fair.c 141.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28 29 30 31 32
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
33

34
/*
35
 * Targeted preemption latency for CPU-bound tasks:
36
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37
 *
38
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
39 40 41
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
42
 *
I
Ingo Molnar 已提交
43 44
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
45
 */
46 47
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
48

49 50 51 52 53 54 55 56 57 58 59 60
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

61
/*
62
 * Minimal preemption granularity for CPU-bound tasks:
63
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
64
 */
65 66
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
67 68

/*
69 70
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
71
static unsigned int sched_nr_latency = 8;
72 73

/*
74
 * After fork, child runs first. If set to 0 (default) then
75
 * parent will (try to) run first.
76
 */
77
unsigned int sysctl_sched_child_runs_first __read_mostly;
78 79 80

/*
 * SCHED_OTHER wake-up granularity.
81
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 83 84 85 86
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
87
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89

90 91
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

92 93 94 95 96 97 98
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

99 100 101 102 103 104 105 106 107 108 109 110 111 112
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

/*
 * Shift right and round:
 */
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))

/*
 * delta *= weight / lw
 */
static unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	/*
	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
	 * 2^SCHED_LOAD_RESOLUTION.
	 */
	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
		tmp = (u64)delta_exec * scale_load_down(weight);
	else
		tmp = (u64)delta_exec;

	if (!lw->inv_weight) {
		unsigned long w = scale_load_down(lw->weight);

		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
			lw->inv_weight = 1;
		else if (unlikely(!w))
			lw->inv_weight = WMULT_CONST;
		else
			lw->inv_weight = WMULT_CONST / w;
	}

	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST))
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
			WMULT_SHIFT/2);
	else
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);

	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
}


const struct sched_class fair_sched_class;
217

218 219 220 221
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

222
#ifdef CONFIG_FAIR_GROUP_SCHED
223

224
/* cpu runqueue to which this cfs_rq is attached */
225 226
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
227
	return cfs_rq->rq;
228 229
}

230 231
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
232

233 234 235 236 237 238 239 240
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

262 263
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq);

264 265 266
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
267 268 269 270 271 272 273 274 275 276 277 278
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
279
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
280
		}
281 282

		cfs_rq->on_list = 1;
283 284
		/* We should have no load, but we need to update last_decay. */
		update_cfs_rq_blocked_load(cfs_rq);
285 286 287 288 289 290 291 292 293 294 295
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

358 359 360 361 362 363
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
364

365 366 367
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
368 369 370 371
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
372 373
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
374

P
Peter Zijlstra 已提交
375
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
376
{
P
Peter Zijlstra 已提交
377
	return &task_rq(p)->cfs;
378 379
}

P
Peter Zijlstra 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

394 395 396 397 398 399 400 401
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

416 417 418 419 420
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
421 422
#endif	/* CONFIG_FAIR_GROUP_SCHED */

423 424
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
425 426 427 428 429

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

430
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
431
{
432 433
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
434 435 436 437 438
		min_vruntime = vruntime;

	return min_vruntime;
}

439
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
440 441 442 443 444 445 446 447
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

448 449 450 451 452 453
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

454 455 456 457 458 459 460 461 462 463 464 465
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
466
		if (!cfs_rq->curr)
467 468 469 470 471 472
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
473 474 475 476
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
477 478
}

479 480 481
/*
 * Enqueue an entity into the rb-tree:
 */
482
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
499
		if (entity_before(se, entry)) {
500 501 502 503 504 505 506 507 508 509 510
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
511
	if (leftmost)
I
Ingo Molnar 已提交
512
		cfs_rq->rb_leftmost = &se->run_node;
513 514 515 516 517

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

518
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
519
{
P
Peter Zijlstra 已提交
520 521 522 523 524 525
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
526

527 528 529
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

530
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
531
{
532 533 534 535 536 537
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
538 539
}

540 541 542 543 544 545 546 547 548 549 550
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
551
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
552
{
553
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
554

555 556
	if (!last)
		return NULL;
557 558

	return rb_entry(last, struct sched_entity, run_node);
559 560
}

561 562 563 564
/**************************************************************
 * Scheduling class statistics methods:
 */

565
int sched_proc_update_handler(struct ctl_table *table, int write,
566
		void __user *buffer, size_t *lenp,
567 568
		loff_t *ppos)
{
569
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
570
	int factor = get_update_sysctl_factor();
571 572 573 574 575 576 577

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

578 579 580 581 582 583 584
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

585 586 587
	return 0;
}
#endif
588

589
/*
590
 * delta /= w
591 592 593 594
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
595 596
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
597 598 599 600

	return delta;
}

601 602 603
/*
 * The idea is to set a period in which each task runs once.
 *
604
 * When there are too many tasks (sched_nr_latency) we have to stretch
605 606 607 608
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
609 610 611
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
612
	unsigned long nr_latency = sched_nr_latency;
613 614

	if (unlikely(nr_running > nr_latency)) {
615
		period = sysctl_sched_min_granularity;
616 617 618 619 620 621
		period *= nr_running;
	}

	return period;
}

622 623 624 625
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
626
 * s = p*P[w/rw]
627
 */
P
Peter Zijlstra 已提交
628
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
629
{
M
Mike Galbraith 已提交
630
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
631

M
Mike Galbraith 已提交
632
	for_each_sched_entity(se) {
L
Lin Ming 已提交
633
		struct load_weight *load;
634
		struct load_weight lw;
L
Lin Ming 已提交
635 636 637

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
638

M
Mike Galbraith 已提交
639
		if (unlikely(!se->on_rq)) {
640
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
641 642 643 644 645 646 647

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
648 649
}

650
/*
651
 * We calculate the vruntime slice of a to be inserted task
652
 *
653
 * vs = s/w
654
 */
655
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
656
{
657
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
658 659
}

660
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
661
static void update_cfs_shares(struct cfs_rq *cfs_rq);
662

663 664 665 666 667
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
668 669
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
670
{
671
	unsigned long delta_exec_weighted;
672

673 674
	schedstat_set(curr->statistics.exec_max,
		      max((u64)delta_exec, curr->statistics.exec_max));
675 676

	curr->sum_exec_runtime += delta_exec;
677
	schedstat_add(cfs_rq, exec_clock, delta_exec);
678
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
679

I
Ingo Molnar 已提交
680
	curr->vruntime += delta_exec_weighted;
681
	update_min_vruntime(cfs_rq);
682

P
Peter Zijlstra 已提交
683
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
684 685
	cfs_rq->load_unacc_exec_time += delta_exec;
#endif
686 687
}

688
static void update_curr(struct cfs_rq *cfs_rq)
689
{
690
	struct sched_entity *curr = cfs_rq->curr;
691
	u64 now = rq_of(cfs_rq)->clock_task;
692 693 694 695 696 697 698 699 700 701
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
702
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
703 704
	if (!delta_exec)
		return;
705

I
Ingo Molnar 已提交
706 707
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
708 709 710 711

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

712
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
713
		cpuacct_charge(curtask, delta_exec);
714
		account_group_exec_runtime(curtask, delta_exec);
715
	}
716 717

	account_cfs_rq_runtime(cfs_rq, delta_exec);
718 719 720
}

static inline void
721
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
722
{
723
	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
724 725 726 727 728
}

/*
 * Task is being enqueued - update stats:
 */
729
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
730 731 732 733 734
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
735
	if (se != cfs_rq->curr)
736
		update_stats_wait_start(cfs_rq, se);
737 738 739
}

static void
740
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
741
{
742 743 744 745 746
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
			rq_of(cfs_rq)->clock - se->statistics.wait_start));
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
747 748 749
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
750
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
751 752
	}
#endif
753
	schedstat_set(se->statistics.wait_start, 0);
754 755 756
}

static inline void
757
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
758 759 760 761 762
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
763
	if (se != cfs_rq->curr)
764
		update_stats_wait_end(cfs_rq, se);
765 766 767 768 769 770
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
771
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
772 773 774 775
{
	/*
	 * We are starting a new run period:
	 */
776
	se->exec_start = rq_of(cfs_rq)->clock_task;
777 778 779 780 781 782
}

/**************************************************
 * Scheduling class queueing methods:
 */

783 784 785 786
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
787
	if (!parent_entity(se))
788
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
789 790
#ifdef CONFIG_SMP
	if (entity_is_task(se))
791
		list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
792
#endif
793 794 795 796 797 798 799
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
800
	if (!parent_entity(se))
801
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
802
	if (entity_is_task(se))
803
		list_del_init(&se->group_node);
804 805 806
	cfs_rq->nr_running--;
}

807
#ifdef CONFIG_FAIR_GROUP_SCHED
808 809
/* we need this in update_cfs_load and load-balance functions below */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
810
# ifdef CONFIG_SMP
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
					    int global_update)
{
	struct task_group *tg = cfs_rq->tg;
	long load_avg;

	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
	load_avg -= cfs_rq->load_contribution;

	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
		atomic_add(load_avg, &tg->load_weight);
		cfs_rq->load_contribution += load_avg;
	}
}

static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
P
Peter Zijlstra 已提交
827
{
828
	u64 period = sysctl_sched_shares_window;
P
Peter Zijlstra 已提交
829
	u64 now, delta;
830
	unsigned long load = cfs_rq->load.weight;
P
Peter Zijlstra 已提交
831

832
	if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
833 834
		return;

835
	now = rq_of(cfs_rq)->clock_task;
P
Peter Zijlstra 已提交
836 837
	delta = now - cfs_rq->load_stamp;

838 839 840 841 842
	/* truncate load history at 4 idle periods */
	if (cfs_rq->load_stamp > cfs_rq->load_last &&
	    now - cfs_rq->load_last > 4 * period) {
		cfs_rq->load_period = 0;
		cfs_rq->load_avg = 0;
843
		delta = period - 1;
844 845
	}

P
Peter Zijlstra 已提交
846
	cfs_rq->load_stamp = now;
847
	cfs_rq->load_unacc_exec_time = 0;
P
Peter Zijlstra 已提交
848
	cfs_rq->load_period += delta;
849 850 851 852
	if (load) {
		cfs_rq->load_last = now;
		cfs_rq->load_avg += delta * load;
	}
P
Peter Zijlstra 已提交
853

854 855 856 857 858
	/* consider updating load contribution on each fold or truncate */
	if (global_update || cfs_rq->load_period > period
	    || !cfs_rq->load_period)
		update_cfs_rq_load_contribution(cfs_rq, global_update);

P
Peter Zijlstra 已提交
859 860 861 862 863 864 865 866 867 868
	while (cfs_rq->load_period > period) {
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (cfs_rq->load_period));
		cfs_rq->load_period /= 2;
		cfs_rq->load_avg /= 2;
	}
869

870 871
	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
		list_del_leaf_cfs_rq(cfs_rq);
P
Peter Zijlstra 已提交
872 873
}

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
	tg_weight = atomic_read(&tg->load_weight);
	tg_weight -= cfs_rq->load_contribution;
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

890
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
891
{
892
	long tg_weight, load, shares;
893

894
	tg_weight = calc_tg_weight(tg, cfs_rq);
895
	load = cfs_rq->load.weight;
896 897

	shares = (tg->shares * load);
898 899
	if (tg_weight)
		shares /= tg_weight;
900 901 902 903 904 905 906 907 908 909 910 911 912

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}

static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
		update_cfs_load(cfs_rq, 0);
913
		update_cfs_shares(cfs_rq);
914 915 916 917 918 919 920
	}
}
# else /* CONFIG_SMP */
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
{
}

921
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
922 923 924 925 926 927 928 929
{
	return tg->shares;
}

static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
930 931 932
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
933 934 935 936
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
937
		account_entity_dequeue(cfs_rq, se);
938
	}
P
Peter Zijlstra 已提交
939 940 941 942 943 944 945

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

946
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
947 948 949
{
	struct task_group *tg;
	struct sched_entity *se;
950
	long shares;
P
Peter Zijlstra 已提交
951 952 953

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
954
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
955
		return;
956 957 958 959
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
960
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
961 962 963 964

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
965
static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
P
Peter Zijlstra 已提交
966 967 968
{
}

969
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
970 971
{
}
972 973 974 975

static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
{
}
P
Peter Zijlstra 已提交
976 977
#endif /* CONFIG_FAIR_GROUP_SCHED */

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
#ifdef CONFIG_SMP
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
	for (; n && val; n--) {
		val *= 4008;
		val >>= 12;
	}

	return val;
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
	u64 delta;
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
		BUG_ON(delta_w > delta);
		do {
			if (runnable)
				sa->runnable_avg_sum += delta_w;
			sa->runnable_avg_period += delta_w;

			/*
			 * Remainder of delta initiates a new period, roll over
			 * the previous.
			 */
			sa->runnable_avg_sum =
				decay_load(sa->runnable_avg_sum, 1);
			sa->runnable_avg_period =
				decay_load(sa->runnable_avg_period, 1);

			delta -= delta_w;
			/* New period is empty */
			delta_w = 1024;
		} while (delta >= 1024);
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
/* Synchronize an entity's decay with its parenting cfs_rq.*/
static inline void __synchronize_entity_decay(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
		return;

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

	if (!entity_is_task(se))
		return 0;

	se->avg.load_avg_contrib = div64_u64(se->avg.runnable_avg_sum *
					     se->load.weight,
					     se->avg.runnable_avg_period + 1);

	return se->avg.load_avg_contrib - old_contrib;
}

1117 1118 1119 1120 1121 1122 1123 1124 1125
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

1126
/* Update a sched_entity's runnable average */
1127 1128
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
1129
{
1130 1131 1132 1133 1134 1135 1136 1137
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;

	if (!__update_entity_runnable_avg(rq_of(cfs_rq)->clock_task, &se->avg,
					  se->on_rq))
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
1138 1139 1140 1141

	if (!update_cfs_rq)
		return;

1142 1143
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq)
{
	u64 now = rq_of(cfs_rq)->clock_task >> 20;
	u64 decays;

	decays = now - cfs_rq->last_decay;
	if (!decays)
		return;

	cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
					      decays);
	atomic64_add(decays, &cfs_rq->decay_counter);

	cfs_rq->last_decay = now;
1166
}
1167 1168 1169 1170 1171

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
	__update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
}
1172 1173 1174

/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1175 1176
						  struct sched_entity *se,
						  int wakeup)
1177
{
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	/* we track migrations using entity decay_count == 0 */
	if (unlikely(!se->avg.decay_count)) {
		se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
		wakeup = 0;
	} else {
		__synchronize_entity_decay(se);
	}

	if (wakeup)
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);

	update_entity_load_avg(se, 0);
1190
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1191
	update_cfs_rq_blocked_load(cfs_rq);
1192 1193
}

1194 1195 1196 1197 1198
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
1199
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1200 1201
						  struct sched_entity *se,
						  int sleep)
1202
{
1203 1204
	update_entity_load_avg(se, 1);

1205
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1206 1207 1208 1209
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
1210
}
1211
#else
1212 1213
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
1214
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1215
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1216 1217
					   struct sched_entity *se,
					   int wakeup) {}
1218
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1219 1220 1221
					   struct sched_entity *se,
					   int sleep) {}
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq) {}
1222 1223
#endif

1224
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1225 1226
{
#ifdef CONFIG_SCHEDSTATS
1227 1228 1229 1230 1231
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

1232 1233
	if (se->statistics.sleep_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1234 1235 1236 1237

		if ((s64)delta < 0)
			delta = 0;

1238 1239
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
1240

1241
		se->statistics.sleep_start = 0;
1242
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
1243

1244
		if (tsk) {
1245
			account_scheduler_latency(tsk, delta >> 10, 1);
1246 1247
			trace_sched_stat_sleep(tsk, delta);
		}
1248
	}
1249 1250
	if (se->statistics.block_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1251 1252 1253 1254

		if ((s64)delta < 0)
			delta = 0;

1255 1256
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
1257

1258
		se->statistics.block_start = 0;
1259
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
1260

1261
		if (tsk) {
1262
			if (tsk->in_iowait) {
1263 1264
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
1265
				trace_sched_stat_iowait(tsk, delta);
1266 1267
			}

1268 1269
			trace_sched_stat_blocked(tsk, delta);

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
1281
		}
1282 1283 1284 1285
	}
#endif
}

P
Peter Zijlstra 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

1299 1300 1301
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
1302
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
1303

1304 1305 1306 1307 1308 1309
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
1310
	if (initial && sched_feat(START_DEBIT))
1311
		vruntime += sched_vslice(cfs_rq, se);
1312

1313
	/* sleeps up to a single latency don't count. */
1314
	if (!initial) {
1315
		unsigned long thresh = sysctl_sched_latency;
1316

1317 1318 1319 1320 1321 1322
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
1323

1324
		vruntime -= thresh;
1325 1326
	}

1327 1328 1329
	/* ensure we never gain time by being placed backwards. */
	vruntime = max_vruntime(se->vruntime, vruntime);

P
Peter Zijlstra 已提交
1330
	se->vruntime = vruntime;
1331 1332
}

1333 1334
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

1335
static void
1336
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1337
{
1338 1339 1340 1341
	/*
	 * Update the normalized vruntime before updating min_vruntime
	 * through callig update_curr().
	 */
1342
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1343 1344
		se->vruntime += cfs_rq->min_vruntime;

1345
	/*
1346
	 * Update run-time statistics of the 'current'.
1347
	 */
1348
	update_curr(cfs_rq);
1349
	update_cfs_load(cfs_rq, 0);
1350
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
P
Peter Zijlstra 已提交
1351
	account_entity_enqueue(cfs_rq, se);
1352
	update_cfs_shares(cfs_rq);
1353

1354
	if (flags & ENQUEUE_WAKEUP) {
1355
		place_entity(cfs_rq, se, 0);
1356
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
1357
	}
1358

1359
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
1360
	check_spread(cfs_rq, se);
1361 1362
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
1363
	se->on_rq = 1;
1364

1365
	if (cfs_rq->nr_running == 1) {
1366
		list_add_leaf_cfs_rq(cfs_rq);
1367 1368
		check_enqueue_throttle(cfs_rq);
	}
1369 1370
}

1371
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
1372
{
1373 1374 1375 1376 1377 1378 1379 1380
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}
}
P
Peter Zijlstra 已提交
1381

1382 1383 1384 1385 1386 1387 1388 1389 1390
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next == se)
			cfs_rq->next = NULL;
		else
			break;
	}
P
Peter Zijlstra 已提交
1391 1392
}

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip == se)
			cfs_rq->skip = NULL;
		else
			break;
	}
}

P
Peter Zijlstra 已提交
1404 1405
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
1406 1407 1408 1409 1410
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
1411 1412 1413

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
1414 1415
}

1416
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1417

1418
static void
1419
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1420
{
1421 1422 1423 1424
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
1425
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1426

1427
	update_stats_dequeue(cfs_rq, se);
1428
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
1429
#ifdef CONFIG_SCHEDSTATS
1430 1431 1432 1433
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
1434
				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1435
			if (tsk->state & TASK_UNINTERRUPTIBLE)
1436
				se->statistics.block_start = rq_of(cfs_rq)->clock;
1437
		}
1438
#endif
P
Peter Zijlstra 已提交
1439 1440
	}

P
Peter Zijlstra 已提交
1441
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1442

1443
	if (se != cfs_rq->curr)
1444
		__dequeue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
1445
	se->on_rq = 0;
1446
	update_cfs_load(cfs_rq, 0);
1447
	account_entity_dequeue(cfs_rq, se);
1448 1449 1450 1451 1452 1453

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
1454
	if (!(flags & DEQUEUE_SLEEP))
1455
		se->vruntime -= cfs_rq->min_vruntime;
1456

1457 1458 1459
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

1460 1461
	update_min_vruntime(cfs_rq);
	update_cfs_shares(cfs_rq);
1462 1463 1464 1465 1466
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
1467
static void
I
Ingo Molnar 已提交
1468
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1469
{
1470
	unsigned long ideal_runtime, delta_exec;
1471 1472
	struct sched_entity *se;
	s64 delta;
1473

P
Peter Zijlstra 已提交
1474
	ideal_runtime = sched_slice(cfs_rq, curr);
1475
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1476
	if (delta_exec > ideal_runtime) {
1477
		resched_task(rq_of(cfs_rq)->curr);
1478 1479 1480 1481 1482
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

1494 1495
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
1496

1497 1498
	if (delta < 0)
		return;
1499

1500 1501
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
1502 1503
}

1504
static void
1505
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1506
{
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

1518
	update_stats_curr_start(cfs_rq, se);
1519
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
1520 1521 1522 1523 1524 1525
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
1526
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1527
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
1528 1529 1530
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
1531
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1532 1533
}

1534 1535 1536
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

1537 1538 1539 1540 1541 1542 1543
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
1544
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1545
{
1546
	struct sched_entity *se = __pick_first_entity(cfs_rq);
1547
	struct sched_entity *left = se;
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second = __pick_next_entity(se);
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
1558

1559 1560 1561 1562 1563 1564
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

1565 1566 1567 1568 1569 1570
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

1571
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1572 1573

	return se;
1574 1575
}

1576 1577
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

1578
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1579 1580 1581 1582 1583 1584
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
1585
		update_curr(cfs_rq);
1586

1587 1588 1589
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
1590
	check_spread(cfs_rq, prev);
1591
	if (prev->on_rq) {
1592
		update_stats_wait_start(cfs_rq, prev);
1593 1594
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
1595
		/* in !on_rq case, update occurred at dequeue */
1596
		update_entity_load_avg(prev, 1);
1597
	}
1598
	cfs_rq->curr = NULL;
1599 1600
}

P
Peter Zijlstra 已提交
1601 1602
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1603 1604
{
	/*
1605
	 * Update run-time statistics of the 'current'.
1606
	 */
1607
	update_curr(cfs_rq);
1608

1609 1610 1611
	/*
	 * Ensure that runnable average is periodically updated.
	 */
1612 1613
	update_entity_load_avg(curr, 1);
	update_cfs_rq_blocked_load(cfs_rq);
1614

1615 1616 1617 1618 1619
	/*
	 * Update share accounting for long-running entities.
	 */
	update_entity_shares_tick(cfs_rq);

P
Peter Zijlstra 已提交
1620 1621 1622 1623 1624
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
1625 1626 1627 1628
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
1629 1630 1631 1632 1633 1634 1635 1636
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
1637
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
1638
		check_preempt_tick(cfs_rq, curr);
1639 1640
}

1641 1642 1643 1644 1645 1646

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
1647 1648

#ifdef HAVE_JUMP_LABEL
1649
static struct static_key __cfs_bandwidth_used;
1650 1651 1652

static inline bool cfs_bandwidth_used(void)
{
1653
	return static_key_false(&__cfs_bandwidth_used);
1654 1655 1656 1657 1658 1659
}

void account_cfs_bandwidth_used(int enabled, int was_enabled)
{
	/* only need to count groups transitioning between enabled/!enabled */
	if (enabled && !was_enabled)
1660
		static_key_slow_inc(&__cfs_bandwidth_used);
1661
	else if (!enabled && was_enabled)
1662
		static_key_slow_dec(&__cfs_bandwidth_used);
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
#endif /* HAVE_JUMP_LABEL */

1673 1674 1675 1676 1677 1678 1679 1680
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
1681 1682 1683 1684 1685 1686

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
1687 1688 1689 1690 1691 1692 1693
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
1694
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

1706 1707 1708 1709 1710
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

1711 1712
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1713 1714 1715
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
1716
	u64 amount = 0, min_amount, expires;
1717 1718 1719 1720 1721 1722 1723

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
1724
	else {
P
Paul Turner 已提交
1725 1726 1727 1728 1729 1730 1731 1732
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
1733
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
1734
		}
1735 1736 1737 1738 1739 1740

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
1741
	}
P
Paul Turner 已提交
1742
	expires = cfs_b->runtime_expires;
1743 1744 1745
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
1746 1747 1748 1749 1750 1751 1752
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
1753 1754

	return cfs_rq->runtime_remaining > 0;
1755 1756
}

P
Paul Turner 已提交
1757 1758 1759 1760 1761
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1762
{
P
Paul Turner 已提交
1763 1764 1765 1766 1767
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct rq *rq = rq_of(cfs_rq);

	/* if the deadline is ahead of our clock, nothing to do */
	if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1768 1769
		return;

P
Paul Turner 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec)
{
	/* dock delta_exec before expiring quota (as it could span periods) */
1795
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
1796 1797 1798
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
1799 1800
		return;

1801 1802 1803 1804 1805 1806
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
1807 1808
}

1809 1810
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
1811
{
1812
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1813 1814 1815 1816 1817
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

1818 1819
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
1820
	return cfs_bandwidth_used() && cfs_rq->throttled;
1821 1822
}

1823 1824 1825
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
1826
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
		u64 delta = rq->clock_task - cfs_rq->load_stamp;

		/* leaving throttled state, advance shares averaging windows */
		cfs_rq->load_stamp += delta;
		cfs_rq->load_last += delta;

		/* update entity weight now that we are on_rq again */
		update_cfs_shares(cfs_rq);
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	/* group is entering throttled state, record last load */
	if (!cfs_rq->throttle_count)
		update_cfs_load(cfs_rq, 0);
	cfs_rq->throttle_count++;

	return 0;
}

1882
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1883 1884 1885 1886 1887 1888 1889 1890 1891
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

	/* account load preceding throttle */
1892 1893 1894
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
1915
	cfs_rq->throttled_timestamp = rq->clock;
1916 1917 1918 1919 1920
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
	raw_spin_unlock(&cfs_b->lock);
}

1921
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

	cfs_rq->throttled = 0;
	raw_spin_lock(&cfs_b->lock);
1933
	cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1934 1935
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);
1936
	cfs_rq->throttled_timestamp = 0;
1937

1938 1939 1940 1941
	update_rq_clock(rq);
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

2005 2006 2007 2008 2009 2010 2011 2012
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
2013 2014
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
2015 2016 2017 2018 2019 2020

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

2021 2022 2023
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
2024
	cfs_b->nr_periods += overrun;
2025

P
Paul Turner 已提交
2026 2027 2028 2029 2030 2031
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

	__refill_cfs_bandwidth_runtime(cfs_b);

2032 2033 2034 2035 2036 2037
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

2038 2039 2040
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
2065

2066 2067 2068 2069 2070 2071 2072 2073 2074
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
2075 2076 2077 2078 2079 2080 2081
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
2082

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

/* are we near the end of the current quota period? */
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
2147 2148 2149
	if (!cfs_bandwidth_used())
		return;

2150
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

2188 2189 2190 2191 2192 2193 2194
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
2195 2196 2197
	if (!cfs_bandwidth_used())
		return;

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
2215 2216 2217
	if (!cfs_bandwidth_used())
		return;

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return;

	throttle_cfs_rq(cfs_rq);
}
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314

static inline u64 default_cfs_period(void);
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
		raw_spin_unlock(&cfs_b->lock);
		/* ensure cfs_b->lock is available while we wait */
		hrtimer_cancel(&cfs_b->period_timer);

		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

2315
static void unthrottle_offline_cfs_rqs(struct rq *rq)
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
2336 2337
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
2338 2339
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2340
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2341 2342 2343 2344 2345

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
2357 2358 2359 2360 2361

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2362 2363
#endif

2364 2365 2366 2367 2368
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2369
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2370 2371 2372

#endif /* CONFIG_CFS_BANDWIDTH */

2373 2374 2375 2376
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
2377 2378 2379 2380 2381 2382 2383 2384
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

2385
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
2400
		if (rq->curr != p)
2401
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
2402

2403
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
2404 2405
	}
}
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

2416
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2417 2418 2419 2420 2421
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
2422
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
2423 2424 2425 2426
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
2427 2428 2429 2430

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
2431 2432
#endif

2433 2434 2435 2436 2437
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
2438
static void
2439
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2440 2441
{
	struct cfs_rq *cfs_rq;
2442
	struct sched_entity *se = &p->se;
2443 2444

	for_each_sched_entity(se) {
2445
		if (se->on_rq)
2446 2447
			break;
		cfs_rq = cfs_rq_of(se);
2448
		enqueue_entity(cfs_rq, se, flags);
2449 2450 2451 2452 2453 2454 2455 2456 2457

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
2458
		cfs_rq->h_nr_running++;
2459

2460
		flags = ENQUEUE_WAKEUP;
2461
	}
P
Peter Zijlstra 已提交
2462

P
Peter Zijlstra 已提交
2463
	for_each_sched_entity(se) {
2464
		cfs_rq = cfs_rq_of(se);
2465
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
2466

2467 2468 2469
		if (cfs_rq_throttled(cfs_rq))
			break;

2470
		update_cfs_load(cfs_rq, 0);
2471
		update_cfs_shares(cfs_rq);
2472
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
2473 2474
	}

2475 2476
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
2477
		inc_nr_running(rq);
2478
	}
2479
	hrtick_update(rq);
2480 2481
}

2482 2483
static void set_next_buddy(struct sched_entity *se);

2484 2485 2486 2487 2488
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
2489
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2490 2491
{
	struct cfs_rq *cfs_rq;
2492
	struct sched_entity *se = &p->se;
2493
	int task_sleep = flags & DEQUEUE_SLEEP;
2494 2495 2496

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
2497
		dequeue_entity(cfs_rq, se, flags);
2498 2499 2500 2501 2502 2503 2504 2505 2506

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
2507
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2508

2509
		/* Don't dequeue parent if it has other entities besides us */
2510 2511 2512 2513 2514 2515 2516
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
2517 2518 2519

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
2520
			break;
2521
		}
2522
		flags |= DEQUEUE_SLEEP;
2523
	}
P
Peter Zijlstra 已提交
2524

P
Peter Zijlstra 已提交
2525
	for_each_sched_entity(se) {
2526
		cfs_rq = cfs_rq_of(se);
2527
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2528

2529 2530 2531
		if (cfs_rq_throttled(cfs_rq))
			break;

2532
		update_cfs_load(cfs_rq, 0);
2533
		update_cfs_shares(cfs_rq);
2534
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
2535 2536
	}

2537
	if (!se) {
2538
		dec_nr_running(rq);
2539 2540
		update_rq_runnable_avg(rq, 1);
	}
2541
	hrtick_update(rq);
2542 2543
}

2544
#ifdef CONFIG_SMP
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);

	if (nr_running)
		return rq->load.weight / nr_running;

	return 0;
}

2600

2601
static void task_waking_fair(struct task_struct *p)
2602 2603 2604
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2605 2606 2607 2608
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
2609

2610 2611 2612 2613 2614 2615 2616 2617
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
2618

2619
	se->vruntime -= min_vruntime;
2620 2621
}

2622
#ifdef CONFIG_FAIR_GROUP_SCHED
2623 2624 2625 2626 2627 2628
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
2672
 */
P
Peter Zijlstra 已提交
2673
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2674
{
P
Peter Zijlstra 已提交
2675
	struct sched_entity *se = tg->se[cpu];
2676

2677
	if (!tg->parent)	/* the trivial, non-cgroup case */
2678 2679
		return wl;

P
Peter Zijlstra 已提交
2680
	for_each_sched_entity(se) {
2681
		long w, W;
P
Peter Zijlstra 已提交
2682

2683
		tg = se->my_q->tg;
2684

2685 2686 2687 2688
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
2689

2690 2691 2692 2693
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
2694

2695 2696 2697 2698 2699
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
2700 2701
		else
			wl = tg->shares;
2702

2703 2704 2705 2706 2707
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
2708 2709
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
2710 2711 2712 2713

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
2714
		wl -= se->load.weight;
2715 2716 2717 2718 2719 2720 2721 2722

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
2723 2724
		wg = 0;
	}
2725

P
Peter Zijlstra 已提交
2726
	return wl;
2727 2728
}
#else
P
Peter Zijlstra 已提交
2729

2730 2731
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
2732
{
2733
	return wl;
2734
}
P
Peter Zijlstra 已提交
2735

2736 2737
#endif

2738
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2739
{
2740
	s64 this_load, load;
2741
	int idx, this_cpu, prev_cpu;
2742
	unsigned long tl_per_task;
2743
	struct task_group *tg;
2744
	unsigned long weight;
2745
	int balanced;
2746

2747 2748 2749 2750 2751
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
2752

2753 2754 2755 2756 2757
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
2758 2759 2760 2761
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

2762
		this_load += effective_load(tg, this_cpu, -weight, -weight);
2763 2764
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
2765

2766 2767
	tg = task_group(p);
	weight = p->se.load.weight;
2768

2769 2770
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2771 2772 2773
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
2774 2775 2776 2777
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
2778 2779
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
2793

2794
	/*
I
Ingo Molnar 已提交
2795 2796 2797
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
2798
	 */
2799 2800
	if (sync && balanced)
		return 1;
2801

2802
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2803 2804
	tl_per_task = cpu_avg_load_per_task(this_cpu);

2805 2806 2807
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2808 2809 2810 2811 2812
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
2813
		schedstat_inc(sd, ttwu_move_affine);
2814
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
2815 2816 2817 2818 2819 2820

		return 1;
	}
	return 0;
}

2821 2822 2823 2824 2825
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
2826
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2827
		  int this_cpu, int load_idx)
2828
{
2829
	struct sched_group *idlest = NULL, *group = sd->groups;
2830 2831
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
2832

2833 2834 2835 2836
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
2837

2838 2839
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
2840
					tsk_cpus_allowed(p)))
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2860
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
2886
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2887 2888 2889 2890 2891
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
2892 2893 2894
		}
	}

2895 2896
	return idlest;
}
2897

2898 2899 2900
/*
 * Try and locate an idle CPU in the sched_domain.
 */
2901
static int select_idle_sibling(struct task_struct *p, int target)
2902 2903 2904
{
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
2905
	struct sched_domain *sd;
2906 2907
	struct sched_group *sg;
	int i;
2908 2909

	/*
2910 2911
	 * If the task is going to be woken-up on this cpu and if it is
	 * already idle, then it is the right target.
2912
	 */
2913 2914 2915 2916 2917 2918 2919 2920
	if (target == cpu && idle_cpu(cpu))
		return cpu;

	/*
	 * If the task is going to be woken-up on the cpu where it previously
	 * ran and if it is currently idle, then it the right target.
	 */
	if (target == prev_cpu && idle_cpu(prev_cpu))
2921
		return prev_cpu;
2922 2923

	/*
2924
	 * Otherwise, iterate the domains and find an elegible idle cpu.
2925
	 */
2926
	sd = rcu_dereference(per_cpu(sd_llc, target));
2927
	for_each_lower_domain(sd) {
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
				if (!idle_cpu(i))
					goto next;
			}
2938

2939 2940 2941 2942 2943 2944 2945 2946
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
2947 2948 2949
	return target;
}

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
2961
static int
2962
select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2963
{
2964
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2965 2966 2967
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
2968
	int want_affine = 0;
2969
	int sync = wake_flags & WF_SYNC;
2970

2971
	if (p->nr_cpus_allowed == 1)
2972 2973
		return prev_cpu;

2974
	if (sd_flag & SD_BALANCE_WAKE) {
2975
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2976 2977 2978
			want_affine = 1;
		new_cpu = prev_cpu;
	}
2979

2980
	rcu_read_lock();
2981
	for_each_domain(cpu, tmp) {
2982 2983 2984
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

2985
		/*
2986 2987
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
2988
		 */
2989 2990 2991
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
2992
			break;
2993
		}
2994

2995
		if (tmp->flags & sd_flag)
2996 2997 2998
			sd = tmp;
	}

2999
	if (affine_sd) {
3000
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3001 3002 3003 3004
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
3005
	}
3006

3007
	while (sd) {
3008
		int load_idx = sd->forkexec_idx;
3009
		struct sched_group *group;
3010
		int weight;
3011

3012
		if (!(sd->flags & sd_flag)) {
3013 3014 3015
			sd = sd->child;
			continue;
		}
3016

3017 3018
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
3019

3020
		group = find_idlest_group(sd, p, cpu, load_idx);
3021 3022 3023 3024
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
3025

3026
		new_cpu = find_idlest_cpu(group, p, cpu);
3027 3028 3029 3030
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
3031
		}
3032 3033 3034

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
3035
		weight = sd->span_weight;
3036 3037
		sd = NULL;
		for_each_domain(cpu, tmp) {
3038
			if (weight <= tmp->span_weight)
3039
				break;
3040
			if (tmp->flags & sd_flag)
3041 3042 3043
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
3044
	}
3045 3046
unlock:
	rcu_read_unlock();
3047

3048
	return new_cpu;
3049
}
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
}
3061 3062
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
3063 3064
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3065 3066 3067 3068
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
3069 3070
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
3071 3072 3073 3074 3075 3076 3077 3078 3079
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
3080
	 */
3081
	return calc_delta_fair(gran, se);
3082 3083
}

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
3106
	gran = wakeup_gran(curr, se);
3107 3108 3109 3110 3111 3112
	if (vdiff > gran)
		return 1;

	return 0;
}

3113 3114
static void set_last_buddy(struct sched_entity *se)
{
3115 3116 3117 3118 3119
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
3120 3121 3122 3123
}

static void set_next_buddy(struct sched_entity *se)
{
3124 3125 3126 3127 3128
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
3129 3130
}

3131 3132
static void set_skip_buddy(struct sched_entity *se)
{
3133 3134
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
3135 3136
}

3137 3138 3139
/*
 * Preempt the current task with a newly woken task if needed:
 */
3140
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3141 3142
{
	struct task_struct *curr = rq->curr;
3143
	struct sched_entity *se = &curr->se, *pse = &p->se;
3144
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3145
	int scale = cfs_rq->nr_running >= sched_nr_latency;
3146
	int next_buddy_marked = 0;
3147

I
Ingo Molnar 已提交
3148 3149 3150
	if (unlikely(se == pse))
		return;

3151
	/*
3152
	 * This is possible from callers such as move_task(), in which we
3153 3154 3155 3156 3157 3158 3159
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

3160
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
3161
		set_next_buddy(pse);
3162 3163
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
3164

3165 3166 3167
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
3168 3169 3170 3171 3172 3173
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
3174 3175 3176 3177
	 */
	if (test_tsk_need_resched(curr))
		return;

3178 3179 3180 3181 3182
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

3183
	/*
3184 3185
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
3186
	 */
3187
	if (unlikely(p->policy != SCHED_NORMAL))
3188
		return;
3189

3190
	find_matching_se(&se, &pse);
3191
	update_curr(cfs_rq_of(se));
3192
	BUG_ON(!pse);
3193 3194 3195 3196 3197 3198 3199
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
3200
		goto preempt;
3201
	}
3202

3203
	return;
3204

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
3221 3222
}

3223
static struct task_struct *pick_next_task_fair(struct rq *rq)
3224
{
P
Peter Zijlstra 已提交
3225
	struct task_struct *p;
3226 3227 3228
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

3229
	if (!cfs_rq->nr_running)
3230 3231 3232
		return NULL;

	do {
3233
		se = pick_next_entity(cfs_rq);
3234
		set_next_entity(cfs_rq, se);
3235 3236 3237
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
3238
	p = task_of(se);
3239 3240
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
3241 3242

	return p;
3243 3244 3245 3246 3247
}

/*
 * Account for a descheduled task:
 */
3248
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3249 3250 3251 3252 3253 3254
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3255
		put_prev_entity(cfs_rq, se);
3256 3257 3258
	}
}

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
3284 3285 3286 3287 3288 3289
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
3290 3291 3292 3293 3294
	}

	set_skip_buddy(se);
}

3295 3296 3297 3298
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

3299 3300
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

3311
#ifdef CONFIG_SMP
3312 3313 3314 3315
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

3316 3317
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

3318
#define LBF_ALL_PINNED	0x01
3319
#define LBF_NEED_BREAK	0x02
3320
#define LBF_SOME_PINNED 0x04
3321 3322 3323 3324 3325

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
3326
	int			src_cpu;
3327 3328 3329 3330

	int			dst_cpu;
	struct rq		*dst_rq;

3331 3332
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
3333
	enum cpu_idle_type	idle;
3334
	long			imbalance;
3335 3336 3337
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

3338
	unsigned int		flags;
3339 3340 3341 3342

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
3343 3344
};

3345
/*
3346
 * move_task - move a task from one runqueue to another runqueue.
3347 3348
 * Both runqueues must be locked.
 */
3349
static void move_task(struct task_struct *p, struct lb_env *env)
3350
{
3351 3352 3353 3354
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
3355 3356
}

3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
/*
 * Is this task likely cache-hot:
 */
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

3389 3390 3391 3392
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
3393
int can_migrate_task(struct task_struct *p, struct lb_env *env)
3394 3395 3396 3397 3398 3399 3400 3401
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3402
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3403 3404
		int new_dst_cpu;

3405
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423

		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
		if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
			return 0;

		new_dst_cpu = cpumask_first_and(env->dst_grpmask,
						tsk_cpus_allowed(p));
		if (new_dst_cpu < nr_cpu_ids) {
			env->flags |= LBF_SOME_PINNED;
			env->new_dst_cpu = new_dst_cpu;
		}
3424 3425
		return 0;
	}
3426 3427

	/* Record that we found atleast one task that could run on dst_cpu */
3428
	env->flags &= ~LBF_ALL_PINNED;
3429

3430
	if (task_running(env->src_rq, p)) {
3431
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3432 3433 3434 3435 3436 3437 3438 3439 3440
		return 0;
	}

	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3441
	tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3442
	if (!tsk_cache_hot ||
3443
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3444 3445
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
3446
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3447
			schedstat_inc(p, se.statistics.nr_forced_migrations);
3448 3449 3450 3451 3452 3453
		}
#endif
		return 1;
	}

	if (tsk_cache_hot) {
3454
		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3455 3456 3457 3458 3459
		return 0;
	}
	return 1;
}

3460 3461 3462 3463 3464 3465 3466
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
3467
static int move_one_task(struct lb_env *env)
3468 3469 3470
{
	struct task_struct *p, *n;

3471 3472 3473
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
			continue;
3474

3475 3476
		if (!can_migrate_task(p, env))
			continue;
3477

3478 3479 3480 3481 3482 3483 3484 3485
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
3486 3487 3488 3489
	}
	return 0;
}

3490 3491
static unsigned long task_h_load(struct task_struct *p);

3492 3493
static const unsigned int sched_nr_migrate_break = 32;

3494
/*
3495
 * move_tasks tries to move up to imbalance weighted load from busiest to
3496 3497 3498 3499 3500 3501
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
3502
{
3503 3504
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
3505 3506
	unsigned long load;
	int pulled = 0;
3507

3508
	if (env->imbalance <= 0)
3509
		return 0;
3510

3511 3512
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
3513

3514 3515
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
3516
		if (env->loop > env->loop_max)
3517
			break;
3518 3519

		/* take a breather every nr_migrate tasks */
3520
		if (env->loop > env->loop_break) {
3521
			env->loop_break += sched_nr_migrate_break;
3522
			env->flags |= LBF_NEED_BREAK;
3523
			break;
3524
		}
3525

3526
		if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3527 3528 3529
			goto next;

		load = task_h_load(p);
3530

3531
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
3532 3533
			goto next;

3534
		if ((load / 2) > env->imbalance)
3535
			goto next;
3536

3537 3538
		if (!can_migrate_task(p, env))
			goto next;
3539

3540
		move_task(p, env);
3541
		pulled++;
3542
		env->imbalance -= load;
3543 3544

#ifdef CONFIG_PREEMPT
3545 3546 3547 3548 3549
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3550
		if (env->idle == CPU_NEWLY_IDLE)
3551
			break;
3552 3553
#endif

3554 3555 3556 3557
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
3558
		if (env->imbalance <= 0)
3559
			break;
3560 3561 3562

		continue;
next:
3563
		list_move_tail(&p->se.group_node, tasks);
3564
	}
3565

3566
	/*
3567 3568 3569
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
3570
	 */
3571
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
3572

3573
	return pulled;
3574 3575
}

P
Peter Zijlstra 已提交
3576
#ifdef CONFIG_FAIR_GROUP_SCHED
3577 3578 3579
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
3580
static int update_shares_cpu(struct task_group *tg, int cpu)
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
{
	struct cfs_rq *cfs_rq;
	unsigned long flags;
	struct rq *rq;

	if (!tg->se[cpu])
		return 0;

	rq = cpu_rq(cpu);
	cfs_rq = tg->cfs_rq[cpu];

	raw_spin_lock_irqsave(&rq->lock, flags);

	update_rq_clock(rq);
3595
	update_cfs_load(cfs_rq, 1);
3596
	update_cfs_rq_blocked_load(cfs_rq);
3597 3598 3599 3600 3601

	/*
	 * We need to update shares after updating tg->load_weight in
	 * order to adjust the weight of groups with long running tasks.
	 */
3602
	update_cfs_shares(cfs_rq);
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614

	raw_spin_unlock_irqrestore(&rq->lock, flags);

	return 0;
}

static void update_shares(int cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(cpu);

	rcu_read_lock();
3615 3616 3617 3618
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
3619 3620 3621 3622 3623
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;

3624
		update_shares_cpu(cfs_rq->tg, cpu);
3625
	}
3626 3627 3628
	rcu_read_unlock();
}

3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
/*
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
static int tg_load_down(struct task_group *tg, void *data)
{
	unsigned long load;
	long cpu = (long)data;

	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->se[cpu]->load.weight;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}

	tg->cfs_rq[cpu]->h_load = load;

	return 0;
}

static void update_h_load(long cpu)
{
3654 3655 3656 3657 3658 3659 3660 3661
	struct rq *rq = cpu_rq(cpu);
	unsigned long now = jiffies;

	if (rq->h_load_throttle == now)
		return;

	rq->h_load_throttle = now;

3662
	rcu_read_lock();
3663
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3664
	rcu_read_unlock();
3665 3666
}

3667
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
3668
{
3669 3670
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
	unsigned long load;
P
Peter Zijlstra 已提交
3671

3672 3673
	load = p->se.load.weight;
	load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
P
Peter Zijlstra 已提交
3674

3675
	return load;
P
Peter Zijlstra 已提交
3676 3677
}
#else
3678 3679 3680 3681
static inline void update_shares(int cpu)
{
}

3682
static inline void update_h_load(long cpu)
P
Peter Zijlstra 已提交
3683 3684 3685
{
}

3686
static unsigned long task_h_load(struct task_struct *p)
3687
{
3688
	return p->se.load.weight;
3689
}
P
Peter Zijlstra 已提交
3690
#endif
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707

/********** Helpers for find_busiest_group ************************/
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;
3708
	unsigned long this_has_capacity;
3709
	unsigned int  this_idle_cpus;
3710 3711

	/* Statistics of the busiest group */
3712
	unsigned int  busiest_idle_cpus;
3713 3714 3715
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;
3716
	unsigned long busiest_group_capacity;
3717
	unsigned long busiest_has_capacity;
3718
	unsigned int  busiest_group_weight;
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731

	int group_imb; /* Is there imbalance in this sd */
};

/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
3732 3733
	unsigned long idle_cpus;
	unsigned long group_weight;
3734
	int group_imb; /* Is there an imbalance in the group ? */
3735
	int group_has_capacity; /* Is there extra capacity in the group? */
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
};

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
3766
	return SCHED_POWER_SCALE;
3767 3768 3769 3770 3771 3772 3773 3774 3775
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
{
3776
	unsigned long weight = sd->span_weight;
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
3792
	u64 total, available, age_stamp, avg;
3793

3794 3795 3796 3797 3798 3799 3800 3801
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

	total = sched_avg_period() + (rq->clock - age_stamp);
3802

3803
	if (unlikely(total < avg)) {
3804 3805 3806
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
3807
		available = total - avg;
3808
	}
3809

3810 3811
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
3812

3813
	total >>= SCHED_POWER_SHIFT;
3814 3815 3816 3817 3818 3819

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
3820
	unsigned long weight = sd->span_weight;
3821
	unsigned long power = SCHED_POWER_SCALE;
3822 3823 3824 3825 3826 3827 3828 3829
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3830
		power >>= SCHED_POWER_SHIFT;
3831 3832
	}

3833
	sdg->sgp->power_orig = power;
3834 3835 3836 3837 3838 3839

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3840
	power >>= SCHED_POWER_SHIFT;
3841

3842
	power *= scale_rt_power(cpu);
3843
	power >>= SCHED_POWER_SHIFT;
3844 3845 3846 3847

	if (!power)
		power = 1;

3848
	cpu_rq(cpu)->cpu_power = power;
3849
	sdg->sgp->power = power;
3850 3851
}

3852
void update_group_power(struct sched_domain *sd, int cpu)
3853 3854 3855 3856
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
	unsigned long power;
3857 3858 3859 3860 3861
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
3862 3863 3864 3865 3866 3867 3868 3869

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

	power = 0;

P
Peter Zijlstra 已提交
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

		for_each_cpu(cpu, sched_group_cpus(sdg))
			power += power_of(cpu);
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
3890

3891
	sdg->sgp->power_orig = sdg->sgp->power = power;
3892 3893
}

3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
3905
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
3906
	 */
P
Peter Zijlstra 已提交
3907
	if (!(sd->flags & SD_SHARE_CPUPOWER))
3908 3909 3910 3911 3912
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
3913
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3914 3915 3916 3917 3918
		return 1;

	return 0;
}

3919 3920
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3921
 * @env: The load balancing environment.
3922 3923 3924 3925 3926 3927
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3928 3929
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
3930
			int local_group, int *balance, struct sg_lb_stats *sgs)
3931
{
3932 3933
	unsigned long nr_running, max_nr_running, min_nr_running;
	unsigned long load, max_cpu_load, min_cpu_load;
3934
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
3935
	unsigned long avg_load_per_task = 0;
3936
	int i;
3937

3938
	if (local_group)
P
Peter Zijlstra 已提交
3939
		balance_cpu = group_balance_cpu(group);
3940 3941 3942 3943

	/* Tally up the load of all CPUs in the group */
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3944
	max_nr_running = 0;
3945
	min_nr_running = ~0UL;
3946

3947
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
3948 3949
		struct rq *rq = cpu_rq(i);

3950 3951
		nr_running = rq->nr_running;

3952 3953
		/* Bias balancing toward cpus of our domain */
		if (local_group) {
P
Peter Zijlstra 已提交
3954 3955
			if (idle_cpu(i) && !first_idle_cpu &&
					cpumask_test_cpu(i, sched_group_mask(group))) {
3956
				first_idle_cpu = 1;
3957 3958
				balance_cpu = i;
			}
3959 3960

			load = target_load(i, load_idx);
3961 3962
		} else {
			load = source_load(i, load_idx);
3963
			if (load > max_cpu_load)
3964 3965 3966
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
3967 3968 3969 3970 3971

			if (nr_running > max_nr_running)
				max_nr_running = nr_running;
			if (min_nr_running > nr_running)
				min_nr_running = nr_running;
3972 3973 3974
		}

		sgs->group_load += load;
3975
		sgs->sum_nr_running += nr_running;
3976
		sgs->sum_weighted_load += weighted_cpuload(i);
3977 3978
		if (idle_cpu(i))
			sgs->idle_cpus++;
3979 3980 3981 3982 3983 3984 3985 3986
	}

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
3987
	if (local_group) {
3988
		if (env->idle != CPU_NEWLY_IDLE) {
3989
			if (balance_cpu != env->dst_cpu) {
3990 3991 3992
				*balance = 0;
				return;
			}
3993
			update_group_power(env->sd, env->dst_cpu);
3994
		} else if (time_after_eq(jiffies, group->sgp->next_update))
3995
			update_group_power(env->sd, env->dst_cpu);
3996 3997 3998
	}

	/* Adjust by relative CPU power of the group */
3999
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
4000 4001 4002

	/*
	 * Consider the group unbalanced when the imbalance is larger
P
Peter Zijlstra 已提交
4003
	 * than the average weight of a task.
4004 4005 4006 4007 4008 4009
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
4010 4011
	if (sgs->sum_nr_running)
		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4012

4013 4014
	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
	    (max_nr_running - min_nr_running) > 1)
4015 4016
		sgs->group_imb = 1;

4017
	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
4018
						SCHED_POWER_SCALE);
4019
	if (!sgs->group_capacity)
4020
		sgs->group_capacity = fix_small_capacity(env->sd, group);
4021
	sgs->group_weight = group->group_weight;
4022 4023 4024

	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
4025 4026
}

4027 4028
/**
 * update_sd_pick_busiest - return 1 on busiest group
4029
 * @env: The load balancing environment.
4030 4031
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
4032
 * @sgs: sched_group statistics
4033 4034 4035 4036
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
 */
4037
static bool update_sd_pick_busiest(struct lb_env *env,
4038 4039
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
4040
				   struct sg_lb_stats *sgs)
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
{
	if (sgs->avg_load <= sds->max_load)
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
4056 4057
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

4068
/**
4069
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4070
 * @env: The load balancing environment.
4071 4072 4073
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
 */
4074
static inline void update_sd_lb_stats(struct lb_env *env,
4075
					int *balance, struct sd_lb_stats *sds)
4076
{
4077 4078
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
4079 4080 4081 4082 4083 4084
	struct sg_lb_stats sgs;
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

4085
	load_idx = get_sd_load_idx(env->sd, env->idle);
4086 4087 4088 4089

	do {
		int local_group;

4090
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4091
		memset(&sgs, 0, sizeof(sgs));
4092
		update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4093

P
Peter Zijlstra 已提交
4094
		if (local_group && !(*balance))
4095 4096 4097
			return;

		sds->total_load += sgs.group_load;
4098
		sds->total_pwr += sg->sgp->power;
4099 4100 4101

		/*
		 * In case the child domain prefers tasks go to siblings
4102
		 * first, lower the sg capacity to one so that we'll try
4103 4104 4105 4106 4107 4108
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
4109
		 */
4110
		if (prefer_sibling && !local_group && sds->this_has_capacity)
4111 4112 4113 4114
			sgs.group_capacity = min(sgs.group_capacity, 1UL);

		if (local_group) {
			sds->this_load = sgs.avg_load;
4115
			sds->this = sg;
4116 4117
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
4118
			sds->this_has_capacity = sgs.group_has_capacity;
4119
			sds->this_idle_cpus = sgs.idle_cpus;
4120
		} else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4121
			sds->max_load = sgs.avg_load;
4122
			sds->busiest = sg;
4123
			sds->busiest_nr_running = sgs.sum_nr_running;
4124
			sds->busiest_idle_cpus = sgs.idle_cpus;
4125
			sds->busiest_group_capacity = sgs.group_capacity;
4126
			sds->busiest_load_per_task = sgs.sum_weighted_load;
4127
			sds->busiest_has_capacity = sgs.group_has_capacity;
4128
			sds->busiest_group_weight = sgs.group_weight;
4129 4130 4131
			sds->group_imb = sgs.group_imb;
		}

4132
		sg = sg->next;
4133
	} while (sg != env->sd->groups);
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
4153 4154 4155
 * Returns 1 when packing is required and a task should be moved to
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
4156
 * @env: The load balancing environment.
4157 4158
 * @sds: Statistics of the sched_domain which is to be packed
 */
4159
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4160 4161 4162
{
	int busiest_cpu;

4163
	if (!(env->sd->flags & SD_ASYM_PACKING))
4164 4165 4166 4167 4168 4169
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
4170
	if (env->dst_cpu > busiest_cpu)
4171 4172
		return 0;

4173 4174 4175
	env->imbalance = DIV_ROUND_CLOSEST(
		sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);

4176
	return 1;
4177 4178 4179 4180 4181 4182
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
4183
 * @env: The load balancing environment.
4184 4185
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
4186 4187
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4188 4189 4190
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
4191
	unsigned long scaled_busy_load_per_task;
4192 4193 4194 4195 4196 4197

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
4198
	} else {
4199
		sds->this_load_per_task =
4200 4201
			cpu_avg_load_per_task(env->dst_cpu);
	}
4202

4203
	scaled_busy_load_per_task = sds->busiest_load_per_task
4204
					 * SCHED_POWER_SCALE;
4205
	scaled_busy_load_per_task /= sds->busiest->sgp->power;
4206 4207 4208

	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
			(scaled_busy_load_per_task * imbn)) {
4209
		env->imbalance = sds->busiest_load_per_task;
4210 4211 4212 4213 4214 4215 4216 4217 4218
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

4219
	pwr_now += sds->busiest->sgp->power *
4220
			min(sds->busiest_load_per_task, sds->max_load);
4221
	pwr_now += sds->this->sgp->power *
4222
			min(sds->this_load_per_task, sds->this_load);
4223
	pwr_now /= SCHED_POWER_SCALE;
4224 4225

	/* Amount of load we'd subtract */
4226
	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4227
		sds->busiest->sgp->power;
4228
	if (sds->max_load > tmp)
4229
		pwr_move += sds->busiest->sgp->power *
4230 4231 4232
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
4233
	if (sds->max_load * sds->busiest->sgp->power <
4234
		sds->busiest_load_per_task * SCHED_POWER_SCALE)
4235 4236
		tmp = (sds->max_load * sds->busiest->sgp->power) /
			sds->this->sgp->power;
4237
	else
4238
		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4239 4240
			sds->this->sgp->power;
	pwr_move += sds->this->sgp->power *
4241
			min(sds->this_load_per_task, sds->this_load + tmp);
4242
	pwr_move /= SCHED_POWER_SCALE;
4243 4244 4245

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
4246
		env->imbalance = sds->busiest_load_per_task;
4247 4248 4249 4250 4251
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
4252
 * @env: load balance environment
4253 4254
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
4255
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4256
{
4257 4258 4259 4260 4261 4262 4263 4264
	unsigned long max_pull, load_above_capacity = ~0UL;

	sds->busiest_load_per_task /= sds->busiest_nr_running;
	if (sds->group_imb) {
		sds->busiest_load_per_task =
			min(sds->busiest_load_per_task, sds->avg_load);
	}

4265 4266 4267 4268 4269 4270
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (sds->max_load < sds->avg_load) {
4271 4272
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
4273 4274
	}

4275 4276 4277 4278 4279 4280 4281
	if (!sds->group_imb) {
		/*
		 * Don't want to pull so many tasks that a group would go idle.
		 */
		load_above_capacity = (sds->busiest_nr_running -
						sds->busiest_group_capacity);

4282
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4283

4284
		load_above_capacity /= sds->busiest->sgp->power;
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 * Be careful of negative numbers as they'll appear as very large values
	 * with unsigned longs.
	 */
	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4298 4299

	/* How much load to actually move to equalise the imbalance */
4300
	env->imbalance = min(max_pull * sds->busiest->sgp->power,
4301
		(sds->avg_load - sds->this_load) * sds->this->sgp->power)
4302
			/ SCHED_POWER_SCALE;
4303 4304 4305

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
4306
	 * there is no guarantee that any tasks will be moved so we'll have
4307 4308 4309
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
4310 4311
	if (env->imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(env, sds);
4312 4313

}
4314

4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
4327
 * @env: The load balancing environment.
4328 4329 4330 4331 4332 4333 4334 4335 4336
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
static struct sched_group *
4337
find_busiest_group(struct lb_env *env, int *balance)
4338 4339 4340 4341 4342 4343 4344 4345 4346
{
	struct sd_lb_stats sds;

	memset(&sds, 0, sizeof(sds));

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
4347
	update_sd_lb_stats(env, balance, &sds);
4348

4349 4350 4351
	/*
	 * this_cpu is not the appropriate cpu to perform load balancing at
	 * this level.
4352
	 */
P
Peter Zijlstra 已提交
4353
	if (!(*balance))
4354 4355
		goto ret;

4356 4357
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
4358 4359
		return sds.busiest;

4360
	/* There is no busy sibling group to pull tasks from */
4361 4362 4363
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;

4364
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4365

P
Peter Zijlstra 已提交
4366 4367 4368 4369 4370 4371 4372 4373
	/*
	 * If the busiest group is imbalanced the below checks don't
	 * work because they assumes all things are equal, which typically
	 * isn't true due to cpus_allowed constraints and the like.
	 */
	if (sds.group_imb)
		goto force_balance;

4374
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4375
	if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4376 4377 4378
			!sds.busiest_has_capacity)
		goto force_balance;

4379 4380 4381 4382
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
4383 4384 4385
	if (sds.this_load >= sds.max_load)
		goto out_balanced;

4386 4387 4388 4389
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
4390 4391 4392
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

4393
	if (env->idle == CPU_IDLE) {
4394 4395 4396 4397 4398 4399
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
4400
		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4401 4402
		    sds.busiest_nr_running <= sds.busiest_group_weight)
			goto out_balanced;
4403 4404 4405 4406 4407
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
4408
		if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4409
			goto out_balanced;
4410
	}
4411

4412
force_balance:
4413
	/* Looks like there is an imbalance. Compute it */
4414
	calculate_imbalance(env, &sds);
4415 4416 4417 4418
	return sds.busiest;

out_balanced:
ret:
4419
	env->imbalance = 0;
4420 4421 4422 4423 4424 4425
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4426
static struct rq *find_busiest_queue(struct lb_env *env,
4427
				     struct sched_group *group)
4428 4429 4430 4431 4432 4433 4434
{
	struct rq *busiest = NULL, *rq;
	unsigned long max_load = 0;
	int i;

	for_each_cpu(i, sched_group_cpus(group)) {
		unsigned long power = power_of(i);
4435 4436
		unsigned long capacity = DIV_ROUND_CLOSEST(power,
							   SCHED_POWER_SCALE);
4437 4438
		unsigned long wl;

4439
		if (!capacity)
4440
			capacity = fix_small_capacity(env->sd, group);
4441

4442
		if (!cpumask_test_cpu(i, env->cpus))
4443 4444 4445
			continue;

		rq = cpu_rq(i);
4446
		wl = weighted_cpuload(i);
4447

4448 4449 4450 4451
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
4452
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4453 4454
			continue;

4455 4456 4457 4458 4459 4460
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
		 */
4461
		wl = (wl * SCHED_POWER_SCALE) / power;
4462

4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
		if (wl > max_load) {
			max_load = wl;
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
4479
DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4480

4481
static int need_active_balance(struct lb_env *env)
4482
{
4483 4484 4485
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
4486 4487 4488 4489 4490 4491

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
4492
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4493
			return 1;
4494 4495 4496 4497 4498
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

4499 4500
static int active_load_balance_cpu_stop(void *data);

4501 4502 4503 4504 4505 4506 4507 4508
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
			int *balance)
{
4509 4510
	int ld_moved, cur_ld_moved, active_balance = 0;
	int lb_iterations, max_lb_iterations;
4511 4512 4513 4514 4515
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);

4516 4517
	struct lb_env env = {
		.sd		= sd,
4518 4519
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
4520
		.dst_grpmask    = sched_group_cpus(sd->groups),
4521
		.idle		= idle,
4522
		.loop_break	= sched_nr_migrate_break,
4523
		.cpus		= cpus,
4524 4525
	};

4526
	cpumask_copy(cpus, cpu_active_mask);
4527
	max_lb_iterations = cpumask_weight(env.dst_grpmask);
4528 4529 4530 4531

	schedstat_inc(sd, lb_count[idle]);

redo:
4532
	group = find_busiest_group(&env, balance);
4533 4534 4535 4536 4537 4538 4539 4540 4541

	if (*balance == 0)
		goto out_balanced;

	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4542
	busiest = find_busiest_queue(&env, group);
4543 4544 4545 4546 4547
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

4548
	BUG_ON(busiest == env.dst_rq);
4549

4550
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
4551 4552

	ld_moved = 0;
4553
	lb_iterations = 1;
4554 4555 4556 4557 4558 4559 4560
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
4561
		env.flags |= LBF_ALL_PINNED;
4562 4563 4564
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
4565

4566
		update_h_load(env.src_cpu);
4567
more_balance:
4568
		local_irq_save(flags);
4569
		double_rq_lock(env.dst_rq, busiest);
4570 4571 4572 4573 4574 4575 4576

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
4577
		double_rq_unlock(env.dst_rq, busiest);
4578 4579
		local_irq_restore(flags);

4580 4581 4582 4583 4584
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

4585 4586 4587
		/*
		 * some other cpu did the load balance for us.
		 */
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
		if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
				lb_iterations++ < max_lb_iterations) {

4613
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
			env.dst_cpu	 = env.new_dst_cpu;
			env.flags	&= ~LBF_SOME_PINNED;
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
4624 4625

		/* All tasks on this runqueue were pinned by CPU affinity */
4626
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
4627
			cpumask_clear_cpu(cpu_of(busiest), cpus);
4628 4629 4630
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
4631
				goto redo;
4632
			}
4633 4634 4635 4636 4637 4638
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
4639 4640 4641 4642 4643 4644 4645 4646
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
4647

4648
		if (need_active_balance(&env)) {
4649 4650
			raw_spin_lock_irqsave(&busiest->lock, flags);

4651 4652 4653
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
4654 4655
			 */
			if (!cpumask_test_cpu(this_cpu,
4656
					tsk_cpus_allowed(busiest->curr))) {
4657 4658
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
4659
				env.flags |= LBF_ALL_PINNED;
4660 4661 4662
				goto out_one_pinned;
			}

4663 4664 4665 4666 4667
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
4668 4669 4670 4671 4672 4673
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
4674

4675
			if (active_balance) {
4676 4677 4678
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
4679
			}
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
4713
	if (((env.flags & LBF_ALL_PINNED) &&
4714
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
4715 4716 4717
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

4718
	ld_moved = 0;
4719 4720 4721 4722 4723 4724 4725 4726
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4727
void idle_balance(int this_cpu, struct rq *this_rq)
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;

	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

4738 4739
	update_rq_runnable_avg(this_rq, 1);

4740 4741 4742 4743 4744
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

P
Paul Turner 已提交
4745
	update_shares(this_cpu);
4746
	rcu_read_lock();
4747 4748
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
4749
		int balance = 1;
4750 4751 4752 4753

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

4754
		if (sd->flags & SD_BALANCE_NEWIDLE) {
4755
			/* If we've pulled tasks over stop searching: */
4756 4757 4758
			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE, &balance);
		}
4759 4760 4761 4762

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
N
Nikhil Rao 已提交
4763 4764
		if (pulled_task) {
			this_rq->idle_stamp = 0;
4765
			break;
N
Nikhil Rao 已提交
4766
		}
4767
	}
4768
	rcu_read_unlock();
4769 4770 4771

	raw_spin_lock(&this_rq->lock);

4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
}

/*
4782 4783 4784 4785
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
4786
 */
4787
static int active_load_balance_cpu_stop(void *data)
4788
{
4789 4790
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
4791
	int target_cpu = busiest_rq->push_cpu;
4792
	struct rq *target_rq = cpu_rq(target_cpu);
4793
	struct sched_domain *sd;
4794 4795 4796 4797 4798 4799 4800

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
4801 4802 4803

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
4804
		goto out_unlock;
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
4817
	rcu_read_lock();
4818 4819 4820 4821 4822 4823 4824
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
4825 4826
		struct lb_env env = {
			.sd		= sd,
4827 4828 4829 4830
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
4831 4832 4833
			.idle		= CPU_IDLE,
		};

4834 4835
		schedstat_inc(sd, alb_count);

4836
		if (move_one_task(&env))
4837 4838 4839 4840
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4841
	rcu_read_unlock();
4842
	double_unlock_balance(busiest_rq, target_rq);
4843 4844 4845 4846
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
4847 4848 4849
}

#ifdef CONFIG_NO_HZ
4850 4851 4852 4853 4854 4855
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
4856
static struct {
4857
	cpumask_var_t idle_cpus_mask;
4858
	atomic_t nr_cpus;
4859 4860
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
4861

4862
static inline int find_new_ilb(int call_cpu)
4863
{
4864
	int ilb = cpumask_first(nohz.idle_cpus_mask);
4865

4866 4867 4868 4869
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
4870 4871
}

4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void nohz_balancer_kick(int cpu)
{
	int ilb_cpu;

	nohz.next_balance++;

4883
	ilb_cpu = find_new_ilb(cpu);
4884

4885 4886
	if (ilb_cpu >= nr_cpu_ids)
		return;
4887

4888
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4889 4890 4891 4892 4893 4894 4895 4896
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
4897 4898 4899
	return;
}

4900
static inline void nohz_balance_exit_idle(int cpu)
4901 4902 4903 4904 4905 4906 4907 4908
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
		atomic_dec(&nohz.nr_cpus);
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
	int cpu = smp_processor_id();

	if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
		return;
	clear_bit(NOHZ_IDLE, nohz_flags(cpu));

	rcu_read_lock();
	for_each_domain(cpu, sd)
		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
	int cpu = smp_processor_id();

	if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
		return;
	set_bit(NOHZ_IDLE, nohz_flags(cpu));

	rcu_read_lock();
	for_each_domain(cpu, sd)
		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
	rcu_read_unlock();
}

4939
/*
4940
 * This routine will record that the cpu is going idle with tick stopped.
4941
 * This info will be used in performing idle load balancing in the future.
4942
 */
4943
void nohz_balance_enter_idle(int cpu)
4944
{
4945 4946 4947 4948 4949 4950
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

4951 4952
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
4953

4954 4955 4956
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4957
}
4958 4959 4960 4961 4962 4963

static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
4964
		nohz_balance_exit_idle(smp_processor_id());
4965 4966 4967 4968 4969
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
4970 4971 4972 4973
#endif

static DEFINE_SPINLOCK(balancing);

4974 4975 4976 4977
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
4978
void update_max_interval(void)
4979 4980 4981 4982
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
	unsigned long interval;
4994
	struct sched_domain *sd;
4995 4996 4997 4998 4999
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize;

P
Peter Zijlstra 已提交
5000 5001
	update_shares(cpu);

5002
	rcu_read_lock();
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
	for_each_domain(cpu, sd) {
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
5013
		interval = clamp(interval, 1UL, max_load_balance_interval);
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &balance)) {
				/*
				 * We've pulled tasks over so either we're no
5026
				 * longer idle.
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
				 */
				idle = CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
	}
5048
	rcu_read_unlock();
5049 5050 5051 5052 5053 5054 5055 5056 5057 5058

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

5059
#ifdef CONFIG_NO_HZ
5060
/*
5061
 * In CONFIG_NO_HZ case, the idle balance kickee will do the
5062 5063
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
5064 5065 5066 5067 5068 5069
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
{
	struct rq *this_rq = cpu_rq(this_cpu);
	struct rq *rq;
	int balance_cpu;

5070 5071 5072
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
5073 5074

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5075
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5076 5077 5078 5079 5080 5081 5082
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
5083
		if (need_resched())
5084 5085
			break;

V
Vincent Guittot 已提交
5086 5087 5088 5089 5090 5091
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
5092 5093 5094 5095 5096 5097 5098

		rebalance_domains(balance_cpu, CPU_IDLE);

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
5099 5100
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5101 5102 5103
}

/*
5104 5105 5106 5107 5108 5109 5110
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
5111 5112 5113 5114
 */
static inline int nohz_kick_needed(struct rq *rq, int cpu)
{
	unsigned long now = jiffies;
5115
	struct sched_domain *sd;
5116

5117
	if (unlikely(idle_cpu(cpu)))
5118 5119
		return 0;

5120 5121 5122 5123
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
5124
	set_cpu_sd_state_busy();
5125
	nohz_balance_exit_idle(cpu);
5126 5127 5128 5129 5130 5131 5132

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
5133 5134

	if (time_before(now, nohz.next_balance))
5135 5136
		return 0;

5137 5138
	if (rq->nr_running >= 2)
		goto need_kick;
5139

5140
	rcu_read_lock();
5141 5142 5143 5144
	for_each_domain(cpu, sd) {
		struct sched_group *sg = sd->groups;
		struct sched_group_power *sgp = sg->sgp;
		int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5145

5146
		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5147
			goto need_kick_unlock;
5148 5149 5150 5151

		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
		    && (cpumask_first_and(nohz.idle_cpus_mask,
					  sched_domain_span(sd)) < cpu))
5152
			goto need_kick_unlock;
5153 5154 5155

		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
			break;
5156
	}
5157
	rcu_read_unlock();
5158
	return 0;
5159 5160 5161

need_kick_unlock:
	rcu_read_unlock();
5162 5163
need_kick:
	return 1;
5164 5165 5166 5167 5168 5169 5170 5171 5172
}
#else
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
5173 5174 5175 5176
static void run_rebalance_domains(struct softirq_action *h)
{
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
5177
	enum cpu_idle_type idle = this_rq->idle_balance ?
5178 5179 5180 5181 5182
						CPU_IDLE : CPU_NOT_IDLE;

	rebalance_domains(this_cpu, idle);

	/*
5183
	 * If this cpu has a pending nohz_balance_kick, then do the
5184 5185 5186
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
5187
	nohz_idle_balance(this_cpu, idle);
5188 5189 5190 5191
}

static inline int on_null_domain(int cpu)
{
5192
	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5193 5194 5195 5196 5197
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
5198
void trigger_load_balance(struct rq *rq, int cpu)
5199 5200 5201 5202 5203
{
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
		raise_softirq(SCHED_SOFTIRQ);
5204
#ifdef CONFIG_NO_HZ
5205
	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5206 5207
		nohz_balancer_kick(cpu);
#endif
5208 5209
}

5210 5211 5212 5213 5214 5215 5216 5217
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
5218 5219 5220

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
5221 5222
}

5223
#endif /* CONFIG_SMP */
5224

5225 5226 5227
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
5228
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5229 5230 5231 5232 5233 5234
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
5235
		entity_tick(cfs_rq, se, queued);
5236
	}
5237 5238

	update_rq_runnable_avg(rq, 1);
5239 5240 5241
}

/*
P
Peter Zijlstra 已提交
5242 5243 5244
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
5245
 */
P
Peter Zijlstra 已提交
5246
static void task_fork_fair(struct task_struct *p)
5247
{
5248 5249
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
5250
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
5251 5252 5253
	struct rq *rq = this_rq();
	unsigned long flags;

5254
	raw_spin_lock_irqsave(&rq->lock, flags);
5255

5256 5257
	update_rq_clock(rq);

5258 5259 5260
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

5261 5262
	if (unlikely(task_cpu(p) != this_cpu)) {
		rcu_read_lock();
P
Peter Zijlstra 已提交
5263
		__set_task_cpu(p, this_cpu);
5264 5265
		rcu_read_unlock();
	}
5266

5267
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
5268

5269 5270
	if (curr)
		se->vruntime = curr->vruntime;
5271
	place_entity(cfs_rq, se, 1);
5272

P
Peter Zijlstra 已提交
5273
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
5274
		/*
5275 5276 5277
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
5278
		swap(curr->vruntime, se->vruntime);
5279
		resched_task(rq->curr);
5280
	}
5281

5282 5283
	se->vruntime -= cfs_rq->min_vruntime;

5284
	raw_spin_unlock_irqrestore(&rq->lock, flags);
5285 5286
}

5287 5288 5289 5290
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
5291 5292
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5293
{
P
Peter Zijlstra 已提交
5294 5295 5296
	if (!p->se.on_rq)
		return;

5297 5298 5299 5300 5301
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
5302
	if (rq->curr == p) {
5303 5304 5305
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
5306
		check_preempt_curr(rq, p, 0);
5307 5308
}

P
Peter Zijlstra 已提交
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Ensure the task's vruntime is normalized, so that when its
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it was !on_rq, then only when
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
	if (!se->on_rq && p->state != TASK_RUNNING) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344

#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
	if (p->se.avg.decay_count) {
		struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
		__synchronize_entity_decay(&p->se);
		subtract_blocked_load_contrib(cfs_rq,
				p->se.avg.load_avg_contrib);
	}
#endif
P
Peter Zijlstra 已提交
5345 5346
}

5347 5348 5349
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
5350
static void switched_to_fair(struct rq *rq, struct task_struct *p)
5351
{
P
Peter Zijlstra 已提交
5352 5353 5354
	if (!p->se.on_rq)
		return;

5355 5356 5357 5358 5359
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
5360
	if (rq->curr == p)
5361 5362
		resched_task(rq->curr);
	else
5363
		check_preempt_curr(rq, p, 0);
5364 5365
}

5366 5367 5368 5369 5370 5371 5372 5373 5374
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

5375 5376 5377 5378 5379 5380 5381
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
5382 5383
}

5384 5385 5386 5387 5388 5389 5390
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
5391 5392 5393
#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
	atomic64_set(&cfs_rq->decay_counter, 1);
#endif
5394 5395
}

P
Peter Zijlstra 已提交
5396
#ifdef CONFIG_FAIR_GROUP_SCHED
5397
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
5398
{
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
5412 5413 5414 5415 5416 5417
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
5418 5419
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
5420 5421 5422 5423
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
5424
	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5425 5426
		on_rq = 1;

5427 5428 5429
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
5430
	if (!on_rq)
5431
		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
P
Peter Zijlstra 已提交
5432
}
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
#ifdef CONFIG_SMP
	/* allow initial update_cfs_load() to truncate */
	cfs_rq->load_stamp = 1;
P
Peter Zijlstra 已提交
5519
#endif
5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

	se->my_q = cfs_rq;
	update_load_set(&se->load, 0);
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
		for_each_sched_entity(se)
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
5588

5589
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));

	return rr_interval;
}

5604 5605 5606
/*
 * All the scheduling class methods:
 */
5607
const struct sched_class fair_sched_class = {
5608
	.next			= &idle_sched_class,
5609 5610 5611
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
5612
	.yield_to_task		= yield_to_task_fair,
5613

I
Ingo Molnar 已提交
5614
	.check_preempt_curr	= check_preempt_wakeup,
5615 5616 5617 5618

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

5619
#ifdef CONFIG_SMP
L
Li Zefan 已提交
5620
	.select_task_rq		= select_task_rq_fair,
5621
	.migrate_task_rq	= migrate_task_rq_fair,
L
Li Zefan 已提交
5622

5623 5624
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
5625 5626

	.task_waking		= task_waking_fair,
5627
#endif
5628

5629
	.set_curr_task          = set_curr_task_fair,
5630
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
5631
	.task_fork		= task_fork_fair,
5632 5633

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
5634
	.switched_from		= switched_from_fair,
5635
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
5636

5637 5638
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
5639
#ifdef CONFIG_FAIR_GROUP_SCHED
5640
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
5641
#endif
5642 5643 5644
};

#ifdef CONFIG_SCHED_DEBUG
5645
void print_cfs_stats(struct seq_file *m, int cpu)
5646 5647 5648
{
	struct cfs_rq *cfs_rq;

5649
	rcu_read_lock();
5650
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5651
		print_cfs_rq(m, cpu, cfs_rq);
5652
	rcu_read_unlock();
5653 5654
}
#endif
5655 5656 5657 5658 5659 5660 5661

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

#ifdef CONFIG_NO_HZ
5662
	nohz.next_balance = jiffies;
5663
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5664
	cpu_notifier(sched_ilb_notifier, 0);
5665 5666 5667 5668
#endif
#endif /* SMP */

}