsoo Kim 已提交
6540
		load_above_capacity =
6541
			(busiest->sum_nr_running - busiest->group_capacity_factor);
6542

6543
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6544
		load_above_capacity /= busiest->group_capacity;
6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6555
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6556 6557

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6558
	env->imbalance = min(
6559 6560
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
6561
	) / SCHED_CAPACITY_SCALE;
6562 6563 6564

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6565
	 * there is no guarantee that any tasks will be moved so we'll have
6566 6567 6568
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6569
	if (env->imbalance < busiest->load_per_task)
6570
		return fix_small_imbalance(env, sds);
6571
}
6572

6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6585
 * @env: The load balancing environment.
6586
 *
6587
 * Return:	- The busiest group if imbalance exists.
6588 6589 6590 6591
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6592
static struct sched_group *find_busiest_group(struct lb_env *env)
6593
{
J
Joonsoo Kim 已提交
6594
	struct sg_lb_stats *local, *busiest;
6595 6596
	struct sd_lb_stats sds;

6597
	init_sd_lb_stats(&sds);
6598 6599 6600 6601 6602

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6603
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6604 6605
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6606

6607 6608
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6609 6610
		return sds.busiest;

6611
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6612
	if (!sds.busiest || busiest->sum_nr_running == 0)
6613 6614
		goto out_balanced;

6615 6616
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
6617

P
Peter Zijlstra 已提交
6618 6619
	/*
	 * If the busiest group is imbalanced the below checks don't
6620
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6621 6622
	 * isn't true due to cpus_allowed constraints and the like.
	 */
6623
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
6624 6625
		goto force_balance;

6626
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6627 6628
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
	    !busiest->group_has_free_capacity)
6629 6630
		goto force_balance;

6631
	/*
6632
	 * If the local group is busier than the selected busiest group
6633 6634
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
6635
	if (local->avg_load >= busiest->avg_load)
6636 6637
		goto out_balanced;

6638 6639 6640 6641
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
6642
	if (local->avg_load >= sds.avg_load)
6643 6644
		goto out_balanced;

6645
	if (env->idle == CPU_IDLE) {
6646
		/*
6647 6648 6649 6650 6651
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
6652
		 */
6653 6654
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6655
			goto out_balanced;
6656 6657 6658 6659 6660
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6661 6662
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6663
			goto out_balanced;
6664
	}
6665

6666
force_balance:
6667
	/* Looks like there is an imbalance. Compute it */
6668
	calculate_imbalance(env, &sds);
6669 6670 6671
	return sds.busiest;

out_balanced:
6672
	env->imbalance = 0;
6673 6674 6675 6676 6677 6678
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6679
static struct rq *find_busiest_queue(struct lb_env *env,
6680
				     struct sched_group *group)
6681 6682
{
	struct rq *busiest = NULL, *rq;
6683
	unsigned long busiest_load = 0, busiest_capacity = 1;
6684 6685
	int i;

6686
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6687
		unsigned long capacity, capacity_factor, wl;
6688 6689 6690 6691
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6692

6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

6715
		capacity = capacity_of(i);
6716
		capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6717 6718
		if (!capacity_factor)
			capacity_factor = fix_small_capacity(env->sd, group);
6719

6720
		wl = weighted_cpuload(i);
6721

6722 6723
		/*
		 * When comparing with imbalance, use weighted_cpuload()
6724
		 * which is not scaled with the cpu capacity.
6725
		 */
6726
		if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6727 6728
			continue;

6729 6730
		/*
		 * For the load comparisons with the other cpu's, consider
6731 6732 6733
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
6734
		 *
6735
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6736
		 * multiplication to rid ourselves of the division works out
6737 6738
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
6739
		 */
6740
		if (wl * busiest_capacity > busiest_load * capacity) {
6741
			busiest_load = wl;
6742
			busiest_capacity = capacity;
6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6757
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6758

6759
static int need_active_balance(struct lb_env *env)
6760
{
6761 6762 6763
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6764 6765 6766 6767 6768 6769

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6770
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6771
			return 1;
6772 6773 6774 6775 6776
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6777 6778
static int active_load_balance_cpu_stop(void *data);

6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6810
	return balance_cpu == env->dst_cpu;
6811 6812
}

6813 6814 6815 6816 6817 6818
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6819
			int *continue_balancing)
6820
{
6821
	int ld_moved, cur_ld_moved, active_balance = 0;
6822
	struct sched_domain *sd_parent = sd->parent;
6823 6824 6825
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6826
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6827

6828 6829
	struct lb_env env = {
		.sd		= sd,
6830 6831
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6832
		.dst_grpmask    = sched_group_cpus(sd->groups),
6833
		.idle		= idle,
6834
		.loop_break	= sched_nr_migrate_break,
6835
		.cpus		= cpus,
6836
		.fbq_type	= all,
6837
		.tasks		= LIST_HEAD_INIT(env.tasks),
6838 6839
	};

6840 6841 6842 6843
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6844
	if (idle == CPU_NEWLY_IDLE)
6845 6846
		env.dst_grpmask = NULL;

6847 6848 6849 6850 6851
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6852 6853
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6854
		goto out_balanced;
6855
	}
6856

6857
	group = find_busiest_group(&env);
6858 6859 6860 6861 6862
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6863
	busiest = find_busiest_queue(&env, group);
6864 6865 6866 6867 6868
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

6869
	BUG_ON(busiest == env.dst_rq);
6870

6871
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6872 6873 6874 6875 6876 6877 6878 6879 6880

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
6881
		env.flags |= LBF_ALL_PINNED;
6882 6883 6884
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6885

6886
more_balance:
6887
		raw_spin_lock_irqsave(&busiest->lock, flags);
6888 6889 6890 6891 6892

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
6893
		cur_ld_moved = detach_tasks(&env);
6894 6895

		/*
6896 6897 6898 6899 6900
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
6901
		 */
6902 6903 6904 6905 6906 6907 6908 6909

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

6910
		local_irq_restore(flags);
6911

6912 6913 6914 6915 6916
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
6936
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6937

6938 6939 6940
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

6941
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6942
			env.dst_cpu	 = env.new_dst_cpu;
6943
			env.flags	&= ~LBF_DST_PINNED;
6944 6945
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
6946

6947 6948 6949 6950 6951 6952
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
6953

6954 6955 6956 6957
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
6958
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6959

6960
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6961 6962 6963
				*group_imbalance = 1;
		}

6964
		/* All tasks on this runqueue were pinned by CPU affinity */
6965
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6966
			cpumask_clear_cpu(cpu_of(busiest), cpus);
6967 6968 6969
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
6970
				goto redo;
6971
			}
6972
			goto out_all_pinned;
6973 6974 6975 6976 6977
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
6978 6979 6980 6981 6982 6983 6984 6985
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
6986

6987
		if (need_active_balance(&env)) {
6988 6989
			raw_spin_lock_irqsave(&busiest->lock, flags);

6990 6991 6992
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
6993 6994
			 */
			if (!cpumask_test_cpu(this_cpu,
6995
					tsk_cpus_allowed(busiest->curr))) {
6996 6997
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
6998
				env.flags |= LBF_ALL_PINNED;
6999 7000 7001
				goto out_one_pinned;
			}

7002 7003 7004 7005 7006
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
7007 7008 7009 7010 7011 7012
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7013

7014
			if (active_balance) {
7015 7016 7017
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
7018
			}
7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
7037
		 * detach_tasks).
7038 7039 7040 7041 7042 7043 7044 7045
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
7063 7064 7065 7066 7067 7068
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
7069
	if (((env.flags & LBF_ALL_PINNED) &&
7070
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7071 7072 7073
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

7074
	ld_moved = 0;
7075 7076 7077 7078
out:
	return ld_moved;
}

7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

7106 7107 7108 7109
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
7110
static int idle_balance(struct rq *this_rq)
7111
{
7112 7113
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
7114 7115
	struct sched_domain *sd;
	int pulled_task = 0;
7116
	u64 curr_cost = 0;
7117

7118
	idle_enter_fair(this_rq);
7119

7120 7121 7122 7123 7124 7125
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

7126 7127
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
7128 7129 7130 7131 7132 7133
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

7134
		goto out;
7135
	}
7136

7137 7138 7139 7140 7141
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

7142
	update_blocked_averages(this_cpu);
7143
	rcu_read_lock();
7144
	for_each_domain(this_cpu, sd) {
7145
		int continue_balancing = 1;
7146
		u64 t0, domain_cost;
7147 7148 7149 7150

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7151 7152
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
7153
			break;
7154
		}
7155

7156
		if (sd->flags & SD_BALANCE_NEWIDLE) {
7157 7158
			t0 = sched_clock_cpu(this_cpu);

7159
			pulled_task = load_balance(this_cpu, this_rq,
7160 7161
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
7162 7163 7164 7165 7166 7167

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
7168
		}
7169

7170
		update_next_balance(sd, 0, &next_balance);
7171 7172 7173 7174 7175 7176

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
7177 7178
			break;
	}
7179
	rcu_read_unlock();
7180 7181 7182

	raw_spin_lock(&this_rq->lock);

7183 7184 7185
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

7186
	/*
7187 7188 7189
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
7190
	 */
7191
	if (this_rq->cfs.h_nr_running && !pulled_task)
7192
		pulled_task = 1;
7193

7194 7195 7196
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
7197
		this_rq->next_balance = next_balance;
7198

7199
	/* Is there a task of a high priority class? */
7200
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7201 7202 7203 7204
		pulled_task = -1;

	if (pulled_task) {
		idle_exit_fair(this_rq);
7205
		this_rq->idle_stamp = 0;
7206
	}
7207

7208
	return pulled_task;
7209 7210 7211
}

/*
7212 7213 7214 7215
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
7216
 */
7217
static int active_load_balance_cpu_stop(void *data)
7218
{
7219 7220
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
7221
	int target_cpu = busiest_rq->push_cpu;
7222
	struct rq *target_rq = cpu_rq(target_cpu);
7223
	struct sched_domain *sd;
7224
	struct task_struct *p = NULL;
7225 7226 7227 7228 7229 7230 7231

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
7232 7233 7234

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
7235
		goto out_unlock;
7236 7237 7238 7239 7240 7241 7242 7243 7244

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
7245
	rcu_read_lock();
7246 7247 7248 7249 7250 7251 7252
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
7253 7254
		struct lb_env env = {
			.sd		= sd,
7255 7256 7257 7258
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
7259 7260 7261
			.idle		= CPU_IDLE,
		};

7262 7263
		schedstat_inc(sd, alb_count);

7264 7265
		p = detach_one_task(&env);
		if (p)
7266 7267 7268 7269
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
7270
	rcu_read_unlock();
7271 7272
out_unlock:
	busiest_rq->active_balance = 0;
7273 7274 7275 7276 7277 7278 7279
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

7280
	return 0;
7281 7282
}

7283 7284 7285 7286 7287
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

7288
#ifdef CONFIG_NO_HZ_COMMON
7289 7290 7291 7292 7293 7294
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
7295
static struct {
7296
	cpumask_var_t idle_cpus_mask;
7297
	atomic_t nr_cpus;
7298 7299
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
7300

7301
static inline int find_new_ilb(void)
7302
{
7303
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7304

7305 7306 7307 7308
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7309 7310
}

7311 7312 7313 7314 7315
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7316
static void nohz_balancer_kick(void)
7317 7318 7319 7320 7321
{
	int ilb_cpu;

	nohz.next_balance++;

7322
	ilb_cpu = find_new_ilb();
7323

7324 7325
	if (ilb_cpu >= nr_cpu_ids)
		return;
7326

7327
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7328 7329 7330 7331 7332 7333 7334 7335
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7336 7337 7338
	return;
}

7339
static inline void nohz_balance_exit_idle(int cpu)
7340 7341
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7342 7343 7344 7345 7346 7347 7348
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
7349 7350 7351 7352
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

7353 7354 7355
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
7356
	int cpu = smp_processor_id();
7357 7358

	rcu_read_lock();
7359
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7360 7361 7362 7363 7364

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7365
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7366
unlock:
7367 7368 7369 7370 7371 7372
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7373
	int cpu = smp_processor_id();
7374 7375

	rcu_read_lock();
7376
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7377 7378 7379 7380 7381

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7382
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7383
unlock:
7384 7385 7386
	rcu_read_unlock();
}

7387
/*
7388
 * This routine will record that the cpu is going idle with tick stopped.
7389
 * This info will be used in performing idle load balancing in the future.
7390
 */
7391
void nohz_balance_enter_idle(int cpu)
7392
{
7393 7394 7395 7396 7397 7398
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

7399 7400
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
7401

7402 7403 7404 7405 7406 7407
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

7408 7409 7410
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7411
}
7412

7413
static int sched_ilb_notifier(struct notifier_block *nfb,
7414 7415 7416 7417
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
7418
		nohz_balance_exit_idle(smp_processor_id());
7419 7420 7421 7422 7423
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
7424 7425 7426 7427
#endif

static DEFINE_SPINLOCK(balancing);

7428 7429 7430 7431
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
7432
void update_max_interval(void)
7433 7434 7435 7436
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

7437 7438 7439 7440
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7441
 * Balancing parameters are set up in init_sched_domains.
7442
 */
7443
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7444
{
7445
	int continue_balancing = 1;
7446
	int cpu = rq->cpu;
7447
	unsigned long interval;
7448
	struct sched_domain *sd;
7449 7450 7451
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7452 7453
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7454

7455
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7456

7457
	rcu_read_lock();
7458
	for_each_domain(cpu, sd) {
7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7471 7472 7473
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

7485
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7486 7487 7488 7489 7490 7491 7492 7493

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7494
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7495
				/*
7496
				 * The LBF_DST_PINNED logic could have changed
7497 7498
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
7499
				 */
7500
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7501 7502
			}
			sd->last_balance = jiffies;
7503
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7504 7505 7506 7507 7508 7509 7510 7511
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
7512 7513
	}
	if (need_decay) {
7514
		/*
7515 7516
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
7517
		 */
7518 7519
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
7520
	}
7521
	rcu_read_unlock();
7522 7523 7524 7525 7526 7527 7528 7529 7530 7531

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

7532
#ifdef CONFIG_NO_HZ_COMMON
7533
/*
7534
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7535 7536
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
7537
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7538
{
7539
	int this_cpu = this_rq->cpu;
7540 7541 7542
	struct rq *rq;
	int balance_cpu;

7543 7544 7545
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
7546 7547

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7548
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7549 7550 7551 7552 7553 7554 7555
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
7556
		if (need_resched())
7557 7558
			break;

V
Vincent Guittot 已提交
7559 7560
		rq = cpu_rq(balance_cpu);

7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
			update_idle_cpu_load(rq);
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
7572 7573 7574 7575 7576

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
7577 7578
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7579 7580 7581
}

/*
7582 7583 7584 7585
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
7586
 *     busy cpu's exceeding the group's capacity.
7587 7588
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
7589
 */
7590
static inline int nohz_kick_needed(struct rq *rq)
7591 7592
{
	unsigned long now = jiffies;
7593
	struct sched_domain *sd;
7594
	struct sched_group_capacity *sgc;
7595
	int nr_busy, cpu = rq->cpu;
7596

7597
	if (unlikely(rq->idle_balance))
7598 7599
		return 0;

7600 7601 7602 7603
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
7604
	set_cpu_sd_state_busy();
7605
	nohz_balance_exit_idle(cpu);
7606 7607 7608 7609 7610 7611 7612

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
7613 7614

	if (time_before(now, nohz.next_balance))
7615 7616
		return 0;

7617 7618
	if (rq->nr_running >= 2)
		goto need_kick;
7619

7620
	rcu_read_lock();
7621
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7622

7623
	if (sd) {
7624 7625
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7626

7627
		if (nr_busy > 1)
7628
			goto need_kick_unlock;
7629
	}
7630 7631 7632 7633 7634 7635 7636

	sd = rcu_dereference(per_cpu(sd_asym, cpu));

	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
				  sched_domain_span(sd)) < cpu))
		goto need_kick_unlock;

7637
	rcu_read_unlock();
7638
	return 0;
7639 7640 7641

need_kick_unlock:
	rcu_read_unlock();
7642 7643
need_kick:
	return 1;
7644 7645
}
#else
7646
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7647 7648 7649 7650 7651 7652
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
7653 7654
static void run_rebalance_domains(struct softirq_action *h)
{
7655
	struct rq *this_rq = this_rq();
7656
	enum cpu_idle_type idle = this_rq->idle_balance ?
7657 7658
						CPU_IDLE : CPU_NOT_IDLE;

7659
	rebalance_domains(this_rq, idle);
7660 7661

	/*
7662
	 * If this cpu has a pending nohz_balance_kick, then do the
7663 7664 7665
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
7666
	nohz_idle_balance(this_rq, idle);
7667 7668 7669 7670 7671
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
7672
void trigger_load_balance(struct rq *rq)
7673 7674
{
	/* Don't need to rebalance while attached to NULL domain */
7675 7676 7677 7678
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
7679
		raise_softirq(SCHED_SOFTIRQ);
7680
#ifdef CONFIG_NO_HZ_COMMON
7681
	if (nohz_kick_needed(rq))
7682
		nohz_balancer_kick();
7683
#endif
7684 7685
}

7686 7687 7688
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
7689 7690

	update_runtime_enabled(rq);
7691 7692 7693 7694 7695
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
7696 7697 7698

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
7699 7700
}

7701
#endif /* CONFIG_SMP */
7702

7703 7704 7705
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
7706
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7707 7708 7709 7710 7711 7712
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
7713
		entity_tick(cfs_rq, se, queued);
7714
	}
7715

7716
	if (numabalancing_enabled)
7717
		task_tick_numa(rq, curr);
7718

7719
	update_rq_runnable_avg(rq, 1);
7720 7721 7722
}

/*
P
Peter Zijlstra 已提交
7723 7724 7725
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
7726
 */
P
Peter Zijlstra 已提交
7727
static void task_fork_fair(struct task_struct *p)
7728
{
7729 7730
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
7731
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
7732 7733 7734
	struct rq *rq = this_rq();
	unsigned long flags;

7735
	raw_spin_lock_irqsave(&rq->lock, flags);
7736

7737 7738
	update_rq_clock(rq);

7739 7740 7741
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

7742 7743 7744 7745 7746 7747 7748 7749 7750
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
7751

7752
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
7753

7754 7755
	if (curr)
		se->vruntime = curr->vruntime;
7756
	place_entity(cfs_rq, se, 1);
7757

P
Peter Zijlstra 已提交
7758
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
7759
		/*
7760 7761 7762
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
7763
		swap(curr->vruntime, se->vruntime);
7764
		resched_curr(rq);
7765
	}
7766

7767 7768
	se->vruntime -= cfs_rq->min_vruntime;

7769
	raw_spin_unlock_irqrestore(&rq->lock, flags);
7770 7771
}

7772 7773 7774 7775
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
7776 7777
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7778
{
7779
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
7780 7781
		return;

7782 7783 7784 7785 7786
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
7787
	if (rq->curr == p) {
7788
		if (p->prio > oldprio)
7789
			resched_curr(rq);
7790
	} else
7791
		check_preempt_curr(rq, p, 0);
7792 7793
}

P
Peter Zijlstra 已提交
7794 7795 7796 7797 7798 7799
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
7800
	 * Ensure the task's vruntime is normalized, so that when it's
P
Peter Zijlstra 已提交
7801 7802 7803
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
7804 7805
	 * If it's queued, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it's !queued, then only when
P
Peter Zijlstra 已提交
7806 7807
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
7808
	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
P
Peter Zijlstra 已提交
7809 7810 7811 7812 7813 7814 7815
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
7816

7817
#ifdef CONFIG_SMP
7818 7819 7820 7821 7822
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
7823 7824 7825
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7826 7827
	}
#endif
P
Peter Zijlstra 已提交
7828 7829
}

7830 7831 7832
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
7833
static void switched_to_fair(struct rq *rq, struct task_struct *p)
7834
{
7835
#ifdef CONFIG_FAIR_GROUP_SCHED
7836
	struct sched_entity *se = &p->se;
7837 7838 7839 7840 7841 7842
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
7843
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
7844 7845
		return;

7846 7847 7848 7849 7850
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
7851
	if (rq->curr == p)
7852
		resched_curr(rq);
7853
	else
7854
		check_preempt_curr(rq, p, 0);
7855 7856
}

7857 7858 7859 7860 7861 7862 7863 7864 7865
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

7866 7867 7868 7869 7870 7871 7872
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
7873 7874
}

7875 7876 7877 7878 7879 7880 7881
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
7882
#ifdef CONFIG_SMP
7883
	atomic64_set(&cfs_rq->decay_counter, 1);
7884
	atomic_long_set(&cfs_rq->removed_load, 0);
7885
#endif
7886 7887
}

P
Peter Zijlstra 已提交
7888
#ifdef CONFIG_FAIR_GROUP_SCHED
7889
static void task_move_group_fair(struct task_struct *p, int queued)
P
Peter Zijlstra 已提交
7890
{
P
Peter Zijlstra 已提交
7891
	struct sched_entity *se = &p->se;
7892
	struct cfs_rq *cfs_rq;
P
Peter Zijlstra 已提交
7893

7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
7907
	/*
7908
	 * When !queued, vruntime of the task has usually NOT been normalized.
7909 7910 7911 7912
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
7913 7914
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
7915 7916 7917 7918
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
7919 7920
	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
		queued = 1;
7921

7922
	if (!queued)
P
Peter Zijlstra 已提交
7923
		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7924
	set_task_rq(p, task_cpu(p));
P
Peter Zijlstra 已提交
7925
	se->depth = se->parent ? se->parent->depth + 1 : 0;
7926
	if (!queued) {
P
Peter Zijlstra 已提交
7927 7928
		cfs_rq = cfs_rq_of(se);
		se->vruntime += cfs_rq->min_vruntime;
7929 7930 7931 7932 7933 7934
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
P
Peter Zijlstra 已提交
7935 7936
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7937 7938
#endif
	}
P
Peter Zijlstra 已提交
7939
}
7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
8032
	if (!parent) {
8033
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
8034 8035
		se->depth = 0;
	} else {
8036
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
8037 8038
		se->depth = parent->depth + 1;
	}
8039 8040

	se->my_q = cfs_rq;
8041 8042
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
8073 8074 8075

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
8076
		for_each_sched_entity(se)
8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
8098

8099
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8100 8101 8102 8103 8104 8105 8106 8107 8108
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
8109
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8110 8111 8112 8113

	return rr_interval;
}

8114 8115 8116
/*
 * All the scheduling class methods:
 */
8117
const struct sched_class fair_sched_class = {
8118
	.next			= &idle_sched_class,
8119 8120 8121
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
8122
	.yield_to_task		= yield_to_task_fair,
8123

I
Ingo Molnar 已提交
8124
	.check_preempt_curr	= check_preempt_wakeup,
8125 8126 8127 8128

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

8129
#ifdef CONFIG_SMP
L
Li Zefan 已提交
8130
	.select_task_rq		= select_task_rq_fair,
8131
	.migrate_task_rq	= migrate_task_rq_fair,
8132

8133 8134
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
8135 8136

	.task_waking		= task_waking_fair,
8137
#endif
8138

8139
	.set_curr_task          = set_curr_task_fair,
8140
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
8141
	.task_fork		= task_fork_fair,
8142 8143

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
8144
	.switched_from		= switched_from_fair,
8145
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
8146

8147 8148
	.get_rr_interval	= get_rr_interval_fair,

8149 8150
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
8151
#ifdef CONFIG_FAIR_GROUP_SCHED
8152
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
8153
#endif
8154 8155 8156
};

#ifdef CONFIG_SCHED_DEBUG
8157
void print_cfs_stats(struct seq_file *m, int cpu)
8158 8159 8160
{
	struct cfs_rq *cfs_rq;

8161
	rcu_read_lock();
8162
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8163
		print_cfs_rq(m, cpu, cfs_rq);
8164
	rcu_read_unlock();
8165 8166
}
#endif
8167 8168 8169 8170 8171 8172

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

8173
#ifdef CONFIG_NO_HZ_COMMON
8174
	nohz.next_balance = jiffies;
8175
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8176
	cpu_notifier(sched_ilb_notifier, 0);
8177 8178 8179 8180
#endif
#endif /* SMP */

}