fair.c 163.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29
#include <linux/mempolicy.h>
30
#include <linux/migrate.h>
31
#include <linux/task_work.h>
32 33 34 35

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
36

37
/*
38
 * Targeted preemption latency for CPU-bound tasks:
39
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48
 */
49 50
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

64
/*
65
 * Minimal preemption granularity for CPU-bound tasks:
66
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67
 */
68 69
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 71

/*
72 73
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
74
static unsigned int sched_nr_latency = 8;
75 76

/*
77
 * After fork, child runs first. If set to 0 (default) then
78
 * parent will (try to) run first.
79
 */
80
unsigned int sysctl_sched_child_runs_first __read_mostly;
81 82 83

/*
 * SCHED_OTHER wake-up granularity.
84
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 86 87 88 89
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
90
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92

93 94
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

95 96 97 98 99 100 101
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

102 103 104 105 106 107 108 109 110 111 112 113 114 115
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

/*
 * Shift right and round:
 */
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))

/*
 * delta *= weight / lw
 */
static unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	/*
	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
	 * 2^SCHED_LOAD_RESOLUTION.
	 */
	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
		tmp = (u64)delta_exec * scale_load_down(weight);
	else
		tmp = (u64)delta_exec;

	if (!lw->inv_weight) {
		unsigned long w = scale_load_down(lw->weight);

		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
			lw->inv_weight = 1;
		else if (unlikely(!w))
			lw->inv_weight = WMULT_CONST;
		else
			lw->inv_weight = WMULT_CONST / w;
	}

	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST))
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
			WMULT_SHIFT/2);
	else
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);

	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
}


const struct sched_class fair_sched_class;
238

239 240 241 242
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

243
#ifdef CONFIG_FAIR_GROUP_SCHED
244

245
/* cpu runqueue to which this cfs_rq is attached */
246 247
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
248
	return cfs_rq->rq;
249 250
}

251 252
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
253

254 255 256 257 258 259 260 261
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

283 284
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
285

286 287 288
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302
		}
303 304

		cfs_rq->on_list = 1;
305
		/* We should have no load, but we need to update last_decay. */
306
		update_cfs_rq_blocked_load(cfs_rq, 0);
307 308 309 310 311 312 313 314 315 316 317
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

380 381 382 383 384 385
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
386

387 388 389
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
390 391 392 393
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
394 395
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
396

P
Peter Zijlstra 已提交
397
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
398
{
P
Peter Zijlstra 已提交
399
	return &task_rq(p)->cfs;
400 401
}

P
Peter Zijlstra 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

416 417 418 419 420 421 422 423
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

438 439 440 441 442
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
443 444
#endif	/* CONFIG_FAIR_GROUP_SCHED */

445 446
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
447 448 449 450 451

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

452
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
453
{
454
	s64 delta = (s64)(vruntime - max_vruntime);
455
	if (delta > 0)
456
		max_vruntime = vruntime;
457

458
	return max_vruntime;
459 460
}

461
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
462 463 464 465 466 467 468 469
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

470 471 472 473 474 475
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

476 477 478 479 480 481 482 483 484 485 486 487
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
488
		if (!cfs_rq->curr)
489 490 491 492 493
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

494
	/* ensure we never gain time by being placed backwards. */
495
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
496 497 498 499
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
500 501
}

502 503 504
/*
 * Enqueue an entity into the rb-tree:
 */
505
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
522
		if (entity_before(se, entry)) {
523 524 525 526 527 528 529 530 531 532 533
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
534
	if (leftmost)
I
Ingo Molnar 已提交
535
		cfs_rq->rb_leftmost = &se->run_node;
536 537 538 539 540

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

541
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
542
{
P
Peter Zijlstra 已提交
543 544 545 546 547 548
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
549

550 551 552
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

553
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
554
{
555 556 557 558 559 560
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
561 562
}

563 564 565 566 567 568 569 570 571 572 573
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
574
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
575
{
576
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
577

578 579
	if (!last)
		return NULL;
580 581

	return rb_entry(last, struct sched_entity, run_node);
582 583
}

584 585 586 587
/**************************************************************
 * Scheduling class statistics methods:
 */

588
int sched_proc_update_handler(struct ctl_table *table, int write,
589
		void __user *buffer, size_t *lenp,
590 591
		loff_t *ppos)
{
592
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593
	int factor = get_update_sysctl_factor();
594 595 596 597 598 599 600

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

601 602 603 604 605 606 607
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

608 609 610
	return 0;
}
#endif
611

612
/*
613
 * delta /= w
614 615 616 617
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
618 619
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
620 621 622 623

	return delta;
}

624 625 626
/*
 * The idea is to set a period in which each task runs once.
 *
627
 * When there are too many tasks (sched_nr_latency) we have to stretch
628 629 630 631
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
632 633 634
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
635
	unsigned long nr_latency = sched_nr_latency;
636 637

	if (unlikely(nr_running > nr_latency)) {
638
		period = sysctl_sched_min_granularity;
639 640 641 642 643 644
		period *= nr_running;
	}

	return period;
}

645 646 647 648
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
649
 * s = p*P[w/rw]
650
 */
P
Peter Zijlstra 已提交
651
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652
{
M
Mike Galbraith 已提交
653
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
654

M
Mike Galbraith 已提交
655
	for_each_sched_entity(se) {
L
Lin Ming 已提交
656
		struct load_weight *load;
657
		struct load_weight lw;
L
Lin Ming 已提交
658 659 660

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
661

M
Mike Galbraith 已提交
662
		if (unlikely(!se->on_rq)) {
663
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
664 665 666 667 668 669 670

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
671 672
}

673
/*
A
Andrei Epure 已提交
674
 * We calculate the vruntime slice of a to-be-inserted task.
675
 *
676
 * vs = s/w
677
 */
678
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
679
{
680
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
681 682
}

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
#ifdef CONFIG_SMP
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

703 704 705 706 707
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
708 709
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
710
{
711
	unsigned long delta_exec_weighted;
712

713 714
	schedstat_set(curr->statistics.exec_max,
		      max((u64)delta_exec, curr->statistics.exec_max));
715 716

	curr->sum_exec_runtime += delta_exec;
717
	schedstat_add(cfs_rq, exec_clock, delta_exec);
718
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
719

I
Ingo Molnar 已提交
720
	curr->vruntime += delta_exec_weighted;
721
	update_min_vruntime(cfs_rq);
722 723
}

724
static void update_curr(struct cfs_rq *cfs_rq)
725
{
726
	struct sched_entity *curr = cfs_rq->curr;
727
	u64 now = rq_clock_task(rq_of(cfs_rq));
728 729 730 731 732 733 734 735 736 737
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
738
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
739 740
	if (!delta_exec)
		return;
741

I
Ingo Molnar 已提交
742 743
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
744 745 746 747

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

748
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
749
		cpuacct_charge(curtask, delta_exec);
750
		account_group_exec_runtime(curtask, delta_exec);
751
	}
752 753

	account_cfs_rq_runtime(cfs_rq, delta_exec);
754 755 756
}

static inline void
757
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
758
{
759
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
760 761 762 763 764
}

/*
 * Task is being enqueued - update stats:
 */
765
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
766 767 768 769 770
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
771
	if (se != cfs_rq->curr)
772
		update_stats_wait_start(cfs_rq, se);
773 774 775
}

static void
776
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
777
{
778
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
779
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
780 781
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
782
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
783 784 785
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
786
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
787 788
	}
#endif
789
	schedstat_set(se->statistics.wait_start, 0);
790 791 792
}

static inline void
793
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794 795 796 797 798
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
799
	if (se != cfs_rq->curr)
800
		update_stats_wait_end(cfs_rq, se);
801 802 803 804 805 806
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
807
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
808 809 810 811
{
	/*
	 * We are starting a new run period:
	 */
812
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
813 814 815 816 817 818
}

/**************************************************
 * Scheduling class queueing methods:
 */

819 820
#ifdef CONFIG_NUMA_BALANCING
/*
821
 * numa task sample period in ms
822
 */
823
unsigned int sysctl_numa_balancing_scan_period_min = 100;
824 825
unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
826 827 828

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
829

830 831 832
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

833 834
static void task_numa_placement(struct task_struct *p)
{
835
	int seq;
836

837 838 839
	if (!p->mm)	/* for example, ksmd faulting in a user's mm */
		return;
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
840 841 842 843 844 845 846 847 848 849
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;

	/* FIXME: Scheduling placement policy hints go here */
}

/*
 * Got a PROT_NONE fault for a page on @node.
 */
850
void task_numa_fault(int node, int pages, bool migrated)
851 852 853
{
	struct task_struct *p = current;

854
	if (!numabalancing_enabled)
855 856
		return;

857 858
	/* FIXME: Allocate task-specific structure for placement policy here */

859
	/*
860 861
	 * If pages are properly placed (did not migrate) then scan slower.
	 * This is reset periodically in case of phase changes
862
	 */
863 864 865
        if (!migrated)
		p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
			p->numa_scan_period + jiffies_to_msecs(10));
866

867 868 869
	task_numa_placement(p);
}

870 871 872 873 874 875
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

876 877 878 879 880 881 882 883 884
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
885
	struct vm_area_struct *vma;
886 887
	unsigned long start, end;
	long pages;
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

903 904 905 906 907 908 909 910 911 912 913 914 915
	/*
	 * Reset the scan period if enough time has gone by. Objective is that
	 * scanning will be reduced if pages are properly placed. As tasks
	 * can enter different phases this needs to be re-examined. Lacking
	 * proper tracking of reference behaviour, this blunt hammer is used.
	 */
	migrate = mm->numa_next_reset;
	if (time_after(now, migrate)) {
		p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
		next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
		xchg(&mm->numa_next_reset, next_scan);
	}

916 917 918 919 920 921 922 923 924 925
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

	if (p->numa_scan_period == 0)
		p->numa_scan_period = sysctl_numa_balancing_scan_period_min;

926
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
927 928 929
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

930 931 932 933 934 935
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

936 937 938 939 940
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
941

942
	down_read(&mm->mmap_sem);
943
	vma = find_vma(mm, start);
944 945
	if (!vma) {
		reset_ptenuma_scan(p);
946
		start = 0;
947 948
		vma = mm->mmap;
	}
949
	for (; vma; vma = vma->vm_next) {
950 951 952 953
		if (!vma_migratable(vma))
			continue;

		/* Skip small VMAs. They are not likely to be of relevance */
954
		if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
955 956
			continue;

957 958 959 960 961
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
			pages -= change_prot_numa(vma, start, end);
962

963 964 965 966
			start = end;
			if (pages <= 0)
				goto out;
		} while (end != vma->vm_end);
967
	}
968

969
out:
970
	/*
P
Peter Zijlstra 已提交
971 972 973 974
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
975 976
	 */
	if (vma)
977
		mm->numa_scan_offset = start;
978 979 980
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
1007 1008
		if (!curr->node_stamp)
			curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
1009
		curr->node_stamp += period;
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
#endif /* CONFIG_NUMA_BALANCING */

1023 1024 1025 1026
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
1027
	if (!parent_entity(se))
1028
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1029 1030
#ifdef CONFIG_SMP
	if (entity_is_task(se))
1031
		list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1032
#endif
1033 1034 1035 1036 1037 1038 1039
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
1040
	if (!parent_entity(se))
1041
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1042
	if (entity_is_task(se))
1043
		list_del_init(&se->group_node);
1044 1045 1046
	cfs_rq->nr_running--;
}

1047 1048
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
1049 1050 1051 1052 1053 1054 1055 1056 1057
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
1058
	tg_weight = atomic_long_read(&tg->load_avg);
1059
	tg_weight -= cfs_rq->tg_load_contrib;
1060 1061 1062 1063 1064
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

1065
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1066
{
1067
	long tg_weight, load, shares;
1068

1069
	tg_weight = calc_tg_weight(tg, cfs_rq);
1070
	load = cfs_rq->load.weight;
1071 1072

	shares = (tg->shares * load);
1073 1074
	if (tg_weight)
		shares /= tg_weight;
1075 1076 1077 1078 1079 1080 1081 1082 1083

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
1084
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1085 1086 1087 1088
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1089 1090 1091
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
1092 1093 1094 1095
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1096
		account_entity_dequeue(cfs_rq, se);
1097
	}
P
Peter Zijlstra 已提交
1098 1099 1100 1101 1102 1103 1104

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

1105 1106
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

1107
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1108 1109 1110
{
	struct task_group *tg;
	struct sched_entity *se;
1111
	long shares;
P
Peter Zijlstra 已提交
1112 1113 1114

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
1115
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
1116
		return;
1117 1118 1119 1120
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
1121
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
1122 1123 1124 1125

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
1126
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1127 1128 1129 1130
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

1131
#ifdef CONFIG_SMP
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

1160 1161 1162 1163 1164 1165
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
	 * With a look-up table which covers k^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
1186 1187
	}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
1253 1254
	u64 delta, periods;
	u32 runnable_contrib;
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

1318
/* Synchronize an entity's decay with its parenting cfs_rq.*/
1319
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1320 1321 1322 1323 1324 1325
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
1326
		return 0;
1327 1328 1329

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
1330 1331

	return decays;
1332 1333
}

1334 1335 1336 1337 1338
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
1339
	long tg_contrib;
1340 1341 1342 1343

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

1344 1345
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
1346 1347 1348
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
1349

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
	contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

1371 1372 1373 1374
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
1375 1376
	int runnable_avg;

1377 1378 1379
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
1380 1381
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
1411
}
1412 1413 1414
#else
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
1415 1416
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
1417
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1418 1419
#endif

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

1430 1431 1432 1433 1434
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

1435 1436 1437
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
1438
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1439 1440
		__update_group_entity_contrib(se);
	}
1441 1442 1443 1444

	return se->avg.load_avg_contrib - old_contrib;
}

1445 1446 1447 1448 1449 1450 1451 1452 1453
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

1454 1455
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

1456
/* Update a sched_entity's runnable average */
1457 1458
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
1459
{
1460 1461
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
1462
	u64 now;
1463

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1474 1475 1476
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
1477 1478 1479 1480

	if (!update_cfs_rq)
		return;

1481 1482
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
1483 1484 1485 1486 1487 1488 1489 1490
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
1491
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1492
{
1493
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1494 1495 1496
	u64 decays;

	decays = now - cfs_rq->last_decay;
1497
	if (!decays && !force_update)
1498 1499
		return;

1500 1501 1502
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
1503 1504
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
1505

1506 1507 1508 1509 1510 1511
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
1512 1513

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1514
}
1515 1516 1517

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
1518
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
1519
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
1520
}
1521 1522 1523

/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1524 1525
						  struct sched_entity *se,
						  int wakeup)
1526
{
1527 1528 1529 1530
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
1531 1532 1533 1534
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
1535 1536
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
1537
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
1553 1554
		wakeup = 0;
	} else {
1555 1556 1557 1558 1559 1560 1561
		/*
		 * Task re-woke on same cpu (or else migrate_task_rq_fair()
		 * would have made count negative); we must be careful to avoid
		 * double-accounting blocked time after synchronizing decays.
		 */
		se->avg.last_runnable_update += __synchronize_entity_decay(se)
							<< 20;
1562 1563
	}

1564 1565
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
1566
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1567 1568
		update_entity_load_avg(se, 0);
	}
1569

1570
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1571 1572
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1573 1574
}

1575 1576 1577 1578 1579
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
1580
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1581 1582
						  struct sched_entity *se,
						  int sleep)
1583
{
1584
	update_entity_load_avg(se, 1);
1585 1586
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
1587

1588
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1589 1590 1591 1592
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
1593
}
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

1615
#else
1616 1617
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
1618
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1619
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1620 1621
					   struct sched_entity *se,
					   int wakeup) {}
1622
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1623 1624
					   struct sched_entity *se,
					   int sleep) {}
1625 1626
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
1627 1628
#endif

1629
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1630 1631
{
#ifdef CONFIG_SCHEDSTATS
1632 1633 1634 1635 1636
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

1637
	if (se->statistics.sleep_start) {
1638
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
1639 1640 1641 1642

		if ((s64)delta < 0)
			delta = 0;

1643 1644
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
1645

1646
		se->statistics.sleep_start = 0;
1647
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
1648

1649
		if (tsk) {
1650
			account_scheduler_latency(tsk, delta >> 10, 1);
1651 1652
			trace_sched_stat_sleep(tsk, delta);
		}
1653
	}
1654
	if (se->statistics.block_start) {
1655
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
1656 1657 1658 1659

		if ((s64)delta < 0)
			delta = 0;

1660 1661
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
1662

1663
		se->statistics.block_start = 0;
1664
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
1665

1666
		if (tsk) {
1667
			if (tsk->in_iowait) {
1668 1669
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
1670
				trace_sched_stat_iowait(tsk, delta);
1671 1672
			}

1673 1674
			trace_sched_stat_blocked(tsk, delta);

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
1686
		}
1687 1688 1689 1690
	}
#endif
}

P
Peter Zijlstra 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

1704 1705 1706
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
1707
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
1708

1709 1710 1711 1712 1713 1714
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
1715
	if (initial && sched_feat(START_DEBIT))
1716
		vruntime += sched_vslice(cfs_rq, se);
1717

1718
	/* sleeps up to a single latency don't count. */
1719
	if (!initial) {
1720
		unsigned long thresh = sysctl_sched_latency;
1721

1722 1723 1724 1725 1726 1727
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
1728

1729
		vruntime -= thresh;
1730 1731
	}

1732
	/* ensure we never gain time by being placed backwards. */
1733
	se->vruntime = max_vruntime(se->vruntime, vruntime);
1734 1735
}

1736 1737
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

1738
static void
1739
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1740
{
1741 1742
	/*
	 * Update the normalized vruntime before updating min_vruntime
1743
	 * through calling update_curr().
1744
	 */
1745
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1746 1747
		se->vruntime += cfs_rq->min_vruntime;

1748
	/*
1749
	 * Update run-time statistics of the 'current'.
1750
	 */
1751
	update_curr(cfs_rq);
1752
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1753 1754
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
1755

1756
	if (flags & ENQUEUE_WAKEUP) {
1757
		place_entity(cfs_rq, se, 0);
1758
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
1759
	}
1760

1761
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
1762
	check_spread(cfs_rq, se);
1763 1764
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
1765
	se->on_rq = 1;
1766

1767
	if (cfs_rq->nr_running == 1) {
1768
		list_add_leaf_cfs_rq(cfs_rq);
1769 1770
		check_enqueue_throttle(cfs_rq);
	}
1771 1772
}

1773
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
1774
{
1775 1776 1777 1778 1779 1780 1781 1782
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}
}
P
Peter Zijlstra 已提交
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next == se)
			cfs_rq->next = NULL;
		else
			break;
	}
P
Peter Zijlstra 已提交
1793 1794
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip == se)
			cfs_rq->skip = NULL;
		else
			break;
	}
}

P
Peter Zijlstra 已提交
1806 1807
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
1808 1809 1810 1811 1812
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
1813 1814 1815

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
1816 1817
}

1818
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1819

1820
static void
1821
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1822
{
1823 1824 1825 1826
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
1827
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1828

1829
	update_stats_dequeue(cfs_rq, se);
1830
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
1831
#ifdef CONFIG_SCHEDSTATS
1832 1833 1834 1835
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
1836
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
1837
			if (tsk->state & TASK_UNINTERRUPTIBLE)
1838
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
1839
		}
1840
#endif
P
Peter Zijlstra 已提交
1841 1842
	}

P
Peter Zijlstra 已提交
1843
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1844

1845
	if (se != cfs_rq->curr)
1846
		__dequeue_entity(cfs_rq, se);
1847
	se->on_rq = 0;
1848
	account_entity_dequeue(cfs_rq, se);
1849 1850 1851 1852 1853 1854

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
1855
	if (!(flags & DEQUEUE_SLEEP))
1856
		se->vruntime -= cfs_rq->min_vruntime;
1857

1858 1859 1860
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

1861
	update_min_vruntime(cfs_rq);
1862
	update_cfs_shares(cfs_rq);
1863 1864 1865 1866 1867
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
1868
static void
I
Ingo Molnar 已提交
1869
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1870
{
1871
	unsigned long ideal_runtime, delta_exec;
1872 1873
	struct sched_entity *se;
	s64 delta;
1874

P
Peter Zijlstra 已提交
1875
	ideal_runtime = sched_slice(cfs_rq, curr);
1876
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1877
	if (delta_exec > ideal_runtime) {
1878
		resched_task(rq_of(cfs_rq)->curr);
1879 1880 1881 1882 1883
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

1895 1896
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
1897

1898 1899
	if (delta < 0)
		return;
1900

1901 1902
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
1903 1904
}

1905
static void
1906
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1907
{
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

1919
	update_stats_curr_start(cfs_rq, se);
1920
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
1921 1922 1923 1924 1925 1926
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
1927
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1928
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
1929 1930 1931
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
1932
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1933 1934
}

1935 1936 1937
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

1938 1939 1940 1941 1942 1943 1944
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
1945
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1946
{
1947
	struct sched_entity *se = __pick_first_entity(cfs_rq);
1948
	struct sched_entity *left = se;
1949

1950 1951 1952 1953 1954 1955 1956 1957 1958
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second = __pick_next_entity(se);
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
1959

1960 1961 1962 1963 1964 1965
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

1966 1967 1968 1969 1970 1971
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

1972
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1973 1974

	return se;
1975 1976
}

1977 1978
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

1979
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1980 1981 1982 1983 1984 1985
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
1986
		update_curr(cfs_rq);
1987

1988 1989 1990
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
1991
	check_spread(cfs_rq, prev);
1992
	if (prev->on_rq) {
1993
		update_stats_wait_start(cfs_rq, prev);
1994 1995
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
1996
		/* in !on_rq case, update occurred at dequeue */
1997
		update_entity_load_avg(prev, 1);
1998
	}
1999
	cfs_rq->curr = NULL;
2000 2001
}

P
Peter Zijlstra 已提交
2002 2003
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2004 2005
{
	/*
2006
	 * Update run-time statistics of the 'current'.
2007
	 */
2008
	update_curr(cfs_rq);
2009

2010 2011 2012
	/*
	 * Ensure that runnable average is periodically updated.
	 */
2013
	update_entity_load_avg(curr, 1);
2014
	update_cfs_rq_blocked_load(cfs_rq, 1);
2015
	update_cfs_shares(cfs_rq);
2016

P
Peter Zijlstra 已提交
2017 2018 2019 2020 2021
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
2022 2023 2024 2025
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
2026 2027 2028 2029 2030 2031 2032 2033
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
2034
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
2035
		check_preempt_tick(cfs_rq, curr);
2036 2037
}

2038 2039 2040 2041 2042 2043

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
2044 2045

#ifdef HAVE_JUMP_LABEL
2046
static struct static_key __cfs_bandwidth_used;
2047 2048 2049

static inline bool cfs_bandwidth_used(void)
{
2050
	return static_key_false(&__cfs_bandwidth_used);
2051 2052 2053 2054 2055 2056
}

void account_cfs_bandwidth_used(int enabled, int was_enabled)
{
	/* only need to count groups transitioning between enabled/!enabled */
	if (enabled && !was_enabled)
2057
		static_key_slow_inc(&__cfs_bandwidth_used);
2058
	else if (!enabled && was_enabled)
2059
		static_key_slow_dec(&__cfs_bandwidth_used);
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
#endif /* HAVE_JUMP_LABEL */

2070 2071 2072 2073 2074 2075 2076 2077
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
2078 2079 2080 2081 2082 2083

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
2084 2085 2086 2087 2088 2089 2090
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
2091
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

2103 2104 2105 2106 2107
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

2108 2109 2110 2111 2112 2113
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

2114
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2115 2116
}

2117 2118
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2119 2120 2121
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
2122
	u64 amount = 0, min_amount, expires;
2123 2124 2125 2126 2127 2128 2129

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
2130
	else {
P
Paul Turner 已提交
2131 2132 2133 2134 2135 2136 2137 2138
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
2139
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
2140
		}
2141 2142 2143 2144 2145 2146

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
2147
	}
P
Paul Turner 已提交
2148
	expires = cfs_b->runtime_expires;
2149 2150 2151
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
2152 2153 2154 2155 2156 2157 2158
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
2159 2160

	return cfs_rq->runtime_remaining > 0;
2161 2162
}

P
Paul Turner 已提交
2163 2164 2165 2166 2167
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2168
{
P
Paul Turner 已提交
2169 2170 2171
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
2172
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2173 2174
		return;

P
Paul Turner 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec)
{
	/* dock delta_exec before expiring quota (as it could span periods) */
2200
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
2201 2202 2203
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
2204 2205
		return;

2206 2207 2208 2209 2210 2211
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
2212 2213
}

2214 2215
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2216
{
2217
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2218 2219 2220 2221 2222
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

2223 2224
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
2225
	return cfs_bandwidth_used() && cfs_rq->throttled;
2226 2227
}

2228 2229 2230
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
2231
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
2260
		/* adjust cfs_rq_clock_task() */
2261
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
2262
					     cfs_rq->throttled_clock_task;
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

2274 2275
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
2276
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
2277 2278 2279 2280 2281
	cfs_rq->throttle_count++;

	return 0;
}

2282
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2283 2284 2285 2286 2287 2288 2289 2290
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

2291
	/* freeze hierarchy runnable averages while throttled */
2292 2293 2294
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
2315
	cfs_rq->throttled_clock = rq_clock(rq);
2316 2317 2318 2319 2320
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
	raw_spin_unlock(&cfs_b->lock);
}

2321
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2322 2323 2324 2325 2326 2327 2328
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

2329
	se = cfs_rq->tg->se[cpu_of(rq)];
2330 2331

	cfs_rq->throttled = 0;
2332 2333 2334

	update_rq_clock(rq);

2335
	raw_spin_lock(&cfs_b->lock);
2336
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
2337 2338 2339
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

2340 2341 2342
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

2406 2407 2408 2409 2410 2411 2412 2413
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
2414 2415
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
2416 2417 2418 2419 2420 2421

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

2422 2423 2424
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
2425
	cfs_b->nr_periods += overrun;
2426

P
Paul Turner 已提交
2427 2428 2429 2430 2431 2432
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

	__refill_cfs_bandwidth_runtime(cfs_b);

2433 2434 2435 2436 2437 2438
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

2439 2440 2441
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
2466

2467 2468 2469 2470 2471 2472 2473 2474 2475
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
2476 2477 2478 2479 2480 2481 2482
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
2483

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

/* are we near the end of the current quota period? */
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
2548 2549 2550
	if (!cfs_bandwidth_used())
		return;

2551
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

2589 2590 2591 2592 2593 2594 2595
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
2596 2597 2598
	if (!cfs_bandwidth_used())
		return;

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
2616 2617 2618
	if (!cfs_bandwidth_used())
		return;

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return;

	throttle_cfs_rq(cfs_rq);
}
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
		raw_spin_unlock(&cfs_b->lock);
		/* ensure cfs_b->lock is available while we wait */
		hrtimer_cancel(&cfs_b->period_timer);

		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

2712
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
2733 2734
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
2735
	return rq_clock_task(rq_of(cfs_rq));
2736 2737 2738 2739
}

static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec) {}
2740 2741
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2742
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2743 2744 2745 2746 2747

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
2759 2760 2761 2762 2763

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2764 2765
#endif

2766 2767 2768 2769 2770
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2771
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2772 2773 2774

#endif /* CONFIG_CFS_BANDWIDTH */

2775 2776 2777 2778
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
2779 2780 2781 2782 2783 2784 2785 2786
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

2787
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
2802
		if (rq->curr != p)
2803
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
2804

2805
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
2806 2807
	}
}
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

2818
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2819 2820 2821 2822 2823
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
2824
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
2825 2826 2827 2828
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
2829 2830 2831 2832

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
2833 2834
#endif

2835 2836 2837 2838 2839
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
2840
static void
2841
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2842 2843
{
	struct cfs_rq *cfs_rq;
2844
	struct sched_entity *se = &p->se;
2845 2846

	for_each_sched_entity(se) {
2847
		if (se->on_rq)
2848 2849
			break;
		cfs_rq = cfs_rq_of(se);
2850
		enqueue_entity(cfs_rq, se, flags);
2851 2852 2853 2854 2855 2856 2857 2858 2859

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
2860
		cfs_rq->h_nr_running++;
2861

2862
		flags = ENQUEUE_WAKEUP;
2863
	}
P
Peter Zijlstra 已提交
2864

P
Peter Zijlstra 已提交
2865
	for_each_sched_entity(se) {
2866
		cfs_rq = cfs_rq_of(se);
2867
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
2868

2869 2870 2871
		if (cfs_rq_throttled(cfs_rq))
			break;

2872
		update_cfs_shares(cfs_rq);
2873
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
2874 2875
	}

2876 2877
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
2878
		inc_nr_running(rq);
2879
	}
2880
	hrtick_update(rq);
2881 2882
}

2883 2884
static void set_next_buddy(struct sched_entity *se);

2885 2886 2887 2888 2889
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
2890
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2891 2892
{
	struct cfs_rq *cfs_rq;
2893
	struct sched_entity *se = &p->se;
2894
	int task_sleep = flags & DEQUEUE_SLEEP;
2895 2896 2897

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
2898
		dequeue_entity(cfs_rq, se, flags);
2899 2900 2901 2902 2903 2904 2905 2906 2907

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
2908
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2909

2910
		/* Don't dequeue parent if it has other entities besides us */
2911 2912 2913 2914 2915 2916 2917
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
2918 2919 2920

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
2921
			break;
2922
		}
2923
		flags |= DEQUEUE_SLEEP;
2924
	}
P
Peter Zijlstra 已提交
2925

P
Peter Zijlstra 已提交
2926
	for_each_sched_entity(se) {
2927
		cfs_rq = cfs_rq_of(se);
2928
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2929

2930 2931 2932
		if (cfs_rq_throttled(cfs_rq))
			break;

2933
		update_cfs_shares(cfs_rq);
2934
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
2935 2936
	}

2937
	if (!se) {
2938
		dec_nr_running(rq);
2939 2940
		update_rq_runnable_avg(rq, 1);
	}
2941
	hrtick_update(rq);
2942 2943
}

2944
#ifdef CONFIG_SMP
2945 2946 2947
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
2948
	return cpu_rq(cpu)->cfs.runnable_load_avg;
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2993
	unsigned long load_avg = rq->cfs.runnable_load_avg;
2994 2995

	if (nr_running)
2996
		return load_avg / nr_running;
2997 2998 2999 3000

	return 0;
}

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
	if (jiffies > current->wakee_flip_decay_ts + HZ) {
		current->wakee_flips = 0;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
3018

3019
static void task_waking_fair(struct task_struct *p)
3020 3021 3022
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3023 3024 3025 3026
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
3027

3028 3029 3030 3031 3032 3033 3034 3035
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
3036

3037
	se->vruntime -= min_vruntime;
3038
	record_wakee(p);
3039 3040
}

3041
#ifdef CONFIG_FAIR_GROUP_SCHED
3042 3043 3044 3045 3046 3047
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
3091
 */
P
Peter Zijlstra 已提交
3092
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3093
{
P
Peter Zijlstra 已提交
3094
	struct sched_entity *se = tg->se[cpu];
3095

3096
	if (!tg->parent)	/* the trivial, non-cgroup case */
3097 3098
		return wl;

P
Peter Zijlstra 已提交
3099
	for_each_sched_entity(se) {
3100
		long w, W;
P
Peter Zijlstra 已提交
3101

3102
		tg = se->my_q->tg;
3103

3104 3105 3106 3107
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
3108

3109 3110 3111 3112
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
3113

3114 3115 3116 3117 3118
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
3119 3120
		else
			wl = tg->shares;
3121

3122 3123 3124 3125 3126
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
3127 3128
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
3129 3130 3131 3132

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
3133
		wl -= se->load.weight;
3134 3135 3136 3137 3138 3139 3140 3141

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
3142 3143
		wg = 0;
	}
3144

P
Peter Zijlstra 已提交
3145
	return wl;
3146 3147
}
#else
P
Peter Zijlstra 已提交
3148

3149 3150
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
3151
{
3152
	return wl;
3153
}
P
Peter Zijlstra 已提交
3154

3155 3156
#endif

3157 3158
static int wake_wide(struct task_struct *p)
{
3159
	int factor = this_cpu_read(sd_llc_size);
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

3179
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3180
{
3181
	s64 this_load, load;
3182
	int idx, this_cpu, prev_cpu;
3183
	unsigned long tl_per_task;
3184
	struct task_group *tg;
3185
	unsigned long weight;
3186
	int balanced;
3187

3188 3189 3190 3191 3192 3193 3194
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

3195 3196 3197 3198 3199
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
3200

3201 3202 3203 3204 3205
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
3206 3207 3208 3209
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

3210
		this_load += effective_load(tg, this_cpu, -weight, -weight);
3211 3212
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
3213

3214 3215
	tg = task_group(p);
	weight = p->se.load.weight;
3216

3217 3218
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3219 3220 3221
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
3222 3223 3224 3225
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
3226 3227
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
3241

3242
	/*
I
Ingo Molnar 已提交
3243 3244 3245
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
3246
	 */
3247 3248
	if (sync && balanced)
		return 1;
3249

3250
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3251 3252
	tl_per_task = cpu_avg_load_per_task(this_cpu);

3253 3254 3255
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3256 3257 3258 3259 3260
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
3261
		schedstat_inc(sd, ttwu_move_affine);
3262
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
3263 3264 3265 3266 3267 3268

		return 1;
	}
	return 0;
}

3269 3270 3271 3272 3273
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
3274
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3275
		  int this_cpu, int load_idx)
3276
{
3277
	struct sched_group *idlest = NULL, *group = sd->groups;
3278 3279
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
3280

3281 3282 3283 3284
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
3285

3286 3287
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
3288
					tsk_cpus_allowed(p)))
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
3308
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
3334
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3335 3336 3337 3338 3339
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
3340 3341 3342
		}
	}

3343 3344
	return idlest;
}
3345

3346 3347 3348
/*
 * Try and locate an idle CPU in the sched_domain.
 */
3349
static int select_idle_sibling(struct task_struct *p, int target)
3350
{
3351
	struct sched_domain *sd;
3352
	struct sched_group *sg;
3353
	int i = task_cpu(p);
3354

3355 3356
	if (idle_cpu(target))
		return target;
3357 3358

	/*
3359
	 * If the prevous cpu is cache affine and idle, don't be stupid.
3360
	 */
3361 3362
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
3363 3364

	/*
3365
	 * Otherwise, iterate the domains and find an elegible idle cpu.
3366
	 */
3367
	sd = rcu_dereference(per_cpu(sd_llc, target));
3368
	for_each_lower_domain(sd) {
3369 3370 3371 3372 3373 3374 3375
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
3376
				if (i == target || !idle_cpu(i))
3377 3378
					goto next;
			}
3379

3380 3381 3382 3383 3384 3385 3386 3387
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
3388 3389 3390
	return target;
}

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
3402
static int
3403
select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3404
{
3405
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3406 3407 3408
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
3409
	int want_affine = 0;
3410
	int sync = wake_flags & WF_SYNC;
3411

3412
	if (p->nr_cpus_allowed == 1)
3413 3414
		return prev_cpu;

3415
	if (sd_flag & SD_BALANCE_WAKE) {
3416
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3417 3418 3419
			want_affine = 1;
		new_cpu = prev_cpu;
	}
3420

3421
	rcu_read_lock();
3422
	for_each_domain(cpu, tmp) {
3423 3424 3425
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

3426
		/*
3427 3428
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
3429
		 */
3430 3431 3432
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
3433
			break;
3434
		}
3435

3436
		if (tmp->flags & sd_flag)
3437 3438 3439
			sd = tmp;
	}

3440
	if (affine_sd) {
3441
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3442 3443 3444 3445
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
3446
	}
3447

3448
	while (sd) {
3449
		int load_idx = sd->forkexec_idx;
3450
		struct sched_group *group;
3451
		int weight;
3452

3453
		if (!(sd->flags & sd_flag)) {
3454 3455 3456
			sd = sd->child;
			continue;
		}
3457

3458 3459
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
3460

3461
		group = find_idlest_group(sd, p, cpu, load_idx);
3462 3463 3464 3465
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
3466

3467
		new_cpu = find_idlest_cpu(group, p, cpu);
3468 3469 3470 3471
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
3472
		}
3473 3474 3475

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
3476
		weight = sd->span_weight;
3477 3478
		sd = NULL;
		for_each_domain(cpu, tmp) {
3479
			if (weight <= tmp->span_weight)
3480
				break;
3481
			if (tmp->flags & sd_flag)
3482 3483 3484
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
3485
	}
3486 3487
unlock:
	rcu_read_unlock();
3488

3489
	return new_cpu;
3490
}
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
3512 3513
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
3514
	}
3515
}
3516 3517
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
3518 3519
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3520 3521 3522 3523
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
3524 3525
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
3526 3527 3528 3529 3530 3531 3532 3533 3534
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
3535
	 */
3536
	return calc_delta_fair(gran, se);
3537 3538
}

3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
3561
	gran = wakeup_gran(curr, se);
3562 3563 3564 3565 3566 3567
	if (vdiff > gran)
		return 1;

	return 0;
}

3568 3569
static void set_last_buddy(struct sched_entity *se)
{
3570 3571 3572 3573 3574
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
3575 3576 3577 3578
}

static void set_next_buddy(struct sched_entity *se)
{
3579 3580 3581 3582 3583
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
3584 3585
}

3586 3587
static void set_skip_buddy(struct sched_entity *se)
{
3588 3589
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
3590 3591
}

3592 3593 3594
/*
 * Preempt the current task with a newly woken task if needed:
 */
3595
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3596 3597
{
	struct task_struct *curr = rq->curr;
3598
	struct sched_entity *se = &curr->se, *pse = &p->se;
3599
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3600
	int scale = cfs_rq->nr_running >= sched_nr_latency;
3601
	int next_buddy_marked = 0;
3602

I
Ingo Molnar 已提交
3603 3604 3605
	if (unlikely(se == pse))
		return;

3606
	/*
3607
	 * This is possible from callers such as move_task(), in which we
3608 3609 3610 3611 3612 3613 3614
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

3615
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
3616
		set_next_buddy(pse);
3617 3618
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
3619

3620 3621 3622
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
3623 3624 3625 3626 3627 3628
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
3629 3630 3631 3632
	 */
	if (test_tsk_need_resched(curr))
		return;

3633 3634 3635 3636 3637
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

3638
	/*
3639 3640
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
3641
	 */
3642
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3643
		return;
3644

3645
	find_matching_se(&se, &pse);
3646
	update_curr(cfs_rq_of(se));
3647
	BUG_ON(!pse);
3648 3649 3650 3651 3652 3653 3654
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
3655
		goto preempt;
3656
	}
3657

3658
	return;
3659

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
3676 3677
}

3678
static struct task_struct *pick_next_task_fair(struct rq *rq)
3679
{
P
Peter Zijlstra 已提交
3680
	struct task_struct *p;
3681 3682 3683
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

3684
	if (!cfs_rq->nr_running)
3685 3686 3687
		return NULL;

	do {
3688
		se = pick_next_entity(cfs_rq);
3689
		set_next_entity(cfs_rq, se);
3690 3691 3692
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
3693
	p = task_of(se);
3694 3695
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
3696 3697

	return p;
3698 3699 3700 3701 3702
}

/*
 * Account for a descheduled task:
 */
3703
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3704 3705 3706 3707 3708 3709
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3710
		put_prev_entity(cfs_rq, se);
3711 3712 3713
	}
}

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
3739 3740 3741 3742 3743 3744
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
3745 3746 3747 3748 3749
	}

	set_skip_buddy(se);
}

3750 3751 3752 3753
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

3754 3755
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

3766
#ifdef CONFIG_SMP
3767
/**************************************************
P
Peter Zijlstra 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
3884

3885 3886
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

3887
#define LBF_ALL_PINNED	0x01
3888
#define LBF_NEED_BREAK	0x02
3889 3890
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
3891 3892 3893 3894 3895

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
3896
	int			src_cpu;
3897 3898 3899 3900

	int			dst_cpu;
	struct rq		*dst_rq;

3901 3902
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
3903
	enum cpu_idle_type	idle;
3904
	long			imbalance;
3905 3906 3907
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

3908
	unsigned int		flags;
3909 3910 3911 3912

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
3913 3914
};

3915
/*
3916
 * move_task - move a task from one runqueue to another runqueue.
3917 3918
 * Both runqueues must be locked.
 */
3919
static void move_task(struct task_struct *p, struct lb_env *env)
3920
{
3921 3922 3923 3924
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
3925 3926
}

3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
/*
 * Is this task likely cache-hot:
 */
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

3959 3960 3961 3962
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
3963
int can_migrate_task(struct task_struct *p, struct lb_env *env)
3964 3965 3966 3967
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
3968
	 * 1) throttled_lb_pair, or
3969
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3970 3971
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
3972
	 */
3973 3974 3975
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

3976
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3977
		int cpu;
3978

3979
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3980

3981 3982
		env->flags |= LBF_SOME_PINNED;

3983 3984 3985 3986 3987 3988 3989 3990
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
3991
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
3992 3993
			return 0;

3994 3995 3996
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3997
				env->flags |= LBF_DST_PINNED;
3998 3999 4000
				env->new_dst_cpu = cpu;
				break;
			}
4001
		}
4002

4003 4004
		return 0;
	}
4005 4006

	/* Record that we found atleast one task that could run on dst_cpu */
4007
	env->flags &= ~LBF_ALL_PINNED;
4008

4009
	if (task_running(env->src_rq, p)) {
4010
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4011 4012 4013 4014 4015 4016 4017 4018 4019
		return 0;
	}

	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

4020
	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4021
	if (!tsk_cache_hot ||
4022
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Z
Zhang Hang 已提交
4023

4024
		if (tsk_cache_hot) {
4025
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4026
			schedstat_inc(p, se.statistics.nr_forced_migrations);
4027
		}
Z
Zhang Hang 已提交
4028

4029 4030 4031
		return 1;
	}

Z
Zhang Hang 已提交
4032 4033
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
4034 4035
}

4036 4037 4038 4039 4040 4041 4042
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
4043
static int move_one_task(struct lb_env *env)
4044 4045 4046
{
	struct task_struct *p, *n;

4047 4048 4049
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
4050

4051 4052 4053 4054 4055 4056 4057 4058
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
4059 4060 4061 4062
	}
	return 0;
}

4063 4064
static unsigned long task_h_load(struct task_struct *p);

4065 4066
static const unsigned int sched_nr_migrate_break = 32;

4067
/*
4068
 * move_tasks tries to move up to imbalance weighted load from busiest to
4069 4070 4071 4072 4073 4074
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
4075
{
4076 4077
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
4078 4079
	unsigned long load;
	int pulled = 0;
4080

4081
	if (env->imbalance <= 0)
4082
		return 0;
4083

4084 4085
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
4086

4087 4088
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
4089
		if (env->loop > env->loop_max)
4090
			break;
4091 4092

		/* take a breather every nr_migrate tasks */
4093
		if (env->loop > env->loop_break) {
4094
			env->loop_break += sched_nr_migrate_break;
4095
			env->flags |= LBF_NEED_BREAK;
4096
			break;
4097
		}
4098

4099
		if (!can_migrate_task(p, env))
4100 4101 4102
			goto next;

		load = task_h_load(p);
4103

4104
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4105 4106
			goto next;

4107
		if ((load / 2) > env->imbalance)
4108
			goto next;
4109

4110
		move_task(p, env);
4111
		pulled++;
4112
		env->imbalance -= load;
4113 4114

#ifdef CONFIG_PREEMPT
4115 4116 4117 4118 4119
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
4120
		if (env->idle == CPU_NEWLY_IDLE)
4121
			break;
4122 4123
#endif

4124 4125 4126 4127
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
4128
		if (env->imbalance <= 0)
4129
			break;
4130 4131 4132

		continue;
next:
4133
		list_move_tail(&p->se.group_node, tasks);
4134
	}
4135

4136
	/*
4137 4138 4139
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
4140
	 */
4141
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
4142

4143
	return pulled;
4144 4145
}

P
Peter Zijlstra 已提交
4146
#ifdef CONFIG_FAIR_GROUP_SCHED
4147 4148 4149
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
4150
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4151
{
4152 4153
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4154

4155 4156 4157
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
4158

4159
	update_cfs_rq_blocked_load(cfs_rq, 1);
4160

4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
4175
		struct rq *rq = rq_of(cfs_rq);
4176 4177
		update_rq_runnable_avg(rq, rq->nr_running);
	}
4178 4179
}

4180
static void update_blocked_averages(int cpu)
4181 4182
{
	struct rq *rq = cpu_rq(cpu);
4183 4184
	struct cfs_rq *cfs_rq;
	unsigned long flags;
4185

4186 4187
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
4188 4189 4190 4191
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
4192
	for_each_leaf_cfs_rq(rq, cfs_rq) {
4193 4194 4195 4196 4197 4198
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4199
	}
4200 4201

	raw_spin_unlock_irqrestore(&rq->lock, flags);
4202 4203
}

4204
/*
4205
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
4206 4207 4208
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
4209
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
4210
{
4211 4212
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
4213
	unsigned long now = jiffies;
4214
	unsigned long load;
4215

4216
	if (cfs_rq->last_h_load_update == now)
4217 4218
		return;

4219 4220 4221 4222 4223 4224 4225
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
4226

4227
	if (!se) {
4228
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
4240 4241
}

4242
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
4243
{
4244
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
4245

4246
	update_cfs_rq_h_load(cfs_rq);
4247 4248
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
4249 4250
}
#else
4251
static inline void update_blocked_averages(int cpu)
4252 4253 4254
{
}

4255
static unsigned long task_h_load(struct task_struct *p)
4256
{
4257
	return p->se.avg.load_avg_contrib;
4258
}
P
Peter Zijlstra 已提交
4259
#endif
4260 4261 4262 4263 4264 4265 4266 4267 4268

/********** Helpers for find_busiest_group ************************/
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
4269
	unsigned long load_per_task;
4270
	unsigned long group_power;
4271 4272 4273 4274
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int group_capacity;
	unsigned int idle_cpus;
	unsigned int group_weight;
4275
	int group_imb; /* Is there an imbalance in the group ? */
4276
	int group_has_capacity; /* Is there extra capacity in the group? */
4277 4278
};

J
Joonsoo Kim 已提交
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
	unsigned long total_pwr;	/* Total power of all groups in sd */
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
4291
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
4292 4293
};

4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
		.total_pwr = 0UL,
		.busiest_stat = {
			.avg_load = 0UL,
		},
	};
}

4313 4314 4315 4316
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4317 4318
 *
 * Return: The load index.
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

4341
static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4342
{
4343
	return SCHED_POWER_SCALE;
4344 4345 4346 4347 4348 4349 4350
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

4351
static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4352
{
4353
	unsigned long weight = sd->span_weight;
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

4366
static unsigned long scale_rt_power(int cpu)
4367 4368
{
	struct rq *rq = cpu_rq(cpu);
4369
	u64 total, available, age_stamp, avg;
4370

4371 4372 4373 4374 4375 4376 4377
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

4378
	total = sched_avg_period() + (rq_clock(rq) - age_stamp);
4379

4380
	if (unlikely(total < avg)) {
4381 4382 4383
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
4384
		available = total - avg;
4385
	}
4386

4387 4388
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
4389

4390
	total >>= SCHED_POWER_SHIFT;
4391 4392 4393 4394 4395 4396

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
4397
	unsigned long weight = sd->span_weight;
4398
	unsigned long power = SCHED_POWER_SCALE;
4399 4400 4401 4402 4403 4404 4405 4406
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

4407
		power >>= SCHED_POWER_SHIFT;
4408 4409
	}

4410
	sdg->sgp->power_orig = power;
4411 4412 4413 4414 4415 4416

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

4417
	power >>= SCHED_POWER_SHIFT;
4418

4419
	power *= scale_rt_power(cpu);
4420
	power >>= SCHED_POWER_SHIFT;
4421 4422 4423 4424

	if (!power)
		power = 1;

4425
	cpu_rq(cpu)->cpu_power = power;
4426
	sdg->sgp->power = power;
4427 4428
}

4429
void update_group_power(struct sched_domain *sd, int cpu)
4430 4431 4432
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
4433
	unsigned long power, power_orig;
4434 4435 4436 4437 4438
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
4439 4440 4441 4442 4443 4444

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

4445
	power_orig = power = 0;
4446

P
Peter Zijlstra 已提交
4447 4448 4449 4450 4451 4452
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

4453 4454 4455 4456 4457 4458
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
			struct sched_group *sg = cpu_rq(cpu)->sd->groups;

			power_orig += sg->sgp->power_orig;
			power += sg->sgp->power;
		}
P
Peter Zijlstra 已提交
4459 4460 4461 4462 4463 4464 4465 4466
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
4467
			power_orig += group->sgp->power_orig;
P
Peter Zijlstra 已提交
4468 4469 4470 4471
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
4472

4473 4474
	sdg->sgp->power_orig = power_orig;
	sdg->sgp->power = power;
4475 4476
}

4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
4488
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
4489
	 */
P
Peter Zijlstra 已提交
4490
	if (!(sd->flags & SD_SHARE_CPUPOWER))
4491 4492 4493 4494 4495
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
4496
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4497 4498 4499 4500 4501
		return 1;

	return 0;
}

4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
4518 4519
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
4520 4521 4522
 *
 * When this is so detected; this group becomes a candidate for busiest; see
 * update_sd_pick_busiest(). And calculcate_imbalance() and
4523
 * find_busiest_group() avoid some of the usual balance conditions to allow it
4524 4525 4526 4527 4528 4529 4530
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

4531
static inline int sg_imbalanced(struct sched_group *group)
4532
{
4533
	return group->sgp->imbalance;
4534 4535
}

4536 4537 4538
/*
 * Compute the group capacity.
 *
4539 4540 4541
 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
 * first dividing out the smt factor and computing the actual number of cores
 * and limit power unit capacity with that.
4542 4543 4544
 */
static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
{
4545 4546 4547 4548 4549 4550
	unsigned int capacity, smt, cpus;
	unsigned int power, power_orig;

	power = group->sgp->power;
	power_orig = group->sgp->power_orig;
	cpus = group->group_weight;
4551

4552 4553 4554
	/* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
	capacity = cpus / smt; /* cores */
4555

4556
	capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
4557 4558 4559 4560 4561 4562
	if (!capacity)
		capacity = fix_small_capacity(env->sd, group);

	return capacity;
}

4563 4564
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4565
 * @env: The load balancing environment.
4566 4567 4568 4569 4570
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
 */
4571 4572
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
4573
			int local_group, struct sg_lb_stats *sgs)
4574
{
4575 4576
	unsigned long nr_running;
	unsigned long load;
4577
	int i;
4578

4579 4580
	memset(sgs, 0, sizeof(*sgs));

4581
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4582 4583
		struct rq *rq = cpu_rq(i);

4584 4585
		nr_running = rq->nr_running;

4586
		/* Bias balancing toward cpus of our domain */
4587
		if (local_group)
4588
			load = target_load(i, load_idx);
4589
		else
4590 4591 4592
			load = source_load(i, load_idx);

		sgs->group_load += load;
4593
		sgs->sum_nr_running += nr_running;
4594
		sgs->sum_weighted_load += weighted_cpuload(i);
4595 4596
		if (idle_cpu(i))
			sgs->idle_cpus++;
4597 4598 4599
	}

	/* Adjust by relative CPU power of the group */
4600 4601
	sgs->group_power = group->sgp->power;
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
4602

4603
	if (sgs->sum_nr_running)
4604
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4605

4606
	sgs->group_weight = group->group_weight;
4607

4608 4609 4610
	sgs->group_imb = sg_imbalanced(group);
	sgs->group_capacity = sg_capacity(env, group);

4611 4612
	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
4613 4614
}

4615 4616
/**
 * update_sd_pick_busiest - return 1 on busiest group
4617
 * @env: The load balancing environment.
4618 4619
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
4620
 * @sgs: sched_group statistics
4621 4622 4623
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
4624 4625 4626
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
4627
 */
4628
static bool update_sd_pick_busiest(struct lb_env *env,
4629 4630
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
4631
				   struct sg_lb_stats *sgs)
4632
{
J
Joonsoo Kim 已提交
4633
	if (sgs->avg_load <= sds->busiest_stat.avg_load)
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
4647 4648
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

4659
/**
4660
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4661
 * @env: The load balancing environment.
4662 4663 4664
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
 */
4665
static inline void update_sd_lb_stats(struct lb_env *env,
4666
					struct sd_lb_stats *sds)
4667
{
4668 4669
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
4670
	struct sg_lb_stats tmp_sgs;
4671 4672 4673 4674 4675
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

4676
	load_idx = get_sd_load_idx(env->sd, env->idle);
4677 4678

	do {
J
Joonsoo Kim 已提交
4679
		struct sg_lb_stats *sgs = &tmp_sgs;
4680 4681
		int local_group;

4682
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
4683 4684 4685
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
4686 4687 4688 4689

			if (env->idle != CPU_NEWLY_IDLE ||
			    time_after_eq(jiffies, sg->sgp->next_update))
				update_group_power(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
4690
		}
4691

J
Joonsoo Kim 已提交
4692
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
4693

4694 4695 4696
		if (local_group)
			goto next_group;

4697 4698
		/*
		 * In case the child domain prefers tasks go to siblings
4699
		 * first, lower the sg capacity to one so that we'll try
4700 4701 4702 4703 4704 4705
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
4706
		 */
4707 4708
		if (prefer_sibling && sds->local &&
		    sds->local_stat.group_has_capacity)
4709
			sgs->group_capacity = min(sgs->group_capacity, 1U);
4710

4711
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
4712
			sds->busiest = sg;
J
Joonsoo Kim 已提交
4713
			sds->busiest_stat = *sgs;
4714 4715
		}

4716 4717 4718 4719 4720
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
		sds->total_pwr += sgs->group_power;

4721
		sg = sg->next;
4722
	} while (sg != env->sd->groups);
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
4742
 * Return: 1 when packing is required and a task should be moved to
4743 4744
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
4745
 * @env: The load balancing environment.
4746 4747
 * @sds: Statistics of the sched_domain which is to be packed
 */
4748
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4749 4750 4751
{
	int busiest_cpu;

4752
	if (!(env->sd->flags & SD_ASYM_PACKING))
4753 4754 4755 4756 4757 4758
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
4759
	if (env->dst_cpu > busiest_cpu)
4760 4761
		return 0;

4762
	env->imbalance = DIV_ROUND_CLOSEST(
4763 4764
		sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
		SCHED_POWER_SCALE);
4765

4766
	return 1;
4767 4768 4769 4770 4771 4772
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
4773
 * @env: The load balancing environment.
4774 4775
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
4776 4777
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4778 4779 4780
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
4781
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
4782
	struct sg_lb_stats *local, *busiest;
4783

J
Joonsoo Kim 已提交
4784 4785
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
4786

J
Joonsoo Kim 已提交
4787 4788 4789 4790
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
4791

J
Joonsoo Kim 已提交
4792 4793
	scaled_busy_load_per_task =
		(busiest->load_per_task * SCHED_POWER_SCALE) /
4794
		busiest->group_power;
J
Joonsoo Kim 已提交
4795

4796 4797
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
4798
		env->imbalance = busiest->load_per_task;
4799 4800 4801 4802 4803 4804 4805 4806 4807
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

4808
	pwr_now += busiest->group_power *
J
Joonsoo Kim 已提交
4809
			min(busiest->load_per_task, busiest->avg_load);
4810
	pwr_now += local->group_power *
J
Joonsoo Kim 已提交
4811
			min(local->load_per_task, local->avg_load);
4812
	pwr_now /= SCHED_POWER_SCALE;
4813 4814

	/* Amount of load we'd subtract */
J
Joonsoo Kim 已提交
4815
	tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
4816
		busiest->group_power;
J
Joonsoo Kim 已提交
4817
	if (busiest->avg_load > tmp) {
4818
		pwr_move += busiest->group_power *
J
Joonsoo Kim 已提交
4819 4820 4821
			    min(busiest->load_per_task,
				busiest->avg_load - tmp);
	}
4822 4823

	/* Amount of load we'd add */
4824
	if (busiest->avg_load * busiest->group_power <
J
Joonsoo Kim 已提交
4825
	    busiest->load_per_task * SCHED_POWER_SCALE) {
4826 4827
		tmp = (busiest->avg_load * busiest->group_power) /
		      local->group_power;
J
Joonsoo Kim 已提交
4828 4829
	} else {
		tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
4830
		      local->group_power;
J
Joonsoo Kim 已提交
4831
	}
4832 4833
	pwr_move += local->group_power *
		    min(local->load_per_task, local->avg_load + tmp);
4834
	pwr_move /= SCHED_POWER_SCALE;
4835 4836 4837

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
J
Joonsoo Kim 已提交
4838
		env->imbalance = busiest->load_per_task;
4839 4840 4841 4842 4843
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
4844
 * @env: load balance environment
4845 4846
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
4847
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4848
{
4849
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
4850 4851 4852 4853
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
4854

J
Joonsoo Kim 已提交
4855
	if (busiest->group_imb) {
4856 4857 4858 4859
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
4860 4861
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
4862 4863
	}

4864 4865 4866 4867 4868
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
4869 4870
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
4871 4872
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
4873 4874
	}

J
Joonsoo Kim 已提交
4875
	if (!busiest->group_imb) {
4876 4877
		/*
		 * Don't want to pull so many tasks that a group would go idle.
4878 4879
		 * Except of course for the group_imb case, since then we might
		 * have to drop below capacity to reach cpu-load equilibrium.
4880
		 */
J
Joonsoo Kim 已提交
4881 4882
		load_above_capacity =
			(busiest->sum_nr_running - busiest->group_capacity);
4883

4884
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4885
		load_above_capacity /= busiest->group_power;
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
4896
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
4897 4898

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
4899
	env->imbalance = min(
4900 4901
		max_pull * busiest->group_power,
		(sds->avg_load - local->avg_load) * local->group_power
J
Joonsoo Kim 已提交
4902
	) / SCHED_POWER_SCALE;
4903 4904 4905

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
4906
	 * there is no guarantee that any tasks will be moved so we'll have
4907 4908 4909
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
4910
	if (env->imbalance < busiest->load_per_task)
4911
		return fix_small_imbalance(env, sds);
4912
}
4913

4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
4926
 * @env: The load balancing environment.
4927
 *
4928
 * Return:	- The busiest group if imbalance exists.
4929 4930 4931 4932
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
4933
static struct sched_group *find_busiest_group(struct lb_env *env)
4934
{
J
Joonsoo Kim 已提交
4935
	struct sg_lb_stats *local, *busiest;
4936 4937
	struct sd_lb_stats sds;

4938
	init_sd_lb_stats(&sds);
4939 4940 4941 4942 4943

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
4944
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
4945 4946
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
4947

4948 4949
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
4950 4951
		return sds.busiest;

4952
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
4953
	if (!sds.busiest || busiest->sum_nr_running == 0)
4954 4955
		goto out_balanced;

4956
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4957

P
Peter Zijlstra 已提交
4958 4959
	/*
	 * If the busiest group is imbalanced the below checks don't
4960
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
4961 4962
	 * isn't true due to cpus_allowed constraints and the like.
	 */
J
Joonsoo Kim 已提交
4963
	if (busiest->group_imb)
P
Peter Zijlstra 已提交
4964 4965
		goto force_balance;

4966
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
J
Joonsoo Kim 已提交
4967 4968
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
	    !busiest->group_has_capacity)
4969 4970
		goto force_balance;

4971 4972 4973 4974
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
4975
	if (local->avg_load >= busiest->avg_load)
4976 4977
		goto out_balanced;

4978 4979 4980 4981
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
4982
	if (local->avg_load >= sds.avg_load)
4983 4984
		goto out_balanced;

4985
	if (env->idle == CPU_IDLE) {
4986 4987 4988 4989 4990 4991
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
J
Joonsoo Kim 已提交
4992 4993
		if ((local->idle_cpus < busiest->idle_cpus) &&
		    busiest->sum_nr_running <= busiest->group_weight)
4994
			goto out_balanced;
4995 4996 4997 4998 4999
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
5000 5001
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
5002
			goto out_balanced;
5003
	}
5004

5005
force_balance:
5006
	/* Looks like there is an imbalance. Compute it */
5007
	calculate_imbalance(env, &sds);
5008 5009 5010
	return sds.busiest;

out_balanced:
5011
	env->imbalance = 0;
5012 5013 5014 5015 5016 5017
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
5018
static struct rq *find_busiest_queue(struct lb_env *env,
5019
				     struct sched_group *group)
5020 5021
{
	struct rq *busiest = NULL, *rq;
5022
	unsigned long busiest_load = 0, busiest_power = 1;
5023 5024
	int i;

5025
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5026
		unsigned long power = power_of(i);
5027 5028
		unsigned long capacity = DIV_ROUND_CLOSEST(power,
							   SCHED_POWER_SCALE);
5029 5030
		unsigned long wl;

5031
		if (!capacity)
5032
			capacity = fix_small_capacity(env->sd, group);
5033

5034
		rq = cpu_rq(i);
5035
		wl = weighted_cpuload(i);
5036

5037 5038 5039 5040
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
5041
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
5042 5043
			continue;

5044 5045 5046 5047 5048
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
5049 5050 5051 5052 5053
		 *
		 * Thus we're looking for max(wl_i / power_i), crosswise
		 * multiplication to rid ourselves of the division works out
		 * to: wl_i * power_j > wl_j * power_i;  where j is our
		 * previous maximum.
5054
		 */
5055 5056 5057
		if (wl * busiest_power > busiest_load * power) {
			busiest_load = wl;
			busiest_power = power;
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
5072
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5073

5074
static int need_active_balance(struct lb_env *env)
5075
{
5076 5077 5078
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
5079 5080 5081 5082 5083 5084

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
5085
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
5086
			return 1;
5087 5088 5089 5090 5091
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

5092 5093
static int active_load_balance_cpu_stop(void *data);

5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
5125
	return balance_cpu == env->dst_cpu;
5126 5127
}

5128 5129 5130 5131 5132 5133
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
5134
			int *continue_balancing)
5135
{
5136
	int ld_moved, cur_ld_moved, active_balance = 0;
5137
	struct sched_domain *sd_parent = sd->parent;
5138 5139 5140
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
5141
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5142

5143 5144
	struct lb_env env = {
		.sd		= sd,
5145 5146
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
5147
		.dst_grpmask    = sched_group_cpus(sd->groups),
5148
		.idle		= idle,
5149
		.loop_break	= sched_nr_migrate_break,
5150
		.cpus		= cpus,
5151 5152
	};

5153 5154 5155 5156
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
5157
	if (idle == CPU_NEWLY_IDLE)
5158 5159
		env.dst_grpmask = NULL;

5160 5161 5162 5163 5164
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
5165 5166
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
5167
		goto out_balanced;
5168
	}
5169

5170
	group = find_busiest_group(&env);
5171 5172 5173 5174 5175
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

5176
	busiest = find_busiest_queue(&env, group);
5177 5178 5179 5180 5181
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

5182
	BUG_ON(busiest == env.dst_rq);
5183

5184
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5185 5186 5187 5188 5189 5190 5191 5192 5193

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
5194
		env.flags |= LBF_ALL_PINNED;
5195 5196 5197
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
5198

5199
more_balance:
5200
		local_irq_save(flags);
5201
		double_rq_lock(env.dst_rq, busiest);
5202 5203 5204 5205 5206 5207 5208

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
5209
		double_rq_unlock(env.dst_rq, busiest);
5210 5211 5212 5213 5214
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
5215 5216 5217
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

5218 5219 5220 5221 5222
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
5242
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
5243

5244 5245 5246
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

5247
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
5248
			env.dst_cpu	 = env.new_dst_cpu;
5249
			env.flags	&= ~LBF_DST_PINNED;
5250 5251
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
5252

5253 5254 5255 5256 5257 5258
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
5259

5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
			int *group_imbalance = &sd_parent->groups->sgp->imbalance;

			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
				*group_imbalance = 1;
			} else if (*group_imbalance)
				*group_imbalance = 0;
		}

5272
		/* All tasks on this runqueue were pinned by CPU affinity */
5273
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
5274
			cpumask_clear_cpu(cpu_of(busiest), cpus);
5275 5276 5277
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
5278
				goto redo;
5279
			}
5280 5281 5282 5283 5284 5285
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
5286 5287 5288 5289 5290 5291 5292 5293
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
5294

5295
		if (need_active_balance(&env)) {
5296 5297
			raw_spin_lock_irqsave(&busiest->lock, flags);

5298 5299 5300
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
5301 5302
			 */
			if (!cpumask_test_cpu(this_cpu,
5303
					tsk_cpus_allowed(busiest->curr))) {
5304 5305
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
5306
				env.flags |= LBF_ALL_PINNED;
5307 5308 5309
				goto out_one_pinned;
			}

5310 5311 5312 5313 5314
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
5315 5316 5317 5318 5319 5320
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
5321

5322
			if (active_balance) {
5323 5324 5325
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
5326
			}
5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
5360
	if (((env.flags & LBF_ALL_PINNED) &&
5361
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
5362 5363 5364
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

5365
	ld_moved = 0;
5366 5367 5368 5369 5370 5371 5372 5373
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
5374
void idle_balance(int this_cpu, struct rq *this_rq)
5375 5376 5377 5378
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;
5379
	u64 curr_cost = 0;
5380

5381
	this_rq->idle_stamp = rq_clock(this_rq);
5382 5383 5384 5385

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

5386 5387 5388 5389 5390
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

5391
	update_blocked_averages(this_cpu);
5392
	rcu_read_lock();
5393 5394
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
5395
		int continue_balancing = 1;
5396
		u64 t0, domain_cost;
5397 5398 5399 5400

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

5401 5402 5403
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
			break;

5404
		if (sd->flags & SD_BALANCE_NEWIDLE) {
5405 5406
			t0 = sched_clock_cpu(this_cpu);

5407
			/* If we've pulled tasks over stop searching: */
5408
			pulled_task = load_balance(this_cpu, this_rq,
5409 5410
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
5411 5412 5413 5414 5415 5416

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
5417
		}
5418 5419 5420 5421

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
N
Nikhil Rao 已提交
5422 5423
		if (pulled_task) {
			this_rq->idle_stamp = 0;
5424
			break;
N
Nikhil Rao 已提交
5425
		}
5426
	}
5427
	rcu_read_unlock();
5428 5429 5430

	raw_spin_lock(&this_rq->lock);

5431 5432 5433 5434 5435 5436 5437
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
5438 5439 5440

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;
5441 5442 5443
}

/*
5444 5445 5446 5447
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
5448
 */
5449
static int active_load_balance_cpu_stop(void *data)
5450
{
5451 5452
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
5453
	int target_cpu = busiest_rq->push_cpu;
5454
	struct rq *target_rq = cpu_rq(target_cpu);
5455
	struct sched_domain *sd;
5456 5457 5458 5459 5460 5461 5462

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
5463 5464 5465

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
5466
		goto out_unlock;
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
5479
	rcu_read_lock();
5480 5481 5482 5483 5484 5485 5486
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
5487 5488
		struct lb_env env = {
			.sd		= sd,
5489 5490 5491 5492
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
5493 5494 5495
			.idle		= CPU_IDLE,
		};

5496 5497
		schedstat_inc(sd, alb_count);

5498
		if (move_one_task(&env))
5499 5500 5501 5502
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
5503
	rcu_read_unlock();
5504
	double_unlock_balance(busiest_rq, target_rq);
5505 5506 5507 5508
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
5509 5510
}

5511
#ifdef CONFIG_NO_HZ_COMMON
5512 5513 5514 5515 5516 5517
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
5518
static struct {
5519
	cpumask_var_t idle_cpus_mask;
5520
	atomic_t nr_cpus;
5521 5522
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
5523

5524
static inline int find_new_ilb(int call_cpu)
5525
{
5526
	int ilb = cpumask_first(nohz.idle_cpus_mask);
5527

5528 5529 5530 5531
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
5532 5533
}

5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void nohz_balancer_kick(int cpu)
{
	int ilb_cpu;

	nohz.next_balance++;

5545
	ilb_cpu = find_new_ilb(cpu);
5546

5547 5548
	if (ilb_cpu >= nr_cpu_ids)
		return;
5549

5550
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5551 5552 5553 5554 5555 5556 5557 5558
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
5559 5560 5561
	return;
}

5562
static inline void nohz_balance_exit_idle(int cpu)
5563 5564 5565 5566 5567 5568 5569 5570
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
		atomic_dec(&nohz.nr_cpus);
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

5571 5572 5573 5574 5575
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;

	rcu_read_lock();
N
Nathan Zimmer 已提交
5576
	sd = rcu_dereference_check_sched_domain(this_rq()->sd);
V
Vincent Guittot 已提交
5577 5578 5579 5580 5581 5582

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

	for (; sd; sd = sd->parent)
5583
		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
5584
unlock:
5585 5586 5587 5588 5589 5590 5591 5592
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;

	rcu_read_lock();
N
Nathan Zimmer 已提交
5593
	sd = rcu_dereference_check_sched_domain(this_rq()->sd);
V
Vincent Guittot 已提交
5594 5595 5596 5597 5598 5599

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

	for (; sd; sd = sd->parent)
5600
		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
5601
unlock:
5602 5603 5604
	rcu_read_unlock();
}

5605
/*
5606
 * This routine will record that the cpu is going idle with tick stopped.
5607
 * This info will be used in performing idle load balancing in the future.
5608
 */
5609
void nohz_balance_enter_idle(int cpu)
5610
{
5611 5612 5613 5614 5615 5616
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

5617 5618
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
5619

5620 5621 5622
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5623
}
5624

5625
static int sched_ilb_notifier(struct notifier_block *nfb,
5626 5627 5628 5629
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
5630
		nohz_balance_exit_idle(smp_processor_id());
5631 5632 5633 5634 5635
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
5636 5637 5638 5639
#endif

static DEFINE_SPINLOCK(balancing);

5640 5641 5642 5643
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
5644
void update_max_interval(void)
5645 5646 5647 5648
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

5649 5650 5651 5652
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
5653
 * Balancing parameters are set up in init_sched_domains.
5654 5655 5656
 */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
5657
	int continue_balancing = 1;
5658 5659
	struct rq *rq = cpu_rq(cpu);
	unsigned long interval;
5660
	struct sched_domain *sd;
5661 5662 5663
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
5664 5665
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
5666

5667
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
5668

5669
	rcu_read_lock();
5670
	for_each_domain(cpu, sd) {
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

5683 5684 5685
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

5697 5698 5699 5700 5701 5702
		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
5703
		interval = clamp(interval, 1UL, max_load_balance_interval);
5704 5705 5706 5707 5708 5709 5710 5711 5712

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
5713
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
5714
				/*
5715
				 * The LBF_DST_PINNED logic could have changed
5716 5717
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
5718
				 */
5719
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
5730 5731
	}
	if (need_decay) {
5732
		/*
5733 5734
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
5735
		 */
5736 5737
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
5738
	}
5739
	rcu_read_unlock();
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

5750
#ifdef CONFIG_NO_HZ_COMMON
5751
/*
5752
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
5753 5754
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
5755 5756 5757 5758 5759 5760
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
{
	struct rq *this_rq = cpu_rq(this_cpu);
	struct rq *rq;
	int balance_cpu;

5761 5762 5763
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
5764 5765

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5766
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5767 5768 5769 5770 5771 5772 5773
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
5774
		if (need_resched())
5775 5776
			break;

V
Vincent Guittot 已提交
5777 5778 5779 5780 5781 5782
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
5783 5784 5785 5786 5787 5788 5789

		rebalance_domains(balance_cpu, CPU_IDLE);

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
5790 5791
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5792 5793 5794
}

/*
5795 5796 5797 5798 5799 5800 5801
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
5802 5803 5804 5805
 */
static inline int nohz_kick_needed(struct rq *rq, int cpu)
{
	unsigned long now = jiffies;
5806
	struct sched_domain *sd;
5807

5808
	if (unlikely(idle_cpu(cpu)))
5809 5810
		return 0;

5811 5812 5813 5814
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
5815
	set_cpu_sd_state_busy();
5816
	nohz_balance_exit_idle(cpu);
5817 5818 5819 5820 5821 5822 5823

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
5824 5825

	if (time_before(now, nohz.next_balance))
5826 5827
		return 0;

5828 5829
	if (rq->nr_running >= 2)
		goto need_kick;
5830

5831
	rcu_read_lock();
5832 5833 5834 5835
	for_each_domain(cpu, sd) {
		struct sched_group *sg = sd->groups;
		struct sched_group_power *sgp = sg->sgp;
		int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5836

5837
		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5838
			goto need_kick_unlock;
5839 5840 5841 5842

		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
		    && (cpumask_first_and(nohz.idle_cpus_mask,
					  sched_domain_span(sd)) < cpu))
5843
			goto need_kick_unlock;
5844 5845 5846

		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
			break;
5847
	}
5848
	rcu_read_unlock();
5849
	return 0;
5850 5851 5852

need_kick_unlock:
	rcu_read_unlock();
5853 5854
need_kick:
	return 1;
5855 5856 5857 5858 5859 5860 5861 5862 5863
}
#else
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
5864 5865 5866 5867
static void run_rebalance_domains(struct softirq_action *h)
{
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
5868
	enum cpu_idle_type idle = this_rq->idle_balance ?
5869 5870 5871 5872 5873
						CPU_IDLE : CPU_NOT_IDLE;

	rebalance_domains(this_cpu, idle);

	/*
5874
	 * If this cpu has a pending nohz_balance_kick, then do the
5875 5876 5877
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
5878
	nohz_idle_balance(this_cpu, idle);
5879 5880 5881 5882
}

static inline int on_null_domain(int cpu)
{
5883
	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5884 5885 5886 5887 5888
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
5889
void trigger_load_balance(struct rq *rq, int cpu)
5890 5891 5892 5893 5894
{
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
		raise_softirq(SCHED_SOFTIRQ);
5895
#ifdef CONFIG_NO_HZ_COMMON
5896
	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5897 5898
		nohz_balancer_kick(cpu);
#endif
5899 5900
}

5901 5902 5903 5904 5905 5906 5907 5908
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
5909 5910 5911

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
5912 5913
}

5914
#endif /* CONFIG_SMP */
5915

5916 5917 5918
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
5919
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5920 5921 5922 5923 5924 5925
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
5926
		entity_tick(cfs_rq, se, queued);
5927
	}
5928

5929
	if (numabalancing_enabled)
5930
		task_tick_numa(rq, curr);
5931

5932
	update_rq_runnable_avg(rq, 1);
5933 5934 5935
}

/*
P
Peter Zijlstra 已提交
5936 5937 5938
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
5939
 */
P
Peter Zijlstra 已提交
5940
static void task_fork_fair(struct task_struct *p)
5941
{
5942 5943
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
5944
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
5945 5946 5947
	struct rq *rq = this_rq();
	unsigned long flags;

5948
	raw_spin_lock_irqsave(&rq->lock, flags);
5949

5950 5951
	update_rq_clock(rq);

5952 5953 5954
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

5955 5956 5957 5958 5959 5960 5961 5962 5963
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
5964

5965
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
5966

5967 5968
	if (curr)
		se->vruntime = curr->vruntime;
5969
	place_entity(cfs_rq, se, 1);
5970

P
Peter Zijlstra 已提交
5971
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
5972
		/*
5973 5974 5975
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
5976
		swap(curr->vruntime, se->vruntime);
5977
		resched_task(rq->curr);
5978
	}
5979

5980 5981
	se->vruntime -= cfs_rq->min_vruntime;

5982
	raw_spin_unlock_irqrestore(&rq->lock, flags);
5983 5984
}

5985 5986 5987 5988
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
5989 5990
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5991
{
P
Peter Zijlstra 已提交
5992 5993 5994
	if (!p->se.on_rq)
		return;

5995 5996 5997 5998 5999
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
6000
	if (rq->curr == p) {
6001 6002 6003
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
6004
		check_preempt_curr(rq, p, 0);
6005 6006
}

P
Peter Zijlstra 已提交
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Ensure the task's vruntime is normalized, so that when its
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it was !on_rq, then only when
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
	if (!se->on_rq && p->state != TASK_RUNNING) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
6029

6030
#ifdef CONFIG_SMP
6031 6032 6033 6034 6035
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
6036 6037 6038
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
6039 6040
	}
#endif
P
Peter Zijlstra 已提交
6041 6042
}

6043 6044 6045
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
6046
static void switched_to_fair(struct rq *rq, struct task_struct *p)
6047
{
P
Peter Zijlstra 已提交
6048 6049 6050
	if (!p->se.on_rq)
		return;

6051 6052 6053 6054 6055
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
6056
	if (rq->curr == p)
6057 6058
		resched_task(rq->curr);
	else
6059
		check_preempt_curr(rq, p, 0);
6060 6061
}

6062 6063 6064 6065 6066 6067 6068 6069 6070
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

6071 6072 6073 6074 6075 6076 6077
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
6078 6079
}

6080 6081 6082 6083 6084 6085 6086
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
6087
#ifdef CONFIG_SMP
6088
	atomic64_set(&cfs_rq->decay_counter, 1);
6089
	atomic_long_set(&cfs_rq->removed_load, 0);
6090
#endif
6091 6092
}

P
Peter Zijlstra 已提交
6093
#ifdef CONFIG_FAIR_GROUP_SCHED
6094
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
6095
{
6096
	struct cfs_rq *cfs_rq;
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
6110 6111 6112 6113 6114 6115
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
6116 6117
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
6118 6119 6120 6121
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
6122
	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
6123 6124
		on_rq = 1;

6125 6126 6127
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
	if (!on_rq) {
		cfs_rq = cfs_rq_of(&p->se);
		p->se.vruntime += cfs_rq->min_vruntime;
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
		p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
#endif
	}
P
Peter Zijlstra 已提交
6141
}
6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

	se->my_q = cfs_rq;
	update_load_set(&se->load, 0);
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
6271 6272 6273

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
6274
		for_each_sched_entity(se)
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
6296

6297
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6298 6299 6300 6301 6302 6303 6304 6305 6306
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
6307
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6308 6309 6310 6311

	return rr_interval;
}

6312 6313 6314
/*
 * All the scheduling class methods:
 */
6315
const struct sched_class fair_sched_class = {
6316
	.next			= &idle_sched_class,
6317 6318 6319
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
6320
	.yield_to_task		= yield_to_task_fair,
6321

I
Ingo Molnar 已提交
6322
	.check_preempt_curr	= check_preempt_wakeup,
6323 6324 6325 6326

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

6327
#ifdef CONFIG_SMP
L
Li Zefan 已提交
6328
	.select_task_rq		= select_task_rq_fair,
6329
	.migrate_task_rq	= migrate_task_rq_fair,
6330

6331 6332
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
6333 6334

	.task_waking		= task_waking_fair,
6335
#endif
6336

6337
	.set_curr_task          = set_curr_task_fair,
6338
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
6339
	.task_fork		= task_fork_fair,
6340 6341

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
6342
	.switched_from		= switched_from_fair,
6343
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
6344

6345 6346
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
6347
#ifdef CONFIG_FAIR_GROUP_SCHED
6348
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
6349
#endif
6350 6351 6352
};

#ifdef CONFIG_SCHED_DEBUG
6353
void print_cfs_stats(struct seq_file *m, int cpu)
6354 6355 6356
{
	struct cfs_rq *cfs_rq;

6357
	rcu_read_lock();
6358
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6359
		print_cfs_rq(m, cpu, cfs_rq);
6360
	rcu_read_unlock();
6361 6362
}
#endif
6363 6364 6365 6366 6367 6368

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

6369
#ifdef CONFIG_NO_HZ_COMMON
6370
	nohz.next_balance = jiffies;
6371
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6372
	cpu_notifier(sched_ilb_notifier, 0);
6373 6374 6375 6376
#endif
#endif /* SMP */

}