fair.c 188.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29
#include <linux/mempolicy.h>
30
#include <linux/migrate.h>
31
#include <linux/task_work.h>
32 33 34 35

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
36

37
/*
38
 * Targeted preemption latency for CPU-bound tasks:
39
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48
 */
49 50
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

64
/*
65
 * Minimal preemption granularity for CPU-bound tasks:
66
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67
 */
68 69
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 71

/*
72 73
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
74
static unsigned int sched_nr_latency = 8;
75 76

/*
77
 * After fork, child runs first. If set to 0 (default) then
78
 * parent will (try to) run first.
79
 */
80
unsigned int sysctl_sched_child_runs_first __read_mostly;
81 82 83

/*
 * SCHED_OTHER wake-up granularity.
84
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 86 87 88 89
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
90
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92

93 94
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

95 96 97 98 99 100 101
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

102 103 104 105 106 107 108 109 110 111 112 113 114 115
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

181
#define WMULT_CONST	(~0U)
182 183
#define WMULT_SHIFT	32

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
200 201

/*
202 203 204 205 206 207 208 209 210 211
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212
 */
213
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214
{
215 216
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
217

218
	__update_inv_weight(lw);
219

220 221 222 223 224
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
225 226
	}

227 228
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
229

230 231 232 233
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
234

235
	return mul_u64_u32_shr(delta_exec, fact, shift);
236 237 238 239
}


const struct sched_class fair_sched_class;
240

241 242 243 244
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

245
#ifdef CONFIG_FAIR_GROUP_SCHED
246

247
/* cpu runqueue to which this cfs_rq is attached */
248 249
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
250
	return cfs_rq->rq;
251 252
}

253 254
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
255

256 257 258 259 260 261 262 263
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
287

288 289 290
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
291 292 293 294 295 296 297 298 299 300 301 302
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
304
		}
305 306

		cfs_rq->on_list = 1;
307
		/* We should have no load, but we need to update last_decay. */
308
		update_cfs_rq_blocked_load(cfs_rq, 0);
309 310 311 312 313 314 315 316 317 318 319
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

382 383 384 385 386 387
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
388

389 390 391
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
392 393 394 395
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
396 397
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
398

P
Peter Zijlstra 已提交
399
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
400
{
P
Peter Zijlstra 已提交
401
	return &task_rq(p)->cfs;
402 403
}

P
Peter Zijlstra 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

418 419 420 421 422 423 424 425
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

440 441 442 443 444
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
445 446
#endif	/* CONFIG_FAIR_GROUP_SCHED */

447
static __always_inline
448
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
449 450 451 452 453

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

454
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
455
{
456
	s64 delta = (s64)(vruntime - max_vruntime);
457
	if (delta > 0)
458
		max_vruntime = vruntime;
459

460
	return max_vruntime;
461 462
}

463
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
464 465 466 467 468 469 470 471
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

472 473 474 475 476 477
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

478 479 480 481 482 483 484 485 486 487 488 489
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
490
		if (!cfs_rq->curr)
491 492 493 494 495
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

496
	/* ensure we never gain time by being placed backwards. */
497
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
498 499 500 501
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
502 503
}

504 505 506
/*
 * Enqueue an entity into the rb-tree:
 */
507
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
524
		if (entity_before(se, entry)) {
525 526 527 528 529 530 531 532 533 534 535
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
536
	if (leftmost)
I
Ingo Molnar 已提交
537
		cfs_rq->rb_leftmost = &se->run_node;
538 539 540 541 542

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

543
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
544
{
P
Peter Zijlstra 已提交
545 546 547 548 549 550
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
551

552 553 554
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

555
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
556
{
557 558 559 560 561 562
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
563 564
}

565 566 567 568 569 570 571 572 573 574 575
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
576
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
577
{
578
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
579

580 581
	if (!last)
		return NULL;
582 583

	return rb_entry(last, struct sched_entity, run_node);
584 585
}

586 587 588 589
/**************************************************************
 * Scheduling class statistics methods:
 */

590
int sched_proc_update_handler(struct ctl_table *table, int write,
591
		void __user *buffer, size_t *lenp,
592 593
		loff_t *ppos)
{
594
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
595
	int factor = get_update_sysctl_factor();
596 597 598 599 600 601 602

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

603 604 605 606 607 608 609
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

610 611 612
	return 0;
}
#endif
613

614
/*
615
 * delta /= w
616
 */
617
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
618
{
619
	if (unlikely(se->load.weight != NICE_0_LOAD))
620
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
621 622 623 624

	return delta;
}

625 626 627
/*
 * The idea is to set a period in which each task runs once.
 *
628
 * When there are too many tasks (sched_nr_latency) we have to stretch
629 630 631 632
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
633 634 635
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
636
	unsigned long nr_latency = sched_nr_latency;
637 638

	if (unlikely(nr_running > nr_latency)) {
639
		period = sysctl_sched_min_granularity;
640 641 642 643 644 645
		period *= nr_running;
	}

	return period;
}

646 647 648 649
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
650
 * s = p*P[w/rw]
651
 */
P
Peter Zijlstra 已提交
652
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
653
{
M
Mike Galbraith 已提交
654
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
655

M
Mike Galbraith 已提交
656
	for_each_sched_entity(se) {
L
Lin Ming 已提交
657
		struct load_weight *load;
658
		struct load_weight lw;
L
Lin Ming 已提交
659 660 661

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
662

M
Mike Galbraith 已提交
663
		if (unlikely(!se->on_rq)) {
664
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
665 666 667 668

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
669
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
670 671
	}
	return slice;
672 673
}

674
/*
A
Andrei Epure 已提交
675
 * We calculate the vruntime slice of a to-be-inserted task.
676
 *
677
 * vs = s/w
678
 */
679
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
680
{
681
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
682 683
}

684
#ifdef CONFIG_SMP
685 686
static unsigned long task_h_load(struct task_struct *p);

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

706
/*
707
 * Update the current task's runtime statistics.
708
 */
709
static void update_curr(struct cfs_rq *cfs_rq)
710
{
711
	struct sched_entity *curr = cfs_rq->curr;
712
	u64 now = rq_clock_task(rq_of(cfs_rq));
713
	u64 delta_exec;
714 715 716 717

	if (unlikely(!curr))
		return;

718 719
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
720
		return;
721

I
Ingo Molnar 已提交
722
	curr->exec_start = now;
723

724 725 726 727 728 729 730 731 732
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

733 734 735
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

736
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
737
		cpuacct_charge(curtask, delta_exec);
738
		account_group_exec_runtime(curtask, delta_exec);
739
	}
740 741

	account_cfs_rq_runtime(cfs_rq, delta_exec);
742 743 744
}

static inline void
745
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
746
{
747
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
748 749 750 751 752
}

/*
 * Task is being enqueued - update stats:
 */
753
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 755 756 757 758
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
759
	if (se != cfs_rq->curr)
760
		update_stats_wait_start(cfs_rq, se);
761 762 763
}

static void
764
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
765
{
766
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
767
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
768 769
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
770
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
771 772 773
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
774
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
775 776
	}
#endif
777
	schedstat_set(se->statistics.wait_start, 0);
778 779 780
}

static inline void
781
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
782 783 784 785 786
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
787
	if (se != cfs_rq->curr)
788
		update_stats_wait_end(cfs_rq, se);
789 790 791 792 793 794
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
795
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 797 798 799
{
	/*
	 * We are starting a new run period:
	 */
800
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
801 802 803 804 805 806
}

/**************************************************
 * Scheduling class queueing methods:
 */

807 808
#ifdef CONFIG_NUMA_BALANCING
/*
809 810 811
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
812
 */
813 814
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
815 816 817

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
818

819 820 821
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
	unsigned int scan, floor;
	unsigned int windows = 1;

	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

867 868 869 870 871 872 873 874 875 876 877 878
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

879 880 881 882 883
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
884
	pid_t gid;
885 886 887
	struct list_head task_list;

	struct rcu_head rcu;
888
	unsigned long total_faults;
889
	unsigned long *faults_cpu;
890
	unsigned long faults[0];
891 892
};

893 894 895 896 897
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

898 899 900 901 902 903 904
static inline int task_faults_idx(int nid, int priv)
{
	return 2 * nid + priv;
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
905
	if (!p->numa_faults_memory)
906 907
		return 0;

908 909
	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
		p->numa_faults_memory[task_faults_idx(nid, 1)];
910 911
}

912 913 914 915 916
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

917 918
	return p->numa_group->faults[task_faults_idx(nid, 0)] +
		p->numa_group->faults[task_faults_idx(nid, 1)];
919 920 921 922 923 924 925 926 927 928 929 930
}

/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
static inline unsigned long task_weight(struct task_struct *p, int nid)
{
	unsigned long total_faults;

931
	if (!p->numa_faults_memory)
932 933 934 935 936 937 938 939 940 941 942 943
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

	return 1000 * task_faults(p, nid) / total_faults;
}

static inline unsigned long group_weight(struct task_struct *p, int nid)
{
944
	if (!p->numa_group || !p->numa_group->total_faults)
945 946
		return 0;

947
	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
948 949
}

950
static unsigned long weighted_cpuload(const int cpu);
951 952 953 954 955
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long power_of(int cpu);
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

956
/* Cached statistics for all CPUs within a node */
957
struct numa_stats {
958
	unsigned long nr_running;
959
	unsigned long load;
960 961 962 963 964 965 966

	/* Total compute capacity of CPUs on a node */
	unsigned long power;

	/* Approximate capacity in terms of runnable tasks on a node */
	unsigned long capacity;
	int has_capacity;
967
};
968

969 970 971 972 973
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
974
	int cpu, cpus = 0;
975 976 977 978 979 980 981 982

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
		ns->power += power_of(cpu);
983 984

		cpus++;
985 986
	}

987 988 989 990 991 992 993 994 995 996 997
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
	 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
	 * and bail there.
	 */
	if (!cpus)
		return;

998 999 1000 1001 1002
	ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
	ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
	ns->has_capacity = (ns->nr_running < ns->capacity);
}

1003 1004
struct task_numa_env {
	struct task_struct *p;
1005

1006 1007
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1008

1009
	struct numa_stats src_stats, dst_stats;
1010

1011
	int imbalance_pct;
1012 1013 1014

	struct task_struct *best_task;
	long best_imp;
1015 1016 1017
	int best_cpu;
};

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1037 1038
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1039 1040 1041 1042 1043 1044
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
	long dst_load, src_load;
	long load;
1045
	long imp = (groupimp > 0) ? groupimp : taskimp;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	rcu_read_lock();
	cur = ACCESS_ONCE(dst_rq->curr);
	if (cur->pid == 0) /* idle */
		cur = NULL;

	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1064 1065
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1066
		 * in any group then look only at task weights.
1067
		 */
1068
		if (cur->numa_group == env->p->numa_group) {
1069 1070
			imp = taskimp + task_weight(cur, env->src_nid) -
			      task_weight(cur, env->dst_nid);
1071 1072 1073 1074 1075 1076
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1077
		} else {
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (env->p->numa_group)
				imp = groupimp;
			else
				imp = taskimp;

			if (cur->numa_group)
				imp += group_weight(cur, env->src_nid) -
				       group_weight(cur, env->dst_nid);
			else
				imp += task_weight(cur, env->src_nid) -
				       task_weight(cur, env->dst_nid);
1094
		}
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	}

	if (imp < env->best_imp)
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
		if (env->src_stats.has_capacity &&
		    !env->dst_stats.has_capacity)
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
	if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
	dst_load = env->dst_stats.load;
	src_load = env->src_stats.load;

	/* XXX missing power terms */
	load = task_h_load(env->p);
	dst_load += load;
	src_load -= load;

	if (cur) {
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
	}

	/* make src_load the smaller */
	if (dst_load < src_load)
		swap(dst_load, src_load);

	if (src_load * env->imbalance_pct < dst_load * 100)
		goto unlock;

assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1144 1145
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1146 1147 1148 1149 1150 1151 1152 1153 1154
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1155
		task_numa_compare(env, taskimp, groupimp);
1156 1157 1158
	}
}

1159 1160 1161 1162
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1163

1164
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1165
		.src_nid = task_node(p),
1166 1167 1168 1169 1170 1171

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1172 1173
	};
	struct sched_domain *sd;
1174
	unsigned long taskweight, groupweight;
1175
	int nid, ret;
1176
	long taskimp, groupimp;
1177

1178
	/*
1179 1180 1181 1182 1183 1184
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1185 1186
	 */
	rcu_read_lock();
1187
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1188 1189
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1190 1191
	rcu_read_unlock();

1192 1193 1194 1195 1196 1197 1198
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1199
		p->numa_preferred_nid = task_node(p);
1200 1201 1202
		return -EINVAL;
	}

1203 1204
	taskweight = task_weight(p, env.src_nid);
	groupweight = group_weight(p, env.src_nid);
1205
	update_numa_stats(&env.src_stats, env.src_nid);
1206
	env.dst_nid = p->numa_preferred_nid;
1207 1208
	taskimp = task_weight(p, env.dst_nid) - taskweight;
	groupimp = group_weight(p, env.dst_nid) - groupweight;
1209
	update_numa_stats(&env.dst_stats, env.dst_nid);
1210

1211 1212
	/* If the preferred nid has capacity, try to use it. */
	if (env.dst_stats.has_capacity)
1213
		task_numa_find_cpu(&env, taskimp, groupimp);
1214 1215 1216

	/* No space available on the preferred nid. Look elsewhere. */
	if (env.best_cpu == -1) {
1217 1218 1219
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1220

1221
			/* Only consider nodes where both task and groups benefit */
1222 1223 1224
			taskimp = task_weight(p, nid) - taskweight;
			groupimp = group_weight(p, nid) - groupweight;
			if (taskimp < 0 && groupimp < 0)
1225 1226
				continue;

1227 1228
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1229
			task_numa_find_cpu(&env, taskimp, groupimp);
1230 1231 1232
		}
	}

1233 1234 1235 1236
	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;

1237 1238
	sched_setnuma(p, env.dst_nid);

1239 1240 1241 1242 1243 1244
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1245 1246 1247 1248 1249 1250 1251 1252
	if (env.best_task == NULL) {
		int ret = migrate_task_to(p, env.best_cpu);
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
	put_task_struct(env.best_task);
	return ret;
1253 1254
}

1255 1256 1257
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1258
	/* This task has no NUMA fault statistics yet */
1259
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1260 1261
		return;

1262 1263 1264 1265
	/* Periodically retry migrating the task to the preferred node */
	p->numa_migrate_retry = jiffies + HZ;

	/* Success if task is already running on preferred CPU */
1266
	if (task_node(p) == p->numa_preferred_nid)
1267 1268 1269
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1270
	task_numa_migrate(p);
1271 1272
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
 * period will be for the next scan window. If local/remote ratio is below
 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
 * scan period will decrease
 */
#define NUMA_PERIOD_SLOTS 10
#define NUMA_PERIOD_THRESHOLD 3

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
	 * to automatic numa balancing. Scan slower
	 */
	if (local + shared == 0) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1347 1348
static void task_numa_placement(struct task_struct *p)
{
1349 1350
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1351
	unsigned long fault_types[2] = { 0, 0 };
1352
	spinlock_t *group_lock = NULL;
1353

1354
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1355 1356 1357
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1358
	p->numa_scan_period_max = task_scan_max(p);
1359

1360 1361 1362 1363 1364 1365
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
		spin_lock(group_lock);
	}

1366 1367
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1368
		unsigned long faults = 0, group_faults = 0;
1369
		int priv, i;
1370

1371
		for (priv = 0; priv < 2; priv++) {
1372
			long diff, f_diff;
1373

1374
			i = task_faults_idx(nid, priv);
1375
			diff = -p->numa_faults_memory[i];
1376
			f_diff = -p->numa_faults_cpu[i];
1377

1378
			/* Decay existing window, copy faults since last scan */
1379 1380 1381 1382
			p->numa_faults_memory[i] >>= 1;
			p->numa_faults_memory[i] += p->numa_faults_buffer_memory[i];
			fault_types[priv] += p->numa_faults_buffer_memory[i];
			p->numa_faults_buffer_memory[i] = 0;
1383

1384 1385 1386 1387
			p->numa_faults_cpu[i] >>= 1;
			p->numa_faults_cpu[i] += p->numa_faults_buffer_cpu[i];
			p->numa_faults_buffer_cpu[i] = 0;

1388 1389
			faults += p->numa_faults_memory[i];
			diff += p->numa_faults_memory[i];
1390
			f_diff += p->numa_faults_cpu[i];
1391
			p->total_numa_faults += diff;
1392 1393
			if (p->numa_group) {
				/* safe because we can only change our own group */
1394
				p->numa_group->faults[i] += diff;
1395
				p->numa_group->faults_cpu[i] += f_diff;
1396 1397
				p->numa_group->total_faults += diff;
				group_faults += p->numa_group->faults[i];
1398
			}
1399 1400
		}

1401 1402 1403 1404
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1405 1406 1407 1408 1409 1410 1411

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1412 1413
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	if (p->numa_group) {
		/*
		 * If the preferred task and group nids are different,
		 * iterate over the nodes again to find the best place.
		 */
		if (max_nid != max_group_nid) {
			unsigned long weight, max_weight = 0;

			for_each_online_node(nid) {
				weight = task_weight(p, nid) + group_weight(p, nid);
				if (weight > max_weight) {
					max_weight = weight;
					max_nid = nid;
				}
1428 1429
			}
		}
1430 1431

		spin_unlock(group_lock);
1432 1433
	}

1434
	/* Preferred node as the node with the most faults */
1435
	if (max_faults && max_nid != p->numa_preferred_nid) {
1436
		/* Update the preferred nid and migrate task if possible */
1437
		sched_setnuma(p, max_nid);
1438
		numa_migrate_preferred(p);
1439
	}
1440 1441
}

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1453 1454
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1455 1456 1457 1458 1459 1460 1461 1462 1463
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1464
				    4*nr_node_ids*sizeof(unsigned long);
1465 1466 1467 1468 1469 1470 1471 1472

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
		INIT_LIST_HEAD(&grp->task_list);
1473
		grp->gid = p->pid;
1474 1475
		/* Second half of the array tracks nids where faults happen */
		grp->faults_cpu = grp->faults + 2 * nr_node_ids;
1476

1477
		for (i = 0; i < 4*nr_node_ids; i++)
1478
			grp->faults[i] = p->numa_faults_memory[i];
1479

1480
		grp->total_faults = p->total_numa_faults;
1481

1482 1483 1484 1485 1486 1487 1488 1489 1490
		list_add(&p->numa_entry, &grp->task_list);
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
1491
		goto no_join;
1492 1493 1494

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1495
		goto no_join;
1496 1497 1498

	my_grp = p->numa_group;
	if (grp == my_grp)
1499
		goto no_join;
1500 1501 1502 1503 1504 1505

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1506
		goto no_join;
1507 1508 1509 1510 1511

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1512
		goto no_join;
1513

1514 1515 1516 1517 1518 1519 1520
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
1521

1522 1523 1524
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

1525
	if (join && !get_numa_group(grp))
1526
		goto no_join;
1527 1528 1529 1530 1531 1532

	rcu_read_unlock();

	if (!join)
		return;

1533 1534
	double_lock(&my_grp->lock, &grp->lock);

1535
	for (i = 0; i < 4*nr_node_ids; i++) {
1536 1537
		my_grp->faults[i] -= p->numa_faults_memory[i];
		grp->faults[i] += p->numa_faults_memory[i];
1538
	}
1539 1540
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

	list_move(&p->numa_entry, &grp->task_list);
	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
	spin_unlock(&grp->lock);

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
1552 1553 1554 1555 1556
	return;

no_join:
	rcu_read_unlock();
	return;
1557 1558 1559 1560 1561 1562
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
	int i;
1563
	void *numa_faults = p->numa_faults_memory;
1564 1565

	if (grp) {
1566
		spin_lock(&grp->lock);
1567
		for (i = 0; i < 4*nr_node_ids; i++)
1568
			grp->faults[i] -= p->numa_faults_memory[i];
1569
		grp->total_faults -= p->total_numa_faults;
1570

1571 1572 1573 1574 1575 1576 1577
		list_del(&p->numa_entry);
		grp->nr_tasks--;
		spin_unlock(&grp->lock);
		rcu_assign_pointer(p->numa_group, NULL);
		put_numa_group(grp);
	}

1578 1579
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1580 1581
	p->numa_faults_cpu= NULL;
	p->numa_faults_buffer_cpu = NULL;
1582
	kfree(numa_faults);
1583 1584
}

1585 1586 1587
/*
 * Got a PROT_NONE fault for a page on @node.
 */
1588
void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1589 1590
{
	struct task_struct *p = current;
1591
	bool migrated = flags & TNF_MIGRATED;
1592
	int this_node = task_node(current);
1593
	int priv;
1594

1595
	if (!numabalancing_enabled)
1596 1597
		return;

1598 1599 1600 1601
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

1602 1603 1604 1605
	/* Do not worry about placement if exiting */
	if (p->state == TASK_DEAD)
		return;

1606
	/* Allocate buffer to track faults on a per-node basis */
1607
	if (unlikely(!p->numa_faults_memory)) {
1608
		int size = sizeof(*p->numa_faults_memory) * 4 * nr_node_ids;
1609

1610
		/* numa_faults and numa_faults_buffer share the allocation */
1611 1612
		p->numa_faults_memory = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults_memory)
1613
			return;
1614

1615
		BUG_ON(p->numa_faults_buffer_memory);
1616 1617 1618
		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1619
		p->total_numa_faults = 0;
1620
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1621
	}
1622

1623 1624 1625 1626 1627 1628 1629 1630
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
1631
		if (!priv && !(flags & TNF_NO_GROUP))
1632
			task_numa_group(p, last_cpupid, flags, &priv);
1633 1634
	}

1635
	task_numa_placement(p);
1636

1637 1638 1639 1640 1641
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
1642 1643
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
1644 1645 1646
	if (migrated)
		p->numa_pages_migrated += pages;

1647
	p->numa_faults_buffer_memory[task_faults_idx(node, priv)] += pages;
1648
	p->numa_faults_buffer_cpu[task_faults_idx(this_node, priv)] += pages;
1649
	p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1650 1651
}

1652 1653 1654 1655 1656 1657
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

1658 1659 1660 1661 1662 1663 1664 1665 1666
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
1667
	struct vm_area_struct *vma;
1668
	unsigned long start, end;
1669
	unsigned long nr_pte_updates = 0;
1670
	long pages;
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

1686
	if (!mm->numa_next_scan) {
1687 1688
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1689 1690
	}

1691 1692 1693 1694 1695 1696 1697
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

1698 1699 1700 1701
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
1702

1703
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1704 1705 1706
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

1707 1708 1709 1710 1711 1712
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

1713 1714 1715 1716 1717
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
1718

1719
	down_read(&mm->mmap_sem);
1720
	vma = find_vma(mm, start);
1721 1722
	if (!vma) {
		reset_ptenuma_scan(p);
1723
		start = 0;
1724 1725
		vma = mm->mmap;
	}
1726
	for (; vma; vma = vma->vm_next) {
1727
		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1728 1729
			continue;

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
1740 1741 1742 1743 1744 1745
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
1746

1747 1748 1749 1750
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
1751 1752 1753 1754 1755 1756 1757 1758 1759
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
1760

1761 1762 1763 1764
			start = end;
			if (pages <= 0)
				goto out;
		} while (end != vma->vm_end);
1765
	}
1766

1767
out:
1768
	/*
P
Peter Zijlstra 已提交
1769 1770 1771 1772
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
1773 1774
	 */
	if (vma)
1775
		mm->numa_scan_offset = start;
1776 1777 1778
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
1805
		if (!curr->node_stamp)
1806
			curr->numa_scan_period = task_scan_min(curr);
1807
		curr->node_stamp += period;
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
1819 1820 1821 1822 1823 1824 1825 1826

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
1827 1828
#endif /* CONFIG_NUMA_BALANCING */

1829 1830 1831 1832
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
1833
	if (!parent_entity(se))
1834
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1835
#ifdef CONFIG_SMP
1836 1837 1838 1839 1840 1841
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
1842
#endif
1843 1844 1845 1846 1847 1848 1849
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
1850
	if (!parent_entity(se))
1851
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1852 1853
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
1854
		list_del_init(&se->group_node);
1855
	}
1856 1857 1858
	cfs_rq->nr_running--;
}

1859 1860
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
1861 1862 1863 1864 1865 1866 1867 1868 1869
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
1870
	tg_weight = atomic_long_read(&tg->load_avg);
1871
	tg_weight -= cfs_rq->tg_load_contrib;
1872 1873 1874 1875 1876
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

1877
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1878
{
1879
	long tg_weight, load, shares;
1880

1881
	tg_weight = calc_tg_weight(tg, cfs_rq);
1882
	load = cfs_rq->load.weight;
1883 1884

	shares = (tg->shares * load);
1885 1886
	if (tg_weight)
		shares /= tg_weight;
1887 1888 1889 1890 1891 1892 1893 1894 1895

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
1896
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1897 1898 1899 1900
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1901 1902 1903
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
1904 1905 1906 1907
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1908
		account_entity_dequeue(cfs_rq, se);
1909
	}
P
Peter Zijlstra 已提交
1910 1911 1912 1913 1914 1915 1916

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

1917 1918
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

1919
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1920 1921 1922
{
	struct task_group *tg;
	struct sched_entity *se;
1923
	long shares;
P
Peter Zijlstra 已提交
1924 1925 1926

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
1927
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
1928
		return;
1929 1930 1931 1932
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
1933
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
1934 1935 1936 1937

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
1938
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1939 1940 1941 1942
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

1943
#ifdef CONFIG_SMP
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

1972 1973 1974 1975 1976 1977
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
	 * With a look-up table which covers k^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
1998 1999
	}

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
2065 2066
	u64 delta, periods;
	u32 runnable_contrib;
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

2130
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2131
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2132 2133 2134 2135 2136 2137
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
2138
		return 0;
2139 2140 2141

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
2142 2143

	return decays;
2144 2145
}

2146 2147 2148 2149 2150
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
2151
	long tg_contrib;
2152 2153 2154 2155

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

2156 2157
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
2158 2159 2160
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
2161

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
2173
	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2174 2175 2176 2177 2178 2179 2180 2181 2182
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

2183 2184 2185 2186
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
2187 2188
	int runnable_avg;

2189 2190 2191
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
2192 2193
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
2223
}
2224 2225 2226
#else
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
2227 2228
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
2229
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2230 2231
#endif

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

2242 2243 2244 2245 2246
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

2247 2248 2249
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
2250
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2251 2252
		__update_group_entity_contrib(se);
	}
2253 2254 2255 2256

	return se->avg.load_avg_contrib - old_contrib;
}

2257 2258 2259 2260 2261 2262 2263 2264 2265
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

2266 2267
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

2268
/* Update a sched_entity's runnable average */
2269 2270
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
2271
{
2272 2273
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
2274
	u64 now;
2275

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2286 2287 2288
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
2289 2290 2291 2292

	if (!update_cfs_rq)
		return;

2293 2294
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
2295 2296 2297 2298 2299 2300 2301 2302
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
2303
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2304
{
2305
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2306 2307 2308
	u64 decays;

	decays = now - cfs_rq->last_decay;
2309
	if (!decays && !force_update)
2310 2311
		return;

2312 2313 2314
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2315 2316
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
2317

2318 2319 2320 2321 2322 2323
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
2324 2325

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2326
}
2327 2328 2329

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
2330
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2331
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2332
}
2333 2334 2335

/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2336 2337
						  struct sched_entity *se,
						  int wakeup)
2338
{
2339 2340 2341 2342
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
2343 2344 2345 2346
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
2347 2348
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
2349
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
2365 2366
		wakeup = 0;
	} else {
2367
		__synchronize_entity_decay(se);
2368 2369
	}

2370 2371
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
2372
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2373 2374
		update_entity_load_avg(se, 0);
	}
2375

2376
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2377 2378
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2379 2380
}

2381 2382 2383 2384 2385
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
2386
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2387 2388
						  struct sched_entity *se,
						  int sleep)
2389
{
2390
	update_entity_load_avg(se, 1);
2391 2392
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2393

2394
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2395 2396 2397 2398
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2399
}
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

2421
#else
2422 2423
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
2424
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2425
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2426 2427
					   struct sched_entity *se,
					   int wakeup) {}
2428
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2429 2430
					   struct sched_entity *se,
					   int sleep) {}
2431 2432
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
2433 2434
#endif

2435
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2436 2437
{
#ifdef CONFIG_SCHEDSTATS
2438 2439 2440 2441 2442
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2443
	if (se->statistics.sleep_start) {
2444
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2445 2446 2447 2448

		if ((s64)delta < 0)
			delta = 0;

2449 2450
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2451

2452
		se->statistics.sleep_start = 0;
2453
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2454

2455
		if (tsk) {
2456
			account_scheduler_latency(tsk, delta >> 10, 1);
2457 2458
			trace_sched_stat_sleep(tsk, delta);
		}
2459
	}
2460
	if (se->statistics.block_start) {
2461
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2462 2463 2464 2465

		if ((s64)delta < 0)
			delta = 0;

2466 2467
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2468

2469
		se->statistics.block_start = 0;
2470
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2471

2472
		if (tsk) {
2473
			if (tsk->in_iowait) {
2474 2475
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2476
				trace_sched_stat_iowait(tsk, delta);
2477 2478
			}

2479 2480
			trace_sched_stat_blocked(tsk, delta);

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2492
		}
2493 2494 2495 2496
	}
#endif
}

P
Peter Zijlstra 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2510 2511 2512
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2513
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2514

2515 2516 2517 2518 2519 2520
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2521
	if (initial && sched_feat(START_DEBIT))
2522
		vruntime += sched_vslice(cfs_rq, se);
2523

2524
	/* sleeps up to a single latency don't count. */
2525
	if (!initial) {
2526
		unsigned long thresh = sysctl_sched_latency;
2527

2528 2529 2530 2531 2532 2533
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2534

2535
		vruntime -= thresh;
2536 2537
	}

2538
	/* ensure we never gain time by being placed backwards. */
2539
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2540 2541
}

2542 2543
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2544
static void
2545
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2546
{
2547 2548
	/*
	 * Update the normalized vruntime before updating min_vruntime
2549
	 * through calling update_curr().
2550
	 */
2551
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2552 2553
		se->vruntime += cfs_rq->min_vruntime;

2554
	/*
2555
	 * Update run-time statistics of the 'current'.
2556
	 */
2557
	update_curr(cfs_rq);
2558
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2559 2560
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
2561

2562
	if (flags & ENQUEUE_WAKEUP) {
2563
		place_entity(cfs_rq, se, 0);
2564
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
2565
	}
2566

2567
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
2568
	check_spread(cfs_rq, se);
2569 2570
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
2571
	se->on_rq = 1;
2572

2573
	if (cfs_rq->nr_running == 1) {
2574
		list_add_leaf_cfs_rq(cfs_rq);
2575 2576
		check_enqueue_throttle(cfs_rq);
	}
2577 2578
}

2579
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
2580
{
2581 2582 2583 2584 2585 2586 2587 2588
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}
}
P
Peter Zijlstra 已提交
2589

2590 2591 2592 2593 2594 2595 2596 2597 2598
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next == se)
			cfs_rq->next = NULL;
		else
			break;
	}
P
Peter Zijlstra 已提交
2599 2600
}

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip == se)
			cfs_rq->skip = NULL;
		else
			break;
	}
}

P
Peter Zijlstra 已提交
2612 2613
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2614 2615 2616 2617 2618
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
2619 2620 2621

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
2622 2623
}

2624
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2625

2626
static void
2627
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2628
{
2629 2630 2631 2632
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
2633
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2634

2635
	update_stats_dequeue(cfs_rq, se);
2636
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
2637
#ifdef CONFIG_SCHEDSTATS
2638 2639 2640 2641
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
2642
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2643
			if (tsk->state & TASK_UNINTERRUPTIBLE)
2644
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2645
		}
2646
#endif
P
Peter Zijlstra 已提交
2647 2648
	}

P
Peter Zijlstra 已提交
2649
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2650

2651
	if (se != cfs_rq->curr)
2652
		__dequeue_entity(cfs_rq, se);
2653
	se->on_rq = 0;
2654
	account_entity_dequeue(cfs_rq, se);
2655 2656 2657 2658 2659 2660

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
2661
	if (!(flags & DEQUEUE_SLEEP))
2662
		se->vruntime -= cfs_rq->min_vruntime;
2663

2664 2665 2666
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

2667
	update_min_vruntime(cfs_rq);
2668
	update_cfs_shares(cfs_rq);
2669 2670 2671 2672 2673
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
2674
static void
I
Ingo Molnar 已提交
2675
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2676
{
2677
	unsigned long ideal_runtime, delta_exec;
2678 2679
	struct sched_entity *se;
	s64 delta;
2680

P
Peter Zijlstra 已提交
2681
	ideal_runtime = sched_slice(cfs_rq, curr);
2682
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2683
	if (delta_exec > ideal_runtime) {
2684
		resched_task(rq_of(cfs_rq)->curr);
2685 2686 2687 2688 2689
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

2701 2702
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
2703

2704 2705
	if (delta < 0)
		return;
2706

2707 2708
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
2709 2710
}

2711
static void
2712
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2713
{
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

2725
	update_stats_curr_start(cfs_rq, se);
2726
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
2727 2728 2729 2730 2731 2732
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
2733
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2734
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
2735 2736 2737
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
2738
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2739 2740
}

2741 2742 2743
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

2744 2745 2746 2747 2748 2749 2750
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
2751
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2752
{
2753
	struct sched_entity *se = __pick_first_entity(cfs_rq);
2754
	struct sched_entity *left = se;
2755

2756 2757 2758 2759 2760 2761 2762 2763 2764
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second = __pick_next_entity(se);
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
2765

2766 2767 2768 2769 2770 2771
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

2772 2773 2774 2775 2776 2777
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

2778
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2779 2780

	return se;
2781 2782
}

2783 2784
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

2785
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2786 2787 2788 2789 2790 2791
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
2792
		update_curr(cfs_rq);
2793

2794 2795 2796
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
2797
	check_spread(cfs_rq, prev);
2798
	if (prev->on_rq) {
2799
		update_stats_wait_start(cfs_rq, prev);
2800 2801
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
2802
		/* in !on_rq case, update occurred at dequeue */
2803
		update_entity_load_avg(prev, 1);
2804
	}
2805
	cfs_rq->curr = NULL;
2806 2807
}

P
Peter Zijlstra 已提交
2808 2809
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2810 2811
{
	/*
2812
	 * Update run-time statistics of the 'current'.
2813
	 */
2814
	update_curr(cfs_rq);
2815

2816 2817 2818
	/*
	 * Ensure that runnable average is periodically updated.
	 */
2819
	update_entity_load_avg(curr, 1);
2820
	update_cfs_rq_blocked_load(cfs_rq, 1);
2821
	update_cfs_shares(cfs_rq);
2822

P
Peter Zijlstra 已提交
2823 2824 2825 2826 2827
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
2828 2829 2830 2831
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
2832 2833 2834 2835 2836 2837 2838 2839
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
2840
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
2841
		check_preempt_tick(cfs_rq, curr);
2842 2843
}

2844 2845 2846 2847 2848 2849

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
2850 2851

#ifdef HAVE_JUMP_LABEL
2852
static struct static_key __cfs_bandwidth_used;
2853 2854 2855

static inline bool cfs_bandwidth_used(void)
{
2856
	return static_key_false(&__cfs_bandwidth_used);
2857 2858
}

2859
void cfs_bandwidth_usage_inc(void)
2860
{
2861 2862 2863 2864 2865 2866
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
2867 2868 2869 2870 2871 2872 2873
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

2874 2875
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
2876 2877
#endif /* HAVE_JUMP_LABEL */

2878 2879 2880 2881 2882 2883 2884 2885
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
2886 2887 2888 2889 2890 2891

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
2892 2893 2894 2895 2896 2897 2898
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
2899
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

2911 2912 2913 2914 2915
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

2916 2917 2918 2919 2920 2921
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

2922
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2923 2924
}

2925 2926
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2927 2928 2929
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
2930
	u64 amount = 0, min_amount, expires;
2931 2932 2933 2934 2935 2936 2937

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
2938
	else {
P
Paul Turner 已提交
2939 2940 2941 2942 2943 2944 2945 2946
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
2947
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
2948
		}
2949 2950 2951 2952 2953 2954

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
2955
	}
P
Paul Turner 已提交
2956
	expires = cfs_b->runtime_expires;
2957 2958 2959
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
2960 2961 2962 2963 2964 2965 2966
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
2967 2968

	return cfs_rq->runtime_remaining > 0;
2969 2970
}

P
Paul Turner 已提交
2971 2972 2973 2974 2975
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2976
{
P
Paul Turner 已提交
2977 2978 2979
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
2980
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2981 2982
		return;

P
Paul Turner 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3004
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3005 3006
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3007
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3008 3009 3010
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3011 3012
		return;

3013 3014 3015 3016 3017 3018
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
3019 3020
}

3021
static __always_inline
3022
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3023
{
3024
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3025 3026 3027 3028 3029
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3030 3031
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3032
	return cfs_bandwidth_used() && cfs_rq->throttled;
3033 3034
}

3035 3036 3037
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3038
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3067
		/* adjust cfs_rq_clock_task() */
3068
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3069
					     cfs_rq->throttled_clock_task;
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3081 3082
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3083
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3084 3085 3086 3087 3088
	cfs_rq->throttle_count++;

	return 0;
}

3089
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3090 3091 3092 3093 3094 3095 3096 3097
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3098
	/* freeze hierarchy runnable averages while throttled */
3099 3100 3101
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
3122
	cfs_rq->throttled_clock = rq_clock(rq);
3123 3124
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3125 3126
	if (!cfs_b->timer_active)
		__start_cfs_bandwidth(cfs_b);
3127 3128 3129
	raw_spin_unlock(&cfs_b->lock);
}

3130
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3131 3132 3133 3134 3135 3136 3137
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3138
	se = cfs_rq->tg->se[cpu_of(rq)];
3139 3140

	cfs_rq->throttled = 0;
3141 3142 3143

	update_rq_clock(rq);

3144
	raw_spin_lock(&cfs_b->lock);
3145
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3146 3147 3148
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3149 3150 3151
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

3215 3216 3217 3218 3219 3220 3221 3222
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3223 3224
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
3225 3226 3227 3228 3229 3230

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

3231 3232 3233
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
3234
	cfs_b->nr_periods += overrun;
3235

P
Paul Turner 已提交
3236 3237 3238 3239
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

3240 3241 3242 3243 3244 3245 3246
	/*
	 * if we have relooped after returning idle once, we need to update our
	 * status as actually running, so that other cpus doing
	 * __start_cfs_bandwidth will stop trying to cancel us.
	 */
	cfs_b->timer_active = 1;

P
Paul Turner 已提交
3247 3248
	__refill_cfs_bandwidth_runtime(cfs_b);

3249 3250 3251 3252 3253 3254
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

3255 3256 3257
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
3282

3283 3284 3285 3286 3287 3288 3289 3290 3291
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3292 3293 3294 3295 3296 3297 3298
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
3299

3300 3301 3302 3303 3304 3305 3306
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3307 3308 3309 3310 3311 3312 3313
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3370 3371 3372
	if (!cfs_bandwidth_used())
		return;

3373
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3389 3390 3391
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3392
		return;
3393
	}
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412

	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

3413 3414 3415 3416 3417 3418 3419
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3420 3421 3422
	if (!cfs_bandwidth_used())
		return;

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3440 3441 3442
	if (!cfs_bandwidth_used())
		return;

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return;

	throttle_cfs_rq(cfs_rq);
}
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
3515 3516 3517
	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3518
		raw_spin_unlock(&cfs_b->lock);
3519
		cpu_relax();
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

3536
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
3557 3558
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
3559
	return rq_clock_task(rq_of(cfs_rq));
3560 3561
}

3562
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3563 3564
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3565
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3566 3567 3568 3569 3570

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
3582 3583 3584 3585 3586

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3587 3588
#endif

3589 3590 3591 3592 3593
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3594
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3595 3596 3597

#endif /* CONFIG_CFS_BANDWIDTH */

3598 3599 3600 3601
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
3602 3603 3604 3605 3606 3607 3608 3609
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

3610
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
3625
		if (rq->curr != p)
3626
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
3627

3628
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
3629 3630
	}
}
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

3641
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3642 3643 3644 3645 3646
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
3647
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
3648 3649 3650 3651
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
3652 3653 3654 3655

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
3656 3657
#endif

3658 3659 3660 3661 3662
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
3663
static void
3664
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3665 3666
{
	struct cfs_rq *cfs_rq;
3667
	struct sched_entity *se = &p->se;
3668 3669

	for_each_sched_entity(se) {
3670
		if (se->on_rq)
3671 3672
			break;
		cfs_rq = cfs_rq_of(se);
3673
		enqueue_entity(cfs_rq, se, flags);
3674 3675 3676 3677 3678 3679 3680 3681 3682

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3683
		cfs_rq->h_nr_running++;
3684

3685
		flags = ENQUEUE_WAKEUP;
3686
	}
P
Peter Zijlstra 已提交
3687

P
Peter Zijlstra 已提交
3688
	for_each_sched_entity(se) {
3689
		cfs_rq = cfs_rq_of(se);
3690
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
3691

3692 3693 3694
		if (cfs_rq_throttled(cfs_rq))
			break;

3695
		update_cfs_shares(cfs_rq);
3696
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3697 3698
	}

3699 3700
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
3701
		inc_nr_running(rq);
3702
	}
3703
	hrtick_update(rq);
3704 3705
}

3706 3707
static void set_next_buddy(struct sched_entity *se);

3708 3709 3710 3711 3712
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
3713
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3714 3715
{
	struct cfs_rq *cfs_rq;
3716
	struct sched_entity *se = &p->se;
3717
	int task_sleep = flags & DEQUEUE_SLEEP;
3718 3719 3720

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3721
		dequeue_entity(cfs_rq, se, flags);
3722 3723 3724 3725 3726 3727 3728 3729 3730

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3731
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3732

3733
		/* Don't dequeue parent if it has other entities besides us */
3734 3735 3736 3737 3738 3739 3740
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
3741 3742 3743

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
3744
			break;
3745
		}
3746
		flags |= DEQUEUE_SLEEP;
3747
	}
P
Peter Zijlstra 已提交
3748

P
Peter Zijlstra 已提交
3749
	for_each_sched_entity(se) {
3750
		cfs_rq = cfs_rq_of(se);
3751
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3752

3753 3754 3755
		if (cfs_rq_throttled(cfs_rq))
			break;

3756
		update_cfs_shares(cfs_rq);
3757
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3758 3759
	}

3760
	if (!se) {
3761
		dec_nr_running(rq);
3762 3763
		update_rq_runnable_avg(rq, 1);
	}
3764
	hrtick_update(rq);
3765 3766
}

3767
#ifdef CONFIG_SMP
3768 3769 3770
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
3771
	return cpu_rq(cpu)->cfs.runnable_load_avg;
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3816
	unsigned long load_avg = rq->cfs.runnable_load_avg;
3817 3818

	if (nr_running)
3819
		return load_avg / nr_running;
3820 3821 3822 3823

	return 0;
}

3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
	if (jiffies > current->wakee_flip_decay_ts + HZ) {
		current->wakee_flips = 0;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
3841

3842
static void task_waking_fair(struct task_struct *p)
3843 3844 3845
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3846 3847 3848 3849
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
3850

3851 3852 3853 3854 3855 3856 3857 3858
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
3859

3860
	se->vruntime -= min_vruntime;
3861
	record_wakee(p);
3862 3863
}

3864
#ifdef CONFIG_FAIR_GROUP_SCHED
3865 3866 3867 3868 3869 3870
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
3914
 */
P
Peter Zijlstra 已提交
3915
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3916
{
P
Peter Zijlstra 已提交
3917
	struct sched_entity *se = tg->se[cpu];
3918

3919
	if (!tg->parent)	/* the trivial, non-cgroup case */
3920 3921
		return wl;

P
Peter Zijlstra 已提交
3922
	for_each_sched_entity(se) {
3923
		long w, W;
P
Peter Zijlstra 已提交
3924

3925
		tg = se->my_q->tg;
3926

3927 3928 3929 3930
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
3931

3932 3933 3934 3935
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
3936

3937 3938 3939 3940 3941
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
3942 3943
		else
			wl = tg->shares;
3944

3945 3946 3947 3948 3949
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
3950 3951
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
3952 3953 3954 3955

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
3956
		wl -= se->load.weight;
3957 3958 3959 3960 3961 3962 3963 3964

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
3965 3966
		wg = 0;
	}
3967

P
Peter Zijlstra 已提交
3968
	return wl;
3969 3970
}
#else
P
Peter Zijlstra 已提交
3971

3972
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
3973
{
3974
	return wl;
3975
}
P
Peter Zijlstra 已提交
3976

3977 3978
#endif

3979 3980
static int wake_wide(struct task_struct *p)
{
3981
	int factor = this_cpu_read(sd_llc_size);
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

4001
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4002
{
4003
	s64 this_load, load;
4004
	int idx, this_cpu, prev_cpu;
4005
	unsigned long tl_per_task;
4006
	struct task_group *tg;
4007
	unsigned long weight;
4008
	int balanced;
4009

4010 4011 4012 4013 4014 4015 4016
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

4017 4018 4019 4020 4021
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4022

4023 4024 4025 4026 4027
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4028 4029 4030 4031
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

4032
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4033 4034
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4035

4036 4037
	tg = task_group(p);
	weight = p->se.load.weight;
4038

4039 4040
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4041 4042 4043
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4044 4045 4046 4047
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4048 4049
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
4063

4064
	/*
I
Ingo Molnar 已提交
4065 4066 4067
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
4068
	 */
4069 4070
	if (sync && balanced)
		return 1;
4071

4072
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4073 4074
	tl_per_task = cpu_avg_load_per_task(this_cpu);

4075 4076 4077
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4078 4079 4080 4081 4082
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
4083
		schedstat_inc(sd, ttwu_move_affine);
4084
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4085 4086 4087 4088 4089 4090

		return 1;
	}
	return 0;
}

4091 4092 4093 4094 4095
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4096
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4097
		  int this_cpu, int sd_flag)
4098
{
4099
	struct sched_group *idlest = NULL, *group = sd->groups;
4100
	unsigned long min_load = ULONG_MAX, this_load = 0;
4101
	int load_idx = sd->forkexec_idx;
4102
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4103

4104 4105 4106
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4107 4108 4109 4110
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4111

4112 4113
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4114
					tsk_cpus_allowed(p)))
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
4134
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
4160
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4161 4162 4163 4164 4165
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
4166 4167 4168
		}
	}

4169 4170
	return idlest;
}
4171

4172 4173 4174
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4175
static int select_idle_sibling(struct task_struct *p, int target)
4176
{
4177
	struct sched_domain *sd;
4178
	struct sched_group *sg;
4179
	int i = task_cpu(p);
4180

4181 4182
	if (idle_cpu(target))
		return target;
4183 4184

	/*
4185
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4186
	 */
4187 4188
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4189 4190

	/*
4191
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4192
	 */
4193
	sd = rcu_dereference(per_cpu(sd_llc, target));
4194
	for_each_lower_domain(sd) {
4195 4196 4197 4198 4199 4200 4201
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4202
				if (i == target || !idle_cpu(i))
4203 4204
					goto next;
			}
4205

4206 4207 4208 4209 4210 4211 4212 4213
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4214 4215 4216
	return target;
}

4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
4228
static int
4229
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4230
{
4231
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4232 4233
	int cpu = smp_processor_id();
	int new_cpu = cpu;
4234
	int want_affine = 0;
4235
	int sync = wake_flags & WF_SYNC;
4236

4237
	if (p->nr_cpus_allowed == 1)
4238 4239
		return prev_cpu;

4240
	if (sd_flag & SD_BALANCE_WAKE) {
4241
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4242 4243 4244
			want_affine = 1;
		new_cpu = prev_cpu;
	}
4245

4246
	rcu_read_lock();
4247
	for_each_domain(cpu, tmp) {
4248 4249 4250
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

4251
		/*
4252 4253
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4254
		 */
4255 4256 4257
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4258
			break;
4259
		}
4260

4261
		if (tmp->flags & sd_flag)
4262 4263 4264
			sd = tmp;
	}

4265
	if (affine_sd) {
4266
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4267 4268 4269 4270
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
4271
	}
4272

4273 4274
	while (sd) {
		struct sched_group *group;
4275
		int weight;
4276

4277
		if (!(sd->flags & sd_flag)) {
4278 4279 4280
			sd = sd->child;
			continue;
		}
4281

4282
		group = find_idlest_group(sd, p, cpu, sd_flag);
4283 4284 4285 4286
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4287

4288
		new_cpu = find_idlest_cpu(group, p, cpu);
4289 4290 4291 4292
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4293
		}
4294 4295 4296

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4297
		weight = sd->span_weight;
4298 4299
		sd = NULL;
		for_each_domain(cpu, tmp) {
4300
			if (weight <= tmp->span_weight)
4301
				break;
4302
			if (tmp->flags & sd_flag)
4303 4304 4305
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4306
	}
4307 4308
unlock:
	rcu_read_unlock();
4309

4310
	return new_cpu;
4311
}
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
4333 4334
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
4335
	}
4336
}
4337 4338
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
4339 4340
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4341 4342 4343 4344
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
4345 4346
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
4347 4348 4349 4350 4351 4352 4353 4354 4355
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
4356
	 */
4357
	return calc_delta_fair(gran, se);
4358 4359
}

4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
4382
	gran = wakeup_gran(curr, se);
4383 4384 4385 4386 4387 4388
	if (vdiff > gran)
		return 1;

	return 0;
}

4389 4390
static void set_last_buddy(struct sched_entity *se)
{
4391 4392 4393 4394 4395
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
4396 4397 4398 4399
}

static void set_next_buddy(struct sched_entity *se)
{
4400 4401 4402 4403 4404
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
4405 4406
}

4407 4408
static void set_skip_buddy(struct sched_entity *se)
{
4409 4410
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
4411 4412
}

4413 4414 4415
/*
 * Preempt the current task with a newly woken task if needed:
 */
4416
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4417 4418
{
	struct task_struct *curr = rq->curr;
4419
	struct sched_entity *se = &curr->se, *pse = &p->se;
4420
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4421
	int scale = cfs_rq->nr_running >= sched_nr_latency;
4422
	int next_buddy_marked = 0;
4423

I
Ingo Molnar 已提交
4424 4425 4426
	if (unlikely(se == pse))
		return;

4427
	/*
4428
	 * This is possible from callers such as move_task(), in which we
4429 4430 4431 4432 4433 4434 4435
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

4436
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
4437
		set_next_buddy(pse);
4438 4439
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
4440

4441 4442 4443
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
4444 4445 4446 4447 4448 4449
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
4450 4451 4452 4453
	 */
	if (test_tsk_need_resched(curr))
		return;

4454 4455 4456 4457 4458
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

4459
	/*
4460 4461
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
4462
	 */
4463
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4464
		return;
4465

4466
	find_matching_se(&se, &pse);
4467
	update_curr(cfs_rq_of(se));
4468
	BUG_ON(!pse);
4469 4470 4471 4472 4473 4474 4475
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
4476
		goto preempt;
4477
	}
4478

4479
	return;
4480

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
4497 4498
}

4499
static struct task_struct *pick_next_task_fair(struct rq *rq)
4500
{
P
Peter Zijlstra 已提交
4501
	struct task_struct *p;
4502 4503 4504
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

4505
	if (!cfs_rq->nr_running)
4506 4507 4508
		return NULL;

	do {
4509
		se = pick_next_entity(cfs_rq);
4510
		set_next_entity(cfs_rq, se);
4511 4512 4513
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
4514
	p = task_of(se);
4515 4516
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
4517 4518

	return p;
4519 4520 4521 4522 4523
}

/*
 * Account for a descheduled task:
 */
4524
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4525 4526 4527 4528 4529 4530
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4531
		put_prev_entity(cfs_rq, se);
4532 4533 4534
	}
}

4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
4560 4561 4562 4563 4564 4565
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
4566 4567 4568 4569 4570
	}

	set_skip_buddy(se);
}

4571 4572 4573 4574
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

4575 4576
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

4587
#ifdef CONFIG_SMP
4588
/**************************************************
P
Peter Zijlstra 已提交
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
4705

4706 4707
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

4708 4709
enum fbq_type { regular, remote, all };

4710
#define LBF_ALL_PINNED	0x01
4711
#define LBF_NEED_BREAK	0x02
4712 4713
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
4714 4715 4716 4717 4718

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
4719
	int			src_cpu;
4720 4721 4722 4723

	int			dst_cpu;
	struct rq		*dst_rq;

4724 4725
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
4726
	enum cpu_idle_type	idle;
4727
	long			imbalance;
4728 4729 4730
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

4731
	unsigned int		flags;
4732 4733 4734 4735

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
4736 4737

	enum fbq_type		fbq_type;
4738 4739
};

4740
/*
4741
 * move_task - move a task from one runqueue to another runqueue.
4742 4743
 * Both runqueues must be locked.
 */
4744
static void move_task(struct task_struct *p, struct lb_env *env)
4745
{
4746 4747 4748 4749
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
4750 4751
}

4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
/*
 * Is this task likely cache-hot:
 */
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

4784 4785 4786 4787 4788 4789
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
	int src_nid, dst_nid;

4790
	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
4791 4792 4793 4794 4795 4796 4797
	    !(env->sd->flags & SD_NUMA)) {
		return false;
	}

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

4798
	if (src_nid == dst_nid)
4799 4800
		return false;

4801 4802 4803 4804
	/* Always encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
		return true;

4805 4806 4807
	/* If both task and group weight improve, this move is a winner. */
	if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
	    group_weight(p, dst_nid) > group_weight(p, src_nid))
4808 4809 4810 4811
		return true;

	return false;
}
4812 4813 4814 4815 4816 4817 4818 4819 4820


static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
	int src_nid, dst_nid;

	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
		return false;

4821
	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
4822 4823 4824 4825 4826
		return false;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

4827
	if (src_nid == dst_nid)
4828 4829
		return false;

4830 4831 4832 4833
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid)
		return true;

4834 4835 4836
	/* If either task or group weight get worse, don't do it. */
	if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
	    group_weight(p, dst_nid) < group_weight(p, src_nid))
4837 4838 4839 4840 4841
		return true;

	return false;
}

4842 4843 4844 4845 4846 4847
#else
static inline bool migrate_improves_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
4848 4849 4850 4851 4852 4853

static inline bool migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
4854 4855
#endif

4856 4857 4858 4859
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
4860
int can_migrate_task(struct task_struct *p, struct lb_env *env)
4861 4862 4863 4864
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
4865
	 * 1) throttled_lb_pair, or
4866
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4867 4868
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
4869
	 */
4870 4871 4872
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

4873
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4874
		int cpu;
4875

4876
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4877

4878 4879
		env->flags |= LBF_SOME_PINNED;

4880 4881 4882 4883 4884 4885 4886 4887
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
4888
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4889 4890
			return 0;

4891 4892 4893
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4894
				env->flags |= LBF_DST_PINNED;
4895 4896 4897
				env->new_dst_cpu = cpu;
				break;
			}
4898
		}
4899

4900 4901
		return 0;
	}
4902 4903

	/* Record that we found atleast one task that could run on dst_cpu */
4904
	env->flags &= ~LBF_ALL_PINNED;
4905

4906
	if (task_running(env->src_rq, p)) {
4907
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4908 4909 4910 4911 4912
		return 0;
	}

	/*
	 * Aggressive migration if:
4913 4914 4915
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
4916
	 */
4917
	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4918 4919
	if (!tsk_cache_hot)
		tsk_cache_hot = migrate_degrades_locality(p, env);
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930

	if (migrate_improves_locality(p, env)) {
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
#endif
		return 1;
	}

4931
	if (!tsk_cache_hot ||
4932
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Z
Zhang Hang 已提交
4933

4934
		if (tsk_cache_hot) {
4935
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4936
			schedstat_inc(p, se.statistics.nr_forced_migrations);
4937
		}
Z
Zhang Hang 已提交
4938

4939 4940 4941
		return 1;
	}

Z
Zhang Hang 已提交
4942 4943
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
4944 4945
}

4946 4947 4948 4949 4950 4951 4952
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
4953
static int move_one_task(struct lb_env *env)
4954 4955 4956
{
	struct task_struct *p, *n;

4957 4958 4959
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
4960

4961 4962 4963 4964 4965 4966 4967 4968
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
4969 4970 4971 4972
	}
	return 0;
}

4973 4974
static const unsigned int sched_nr_migrate_break = 32;

4975
/*
4976
 * move_tasks tries to move up to imbalance weighted load from busiest to
4977 4978 4979 4980 4981 4982
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
4983
{
4984 4985
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
4986 4987
	unsigned long load;
	int pulled = 0;
4988

4989
	if (env->imbalance <= 0)
4990
		return 0;
4991

4992 4993
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
4994

4995 4996
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
4997
		if (env->loop > env->loop_max)
4998
			break;
4999 5000

		/* take a breather every nr_migrate tasks */
5001
		if (env->loop > env->loop_break) {
5002
			env->loop_break += sched_nr_migrate_break;
5003
			env->flags |= LBF_NEED_BREAK;
5004
			break;
5005
		}
5006

5007
		if (!can_migrate_task(p, env))
5008 5009 5010
			goto next;

		load = task_h_load(p);
5011

5012
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5013 5014
			goto next;

5015
		if ((load / 2) > env->imbalance)
5016
			goto next;
5017

5018
		move_task(p, env);
5019
		pulled++;
5020
		env->imbalance -= load;
5021 5022

#ifdef CONFIG_PREEMPT
5023 5024 5025 5026 5027
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
5028
		if (env->idle == CPU_NEWLY_IDLE)
5029
			break;
5030 5031
#endif

5032 5033 5034 5035
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5036
		if (env->imbalance <= 0)
5037
			break;
5038 5039 5040

		continue;
next:
5041
		list_move_tail(&p->se.group_node, tasks);
5042
	}
5043

5044
	/*
5045 5046 5047
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
5048
	 */
5049
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
5050

5051
	return pulled;
5052 5053
}

P
Peter Zijlstra 已提交
5054
#ifdef CONFIG_FAIR_GROUP_SCHED
5055 5056 5057
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
5058
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5059
{
5060 5061
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5062

5063 5064 5065
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
5066

5067
	update_cfs_rq_blocked_load(cfs_rq, 1);
5068

5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
5083
		struct rq *rq = rq_of(cfs_rq);
5084 5085
		update_rq_runnable_avg(rq, rq->nr_running);
	}
5086 5087
}

5088
static void update_blocked_averages(int cpu)
5089 5090
{
	struct rq *rq = cpu_rq(cpu);
5091 5092
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5093

5094 5095
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5096 5097 5098 5099
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5100
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5101 5102 5103 5104 5105 5106
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5107
	}
5108 5109

	raw_spin_unlock_irqrestore(&rq->lock, flags);
5110 5111
}

5112
/*
5113
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5114 5115 5116
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5117
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5118
{
5119 5120
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5121
	unsigned long now = jiffies;
5122
	unsigned long load;
5123

5124
	if (cfs_rq->last_h_load_update == now)
5125 5126
		return;

5127 5128 5129 5130 5131 5132 5133
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5134

5135
	if (!se) {
5136
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5148 5149
}

5150
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5151
{
5152
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5153

5154
	update_cfs_rq_h_load(cfs_rq);
5155 5156
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
5157 5158
}
#else
5159
static inline void update_blocked_averages(int cpu)
5160 5161 5162
{
}

5163
static unsigned long task_h_load(struct task_struct *p)
5164
{
5165
	return p->se.avg.load_avg_contrib;
5166
}
P
Peter Zijlstra 已提交
5167
#endif
5168 5169 5170 5171 5172 5173 5174 5175 5176

/********** Helpers for find_busiest_group ************************/
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5177
	unsigned long load_per_task;
5178
	unsigned long group_power;
5179 5180 5181 5182
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int group_capacity;
	unsigned int idle_cpus;
	unsigned int group_weight;
5183
	int group_imb; /* Is there an imbalance in the group ? */
5184
	int group_has_capacity; /* Is there extra capacity in the group? */
5185 5186 5187 5188
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
5189 5190
};

J
Joonsoo Kim 已提交
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
	unsigned long total_pwr;	/* Total power of all groups in sd */
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5203
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5204 5205
};

5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
		.total_pwr = 0UL,
		.busiest_stat = {
			.avg_load = 0UL,
		},
	};
}

5225 5226 5227
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
5228
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5229 5230
 *
 * Return: The load index.
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

5253
static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5254
{
5255
	return SCHED_POWER_SCALE;
5256 5257 5258 5259 5260 5261 5262
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

5263
static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5264
{
5265
	unsigned long weight = sd->span_weight;
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

5278
static unsigned long scale_rt_power(int cpu)
5279 5280
{
	struct rq *rq = cpu_rq(cpu);
5281
	u64 total, available, age_stamp, avg;
5282

5283 5284 5285 5286 5287 5288 5289
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

5290
	total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5291

5292
	if (unlikely(total < avg)) {
5293 5294 5295
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
5296
		available = total - avg;
5297
	}
5298

5299 5300
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
5301

5302
	total >>= SCHED_POWER_SHIFT;
5303 5304 5305 5306 5307 5308

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
5309
	unsigned long weight = sd->span_weight;
5310
	unsigned long power = SCHED_POWER_SCALE;
5311 5312 5313 5314 5315 5316 5317 5318
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

5319
		power >>= SCHED_POWER_SHIFT;
5320 5321
	}

5322
	sdg->sgp->power_orig = power;
5323 5324 5325 5326 5327 5328

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

5329
	power >>= SCHED_POWER_SHIFT;
5330

5331
	power *= scale_rt_power(cpu);
5332
	power >>= SCHED_POWER_SHIFT;
5333 5334 5335 5336

	if (!power)
		power = 1;

5337
	cpu_rq(cpu)->cpu_power = power;
5338
	sdg->sgp->power = power;
5339 5340
}

5341
void update_group_power(struct sched_domain *sd, int cpu)
5342 5343 5344
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
5345
	unsigned long power, power_orig;
5346 5347 5348 5349 5350
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
5351 5352 5353 5354 5355 5356

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

5357
	power_orig = power = 0;
5358

P
Peter Zijlstra 已提交
5359 5360 5361 5362 5363 5364
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

5365
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5366 5367
			struct sched_group_power *sgp;
			struct rq *rq = cpu_rq(cpu);
5368

5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386
			/*
			 * build_sched_domains() -> init_sched_groups_power()
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
			 * Use power_of(), which is set irrespective of domains
			 * in update_cpu_power().
			 *
			 * This avoids power/power_orig from being 0 and
			 * causing divide-by-zero issues on boot.
			 *
			 * Runtime updates will correct power_orig.
			 */
			if (unlikely(!rq->sd)) {
				power_orig += power_of(cpu);
				power += power_of(cpu);
				continue;
			}
5387

5388 5389 5390
			sgp = rq->sd->groups->sgp;
			power_orig += sgp->power_orig;
			power += sgp->power;
5391
		}
P
Peter Zijlstra 已提交
5392 5393 5394 5395 5396 5397 5398 5399
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
5400
			power_orig += group->sgp->power_orig;
P
Peter Zijlstra 已提交
5401 5402 5403 5404
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
5405

5406 5407
	sdg->sgp->power_orig = power_orig;
	sdg->sgp->power = power;
5408 5409
}

5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
5421
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
5422
	 */
P
Peter Zijlstra 已提交
5423
	if (!(sd->flags & SD_SHARE_CPUPOWER))
5424 5425 5426 5427 5428
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
5429
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5430 5431 5432 5433 5434
		return 1;

	return 0;
}

5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
5451 5452
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
5453 5454
 *
 * When this is so detected; this group becomes a candidate for busiest; see
5455
 * update_sd_pick_busiest(). And calculate_imbalance() and
5456
 * find_busiest_group() avoid some of the usual balance conditions to allow it
5457 5458 5459 5460 5461 5462 5463
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

5464
static inline int sg_imbalanced(struct sched_group *group)
5465
{
5466
	return group->sgp->imbalance;
5467 5468
}

5469 5470 5471
/*
 * Compute the group capacity.
 *
5472 5473 5474
 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
 * first dividing out the smt factor and computing the actual number of cores
 * and limit power unit capacity with that.
5475 5476 5477
 */
static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
{
5478 5479 5480 5481 5482 5483
	unsigned int capacity, smt, cpus;
	unsigned int power, power_orig;

	power = group->sgp->power;
	power_orig = group->sgp->power_orig;
	cpus = group->group_weight;
5484

5485 5486 5487
	/* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
	capacity = cpus / smt; /* cores */
5488

5489
	capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5490 5491 5492 5493 5494 5495
	if (!capacity)
		capacity = fix_small_capacity(env->sd, group);

	return capacity;
}

5496 5497
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5498
 * @env: The load balancing environment.
5499 5500 5501 5502 5503
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
 */
5504 5505
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
5506
			int local_group, struct sg_lb_stats *sgs)
5507
{
5508
	unsigned long load;
5509
	int i;
5510

5511 5512
	memset(sgs, 0, sizeof(*sgs));

5513
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5514 5515 5516
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
5517
		if (local_group)
5518
			load = target_load(i, load_idx);
5519
		else
5520 5521 5522
			load = source_load(i, load_idx);

		sgs->group_load += load;
5523
		sgs->sum_nr_running += rq->nr_running;
5524 5525 5526 5527
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
5528
		sgs->sum_weighted_load += weighted_cpuload(i);
5529 5530
		if (idle_cpu(i))
			sgs->idle_cpus++;
5531 5532 5533
	}

	/* Adjust by relative CPU power of the group */
5534 5535
	sgs->group_power = group->sgp->power;
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5536

5537
	if (sgs->sum_nr_running)
5538
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5539

5540
	sgs->group_weight = group->group_weight;
5541

5542 5543 5544
	sgs->group_imb = sg_imbalanced(group);
	sgs->group_capacity = sg_capacity(env, group);

5545 5546
	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
5547 5548
}

5549 5550
/**
 * update_sd_pick_busiest - return 1 on busiest group
5551
 * @env: The load balancing environment.
5552 5553
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
5554
 * @sgs: sched_group statistics
5555 5556 5557
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
5558 5559 5560
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
5561
 */
5562
static bool update_sd_pick_busiest(struct lb_env *env,
5563 5564
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
5565
				   struct sg_lb_stats *sgs)
5566
{
J
Joonsoo Kim 已提交
5567
	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
5581 5582
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

5623
/**
5624
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5625
 * @env: The load balancing environment.
5626 5627
 * @sds: variable to hold the statistics for this sched_domain.
 */
5628
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5629
{
5630 5631
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
5632
	struct sg_lb_stats tmp_sgs;
5633 5634 5635 5636 5637
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

5638
	load_idx = get_sd_load_idx(env->sd, env->idle);
5639 5640

	do {
J
Joonsoo Kim 已提交
5641
		struct sg_lb_stats *sgs = &tmp_sgs;
5642 5643
		int local_group;

5644
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
5645 5646 5647
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
5648 5649 5650 5651

			if (env->idle != CPU_NEWLY_IDLE ||
			    time_after_eq(jiffies, sg->sgp->next_update))
				update_group_power(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
5652
		}
5653

J
Joonsoo Kim 已提交
5654
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5655

5656 5657 5658
		if (local_group)
			goto next_group;

5659 5660
		/*
		 * In case the child domain prefers tasks go to siblings
5661
		 * first, lower the sg capacity to one so that we'll try
5662 5663 5664 5665 5666 5667
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
5668
		 */
5669 5670
		if (prefer_sibling && sds->local &&
		    sds->local_stat.group_has_capacity)
5671
			sgs->group_capacity = min(sgs->group_capacity, 1U);
5672

5673
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5674
			sds->busiest = sg;
J
Joonsoo Kim 已提交
5675
			sds->busiest_stat = *sgs;
5676 5677
		}

5678 5679 5680 5681 5682
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
		sds->total_pwr += sgs->group_power;

5683
		sg = sg->next;
5684
	} while (sg != env->sd->groups);
5685 5686 5687

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
5707
 * Return: 1 when packing is required and a task should be moved to
5708 5709
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
5710
 * @env: The load balancing environment.
5711 5712
 * @sds: Statistics of the sched_domain which is to be packed
 */
5713
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5714 5715 5716
{
	int busiest_cpu;

5717
	if (!(env->sd->flags & SD_ASYM_PACKING))
5718 5719 5720 5721 5722 5723
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
5724
	if (env->dst_cpu > busiest_cpu)
5725 5726
		return 0;

5727
	env->imbalance = DIV_ROUND_CLOSEST(
5728 5729
		sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
		SCHED_POWER_SCALE);
5730

5731
	return 1;
5732 5733 5734 5735 5736 5737
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
5738
 * @env: The load balancing environment.
5739 5740
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
5741 5742
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5743 5744 5745
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
5746
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
5747
	struct sg_lb_stats *local, *busiest;
5748

J
Joonsoo Kim 已提交
5749 5750
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
5751

J
Joonsoo Kim 已提交
5752 5753 5754 5755
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
5756

J
Joonsoo Kim 已提交
5757 5758
	scaled_busy_load_per_task =
		(busiest->load_per_task * SCHED_POWER_SCALE) /
5759
		busiest->group_power;
J
Joonsoo Kim 已提交
5760

5761 5762
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
5763
		env->imbalance = busiest->load_per_task;
5764 5765 5766 5767 5768 5769 5770 5771 5772
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

5773
	pwr_now += busiest->group_power *
J
Joonsoo Kim 已提交
5774
			min(busiest->load_per_task, busiest->avg_load);
5775
	pwr_now += local->group_power *
J
Joonsoo Kim 已提交
5776
			min(local->load_per_task, local->avg_load);
5777
	pwr_now /= SCHED_POWER_SCALE;
5778 5779

	/* Amount of load we'd subtract */
J
Joonsoo Kim 已提交
5780
	tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5781
		busiest->group_power;
J
Joonsoo Kim 已提交
5782
	if (busiest->avg_load > tmp) {
5783
		pwr_move += busiest->group_power *
J
Joonsoo Kim 已提交
5784 5785 5786
			    min(busiest->load_per_task,
				busiest->avg_load - tmp);
	}
5787 5788

	/* Amount of load we'd add */
5789
	if (busiest->avg_load * busiest->group_power <
J
Joonsoo Kim 已提交
5790
	    busiest->load_per_task * SCHED_POWER_SCALE) {
5791 5792
		tmp = (busiest->avg_load * busiest->group_power) /
		      local->group_power;
J
Joonsoo Kim 已提交
5793 5794
	} else {
		tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5795
		      local->group_power;
J
Joonsoo Kim 已提交
5796
	}
5797 5798
	pwr_move += local->group_power *
		    min(local->load_per_task, local->avg_load + tmp);
5799
	pwr_move /= SCHED_POWER_SCALE;
5800 5801 5802

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
J
Joonsoo Kim 已提交
5803
		env->imbalance = busiest->load_per_task;
5804 5805 5806 5807 5808
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
5809
 * @env: load balance environment
5810 5811
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
5812
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5813
{
5814
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
5815 5816 5817 5818
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
5819

J
Joonsoo Kim 已提交
5820
	if (busiest->group_imb) {
5821 5822 5823 5824
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
5825 5826
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
5827 5828
	}

5829 5830 5831 5832 5833
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
5834 5835
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
5836 5837
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
5838 5839
	}

J
Joonsoo Kim 已提交
5840
	if (!busiest->group_imb) {
5841 5842
		/*
		 * Don't want to pull so many tasks that a group would go idle.
5843 5844
		 * Except of course for the group_imb case, since then we might
		 * have to drop below capacity to reach cpu-load equilibrium.
5845
		 */
J
Joonsoo Kim 已提交
5846 5847
		load_above_capacity =
			(busiest->sum_nr_running - busiest->group_capacity);
5848

5849
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5850
		load_above_capacity /= busiest->group_power;
5851 5852 5853 5854 5855 5856 5857 5858 5859 5860
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
5861
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5862 5863

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
5864
	env->imbalance = min(
5865 5866
		max_pull * busiest->group_power,
		(sds->avg_load - local->avg_load) * local->group_power
J
Joonsoo Kim 已提交
5867
	) / SCHED_POWER_SCALE;
5868 5869 5870

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
5871
	 * there is no guarantee that any tasks will be moved so we'll have
5872 5873 5874
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
5875
	if (env->imbalance < busiest->load_per_task)
5876
		return fix_small_imbalance(env, sds);
5877
}
5878

5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
5891
 * @env: The load balancing environment.
5892
 *
5893
 * Return:	- The busiest group if imbalance exists.
5894 5895 5896 5897
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
5898
static struct sched_group *find_busiest_group(struct lb_env *env)
5899
{
J
Joonsoo Kim 已提交
5900
	struct sg_lb_stats *local, *busiest;
5901 5902
	struct sd_lb_stats sds;

5903
	init_sd_lb_stats(&sds);
5904 5905 5906 5907 5908

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
5909
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
5910 5911
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
5912

5913 5914
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
5915 5916
		return sds.busiest;

5917
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
5918
	if (!sds.busiest || busiest->sum_nr_running == 0)
5919 5920
		goto out_balanced;

5921
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5922

P
Peter Zijlstra 已提交
5923 5924
	/*
	 * If the busiest group is imbalanced the below checks don't
5925
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
5926 5927
	 * isn't true due to cpus_allowed constraints and the like.
	 */
J
Joonsoo Kim 已提交
5928
	if (busiest->group_imb)
P
Peter Zijlstra 已提交
5929 5930
		goto force_balance;

5931
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
J
Joonsoo Kim 已提交
5932 5933
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
	    !busiest->group_has_capacity)
5934 5935
		goto force_balance;

5936 5937 5938 5939
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
5940
	if (local->avg_load >= busiest->avg_load)
5941 5942
		goto out_balanced;

5943 5944 5945 5946
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
5947
	if (local->avg_load >= sds.avg_load)
5948 5949
		goto out_balanced;

5950
	if (env->idle == CPU_IDLE) {
5951 5952 5953 5954 5955 5956
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
J
Joonsoo Kim 已提交
5957 5958
		if ((local->idle_cpus < busiest->idle_cpus) &&
		    busiest->sum_nr_running <= busiest->group_weight)
5959
			goto out_balanced;
5960 5961 5962 5963 5964
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
5965 5966
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
5967
			goto out_balanced;
5968
	}
5969

5970
force_balance:
5971
	/* Looks like there is an imbalance. Compute it */
5972
	calculate_imbalance(env, &sds);
5973 5974 5975
	return sds.busiest;

out_balanced:
5976
	env->imbalance = 0;
5977 5978 5979 5980 5981 5982
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
5983
static struct rq *find_busiest_queue(struct lb_env *env,
5984
				     struct sched_group *group)
5985 5986
{
	struct rq *busiest = NULL, *rq;
5987
	unsigned long busiest_load = 0, busiest_power = 1;
5988 5989
	int i;

5990
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5991 5992 5993 5994 5995
		unsigned long power, capacity, wl;
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
5996

5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

		power = power_of(i);
		capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6021
		if (!capacity)
6022
			capacity = fix_small_capacity(env->sd, group);
6023

6024
		wl = weighted_cpuload(i);
6025

6026 6027 6028 6029
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
6030
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6031 6032
			continue;

6033 6034 6035 6036 6037
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
6038 6039 6040 6041 6042
		 *
		 * Thus we're looking for max(wl_i / power_i), crosswise
		 * multiplication to rid ourselves of the division works out
		 * to: wl_i * power_j > wl_j * power_i;  where j is our
		 * previous maximum.
6043
		 */
6044 6045 6046
		if (wl * busiest_power > busiest_load * power) {
			busiest_load = wl;
			busiest_power = power;
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6061
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6062

6063
static int need_active_balance(struct lb_env *env)
6064
{
6065 6066 6067
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6068 6069 6070 6071 6072 6073

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6074
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6075
			return 1;
6076 6077 6078 6079 6080
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6081 6082
static int active_load_balance_cpu_stop(void *data);

6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6114
	return balance_cpu == env->dst_cpu;
6115 6116
}

6117 6118 6119 6120 6121 6122
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6123
			int *continue_balancing)
6124
{
6125
	int ld_moved, cur_ld_moved, active_balance = 0;
6126
	struct sched_domain *sd_parent = sd->parent;
6127 6128 6129
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6130
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6131

6132 6133
	struct lb_env env = {
		.sd		= sd,
6134 6135
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6136
		.dst_grpmask    = sched_group_cpus(sd->groups),
6137
		.idle		= idle,
6138
		.loop_break	= sched_nr_migrate_break,
6139
		.cpus		= cpus,
6140
		.fbq_type	= all,
6141 6142
	};

6143 6144 6145 6146
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6147
	if (idle == CPU_NEWLY_IDLE)
6148 6149
		env.dst_grpmask = NULL;

6150 6151 6152 6153 6154
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6155 6156
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6157
		goto out_balanced;
6158
	}
6159

6160
	group = find_busiest_group(&env);
6161 6162 6163 6164 6165
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6166
	busiest = find_busiest_queue(&env, group);
6167 6168 6169 6170 6171
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

6172
	BUG_ON(busiest == env.dst_rq);
6173

6174
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6175 6176 6177 6178 6179 6180 6181 6182 6183

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
6184
		env.flags |= LBF_ALL_PINNED;
6185 6186 6187
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6188

6189
more_balance:
6190
		local_irq_save(flags);
6191
		double_rq_lock(env.dst_rq, busiest);
6192 6193 6194 6195 6196 6197 6198

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
6199
		double_rq_unlock(env.dst_rq, busiest);
6200 6201 6202 6203 6204
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
6205 6206 6207
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

6208 6209 6210 6211 6212
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
6232
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6233

6234 6235 6236
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

6237
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6238
			env.dst_cpu	 = env.new_dst_cpu;
6239
			env.flags	&= ~LBF_DST_PINNED;
6240 6241
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
6242

6243 6244 6245 6246 6247 6248
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
6249

6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
			int *group_imbalance = &sd_parent->groups->sgp->imbalance;

			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
				*group_imbalance = 1;
			} else if (*group_imbalance)
				*group_imbalance = 0;
		}

6262
		/* All tasks on this runqueue were pinned by CPU affinity */
6263
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6264
			cpumask_clear_cpu(cpu_of(busiest), cpus);
6265 6266 6267
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
6268
				goto redo;
6269
			}
6270 6271 6272 6273 6274 6275
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
6276 6277 6278 6279 6280 6281 6282 6283
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
6284

6285
		if (need_active_balance(&env)) {
6286 6287
			raw_spin_lock_irqsave(&busiest->lock, flags);

6288 6289 6290
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
6291 6292
			 */
			if (!cpumask_test_cpu(this_cpu,
6293
					tsk_cpus_allowed(busiest->curr))) {
6294 6295
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
6296
				env.flags |= LBF_ALL_PINNED;
6297 6298 6299
				goto out_one_pinned;
			}

6300 6301 6302 6303 6304
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
6305 6306 6307 6308 6309 6310
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6311

6312
			if (active_balance) {
6313 6314 6315
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
6316
			}
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
6350
	if (((env.flags & LBF_ALL_PINNED) &&
6351
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6352 6353 6354
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

6355
	ld_moved = 0;
6356 6357 6358 6359 6360 6361 6362 6363
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
6364
void idle_balance(int this_cpu, struct rq *this_rq)
6365 6366 6367 6368
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;
6369
	u64 curr_cost = 0;
6370

6371
	this_rq->idle_stamp = rq_clock(this_rq);
6372 6373 6374 6375

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

6376 6377 6378 6379 6380
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

6381
	update_blocked_averages(this_cpu);
6382
	rcu_read_lock();
6383 6384
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
6385
		int continue_balancing = 1;
6386
		u64 t0, domain_cost;
6387 6388 6389 6390

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6391 6392 6393
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
			break;

6394
		if (sd->flags & SD_BALANCE_NEWIDLE) {
6395 6396
			t0 = sched_clock_cpu(this_cpu);

6397
			/* If we've pulled tasks over stop searching: */
6398
			pulled_task = load_balance(this_cpu, this_rq,
6399 6400
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
6401 6402 6403 6404 6405 6406

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
6407
		}
6408 6409 6410 6411

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
N
Nikhil Rao 已提交
6412 6413
		if (pulled_task) {
			this_rq->idle_stamp = 0;
6414
			break;
N
Nikhil Rao 已提交
6415
		}
6416
	}
6417
	rcu_read_unlock();
6418 6419 6420

	raw_spin_lock(&this_rq->lock);

6421 6422 6423 6424 6425 6426 6427
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
6428 6429 6430

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;
6431 6432 6433
}

/*
6434 6435 6436 6437
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
6438
 */
6439
static int active_load_balance_cpu_stop(void *data)
6440
{
6441 6442
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
6443
	int target_cpu = busiest_rq->push_cpu;
6444
	struct rq *target_rq = cpu_rq(target_cpu);
6445
	struct sched_domain *sd;
6446 6447 6448 6449 6450 6451 6452

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
6453 6454 6455

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
6456
		goto out_unlock;
6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
6469
	rcu_read_lock();
6470 6471 6472 6473 6474 6475 6476
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
6477 6478
		struct lb_env env = {
			.sd		= sd,
6479 6480 6481 6482
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
6483 6484 6485
			.idle		= CPU_IDLE,
		};

6486 6487
		schedstat_inc(sd, alb_count);

6488
		if (move_one_task(&env))
6489 6490 6491 6492
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
6493
	rcu_read_unlock();
6494
	double_unlock_balance(busiest_rq, target_rq);
6495 6496 6497 6498
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
6499 6500
}

6501
#ifdef CONFIG_NO_HZ_COMMON
6502 6503 6504 6505 6506 6507
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
6508
static struct {
6509
	cpumask_var_t idle_cpus_mask;
6510
	atomic_t nr_cpus;
6511 6512
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
6513

6514
static inline int find_new_ilb(void)
6515
{
6516
	int ilb = cpumask_first(nohz.idle_cpus_mask);
6517

6518 6519 6520 6521
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
6522 6523
}

6524 6525 6526 6527 6528
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
6529
static void nohz_balancer_kick(void)
6530 6531 6532 6533 6534
{
	int ilb_cpu;

	nohz.next_balance++;

6535
	ilb_cpu = find_new_ilb();
6536

6537 6538
	if (ilb_cpu >= nr_cpu_ids)
		return;
6539

6540
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6541 6542 6543 6544 6545 6546 6547 6548
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
6549 6550 6551
	return;
}

6552
static inline void nohz_balance_exit_idle(int cpu)
6553 6554 6555 6556 6557 6558 6559 6560
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
		atomic_dec(&nohz.nr_cpus);
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

6561 6562 6563
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
6564
	int cpu = smp_processor_id();
6565 6566

	rcu_read_lock();
6567
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
6568 6569 6570 6571 6572

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

6573
	atomic_inc(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6574
unlock:
6575 6576 6577 6578 6579 6580
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
6581
	int cpu = smp_processor_id();
6582 6583

	rcu_read_lock();
6584
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
6585 6586 6587 6588 6589

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

6590
	atomic_dec(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6591
unlock:
6592 6593 6594
	rcu_read_unlock();
}

6595
/*
6596
 * This routine will record that the cpu is going idle with tick stopped.
6597
 * This info will be used in performing idle load balancing in the future.
6598
 */
6599
void nohz_balance_enter_idle(int cpu)
6600
{
6601 6602 6603 6604 6605 6606
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

6607 6608
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
6609

6610 6611 6612
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6613
}
6614

6615
static int sched_ilb_notifier(struct notifier_block *nfb,
6616 6617 6618 6619
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
6620
		nohz_balance_exit_idle(smp_processor_id());
6621 6622 6623 6624 6625
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
6626 6627 6628 6629
#endif

static DEFINE_SPINLOCK(balancing);

6630 6631 6632 6633
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
6634
void update_max_interval(void)
6635 6636 6637 6638
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

6639 6640 6641 6642
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
6643
 * Balancing parameters are set up in init_sched_domains.
6644
 */
6645
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
6646
{
6647
	int continue_balancing = 1;
6648
	int cpu = rq->cpu;
6649
	unsigned long interval;
6650
	struct sched_domain *sd;
6651 6652 6653
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
6654 6655
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
6656

6657
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
6658

6659
	rcu_read_lock();
6660
	for_each_domain(cpu, sd) {
6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

6673 6674 6675
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

6687 6688 6689 6690 6691 6692
		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
6693
		interval = clamp(interval, 1UL, max_load_balance_interval);
6694 6695 6696 6697 6698 6699 6700 6701 6702

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
6703
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6704
				/*
6705
				 * The LBF_DST_PINNED logic could have changed
6706 6707
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
6708
				 */
6709
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
6720 6721
	}
	if (need_decay) {
6722
		/*
6723 6724
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
6725
		 */
6726 6727
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
6728
	}
6729
	rcu_read_unlock();
6730 6731 6732 6733 6734 6735 6736 6737 6738 6739

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

6740
#ifdef CONFIG_NO_HZ_COMMON
6741
/*
6742
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6743 6744
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
6745
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
6746
{
6747
	int this_cpu = this_rq->cpu;
6748 6749 6750
	struct rq *rq;
	int balance_cpu;

6751 6752 6753
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
6754 6755

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6756
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6757 6758 6759 6760 6761 6762 6763
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
6764
		if (need_resched())
6765 6766
			break;

V
Vincent Guittot 已提交
6767 6768 6769 6770 6771 6772
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
6773

6774
		rebalance_domains(rq, CPU_IDLE);
6775 6776 6777 6778 6779

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
6780 6781
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6782 6783 6784
}

/*
6785 6786 6787 6788 6789 6790 6791
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
6792
 */
6793
static inline int nohz_kick_needed(struct rq *rq)
6794 6795
{
	unsigned long now = jiffies;
6796
	struct sched_domain *sd;
6797
	struct sched_group_power *sgp;
6798
	int nr_busy, cpu = rq->cpu;
6799

6800
	if (unlikely(rq->idle_balance))
6801 6802
		return 0;

6803 6804 6805 6806
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
6807
	set_cpu_sd_state_busy();
6808
	nohz_balance_exit_idle(cpu);
6809 6810 6811 6812 6813 6814 6815

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
6816 6817

	if (time_before(now, nohz.next_balance))
6818 6819
		return 0;

6820 6821
	if (rq->nr_running >= 2)
		goto need_kick;
6822

6823
	rcu_read_lock();
6824
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
6825

6826 6827 6828
	if (sd) {
		sgp = sd->groups->sgp;
		nr_busy = atomic_read(&sgp->nr_busy_cpus);
6829

6830
		if (nr_busy > 1)
6831
			goto need_kick_unlock;
6832
	}
6833 6834 6835 6836 6837 6838 6839

	sd = rcu_dereference(per_cpu(sd_asym, cpu));

	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
				  sched_domain_span(sd)) < cpu))
		goto need_kick_unlock;

6840
	rcu_read_unlock();
6841
	return 0;
6842 6843 6844

need_kick_unlock:
	rcu_read_unlock();
6845 6846
need_kick:
	return 1;
6847 6848
}
#else
6849
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
6850 6851 6852 6853 6854 6855
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
6856 6857
static void run_rebalance_domains(struct softirq_action *h)
{
6858
	struct rq *this_rq = this_rq();
6859
	enum cpu_idle_type idle = this_rq->idle_balance ?
6860 6861
						CPU_IDLE : CPU_NOT_IDLE;

6862
	rebalance_domains(this_rq, idle);
6863 6864

	/*
6865
	 * If this cpu has a pending nohz_balance_kick, then do the
6866 6867 6868
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
6869
	nohz_idle_balance(this_rq, idle);
6870 6871
}

6872
static inline int on_null_domain(struct rq *rq)
6873
{
6874
	return !rcu_dereference_sched(rq->sd);
6875 6876 6877 6878 6879
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
6880
void trigger_load_balance(struct rq *rq)
6881 6882
{
	/* Don't need to rebalance while attached to NULL domain */
6883 6884 6885 6886
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
6887
		raise_softirq(SCHED_SOFTIRQ);
6888
#ifdef CONFIG_NO_HZ_COMMON
6889
	if (nohz_kick_needed(rq))
6890
		nohz_balancer_kick();
6891
#endif
6892 6893
}

6894 6895 6896 6897 6898 6899 6900 6901
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
6902 6903 6904

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
6905 6906
}

6907
#endif /* CONFIG_SMP */
6908

6909 6910 6911
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
6912
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6913 6914 6915 6916 6917 6918
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
6919
		entity_tick(cfs_rq, se, queued);
6920
	}
6921

6922
	if (numabalancing_enabled)
6923
		task_tick_numa(rq, curr);
6924

6925
	update_rq_runnable_avg(rq, 1);
6926 6927 6928
}

/*
P
Peter Zijlstra 已提交
6929 6930 6931
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
6932
 */
P
Peter Zijlstra 已提交
6933
static void task_fork_fair(struct task_struct *p)
6934
{
6935 6936
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
6937
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
6938 6939 6940
	struct rq *rq = this_rq();
	unsigned long flags;

6941
	raw_spin_lock_irqsave(&rq->lock, flags);
6942

6943 6944
	update_rq_clock(rq);

6945 6946 6947
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

6948 6949 6950 6951 6952 6953 6954 6955 6956
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
6957

6958
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
6959

6960 6961
	if (curr)
		se->vruntime = curr->vruntime;
6962
	place_entity(cfs_rq, se, 1);
6963

P
Peter Zijlstra 已提交
6964
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
6965
		/*
6966 6967 6968
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
6969
		swap(curr->vruntime, se->vruntime);
6970
		resched_task(rq->curr);
6971
	}
6972

6973 6974
	se->vruntime -= cfs_rq->min_vruntime;

6975
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6976 6977
}

6978 6979 6980 6981
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
6982 6983
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6984
{
P
Peter Zijlstra 已提交
6985 6986 6987
	if (!p->se.on_rq)
		return;

6988 6989 6990 6991 6992
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
6993
	if (rq->curr == p) {
6994 6995 6996
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
6997
		check_preempt_curr(rq, p, 0);
6998 6999
}

P
Peter Zijlstra 已提交
7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Ensure the task's vruntime is normalized, so that when its
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it was !on_rq, then only when
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
	if (!se->on_rq && p->state != TASK_RUNNING) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
7022

7023
#ifdef CONFIG_SMP
7024 7025 7026 7027 7028
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
7029 7030 7031
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7032 7033
	}
#endif
P
Peter Zijlstra 已提交
7034 7035
}

7036 7037 7038
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
7039
static void switched_to_fair(struct rq *rq, struct task_struct *p)
7040
{
P
Peter Zijlstra 已提交
7041 7042 7043
	if (!p->se.on_rq)
		return;

7044 7045 7046 7047 7048
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
7049
	if (rq->curr == p)
7050 7051
		resched_task(rq->curr);
	else
7052
		check_preempt_curr(rq, p, 0);
7053 7054
}

7055 7056 7057 7058 7059 7060 7061 7062 7063
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

7064 7065 7066 7067 7068 7069 7070
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
7071 7072
}

7073 7074 7075 7076 7077 7078 7079
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
7080
#ifdef CONFIG_SMP
7081
	atomic64_set(&cfs_rq->decay_counter, 1);
7082
	atomic_long_set(&cfs_rq->removed_load, 0);
7083
#endif
7084 7085
}

P
Peter Zijlstra 已提交
7086
#ifdef CONFIG_FAIR_GROUP_SCHED
7087
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
7088
{
7089
	struct cfs_rq *cfs_rq;
7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
7103 7104 7105 7106 7107 7108
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
7109 7110
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
7111 7112 7113 7114
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
7115
	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7116 7117
		on_rq = 1;

7118 7119 7120
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133
	if (!on_rq) {
		cfs_rq = cfs_rq_of(&p->se);
		p->se.vruntime += cfs_rq->min_vruntime;
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
		p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
#endif
	}
P
Peter Zijlstra 已提交
7134
}
7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

	se->my_q = cfs_rq;
7233 7234
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
7265 7266 7267

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
7268
		for_each_sched_entity(se)
7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
7290

7291
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7292 7293 7294 7295 7296 7297 7298 7299 7300
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
7301
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7302 7303 7304 7305

	return rr_interval;
}

7306 7307 7308
/*
 * All the scheduling class methods:
 */
7309
const struct sched_class fair_sched_class = {
7310
	.next			= &idle_sched_class,
7311 7312 7313
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
7314
	.yield_to_task		= yield_to_task_fair,
7315

I
Ingo Molnar 已提交
7316
	.check_preempt_curr	= check_preempt_wakeup,
7317 7318 7319 7320

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

7321
#ifdef CONFIG_SMP
L
Li Zefan 已提交
7322
	.select_task_rq		= select_task_rq_fair,
7323
	.migrate_task_rq	= migrate_task_rq_fair,
7324

7325 7326
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
7327 7328

	.task_waking		= task_waking_fair,
7329
#endif
7330

7331
	.set_curr_task          = set_curr_task_fair,
7332
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
7333
	.task_fork		= task_fork_fair,
7334 7335

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
7336
	.switched_from		= switched_from_fair,
7337
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
7338

7339 7340
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
7341
#ifdef CONFIG_FAIR_GROUP_SCHED
7342
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
7343
#endif
7344 7345 7346
};

#ifdef CONFIG_SCHED_DEBUG
7347
void print_cfs_stats(struct seq_file *m, int cpu)
7348 7349 7350
{
	struct cfs_rq *cfs_rq;

7351
	rcu_read_lock();
7352
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7353
		print_cfs_rq(m, cpu, cfs_rq);
7354
	rcu_read_unlock();
7355 7356
}
#endif
7357 7358 7359 7360 7361 7362

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

7363
#ifdef CONFIG_NO_HZ_COMMON
7364
	nohz.next_balance = jiffies;
7365
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7366
	cpu_notifier(sched_ilb_notifier, 0);
7367 7368 7369 7370
#endif
#endif /* SMP */

}