fair.c 163.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29
#include <linux/mempolicy.h>
30
#include <linux/migrate.h>
31
#include <linux/task_work.h>
32 33 34 35

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
36

37
/*
38
 * Targeted preemption latency for CPU-bound tasks:
39
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48
 */
49 50
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

64
/*
65
 * Minimal preemption granularity for CPU-bound tasks:
66
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67
 */
68 69
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 71

/*
72 73
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
74
static unsigned int sched_nr_latency = 8;
75 76

/*
77
 * After fork, child runs first. If set to 0 (default) then
78
 * parent will (try to) run first.
79
 */
80
unsigned int sysctl_sched_child_runs_first __read_mostly;
81 82 83

/*
 * SCHED_OTHER wake-up granularity.
84
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 86 87 88 89
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
90
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92

93 94
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

95 96 97 98 99 100 101
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

102 103 104 105 106 107 108 109 110 111 112 113 114 115
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

/*
 * Shift right and round:
 */
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))

/*
 * delta *= weight / lw
 */
static unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	/*
	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
	 * 2^SCHED_LOAD_RESOLUTION.
	 */
	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
		tmp = (u64)delta_exec * scale_load_down(weight);
	else
		tmp = (u64)delta_exec;

	if (!lw->inv_weight) {
		unsigned long w = scale_load_down(lw->weight);

		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
			lw->inv_weight = 1;
		else if (unlikely(!w))
			lw->inv_weight = WMULT_CONST;
		else
			lw->inv_weight = WMULT_CONST / w;
	}

	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST))
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
			WMULT_SHIFT/2);
	else
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);

	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
}


const struct sched_class fair_sched_class;
238

239 240 241 242
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

243
#ifdef CONFIG_FAIR_GROUP_SCHED
244

245
/* cpu runqueue to which this cfs_rq is attached */
246 247
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
248
	return cfs_rq->rq;
249 250
}

251 252
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
253

254 255 256 257 258 259 260 261
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

283 284
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
285

286 287 288
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302
		}
303 304

		cfs_rq->on_list = 1;
305
		/* We should have no load, but we need to update last_decay. */
306
		update_cfs_rq_blocked_load(cfs_rq, 0);
307 308 309 310 311 312 313 314 315 316 317
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

380 381 382 383 384 385
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
386

387 388 389
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
390 391 392 393
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
394 395
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
396

P
Peter Zijlstra 已提交
397
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
398
{
P
Peter Zijlstra 已提交
399
	return &task_rq(p)->cfs;
400 401
}

P
Peter Zijlstra 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

416 417 418 419 420 421 422 423
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

438 439 440 441 442
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
443 444
#endif	/* CONFIG_FAIR_GROUP_SCHED */

445 446
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
447 448 449 450 451

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

452
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
453
{
454
	s64 delta = (s64)(vruntime - max_vruntime);
455
	if (delta > 0)
456
		max_vruntime = vruntime;
457

458
	return max_vruntime;
459 460
}

461
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
462 463 464 465 466 467 468 469
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

470 471 472 473 474 475
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

476 477 478 479 480 481 482 483 484 485 486 487
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
488
		if (!cfs_rq->curr)
489 490 491 492 493
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

494
	/* ensure we never gain time by being placed backwards. */
495
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
496 497 498 499
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
500 501
}

502 503 504
/*
 * Enqueue an entity into the rb-tree:
 */
505
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
522
		if (entity_before(se, entry)) {
523 524 525 526 527 528 529 530 531 532 533
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
534
	if (leftmost)
I
Ingo Molnar 已提交
535
		cfs_rq->rb_leftmost = &se->run_node;
536 537 538 539 540

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

541
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
542
{
P
Peter Zijlstra 已提交
543 544 545 546 547 548
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
549

550 551 552
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

553
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
554
{
555 556 557 558 559 560
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
561 562
}

563 564 565 566 567 568 569 570 571 572 573
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
574
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
575
{
576
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
577

578 579
	if (!last)
		return NULL;
580 581

	return rb_entry(last, struct sched_entity, run_node);
582 583
}

584 585 586 587
/**************************************************************
 * Scheduling class statistics methods:
 */

588
int sched_proc_update_handler(struct ctl_table *table, int write,
589
		void __user *buffer, size_t *lenp,
590 591
		loff_t *ppos)
{
592
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593
	int factor = get_update_sysctl_factor();
594 595 596 597 598 599 600

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

601 602 603 604 605 606 607
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

608 609 610
	return 0;
}
#endif
611

612
/*
613
 * delta /= w
614 615 616 617
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
618 619
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
620 621 622 623

	return delta;
}

624 625 626
/*
 * The idea is to set a period in which each task runs once.
 *
627
 * When there are too many tasks (sched_nr_latency) we have to stretch
628 629 630 631
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
632 633 634
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
635
	unsigned long nr_latency = sched_nr_latency;
636 637

	if (unlikely(nr_running > nr_latency)) {
638
		period = sysctl_sched_min_granularity;
639 640 641 642 643 644
		period *= nr_running;
	}

	return period;
}

645 646 647 648
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
649
 * s = p*P[w/rw]
650
 */
P
Peter Zijlstra 已提交
651
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652
{
M
Mike Galbraith 已提交
653
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
654

M
Mike Galbraith 已提交
655
	for_each_sched_entity(se) {
L
Lin Ming 已提交
656
		struct load_weight *load;
657
		struct load_weight lw;
L
Lin Ming 已提交
658 659 660

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
661

M
Mike Galbraith 已提交
662
		if (unlikely(!se->on_rq)) {
663
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
664 665 666 667 668 669 670

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
671 672
}

673
/*
A
Andrei Epure 已提交
674
 * We calculate the vruntime slice of a to-be-inserted task.
675
 *
676
 * vs = s/w
677
 */
678
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
679
{
680
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
681 682
}

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
#ifdef CONFIG_SMP
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

703 704 705 706 707
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
708 709
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
710
{
711
	unsigned long delta_exec_weighted;
712

713 714
	schedstat_set(curr->statistics.exec_max,
		      max((u64)delta_exec, curr->statistics.exec_max));
715 716

	curr->sum_exec_runtime += delta_exec;
717
	schedstat_add(cfs_rq, exec_clock, delta_exec);
718
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
719

I
Ingo Molnar 已提交
720
	curr->vruntime += delta_exec_weighted;
721
	update_min_vruntime(cfs_rq);
722 723
}

724
static void update_curr(struct cfs_rq *cfs_rq)
725
{
726
	struct sched_entity *curr = cfs_rq->curr;
727
	u64 now = rq_clock_task(rq_of(cfs_rq));
728 729 730 731 732 733 734 735 736 737
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
738
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
739 740
	if (!delta_exec)
		return;
741

I
Ingo Molnar 已提交
742 743
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
744 745 746 747

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

748
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
749
		cpuacct_charge(curtask, delta_exec);
750
		account_group_exec_runtime(curtask, delta_exec);
751
	}
752 753

	account_cfs_rq_runtime(cfs_rq, delta_exec);
754 755 756
}

static inline void
757
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
758
{
759
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
760 761 762 763 764
}

/*
 * Task is being enqueued - update stats:
 */
765
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
766 767 768 769 770
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
771
	if (se != cfs_rq->curr)
772
		update_stats_wait_start(cfs_rq, se);
773 774 775
}

static void
776
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
777
{
778
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
779
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
780 781
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
782
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
783 784 785
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
786
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
787 788
	}
#endif
789
	schedstat_set(se->statistics.wait_start, 0);
790 791 792
}

static inline void
793
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794 795 796 797 798
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
799
	if (se != cfs_rq->curr)
800
		update_stats_wait_end(cfs_rq, se);
801 802 803 804 805 806
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
807
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
808 809 810 811
{
	/*
	 * We are starting a new run period:
	 */
812
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
813 814 815 816 817 818
}

/**************************************************
 * Scheduling class queueing methods:
 */

819 820
#ifdef CONFIG_NUMA_BALANCING
/*
821
 * numa task sample period in ms
822
 */
823
unsigned int sysctl_numa_balancing_scan_period_min = 100;
824 825
unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
826 827 828

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
829

830 831 832
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

833 834
static void task_numa_placement(struct task_struct *p)
{
835
	int seq;
836

837 838 839
	if (!p->mm)	/* for example, ksmd faulting in a user's mm */
		return;
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
840 841 842 843 844 845 846 847 848 849
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;

	/* FIXME: Scheduling placement policy hints go here */
}

/*
 * Got a PROT_NONE fault for a page on @node.
 */
850
void task_numa_fault(int node, int pages, bool migrated)
851 852 853
{
	struct task_struct *p = current;

854
	if (!numabalancing_enabled)
855 856
		return;

857 858
	/* FIXME: Allocate task-specific structure for placement policy here */

859
	/*
860 861
	 * If pages are properly placed (did not migrate) then scan slower.
	 * This is reset periodically in case of phase changes
862
	 */
863 864 865
        if (!migrated)
		p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
			p->numa_scan_period + jiffies_to_msecs(10));
866

867 868 869
	task_numa_placement(p);
}

870 871 872 873 874 875
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

876 877 878 879 880 881 882 883 884
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
885
	struct vm_area_struct *vma;
886 887
	unsigned long start, end;
	long pages;
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

903 904 905 906 907 908 909
	if (!mm->numa_next_reset || !mm->numa_next_scan) {
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
		mm->numa_next_reset = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
	}

910 911 912 913 914 915 916 917 918 919 920 921 922
	/*
	 * Reset the scan period if enough time has gone by. Objective is that
	 * scanning will be reduced if pages are properly placed. As tasks
	 * can enter different phases this needs to be re-examined. Lacking
	 * proper tracking of reference behaviour, this blunt hammer is used.
	 */
	migrate = mm->numa_next_reset;
	if (time_after(now, migrate)) {
		p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
		next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
		xchg(&mm->numa_next_reset, next_scan);
	}

923 924 925 926 927 928 929 930 931 932
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

	if (p->numa_scan_period == 0)
		p->numa_scan_period = sysctl_numa_balancing_scan_period_min;

933
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
934 935 936
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

937 938 939 940 941 942
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

943 944 945 946 947
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
948

949
	down_read(&mm->mmap_sem);
950
	vma = find_vma(mm, start);
951 952
	if (!vma) {
		reset_ptenuma_scan(p);
953
		start = 0;
954 955
		vma = mm->mmap;
	}
956
	for (; vma; vma = vma->vm_next) {
957 958 959 960
		if (!vma_migratable(vma))
			continue;

		/* Skip small VMAs. They are not likely to be of relevance */
961
		if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
962 963
			continue;

964 965 966 967 968
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
			pages -= change_prot_numa(vma, start, end);
969

970 971 972 973
			start = end;
			if (pages <= 0)
				goto out;
		} while (end != vma->vm_end);
974
	}
975

976
out:
977
	/*
P
Peter Zijlstra 已提交
978 979 980 981
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
982 983
	 */
	if (vma)
984
		mm->numa_scan_offset = start;
985 986 987
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
1014 1015
		if (!curr->node_stamp)
			curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
1016
		curr->node_stamp += period;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
#endif /* CONFIG_NUMA_BALANCING */

1030 1031 1032 1033
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
1034
	if (!parent_entity(se))
1035
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1036 1037
#ifdef CONFIG_SMP
	if (entity_is_task(se))
1038
		list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1039
#endif
1040 1041 1042 1043 1044 1045 1046
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
1047
	if (!parent_entity(se))
1048
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1049
	if (entity_is_task(se))
1050
		list_del_init(&se->group_node);
1051 1052 1053
	cfs_rq->nr_running--;
}

1054 1055
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
1056 1057 1058 1059 1060 1061 1062 1063 1064
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
1065
	tg_weight = atomic_long_read(&tg->load_avg);
1066
	tg_weight -= cfs_rq->tg_load_contrib;
1067 1068 1069 1070 1071
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

1072
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1073
{
1074
	long tg_weight, load, shares;
1075

1076
	tg_weight = calc_tg_weight(tg, cfs_rq);
1077
	load = cfs_rq->load.weight;
1078 1079

	shares = (tg->shares * load);
1080 1081
	if (tg_weight)
		shares /= tg_weight;
1082 1083 1084 1085 1086 1087 1088 1089 1090

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
1091
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1092 1093 1094 1095
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1096 1097 1098
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
1099 1100 1101 1102
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1103
		account_entity_dequeue(cfs_rq, se);
1104
	}
P
Peter Zijlstra 已提交
1105 1106 1107 1108 1109 1110 1111

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

1112 1113
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

1114
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1115 1116 1117
{
	struct task_group *tg;
	struct sched_entity *se;
1118
	long shares;
P
Peter Zijlstra 已提交
1119 1120 1121

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
1122
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
1123
		return;
1124 1125 1126 1127
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
1128
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
1129 1130 1131 1132

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
1133
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1134 1135 1136 1137
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

1138
#ifdef CONFIG_SMP
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

1167 1168 1169 1170 1171 1172
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
	 * With a look-up table which covers k^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
1193 1194
	}

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
1260 1261
	u64 delta, periods;
	u32 runnable_contrib;
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

1325
/* Synchronize an entity's decay with its parenting cfs_rq.*/
1326
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1327 1328 1329 1330 1331 1332
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
1333
		return 0;
1334 1335 1336

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
1337 1338

	return decays;
1339 1340
}

1341 1342 1343 1344 1345
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
1346
	long tg_contrib;
1347 1348 1349 1350

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

1351 1352
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
1353 1354 1355
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
	contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

1378 1379 1380 1381
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
1382 1383
	int runnable_avg;

1384 1385 1386
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
1387 1388
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
1418
}
1419 1420 1421
#else
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
1422 1423
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
1424
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1425 1426
#endif

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

1437 1438 1439 1440 1441
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

1442 1443 1444
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
1445
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1446 1447
		__update_group_entity_contrib(se);
	}
1448 1449 1450 1451

	return se->avg.load_avg_contrib - old_contrib;
}

1452 1453 1454 1455 1456 1457 1458 1459 1460
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

1461 1462
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

1463
/* Update a sched_entity's runnable average */
1464 1465
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
1466
{
1467 1468
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
1469
	u64 now;
1470

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1481 1482 1483
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
1484 1485 1486 1487

	if (!update_cfs_rq)
		return;

1488 1489
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
1490 1491 1492 1493 1494 1495 1496 1497
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
1498
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1499
{
1500
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1501 1502 1503
	u64 decays;

	decays = now - cfs_rq->last_decay;
1504
	if (!decays && !force_update)
1505 1506
		return;

1507 1508 1509
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
1510 1511
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
1512

1513 1514 1515 1516 1517 1518
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
1519 1520

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1521
}
1522 1523 1524

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
1525
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
1526
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
1527
}
1528 1529 1530

/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1531 1532
						  struct sched_entity *se,
						  int wakeup)
1533
{
1534 1535 1536 1537
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
1538 1539 1540 1541
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
1542 1543
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
1544
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
1560 1561
		wakeup = 0;
	} else {
1562 1563 1564 1565 1566 1567 1568
		/*
		 * Task re-woke on same cpu (or else migrate_task_rq_fair()
		 * would have made count negative); we must be careful to avoid
		 * double-accounting blocked time after synchronizing decays.
		 */
		se->avg.last_runnable_update += __synchronize_entity_decay(se)
							<< 20;
1569 1570
	}

1571 1572
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
1573
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1574 1575
		update_entity_load_avg(se, 0);
	}
1576

1577
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1578 1579
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1580 1581
}

1582 1583 1584 1585 1586
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
1587
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1588 1589
						  struct sched_entity *se,
						  int sleep)
1590
{
1591
	update_entity_load_avg(se, 1);
1592 1593
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
1594

1595
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1596 1597 1598 1599
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
1600
}
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

1622
#else
1623 1624
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
1625
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1626
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1627 1628
					   struct sched_entity *se,
					   int wakeup) {}
1629
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1630 1631
					   struct sched_entity *se,
					   int sleep) {}
1632 1633
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
1634 1635
#endif

1636
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1637 1638
{
#ifdef CONFIG_SCHEDSTATS
1639 1640 1641 1642 1643
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

1644
	if (se->statistics.sleep_start) {
1645
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
1646 1647 1648 1649

		if ((s64)delta < 0)
			delta = 0;

1650 1651
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
1652

1653
		se->statistics.sleep_start = 0;
1654
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
1655

1656
		if (tsk) {
1657
			account_scheduler_latency(tsk, delta >> 10, 1);
1658 1659
			trace_sched_stat_sleep(tsk, delta);
		}
1660
	}
1661
	if (se->statistics.block_start) {
1662
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
1663 1664 1665 1666

		if ((s64)delta < 0)
			delta = 0;

1667 1668
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
1669

1670
		se->statistics.block_start = 0;
1671
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
1672

1673
		if (tsk) {
1674
			if (tsk->in_iowait) {
1675 1676
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
1677
				trace_sched_stat_iowait(tsk, delta);
1678 1679
			}

1680 1681
			trace_sched_stat_blocked(tsk, delta);

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
1693
		}
1694 1695 1696 1697
	}
#endif
}

P
Peter Zijlstra 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

1711 1712 1713
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
1714
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
1715

1716 1717 1718 1719 1720 1721
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
1722
	if (initial && sched_feat(START_DEBIT))
1723
		vruntime += sched_vslice(cfs_rq, se);
1724

1725
	/* sleeps up to a single latency don't count. */
1726
	if (!initial) {
1727
		unsigned long thresh = sysctl_sched_latency;
1728

1729 1730 1731 1732 1733 1734
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
1735

1736
		vruntime -= thresh;
1737 1738
	}

1739
	/* ensure we never gain time by being placed backwards. */
1740
	se->vruntime = max_vruntime(se->vruntime, vruntime);
1741 1742
}

1743 1744
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

1745
static void
1746
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1747
{
1748 1749
	/*
	 * Update the normalized vruntime before updating min_vruntime
1750
	 * through calling update_curr().
1751
	 */
1752
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1753 1754
		se->vruntime += cfs_rq->min_vruntime;

1755
	/*
1756
	 * Update run-time statistics of the 'current'.
1757
	 */
1758
	update_curr(cfs_rq);
1759
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1760 1761
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
1762

1763
	if (flags & ENQUEUE_WAKEUP) {
1764
		place_entity(cfs_rq, se, 0);
1765
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
1766
	}
1767

1768
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
1769
	check_spread(cfs_rq, se);
1770 1771
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
1772
	se->on_rq = 1;
1773

1774
	if (cfs_rq->nr_running == 1) {
1775
		list_add_leaf_cfs_rq(cfs_rq);
1776 1777
		check_enqueue_throttle(cfs_rq);
	}
1778 1779
}

1780
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
1781
{
1782 1783 1784 1785 1786 1787 1788 1789
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}
}
P
Peter Zijlstra 已提交
1790

1791 1792 1793 1794 1795 1796 1797 1798 1799
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next == se)
			cfs_rq->next = NULL;
		else
			break;
	}
P
Peter Zijlstra 已提交
1800 1801
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip == se)
			cfs_rq->skip = NULL;
		else
			break;
	}
}

P
Peter Zijlstra 已提交
1813 1814
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
1815 1816 1817 1818 1819
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
1820 1821 1822

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
1823 1824
}

1825
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1826

1827
static void
1828
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1829
{
1830 1831 1832 1833
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
1834
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1835

1836
	update_stats_dequeue(cfs_rq, se);
1837
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
1838
#ifdef CONFIG_SCHEDSTATS
1839 1840 1841 1842
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
1843
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
1844
			if (tsk->state & TASK_UNINTERRUPTIBLE)
1845
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
1846
		}
1847
#endif
P
Peter Zijlstra 已提交
1848 1849
	}

P
Peter Zijlstra 已提交
1850
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1851

1852
	if (se != cfs_rq->curr)
1853
		__dequeue_entity(cfs_rq, se);
1854
	se->on_rq = 0;
1855
	account_entity_dequeue(cfs_rq, se);
1856 1857 1858 1859 1860 1861

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
1862
	if (!(flags & DEQUEUE_SLEEP))
1863
		se->vruntime -= cfs_rq->min_vruntime;
1864

1865 1866 1867
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

1868
	update_min_vruntime(cfs_rq);
1869
	update_cfs_shares(cfs_rq);
1870 1871 1872 1873 1874
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
1875
static void
I
Ingo Molnar 已提交
1876
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1877
{
1878
	unsigned long ideal_runtime, delta_exec;
1879 1880
	struct sched_entity *se;
	s64 delta;
1881

P
Peter Zijlstra 已提交
1882
	ideal_runtime = sched_slice(cfs_rq, curr);
1883
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1884
	if (delta_exec > ideal_runtime) {
1885
		resched_task(rq_of(cfs_rq)->curr);
1886 1887 1888 1889 1890
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

1902 1903
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
1904

1905 1906
	if (delta < 0)
		return;
1907

1908 1909
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
1910 1911
}

1912
static void
1913
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1914
{
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

1926
	update_stats_curr_start(cfs_rq, se);
1927
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
1928 1929 1930 1931 1932 1933
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
1934
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1935
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
1936 1937 1938
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
1939
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1940 1941
}

1942 1943 1944
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

1945 1946 1947 1948 1949 1950 1951
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
1952
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1953
{
1954
	struct sched_entity *se = __pick_first_entity(cfs_rq);
1955
	struct sched_entity *left = se;
1956

1957 1958 1959 1960 1961 1962 1963 1964 1965
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second = __pick_next_entity(se);
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
1966

1967 1968 1969 1970 1971 1972
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

1973 1974 1975 1976 1977 1978
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

1979
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1980 1981

	return se;
1982 1983
}

1984 1985
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

1986
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1987 1988 1989 1990 1991 1992
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
1993
		update_curr(cfs_rq);
1994

1995 1996 1997
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
1998
	check_spread(cfs_rq, prev);
1999
	if (prev->on_rq) {
2000
		update_stats_wait_start(cfs_rq, prev);
2001 2002
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
2003
		/* in !on_rq case, update occurred at dequeue */
2004
		update_entity_load_avg(prev, 1);
2005
	}
2006
	cfs_rq->curr = NULL;
2007 2008
}

P
Peter Zijlstra 已提交
2009 2010
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2011 2012
{
	/*
2013
	 * Update run-time statistics of the 'current'.
2014
	 */
2015
	update_curr(cfs_rq);
2016

2017 2018 2019
	/*
	 * Ensure that runnable average is periodically updated.
	 */
2020
	update_entity_load_avg(curr, 1);
2021
	update_cfs_rq_blocked_load(cfs_rq, 1);
2022
	update_cfs_shares(cfs_rq);
2023

P
Peter Zijlstra 已提交
2024 2025 2026 2027 2028
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
2029 2030 2031 2032
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
2033 2034 2035 2036 2037 2038 2039 2040
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
2041
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
2042
		check_preempt_tick(cfs_rq, curr);
2043 2044
}

2045 2046 2047 2048 2049 2050

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
2051 2052

#ifdef HAVE_JUMP_LABEL
2053
static struct static_key __cfs_bandwidth_used;
2054 2055 2056

static inline bool cfs_bandwidth_used(void)
{
2057
	return static_key_false(&__cfs_bandwidth_used);
2058 2059 2060 2061 2062 2063
}

void account_cfs_bandwidth_used(int enabled, int was_enabled)
{
	/* only need to count groups transitioning between enabled/!enabled */
	if (enabled && !was_enabled)
2064
		static_key_slow_inc(&__cfs_bandwidth_used);
2065
	else if (!enabled && was_enabled)
2066
		static_key_slow_dec(&__cfs_bandwidth_used);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
#endif /* HAVE_JUMP_LABEL */

2077 2078 2079 2080 2081 2082 2083 2084
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
2085 2086 2087 2088 2089 2090

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
2091 2092 2093 2094 2095 2096 2097
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
2098
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

2110 2111 2112 2113 2114
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

2115 2116 2117 2118 2119 2120
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

2121
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2122 2123
}

2124 2125
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2126 2127 2128
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
2129
	u64 amount = 0, min_amount, expires;
2130 2131 2132 2133 2134 2135 2136

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
2137
	else {
P
Paul Turner 已提交
2138 2139 2140 2141 2142 2143 2144 2145
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
2146
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
2147
		}
2148 2149 2150 2151 2152 2153

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
2154
	}
P
Paul Turner 已提交
2155
	expires = cfs_b->runtime_expires;
2156 2157 2158
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
2159 2160 2161 2162 2163 2164 2165
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
2166 2167

	return cfs_rq->runtime_remaining > 0;
2168 2169
}

P
Paul Turner 已提交
2170 2171 2172 2173 2174
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2175
{
P
Paul Turner 已提交
2176 2177 2178
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
2179
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2180 2181
		return;

P
Paul Turner 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec)
{
	/* dock delta_exec before expiring quota (as it could span periods) */
2207
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
2208 2209 2210
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
2211 2212
		return;

2213 2214 2215 2216 2217 2218
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
2219 2220
}

2221 2222
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2223
{
2224
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2225 2226 2227 2228 2229
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

2230 2231
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
2232
	return cfs_bandwidth_used() && cfs_rq->throttled;
2233 2234
}

2235 2236 2237
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
2238
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
2267
		/* adjust cfs_rq_clock_task() */
2268
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
2269
					     cfs_rq->throttled_clock_task;
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

2281 2282
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
2283
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
2284 2285 2286 2287 2288
	cfs_rq->throttle_count++;

	return 0;
}

2289
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2290 2291 2292 2293 2294 2295 2296 2297
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

2298
	/* freeze hierarchy runnable averages while throttled */
2299 2300 2301
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
2322
	cfs_rq->throttled_clock = rq_clock(rq);
2323 2324 2325 2326 2327
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
	raw_spin_unlock(&cfs_b->lock);
}

2328
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2329 2330 2331 2332 2333 2334 2335
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

2336
	se = cfs_rq->tg->se[cpu_of(rq)];
2337 2338

	cfs_rq->throttled = 0;
2339 2340 2341

	update_rq_clock(rq);

2342
	raw_spin_lock(&cfs_b->lock);
2343
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
2344 2345 2346
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

2347 2348 2349
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

2413 2414 2415 2416 2417 2418 2419 2420
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
2421 2422
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
2423 2424 2425 2426 2427 2428

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

2429 2430 2431
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
2432
	cfs_b->nr_periods += overrun;
2433

P
Paul Turner 已提交
2434 2435 2436 2437 2438 2439
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

	__refill_cfs_bandwidth_runtime(cfs_b);

2440 2441 2442 2443 2444 2445
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

2446 2447 2448
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
2473

2474 2475 2476 2477 2478 2479 2480 2481 2482
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
2483 2484 2485 2486 2487 2488 2489
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
2490

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

/* are we near the end of the current quota period? */
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
2555 2556 2557
	if (!cfs_bandwidth_used())
		return;

2558
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

2596 2597 2598 2599 2600 2601 2602
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
2603 2604 2605
	if (!cfs_bandwidth_used())
		return;

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
2623 2624 2625
	if (!cfs_bandwidth_used())
		return;

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return;

	throttle_cfs_rq(cfs_rq);
}
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
		raw_spin_unlock(&cfs_b->lock);
		/* ensure cfs_b->lock is available while we wait */
		hrtimer_cancel(&cfs_b->period_timer);

		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

2719
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
2740 2741
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
2742
	return rq_clock_task(rq_of(cfs_rq));
2743 2744 2745 2746
}

static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec) {}
2747 2748
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2749
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2750 2751 2752 2753 2754

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
2766 2767 2768 2769 2770

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2771 2772
#endif

2773 2774 2775 2776 2777
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2778
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2779 2780 2781

#endif /* CONFIG_CFS_BANDWIDTH */

2782 2783 2784 2785
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
2786 2787 2788 2789 2790 2791 2792 2793
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

2794
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
2809
		if (rq->curr != p)
2810
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
2811

2812
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
2813 2814
	}
}
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

2825
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2826 2827 2828 2829 2830
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
2831
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
2832 2833 2834 2835
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
2836 2837 2838 2839

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
2840 2841
#endif

2842 2843 2844 2845 2846
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
2847
static void
2848
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2849 2850
{
	struct cfs_rq *cfs_rq;
2851
	struct sched_entity *se = &p->se;
2852 2853

	for_each_sched_entity(se) {
2854
		if (se->on_rq)
2855 2856
			break;
		cfs_rq = cfs_rq_of(se);
2857
		enqueue_entity(cfs_rq, se, flags);
2858 2859 2860 2861 2862 2863 2864 2865 2866

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
2867
		cfs_rq->h_nr_running++;
2868

2869
		flags = ENQUEUE_WAKEUP;
2870
	}
P
Peter Zijlstra 已提交
2871

P
Peter Zijlstra 已提交
2872
	for_each_sched_entity(se) {
2873
		cfs_rq = cfs_rq_of(se);
2874
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
2875

2876 2877 2878
		if (cfs_rq_throttled(cfs_rq))
			break;

2879
		update_cfs_shares(cfs_rq);
2880
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
2881 2882
	}

2883 2884
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
2885
		inc_nr_running(rq);
2886
	}
2887
	hrtick_update(rq);
2888 2889
}

2890 2891
static void set_next_buddy(struct sched_entity *se);

2892 2893 2894 2895 2896
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
2897
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2898 2899
{
	struct cfs_rq *cfs_rq;
2900
	struct sched_entity *se = &p->se;
2901
	int task_sleep = flags & DEQUEUE_SLEEP;
2902 2903 2904

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
2905
		dequeue_entity(cfs_rq, se, flags);
2906 2907 2908 2909 2910 2911 2912 2913 2914

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
2915
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2916

2917
		/* Don't dequeue parent if it has other entities besides us */
2918 2919 2920 2921 2922 2923 2924
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
2925 2926 2927

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
2928
			break;
2929
		}
2930
		flags |= DEQUEUE_SLEEP;
2931
	}
P
Peter Zijlstra 已提交
2932

P
Peter Zijlstra 已提交
2933
	for_each_sched_entity(se) {
2934
		cfs_rq = cfs_rq_of(se);
2935
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2936

2937 2938 2939
		if (cfs_rq_throttled(cfs_rq))
			break;

2940
		update_cfs_shares(cfs_rq);
2941
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
2942 2943
	}

2944
	if (!se) {
2945
		dec_nr_running(rq);
2946 2947
		update_rq_runnable_avg(rq, 1);
	}
2948
	hrtick_update(rq);
2949 2950
}

2951
#ifdef CONFIG_SMP
2952 2953 2954
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
2955
	return cpu_rq(cpu)->cfs.runnable_load_avg;
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3000
	unsigned long load_avg = rq->cfs.runnable_load_avg;
3001 3002

	if (nr_running)
3003
		return load_avg / nr_running;
3004 3005 3006 3007

	return 0;
}

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
	if (jiffies > current->wakee_flip_decay_ts + HZ) {
		current->wakee_flips = 0;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
3025

3026
static void task_waking_fair(struct task_struct *p)
3027 3028 3029
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3030 3031 3032 3033
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
3034

3035 3036 3037 3038 3039 3040 3041 3042
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
3043

3044
	se->vruntime -= min_vruntime;
3045
	record_wakee(p);
3046 3047
}

3048
#ifdef CONFIG_FAIR_GROUP_SCHED
3049 3050 3051 3052 3053 3054
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
3098
 */
P
Peter Zijlstra 已提交
3099
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3100
{
P
Peter Zijlstra 已提交
3101
	struct sched_entity *se = tg->se[cpu];
3102

3103
	if (!tg->parent)	/* the trivial, non-cgroup case */
3104 3105
		return wl;

P
Peter Zijlstra 已提交
3106
	for_each_sched_entity(se) {
3107
		long w, W;
P
Peter Zijlstra 已提交
3108

3109
		tg = se->my_q->tg;
3110

3111 3112 3113 3114
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
3115

3116 3117 3118 3119
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
3120

3121 3122 3123 3124 3125
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
3126 3127
		else
			wl = tg->shares;
3128

3129 3130 3131 3132 3133
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
3134 3135
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
3136 3137 3138 3139

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
3140
		wl -= se->load.weight;
3141 3142 3143 3144 3145 3146 3147 3148

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
3149 3150
		wg = 0;
	}
3151

P
Peter Zijlstra 已提交
3152
	return wl;
3153 3154
}
#else
P
Peter Zijlstra 已提交
3155

3156 3157
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
3158
{
3159
	return wl;
3160
}
P
Peter Zijlstra 已提交
3161

3162 3163
#endif

3164 3165
static int wake_wide(struct task_struct *p)
{
3166
	int factor = this_cpu_read(sd_llc_size);
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

3186
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3187
{
3188
	s64 this_load, load;
3189
	int idx, this_cpu, prev_cpu;
3190
	unsigned long tl_per_task;
3191
	struct task_group *tg;
3192
	unsigned long weight;
3193
	int balanced;
3194

3195 3196 3197 3198 3199 3200 3201
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

3202 3203 3204 3205 3206
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
3207

3208 3209 3210 3211 3212
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
3213 3214 3215 3216
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

3217
		this_load += effective_load(tg, this_cpu, -weight, -weight);
3218 3219
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
3220

3221 3222
	tg = task_group(p);
	weight = p->se.load.weight;
3223

3224 3225
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3226 3227 3228
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
3229 3230 3231 3232
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
3233 3234
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
3248

3249
	/*
I
Ingo Molnar 已提交
3250 3251 3252
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
3253
	 */
3254 3255
	if (sync && balanced)
		return 1;
3256

3257
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3258 3259
	tl_per_task = cpu_avg_load_per_task(this_cpu);

3260 3261 3262
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3263 3264 3265 3266 3267
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
3268
		schedstat_inc(sd, ttwu_move_affine);
3269
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
3270 3271 3272 3273 3274 3275

		return 1;
	}
	return 0;
}

3276 3277 3278 3279 3280
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
3281
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3282
		  int this_cpu, int load_idx)
3283
{
3284
	struct sched_group *idlest = NULL, *group = sd->groups;
3285 3286
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
3287

3288 3289 3290 3291
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
3292

3293 3294
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
3295
					tsk_cpus_allowed(p)))
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
3315
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
3341
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3342 3343 3344 3345 3346
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
3347 3348 3349
		}
	}

3350 3351
	return idlest;
}
3352

3353 3354 3355
/*
 * Try and locate an idle CPU in the sched_domain.
 */
3356
static int select_idle_sibling(struct task_struct *p, int target)
3357
{
3358
	struct sched_domain *sd;
3359
	struct sched_group *sg;
3360
	int i = task_cpu(p);
3361

3362 3363
	if (idle_cpu(target))
		return target;
3364 3365

	/*
3366
	 * If the prevous cpu is cache affine and idle, don't be stupid.
3367
	 */
3368 3369
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
3370 3371

	/*
3372
	 * Otherwise, iterate the domains and find an elegible idle cpu.
3373
	 */
3374
	sd = rcu_dereference(per_cpu(sd_llc, target));
3375
	for_each_lower_domain(sd) {
3376 3377 3378 3379 3380 3381 3382
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
3383
				if (i == target || !idle_cpu(i))
3384 3385
					goto next;
			}
3386

3387 3388 3389 3390 3391 3392 3393 3394
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
3395 3396 3397
	return target;
}

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
3409
static int
3410
select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3411
{
3412
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3413 3414 3415
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
3416
	int want_affine = 0;
3417
	int sync = wake_flags & WF_SYNC;
3418

3419
	if (p->nr_cpus_allowed == 1)
3420 3421
		return prev_cpu;

3422
	if (sd_flag & SD_BALANCE_WAKE) {
3423
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3424 3425 3426
			want_affine = 1;
		new_cpu = prev_cpu;
	}
3427

3428
	rcu_read_lock();
3429
	for_each_domain(cpu, tmp) {
3430 3431 3432
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

3433
		/*
3434 3435
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
3436
		 */
3437 3438 3439
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
3440
			break;
3441
		}
3442

3443
		if (tmp->flags & sd_flag)
3444 3445 3446
			sd = tmp;
	}

3447
	if (affine_sd) {
3448
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3449 3450 3451 3452
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
3453
	}
3454

3455
	while (sd) {
3456
		int load_idx = sd->forkexec_idx;
3457
		struct sched_group *group;
3458
		int weight;
3459

3460
		if (!(sd->flags & sd_flag)) {
3461 3462 3463
			sd = sd->child;
			continue;
		}
3464

3465 3466
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
3467

3468
		group = find_idlest_group(sd, p, cpu, load_idx);
3469 3470 3471 3472
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
3473

3474
		new_cpu = find_idlest_cpu(group, p, cpu);
3475 3476 3477 3478
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
3479
		}
3480 3481 3482

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
3483
		weight = sd->span_weight;
3484 3485
		sd = NULL;
		for_each_domain(cpu, tmp) {
3486
			if (weight <= tmp->span_weight)
3487
				break;
3488
			if (tmp->flags & sd_flag)
3489 3490 3491
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
3492
	}
3493 3494
unlock:
	rcu_read_unlock();
3495

3496
	return new_cpu;
3497
}
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
3519 3520
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
3521
	}
3522
}
3523 3524
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
3525 3526
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3527 3528 3529 3530
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
3531 3532
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
3533 3534 3535 3536 3537 3538 3539 3540 3541
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
3542
	 */
3543
	return calc_delta_fair(gran, se);
3544 3545
}

3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
3568
	gran = wakeup_gran(curr, se);
3569 3570 3571 3572 3573 3574
	if (vdiff > gran)
		return 1;

	return 0;
}

3575 3576
static void set_last_buddy(struct sched_entity *se)
{
3577 3578 3579 3580 3581
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
3582 3583 3584 3585
}

static void set_next_buddy(struct sched_entity *se)
{
3586 3587 3588 3589 3590
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
3591 3592
}

3593 3594
static void set_skip_buddy(struct sched_entity *se)
{
3595 3596
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
3597 3598
}

3599 3600 3601
/*
 * Preempt the current task with a newly woken task if needed:
 */
3602
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3603 3604
{
	struct task_struct *curr = rq->curr;
3605
	struct sched_entity *se = &curr->se, *pse = &p->se;
3606
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3607
	int scale = cfs_rq->nr_running >= sched_nr_latency;
3608
	int next_buddy_marked = 0;
3609

I
Ingo Molnar 已提交
3610 3611 3612
	if (unlikely(se == pse))
		return;

3613
	/*
3614
	 * This is possible from callers such as move_task(), in which we
3615 3616 3617 3618 3619 3620 3621
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

3622
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
3623
		set_next_buddy(pse);
3624 3625
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
3626

3627 3628 3629
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
3630 3631 3632 3633 3634 3635
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
3636 3637 3638 3639
	 */
	if (test_tsk_need_resched(curr))
		return;

3640 3641 3642 3643 3644
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

3645
	/*
3646 3647
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
3648
	 */
3649
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3650
		return;
3651

3652
	find_matching_se(&se, &pse);
3653
	update_curr(cfs_rq_of(se));
3654
	BUG_ON(!pse);
3655 3656 3657 3658 3659 3660 3661
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
3662
		goto preempt;
3663
	}
3664

3665
	return;
3666

3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
3683 3684
}

3685
static struct task_struct *pick_next_task_fair(struct rq *rq)
3686
{
P
Peter Zijlstra 已提交
3687
	struct task_struct *p;
3688 3689 3690
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

3691
	if (!cfs_rq->nr_running)
3692 3693 3694
		return NULL;

	do {
3695
		se = pick_next_entity(cfs_rq);
3696
		set_next_entity(cfs_rq, se);
3697 3698 3699
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
3700
	p = task_of(se);
3701 3702
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
3703 3704

	return p;
3705 3706 3707 3708 3709
}

/*
 * Account for a descheduled task:
 */
3710
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3711 3712 3713 3714 3715 3716
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3717
		put_prev_entity(cfs_rq, se);
3718 3719 3720
	}
}

3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
3746 3747 3748 3749 3750 3751
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
3752 3753 3754 3755 3756
	}

	set_skip_buddy(se);
}

3757 3758 3759 3760
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

3761 3762
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

3773
#ifdef CONFIG_SMP
3774
/**************************************************
P
Peter Zijlstra 已提交
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
3891

3892 3893
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

3894
#define LBF_ALL_PINNED	0x01
3895
#define LBF_NEED_BREAK	0x02
3896 3897
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
3898 3899 3900 3901 3902

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
3903
	int			src_cpu;
3904 3905 3906 3907

	int			dst_cpu;
	struct rq		*dst_rq;

3908 3909
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
3910
	enum cpu_idle_type	idle;
3911
	long			imbalance;
3912 3913 3914
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

3915
	unsigned int		flags;
3916 3917 3918 3919

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
3920 3921
};

3922
/*
3923
 * move_task - move a task from one runqueue to another runqueue.
3924 3925
 * Both runqueues must be locked.
 */
3926
static void move_task(struct task_struct *p, struct lb_env *env)
3927
{
3928 3929 3930 3931
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
3932 3933
}

3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
/*
 * Is this task likely cache-hot:
 */
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

3966 3967 3968 3969
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
3970
int can_migrate_task(struct task_struct *p, struct lb_env *env)
3971 3972 3973 3974
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
3975
	 * 1) throttled_lb_pair, or
3976
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3977 3978
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
3979
	 */
3980 3981 3982
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

3983
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3984
		int cpu;
3985

3986
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3987

3988 3989
		env->flags |= LBF_SOME_PINNED;

3990 3991 3992 3993 3994 3995 3996 3997
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
3998
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
3999 4000
			return 0;

4001 4002 4003
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4004
				env->flags |= LBF_DST_PINNED;
4005 4006 4007
				env->new_dst_cpu = cpu;
				break;
			}
4008
		}
4009

4010 4011
		return 0;
	}
4012 4013

	/* Record that we found atleast one task that could run on dst_cpu */
4014
	env->flags &= ~LBF_ALL_PINNED;
4015

4016
	if (task_running(env->src_rq, p)) {
4017
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4018 4019 4020 4021 4022 4023 4024 4025 4026
		return 0;
	}

	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

4027
	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4028
	if (!tsk_cache_hot ||
4029
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Z
Zhang Hang 已提交
4030

4031
		if (tsk_cache_hot) {
4032
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4033
			schedstat_inc(p, se.statistics.nr_forced_migrations);
4034
		}
Z
Zhang Hang 已提交
4035

4036 4037 4038
		return 1;
	}

Z
Zhang Hang 已提交
4039 4040
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
4041 4042
}

4043 4044 4045 4046 4047 4048 4049
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
4050
static int move_one_task(struct lb_env *env)
4051 4052 4053
{
	struct task_struct *p, *n;

4054 4055 4056
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
4057

4058 4059 4060 4061 4062 4063 4064 4065
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
4066 4067 4068 4069
	}
	return 0;
}

4070 4071
static unsigned long task_h_load(struct task_struct *p);

4072 4073
static const unsigned int sched_nr_migrate_break = 32;

4074
/*
4075
 * move_tasks tries to move up to imbalance weighted load from busiest to
4076 4077 4078 4079 4080 4081
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
4082
{
4083 4084
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
4085 4086
	unsigned long load;
	int pulled = 0;
4087

4088
	if (env->imbalance <= 0)
4089
		return 0;
4090

4091 4092
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
4093

4094 4095
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
4096
		if (env->loop > env->loop_max)
4097
			break;
4098 4099

		/* take a breather every nr_migrate tasks */
4100
		if (env->loop > env->loop_break) {
4101
			env->loop_break += sched_nr_migrate_break;
4102
			env->flags |= LBF_NEED_BREAK;
4103
			break;
4104
		}
4105

4106
		if (!can_migrate_task(p, env))
4107 4108 4109
			goto next;

		load = task_h_load(p);
4110

4111
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4112 4113
			goto next;

4114
		if ((load / 2) > env->imbalance)
4115
			goto next;
4116

4117
		move_task(p, env);
4118
		pulled++;
4119
		env->imbalance -= load;
4120 4121

#ifdef CONFIG_PREEMPT
4122 4123 4124 4125 4126
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
4127
		if (env->idle == CPU_NEWLY_IDLE)
4128
			break;
4129 4130
#endif

4131 4132 4133 4134
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
4135
		if (env->imbalance <= 0)
4136
			break;
4137 4138 4139

		continue;
next:
4140
		list_move_tail(&p->se.group_node, tasks);
4141
	}
4142

4143
	/*
4144 4145 4146
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
4147
	 */
4148
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
4149

4150
	return pulled;
4151 4152
}

P
Peter Zijlstra 已提交
4153
#ifdef CONFIG_FAIR_GROUP_SCHED
4154 4155 4156
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
4157
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4158
{
4159 4160
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4161

4162 4163 4164
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
4165

4166
	update_cfs_rq_blocked_load(cfs_rq, 1);
4167

4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
4182
		struct rq *rq = rq_of(cfs_rq);
4183 4184
		update_rq_runnable_avg(rq, rq->nr_running);
	}
4185 4186
}

4187
static void update_blocked_averages(int cpu)
4188 4189
{
	struct rq *rq = cpu_rq(cpu);
4190 4191
	struct cfs_rq *cfs_rq;
	unsigned long flags;
4192

4193 4194
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
4195 4196 4197 4198
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
4199
	for_each_leaf_cfs_rq(rq, cfs_rq) {
4200 4201 4202 4203 4204 4205
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4206
	}
4207 4208

	raw_spin_unlock_irqrestore(&rq->lock, flags);
4209 4210
}

4211
/*
4212
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
4213 4214 4215
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
4216
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
4217
{
4218 4219
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
4220
	unsigned long now = jiffies;
4221
	unsigned long load;
4222

4223
	if (cfs_rq->last_h_load_update == now)
4224 4225
		return;

4226 4227 4228 4229 4230 4231 4232
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
4233

4234
	if (!se) {
4235
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
4247 4248
}

4249
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
4250
{
4251
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
4252

4253
	update_cfs_rq_h_load(cfs_rq);
4254 4255
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
4256 4257
}
#else
4258
static inline void update_blocked_averages(int cpu)
4259 4260 4261
{
}

4262
static unsigned long task_h_load(struct task_struct *p)
4263
{
4264
	return p->se.avg.load_avg_contrib;
4265
}
P
Peter Zijlstra 已提交
4266
#endif
4267 4268 4269 4270 4271 4272 4273 4274 4275

/********** Helpers for find_busiest_group ************************/
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
4276
	unsigned long load_per_task;
4277
	unsigned long group_power;
4278 4279 4280 4281
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int group_capacity;
	unsigned int idle_cpus;
	unsigned int group_weight;
4282
	int group_imb; /* Is there an imbalance in the group ? */
4283
	int group_has_capacity; /* Is there extra capacity in the group? */
4284 4285
};

J
Joonsoo Kim 已提交
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
	unsigned long total_pwr;	/* Total power of all groups in sd */
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
4298
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
4299 4300
};

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
		.total_pwr = 0UL,
		.busiest_stat = {
			.avg_load = 0UL,
		},
	};
}

4320 4321 4322 4323
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4324 4325
 *
 * Return: The load index.
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

4348
static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4349
{
4350
	return SCHED_POWER_SCALE;
4351 4352 4353 4354 4355 4356 4357
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

4358
static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4359
{
4360
	unsigned long weight = sd->span_weight;
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

4373
static unsigned long scale_rt_power(int cpu)
4374 4375
{
	struct rq *rq = cpu_rq(cpu);
4376
	u64 total, available, age_stamp, avg;
4377

4378 4379 4380 4381 4382 4383 4384
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

4385
	total = sched_avg_period() + (rq_clock(rq) - age_stamp);
4386

4387
	if (unlikely(total < avg)) {
4388 4389 4390
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
4391
		available = total - avg;
4392
	}
4393

4394 4395
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
4396

4397
	total >>= SCHED_POWER_SHIFT;
4398 4399 4400 4401 4402 4403

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
4404
	unsigned long weight = sd->span_weight;
4405
	unsigned long power = SCHED_POWER_SCALE;
4406 4407 4408 4409 4410 4411 4412 4413
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

4414
		power >>= SCHED_POWER_SHIFT;
4415 4416
	}

4417
	sdg->sgp->power_orig = power;
4418 4419 4420 4421 4422 4423

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

4424
	power >>= SCHED_POWER_SHIFT;
4425

4426
	power *= scale_rt_power(cpu);
4427
	power >>= SCHED_POWER_SHIFT;
4428 4429 4430 4431

	if (!power)
		power = 1;

4432
	cpu_rq(cpu)->cpu_power = power;
4433
	sdg->sgp->power = power;
4434 4435
}

4436
void update_group_power(struct sched_domain *sd, int cpu)
4437 4438 4439
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
4440
	unsigned long power, power_orig;
4441 4442 4443 4444 4445
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
4446 4447 4448 4449 4450 4451

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

4452
	power_orig = power = 0;
4453

P
Peter Zijlstra 已提交
4454 4455 4456 4457 4458 4459
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

4460 4461 4462 4463 4464 4465
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
			struct sched_group *sg = cpu_rq(cpu)->sd->groups;

			power_orig += sg->sgp->power_orig;
			power += sg->sgp->power;
		}
P
Peter Zijlstra 已提交
4466 4467 4468 4469 4470 4471 4472 4473
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
4474
			power_orig += group->sgp->power_orig;
P
Peter Zijlstra 已提交
4475 4476 4477 4478
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
4479

4480 4481
	sdg->sgp->power_orig = power_orig;
	sdg->sgp->power = power;
4482 4483
}

4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
4495
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
4496
	 */
P
Peter Zijlstra 已提交
4497
	if (!(sd->flags & SD_SHARE_CPUPOWER))
4498 4499 4500 4501 4502
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
4503
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4504 4505 4506 4507 4508
		return 1;

	return 0;
}

4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
4525 4526
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
4527 4528 4529
 *
 * When this is so detected; this group becomes a candidate for busiest; see
 * update_sd_pick_busiest(). And calculcate_imbalance() and
4530
 * find_busiest_group() avoid some of the usual balance conditions to allow it
4531 4532 4533 4534 4535 4536 4537
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

4538
static inline int sg_imbalanced(struct sched_group *group)
4539
{
4540
	return group->sgp->imbalance;
4541 4542
}

4543 4544 4545
/*
 * Compute the group capacity.
 *
4546 4547 4548
 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
 * first dividing out the smt factor and computing the actual number of cores
 * and limit power unit capacity with that.
4549 4550 4551
 */
static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
{
4552 4553 4554 4555 4556 4557
	unsigned int capacity, smt, cpus;
	unsigned int power, power_orig;

	power = group->sgp->power;
	power_orig = group->sgp->power_orig;
	cpus = group->group_weight;
4558

4559 4560 4561
	/* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
	capacity = cpus / smt; /* cores */
4562

4563
	capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
4564 4565 4566 4567 4568 4569
	if (!capacity)
		capacity = fix_small_capacity(env->sd, group);

	return capacity;
}

4570 4571
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4572
 * @env: The load balancing environment.
4573 4574 4575 4576 4577
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
 */
4578 4579
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
4580
			int local_group, struct sg_lb_stats *sgs)
4581
{
4582 4583
	unsigned long nr_running;
	unsigned long load;
4584
	int i;
4585

4586 4587
	memset(sgs, 0, sizeof(*sgs));

4588
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4589 4590
		struct rq *rq = cpu_rq(i);

4591 4592
		nr_running = rq->nr_running;

4593
		/* Bias balancing toward cpus of our domain */
4594
		if (local_group)
4595
			load = target_load(i, load_idx);
4596
		else
4597 4598 4599
			load = source_load(i, load_idx);

		sgs->group_load += load;
4600
		sgs->sum_nr_running += nr_running;
4601
		sgs->sum_weighted_load += weighted_cpuload(i);
4602 4603
		if (idle_cpu(i))
			sgs->idle_cpus++;
4604 4605 4606
	}

	/* Adjust by relative CPU power of the group */
4607 4608
	sgs->group_power = group->sgp->power;
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
4609

4610
	if (sgs->sum_nr_running)
4611
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4612

4613
	sgs->group_weight = group->group_weight;
4614

4615 4616 4617
	sgs->group_imb = sg_imbalanced(group);
	sgs->group_capacity = sg_capacity(env, group);

4618 4619
	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
4620 4621
}

4622 4623
/**
 * update_sd_pick_busiest - return 1 on busiest group
4624
 * @env: The load balancing environment.
4625 4626
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
4627
 * @sgs: sched_group statistics
4628 4629 4630
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
4631 4632 4633
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
4634
 */
4635
static bool update_sd_pick_busiest(struct lb_env *env,
4636 4637
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
4638
				   struct sg_lb_stats *sgs)
4639
{
J
Joonsoo Kim 已提交
4640
	if (sgs->avg_load <= sds->busiest_stat.avg_load)
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
4654 4655
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

4666
/**
4667
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4668
 * @env: The load balancing environment.
4669 4670 4671
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
 */
4672
static inline void update_sd_lb_stats(struct lb_env *env,
4673
					struct sd_lb_stats *sds)
4674
{
4675 4676
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
4677
	struct sg_lb_stats tmp_sgs;
4678 4679 4680 4681 4682
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

4683
	load_idx = get_sd_load_idx(env->sd, env->idle);
4684 4685

	do {
J
Joonsoo Kim 已提交
4686
		struct sg_lb_stats *sgs = &tmp_sgs;
4687 4688
		int local_group;

4689
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
4690 4691 4692
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
4693 4694 4695 4696

			if (env->idle != CPU_NEWLY_IDLE ||
			    time_after_eq(jiffies, sg->sgp->next_update))
				update_group_power(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
4697
		}
4698

J
Joonsoo Kim 已提交
4699
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
4700

4701 4702 4703
		if (local_group)
			goto next_group;

4704 4705
		/*
		 * In case the child domain prefers tasks go to siblings
4706
		 * first, lower the sg capacity to one so that we'll try
4707 4708 4709 4710 4711 4712
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
4713
		 */
4714 4715
		if (prefer_sibling && sds->local &&
		    sds->local_stat.group_has_capacity)
4716
			sgs->group_capacity = min(sgs->group_capacity, 1U);
4717

4718
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
4719
			sds->busiest = sg;
J
Joonsoo Kim 已提交
4720
			sds->busiest_stat = *sgs;
4721 4722
		}

4723 4724 4725 4726 4727
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
		sds->total_pwr += sgs->group_power;

4728
		sg = sg->next;
4729
	} while (sg != env->sd->groups);
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
4749
 * Return: 1 when packing is required and a task should be moved to
4750 4751
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
4752
 * @env: The load balancing environment.
4753 4754
 * @sds: Statistics of the sched_domain which is to be packed
 */
4755
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4756 4757 4758
{
	int busiest_cpu;

4759
	if (!(env->sd->flags & SD_ASYM_PACKING))
4760 4761 4762 4763 4764 4765
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
4766
	if (env->dst_cpu > busiest_cpu)
4767 4768
		return 0;

4769
	env->imbalance = DIV_ROUND_CLOSEST(
4770 4771
		sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
		SCHED_POWER_SCALE);
4772

4773
	return 1;
4774 4775 4776 4777 4778 4779
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
4780
 * @env: The load balancing environment.
4781 4782
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
4783 4784
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4785 4786 4787
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
4788
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
4789
	struct sg_lb_stats *local, *busiest;
4790

J
Joonsoo Kim 已提交
4791 4792
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
4793

J
Joonsoo Kim 已提交
4794 4795 4796 4797
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
4798

J
Joonsoo Kim 已提交
4799 4800
	scaled_busy_load_per_task =
		(busiest->load_per_task * SCHED_POWER_SCALE) /
4801
		busiest->group_power;
J
Joonsoo Kim 已提交
4802

4803 4804
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
4805
		env->imbalance = busiest->load_per_task;
4806 4807 4808 4809 4810 4811 4812 4813 4814
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

4815
	pwr_now += busiest->group_power *
J
Joonsoo Kim 已提交
4816
			min(busiest->load_per_task, busiest->avg_load);
4817
	pwr_now += local->group_power *
J
Joonsoo Kim 已提交
4818
			min(local->load_per_task, local->avg_load);
4819
	pwr_now /= SCHED_POWER_SCALE;
4820 4821

	/* Amount of load we'd subtract */
J
Joonsoo Kim 已提交
4822
	tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
4823
		busiest->group_power;
J
Joonsoo Kim 已提交
4824
	if (busiest->avg_load > tmp) {
4825
		pwr_move += busiest->group_power *
J
Joonsoo Kim 已提交
4826 4827 4828
			    min(busiest->load_per_task,
				busiest->avg_load - tmp);
	}
4829 4830

	/* Amount of load we'd add */
4831
	if (busiest->avg_load * busiest->group_power <
J
Joonsoo Kim 已提交
4832
	    busiest->load_per_task * SCHED_POWER_SCALE) {
4833 4834
		tmp = (busiest->avg_load * busiest->group_power) /
		      local->group_power;
J
Joonsoo Kim 已提交
4835 4836
	} else {
		tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
4837
		      local->group_power;
J
Joonsoo Kim 已提交
4838
	}
4839 4840
	pwr_move += local->group_power *
		    min(local->load_per_task, local->avg_load + tmp);
4841
	pwr_move /= SCHED_POWER_SCALE;
4842 4843 4844

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
J
Joonsoo Kim 已提交
4845
		env->imbalance = busiest->load_per_task;
4846 4847 4848 4849 4850
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
4851
 * @env: load balance environment
4852 4853
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
4854
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4855
{
4856
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
4857 4858 4859 4860
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
4861

J
Joonsoo Kim 已提交
4862
	if (busiest->group_imb) {
4863 4864 4865 4866
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
4867 4868
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
4869 4870
	}

4871 4872 4873 4874 4875
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
4876 4877
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
4878 4879
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
4880 4881
	}

J
Joonsoo Kim 已提交
4882
	if (!busiest->group_imb) {
4883 4884
		/*
		 * Don't want to pull so many tasks that a group would go idle.
4885 4886
		 * Except of course for the group_imb case, since then we might
		 * have to drop below capacity to reach cpu-load equilibrium.
4887
		 */
J
Joonsoo Kim 已提交
4888 4889
		load_above_capacity =
			(busiest->sum_nr_running - busiest->group_capacity);
4890

4891
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4892
		load_above_capacity /= busiest->group_power;
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
4903
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
4904 4905

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
4906
	env->imbalance = min(
4907 4908
		max_pull * busiest->group_power,
		(sds->avg_load - local->avg_load) * local->group_power
J
Joonsoo Kim 已提交
4909
	) / SCHED_POWER_SCALE;
4910 4911 4912

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
4913
	 * there is no guarantee that any tasks will be moved so we'll have
4914 4915 4916
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
4917
	if (env->imbalance < busiest->load_per_task)
4918
		return fix_small_imbalance(env, sds);
4919
}
4920

4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
4933
 * @env: The load balancing environment.
4934
 *
4935
 * Return:	- The busiest group if imbalance exists.
4936 4937 4938 4939
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
4940
static struct sched_group *find_busiest_group(struct lb_env *env)
4941
{
J
Joonsoo Kim 已提交
4942
	struct sg_lb_stats *local, *busiest;
4943 4944
	struct sd_lb_stats sds;

4945
	init_sd_lb_stats(&sds);
4946 4947 4948 4949 4950

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
4951
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
4952 4953
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
4954

4955 4956
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
4957 4958
		return sds.busiest;

4959
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
4960
	if (!sds.busiest || busiest->sum_nr_running == 0)
4961 4962
		goto out_balanced;

4963
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4964

P
Peter Zijlstra 已提交
4965 4966
	/*
	 * If the busiest group is imbalanced the below checks don't
4967
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
4968 4969
	 * isn't true due to cpus_allowed constraints and the like.
	 */
J
Joonsoo Kim 已提交
4970
	if (busiest->group_imb)
P
Peter Zijlstra 已提交
4971 4972
		goto force_balance;

4973
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
J
Joonsoo Kim 已提交
4974 4975
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
	    !busiest->group_has_capacity)
4976 4977
		goto force_balance;

4978 4979 4980 4981
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
4982
	if (local->avg_load >= busiest->avg_load)
4983 4984
		goto out_balanced;

4985 4986 4987 4988
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
4989
	if (local->avg_load >= sds.avg_load)
4990 4991
		goto out_balanced;

4992
	if (env->idle == CPU_IDLE) {
4993 4994 4995 4996 4997 4998
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
J
Joonsoo Kim 已提交
4999 5000
		if ((local->idle_cpus < busiest->idle_cpus) &&
		    busiest->sum_nr_running <= busiest->group_weight)
5001
			goto out_balanced;
5002 5003 5004 5005 5006
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
5007 5008
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
5009
			goto out_balanced;
5010
	}
5011

5012
force_balance:
5013
	/* Looks like there is an imbalance. Compute it */
5014
	calculate_imbalance(env, &sds);
5015 5016 5017
	return sds.busiest;

out_balanced:
5018
	env->imbalance = 0;
5019 5020 5021 5022 5023 5024
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
5025
static struct rq *find_busiest_queue(struct lb_env *env,
5026
				     struct sched_group *group)
5027 5028
{
	struct rq *busiest = NULL, *rq;
5029
	unsigned long busiest_load = 0, busiest_power = 1;
5030 5031
	int i;

5032
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5033
		unsigned long power = power_of(i);
5034 5035
		unsigned long capacity = DIV_ROUND_CLOSEST(power,
							   SCHED_POWER_SCALE);
5036 5037
		unsigned long wl;

5038
		if (!capacity)
5039
			capacity = fix_small_capacity(env->sd, group);
5040

5041
		rq = cpu_rq(i);
5042
		wl = weighted_cpuload(i);
5043

5044 5045 5046 5047
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
5048
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
5049 5050
			continue;

5051 5052 5053 5054 5055
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
5056 5057 5058 5059 5060
		 *
		 * Thus we're looking for max(wl_i / power_i), crosswise
		 * multiplication to rid ourselves of the division works out
		 * to: wl_i * power_j > wl_j * power_i;  where j is our
		 * previous maximum.
5061
		 */
5062 5063 5064
		if (wl * busiest_power > busiest_load * power) {
			busiest_load = wl;
			busiest_power = power;
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
5079
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5080

5081
static int need_active_balance(struct lb_env *env)
5082
{
5083 5084 5085
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
5086 5087 5088 5089 5090 5091

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
5092
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
5093
			return 1;
5094 5095 5096 5097 5098
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

5099 5100
static int active_load_balance_cpu_stop(void *data);

5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
5132
	return balance_cpu == env->dst_cpu;
5133 5134
}

5135 5136 5137 5138 5139 5140
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
5141
			int *continue_balancing)
5142
{
5143
	int ld_moved, cur_ld_moved, active_balance = 0;
5144
	struct sched_domain *sd_parent = sd->parent;
5145 5146 5147
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
5148
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5149

5150 5151
	struct lb_env env = {
		.sd		= sd,
5152 5153
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
5154
		.dst_grpmask    = sched_group_cpus(sd->groups),
5155
		.idle		= idle,
5156
		.loop_break	= sched_nr_migrate_break,
5157
		.cpus		= cpus,
5158 5159
	};

5160 5161 5162 5163
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
5164
	if (idle == CPU_NEWLY_IDLE)
5165 5166
		env.dst_grpmask = NULL;

5167 5168 5169 5170 5171
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
5172 5173
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
5174
		goto out_balanced;
5175
	}
5176

5177
	group = find_busiest_group(&env);
5178 5179 5180 5181 5182
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

5183
	busiest = find_busiest_queue(&env, group);
5184 5185 5186 5187 5188
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

5189
	BUG_ON(busiest == env.dst_rq);
5190

5191
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5192 5193 5194 5195 5196 5197 5198 5199 5200

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
5201
		env.flags |= LBF_ALL_PINNED;
5202 5203 5204
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
5205

5206
more_balance:
5207
		local_irq_save(flags);
5208
		double_rq_lock(env.dst_rq, busiest);
5209 5210 5211 5212 5213 5214 5215

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
5216
		double_rq_unlock(env.dst_rq, busiest);
5217 5218 5219 5220 5221
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
5222 5223 5224
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

5225 5226 5227 5228 5229
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
5249
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
5250

5251 5252 5253
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

5254
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
5255
			env.dst_cpu	 = env.new_dst_cpu;
5256
			env.flags	&= ~LBF_DST_PINNED;
5257 5258
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
5259

5260 5261 5262 5263 5264 5265
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
5266

5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
			int *group_imbalance = &sd_parent->groups->sgp->imbalance;

			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
				*group_imbalance = 1;
			} else if (*group_imbalance)
				*group_imbalance = 0;
		}

5279
		/* All tasks on this runqueue were pinned by CPU affinity */
5280
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
5281
			cpumask_clear_cpu(cpu_of(busiest), cpus);
5282 5283 5284
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
5285
				goto redo;
5286
			}
5287 5288 5289 5290 5291 5292
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
5293 5294 5295 5296 5297 5298 5299 5300
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
5301

5302
		if (need_active_balance(&env)) {
5303 5304
			raw_spin_lock_irqsave(&busiest->lock, flags);

5305 5306 5307
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
5308 5309
			 */
			if (!cpumask_test_cpu(this_cpu,
5310
					tsk_cpus_allowed(busiest->curr))) {
5311 5312
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
5313
				env.flags |= LBF_ALL_PINNED;
5314 5315 5316
				goto out_one_pinned;
			}

5317 5318 5319 5320 5321
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
5322 5323 5324 5325 5326 5327
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
5328

5329
			if (active_balance) {
5330 5331 5332
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
5333
			}
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
5367
	if (((env.flags & LBF_ALL_PINNED) &&
5368
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
5369 5370 5371
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

5372
	ld_moved = 0;
5373 5374 5375 5376 5377 5378 5379 5380
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
5381
void idle_balance(int this_cpu, struct rq *this_rq)
5382 5383 5384 5385
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;
5386
	u64 curr_cost = 0;
5387

5388
	this_rq->idle_stamp = rq_clock(this_rq);
5389 5390 5391 5392

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

5393 5394 5395 5396 5397
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

5398
	update_blocked_averages(this_cpu);
5399
	rcu_read_lock();
5400 5401
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
5402
		int continue_balancing = 1;
5403
		u64 t0, domain_cost;
5404 5405 5406 5407

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

5408 5409 5410
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
			break;

5411
		if (sd->flags & SD_BALANCE_NEWIDLE) {
5412 5413
			t0 = sched_clock_cpu(this_cpu);

5414
			/* If we've pulled tasks over stop searching: */
5415
			pulled_task = load_balance(this_cpu, this_rq,
5416 5417
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
5418 5419 5420 5421 5422 5423

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
5424
		}
5425 5426 5427 5428

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
N
Nikhil Rao 已提交
5429 5430
		if (pulled_task) {
			this_rq->idle_stamp = 0;
5431
			break;
N
Nikhil Rao 已提交
5432
		}
5433
	}
5434
	rcu_read_unlock();
5435 5436 5437

	raw_spin_lock(&this_rq->lock);

5438 5439 5440 5441 5442 5443 5444
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
5445 5446 5447

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;
5448 5449 5450
}

/*
5451 5452 5453 5454
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
5455
 */
5456
static int active_load_balance_cpu_stop(void *data)
5457
{
5458 5459
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
5460
	int target_cpu = busiest_rq->push_cpu;
5461
	struct rq *target_rq = cpu_rq(target_cpu);
5462
	struct sched_domain *sd;
5463 5464 5465 5466 5467 5468 5469

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
5470 5471 5472

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
5473
		goto out_unlock;
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
5486
	rcu_read_lock();
5487 5488 5489 5490 5491 5492 5493
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
5494 5495
		struct lb_env env = {
			.sd		= sd,
5496 5497 5498 5499
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
5500 5501 5502
			.idle		= CPU_IDLE,
		};

5503 5504
		schedstat_inc(sd, alb_count);

5505
		if (move_one_task(&env))
5506 5507 5508 5509
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
5510
	rcu_read_unlock();
5511
	double_unlock_balance(busiest_rq, target_rq);
5512 5513 5514 5515
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
5516 5517
}

5518
#ifdef CONFIG_NO_HZ_COMMON
5519 5520 5521 5522 5523 5524
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
5525
static struct {
5526
	cpumask_var_t idle_cpus_mask;
5527
	atomic_t nr_cpus;
5528 5529
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
5530

5531
static inline int find_new_ilb(int call_cpu)
5532
{
5533
	int ilb = cpumask_first(nohz.idle_cpus_mask);
5534

5535 5536 5537 5538
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
5539 5540
}

5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void nohz_balancer_kick(int cpu)
{
	int ilb_cpu;

	nohz.next_balance++;

5552
	ilb_cpu = find_new_ilb(cpu);
5553

5554 5555
	if (ilb_cpu >= nr_cpu_ids)
		return;
5556

5557
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5558 5559 5560 5561 5562 5563 5564 5565
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
5566 5567 5568
	return;
}

5569
static inline void nohz_balance_exit_idle(int cpu)
5570 5571 5572 5573 5574 5575 5576 5577
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
		atomic_dec(&nohz.nr_cpus);
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

5578 5579 5580 5581 5582
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;

	rcu_read_lock();
N
Nathan Zimmer 已提交
5583
	sd = rcu_dereference_check_sched_domain(this_rq()->sd);
V
Vincent Guittot 已提交
5584 5585 5586 5587 5588 5589

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

	for (; sd; sd = sd->parent)
5590
		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
5591
unlock:
5592 5593 5594 5595 5596 5597 5598 5599
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;

	rcu_read_lock();
N
Nathan Zimmer 已提交
5600
	sd = rcu_dereference_check_sched_domain(this_rq()->sd);
V
Vincent Guittot 已提交
5601 5602 5603 5604 5605 5606

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

	for (; sd; sd = sd->parent)
5607
		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
5608
unlock:
5609 5610 5611
	rcu_read_unlock();
}

5612
/*
5613
 * This routine will record that the cpu is going idle with tick stopped.
5614
 * This info will be used in performing idle load balancing in the future.
5615
 */
5616
void nohz_balance_enter_idle(int cpu)
5617
{
5618 5619 5620 5621 5622 5623
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

5624 5625
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
5626

5627 5628 5629
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5630
}
5631

5632
static int sched_ilb_notifier(struct notifier_block *nfb,
5633 5634 5635 5636
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
5637
		nohz_balance_exit_idle(smp_processor_id());
5638 5639 5640 5641 5642
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
5643 5644 5645 5646
#endif

static DEFINE_SPINLOCK(balancing);

5647 5648 5649 5650
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
5651
void update_max_interval(void)
5652 5653 5654 5655
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

5656 5657 5658 5659
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
5660
 * Balancing parameters are set up in init_sched_domains.
5661 5662 5663
 */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
5664
	int continue_balancing = 1;
5665 5666
	struct rq *rq = cpu_rq(cpu);
	unsigned long interval;
5667
	struct sched_domain *sd;
5668 5669 5670
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
5671 5672
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
5673

5674
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
5675

5676
	rcu_read_lock();
5677
	for_each_domain(cpu, sd) {
5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

5690 5691 5692
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

5704 5705 5706 5707 5708 5709
		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
5710
		interval = clamp(interval, 1UL, max_load_balance_interval);
5711 5712 5713 5714 5715 5716 5717 5718 5719

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
5720
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
5721
				/*
5722
				 * The LBF_DST_PINNED logic could have changed
5723 5724
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
5725
				 */
5726
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
5737 5738
	}
	if (need_decay) {
5739
		/*
5740 5741
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
5742
		 */
5743 5744
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
5745
	}
5746
	rcu_read_unlock();
5747 5748 5749 5750 5751 5752 5753 5754 5755 5756

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

5757
#ifdef CONFIG_NO_HZ_COMMON
5758
/*
5759
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
5760 5761
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
5762 5763 5764 5765 5766 5767
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
{
	struct rq *this_rq = cpu_rq(this_cpu);
	struct rq *rq;
	int balance_cpu;

5768 5769 5770
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
5771 5772

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5773
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5774 5775 5776 5777 5778 5779 5780
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
5781
		if (need_resched())
5782 5783
			break;

V
Vincent Guittot 已提交
5784 5785 5786 5787 5788 5789
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
5790 5791 5792 5793 5794 5795 5796

		rebalance_domains(balance_cpu, CPU_IDLE);

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
5797 5798
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5799 5800 5801
}

/*
5802 5803 5804 5805 5806 5807 5808
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
5809 5810 5811 5812
 */
static inline int nohz_kick_needed(struct rq *rq, int cpu)
{
	unsigned long now = jiffies;
5813
	struct sched_domain *sd;
5814

5815
	if (unlikely(idle_cpu(cpu)))
5816 5817
		return 0;

5818 5819 5820 5821
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
5822
	set_cpu_sd_state_busy();
5823
	nohz_balance_exit_idle(cpu);
5824 5825 5826 5827 5828 5829 5830

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
5831 5832

	if (time_before(now, nohz.next_balance))
5833 5834
		return 0;

5835 5836
	if (rq->nr_running >= 2)
		goto need_kick;
5837

5838
	rcu_read_lock();
5839 5840 5841 5842
	for_each_domain(cpu, sd) {
		struct sched_group *sg = sd->groups;
		struct sched_group_power *sgp = sg->sgp;
		int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5843

5844
		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5845
			goto need_kick_unlock;
5846 5847 5848 5849

		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
		    && (cpumask_first_and(nohz.idle_cpus_mask,
					  sched_domain_span(sd)) < cpu))
5850
			goto need_kick_unlock;
5851 5852 5853

		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
			break;
5854
	}
5855
	rcu_read_unlock();
5856
	return 0;
5857 5858 5859

need_kick_unlock:
	rcu_read_unlock();
5860 5861
need_kick:
	return 1;
5862 5863 5864 5865 5866 5867 5868 5869 5870
}
#else
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
5871 5872 5873 5874
static void run_rebalance_domains(struct softirq_action *h)
{
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
5875
	enum cpu_idle_type idle = this_rq->idle_balance ?
5876 5877 5878 5879 5880
						CPU_IDLE : CPU_NOT_IDLE;

	rebalance_domains(this_cpu, idle);

	/*
5881
	 * If this cpu has a pending nohz_balance_kick, then do the
5882 5883 5884
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
5885
	nohz_idle_balance(this_cpu, idle);
5886 5887 5888 5889
}

static inline int on_null_domain(int cpu)
{
5890
	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5891 5892 5893 5894 5895
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
5896
void trigger_load_balance(struct rq *rq, int cpu)
5897 5898 5899 5900 5901
{
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
		raise_softirq(SCHED_SOFTIRQ);
5902
#ifdef CONFIG_NO_HZ_COMMON
5903
	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5904 5905
		nohz_balancer_kick(cpu);
#endif
5906 5907
}

5908 5909 5910 5911 5912 5913 5914 5915
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
5916 5917 5918

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
5919 5920
}

5921
#endif /* CONFIG_SMP */
5922

5923 5924 5925
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
5926
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5927 5928 5929 5930 5931 5932
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
5933
		entity_tick(cfs_rq, se, queued);
5934
	}
5935

5936
	if (numabalancing_enabled)
5937
		task_tick_numa(rq, curr);
5938

5939
	update_rq_runnable_avg(rq, 1);
5940 5941 5942
}

/*
P
Peter Zijlstra 已提交
5943 5944 5945
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
5946
 */
P
Peter Zijlstra 已提交
5947
static void task_fork_fair(struct task_struct *p)
5948
{
5949 5950
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
5951
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
5952 5953 5954
	struct rq *rq = this_rq();
	unsigned long flags;

5955
	raw_spin_lock_irqsave(&rq->lock, flags);
5956

5957 5958
	update_rq_clock(rq);

5959 5960 5961
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

5962 5963 5964 5965 5966 5967 5968 5969 5970
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
5971

5972
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
5973

5974 5975
	if (curr)
		se->vruntime = curr->vruntime;
5976
	place_entity(cfs_rq, se, 1);
5977

P
Peter Zijlstra 已提交
5978
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
5979
		/*
5980 5981 5982
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
5983
		swap(curr->vruntime, se->vruntime);
5984
		resched_task(rq->curr);
5985
	}
5986

5987 5988
	se->vruntime -= cfs_rq->min_vruntime;

5989
	raw_spin_unlock_irqrestore(&rq->lock, flags);
5990 5991
}

5992 5993 5994 5995
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
5996 5997
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5998
{
P
Peter Zijlstra 已提交
5999 6000 6001
	if (!p->se.on_rq)
		return;

6002 6003 6004 6005 6006
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
6007
	if (rq->curr == p) {
6008 6009 6010
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
6011
		check_preempt_curr(rq, p, 0);
6012 6013
}

P
Peter Zijlstra 已提交
6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Ensure the task's vruntime is normalized, so that when its
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it was !on_rq, then only when
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
	if (!se->on_rq && p->state != TASK_RUNNING) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
6036

6037
#ifdef CONFIG_SMP
6038 6039 6040 6041 6042
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
6043 6044 6045
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
6046 6047
	}
#endif
P
Peter Zijlstra 已提交
6048 6049
}

6050 6051 6052
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
6053
static void switched_to_fair(struct rq *rq, struct task_struct *p)
6054
{
P
Peter Zijlstra 已提交
6055 6056 6057
	if (!p->se.on_rq)
		return;

6058 6059 6060 6061 6062
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
6063
	if (rq->curr == p)
6064 6065
		resched_task(rq->curr);
	else
6066
		check_preempt_curr(rq, p, 0);
6067 6068
}

6069 6070 6071 6072 6073 6074 6075 6076 6077
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

6078 6079 6080 6081 6082 6083 6084
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
6085 6086
}

6087 6088 6089 6090 6091 6092 6093
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
6094
#ifdef CONFIG_SMP
6095
	atomic64_set(&cfs_rq->decay_counter, 1);
6096
	atomic_long_set(&cfs_rq->removed_load, 0);
6097
#endif
6098 6099
}

P
Peter Zijlstra 已提交
6100
#ifdef CONFIG_FAIR_GROUP_SCHED
6101
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
6102
{
6103
	struct cfs_rq *cfs_rq;
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
6117 6118 6119 6120 6121 6122
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
6123 6124
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
6125 6126 6127 6128
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
6129
	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
6130 6131
		on_rq = 1;

6132 6133 6134
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147
	if (!on_rq) {
		cfs_rq = cfs_rq_of(&p->se);
		p->se.vruntime += cfs_rq->min_vruntime;
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
		p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
#endif
	}
P
Peter Zijlstra 已提交
6148
}
6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

	se->my_q = cfs_rq;
	update_load_set(&se->load, 0);
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
6278 6279 6280

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
6281
		for_each_sched_entity(se)
6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
6303

6304
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6305 6306 6307 6308 6309 6310 6311 6312 6313
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
6314
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6315 6316 6317 6318

	return rr_interval;
}

6319 6320 6321
/*
 * All the scheduling class methods:
 */
6322
const struct sched_class fair_sched_class = {
6323
	.next			= &idle_sched_class,
6324 6325 6326
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
6327
	.yield_to_task		= yield_to_task_fair,
6328

I
Ingo Molnar 已提交
6329
	.check_preempt_curr	= check_preempt_wakeup,
6330 6331 6332 6333

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

6334
#ifdef CONFIG_SMP
L
Li Zefan 已提交
6335
	.select_task_rq		= select_task_rq_fair,
6336
	.migrate_task_rq	= migrate_task_rq_fair,
6337

6338 6339
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
6340 6341

	.task_waking		= task_waking_fair,
6342
#endif
6343

6344
	.set_curr_task          = set_curr_task_fair,
6345
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
6346
	.task_fork		= task_fork_fair,
6347 6348

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
6349
	.switched_from		= switched_from_fair,
6350
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
6351

6352 6353
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
6354
#ifdef CONFIG_FAIR_GROUP_SCHED
6355
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
6356
#endif
6357 6358 6359
};

#ifdef CONFIG_SCHED_DEBUG
6360
void print_cfs_stats(struct seq_file *m, int cpu)
6361 6362 6363
{
	struct cfs_rq *cfs_rq;

6364
	rcu_read_lock();
6365
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6366
		print_cfs_rq(m, cpu, cfs_rq);
6367
	rcu_read_unlock();
6368 6369
}
#endif
6370 6371 6372 6373 6374 6375

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

6376
#ifdef CONFIG_NO_HZ_COMMON
6377
	nohz.next_balance = jiffies;
6378
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6379
	cpu_notifier(sched_ilb_notifier, 0);
6380 6381 6382 6383
#endif
#endif /* SMP */

}