fair.c 198.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29
#include <linux/mempolicy.h>
30
#include <linux/migrate.h>
31
#include <linux/task_work.h>
32 33 34 35

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
36

37
/*
38
 * Targeted preemption latency for CPU-bound tasks:
39
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48
 */
49 50
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

64
/*
65
 * Minimal preemption granularity for CPU-bound tasks:
66
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67
 */
68 69
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 71

/*
72 73
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
74
static unsigned int sched_nr_latency = 8;
75 76

/*
77
 * After fork, child runs first. If set to 0 (default) then
78
 * parent will (try to) run first.
79
 */
80
unsigned int sysctl_sched_child_runs_first __read_mostly;
81 82 83

/*
 * SCHED_OTHER wake-up granularity.
84
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 86 87 88 89
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
90
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92

93 94
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

95 96 97 98 99 100 101
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

102 103 104 105 106 107 108 109 110 111 112 113 114 115
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

181
#define WMULT_CONST	(~0U)
182 183
#define WMULT_SHIFT	32

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
200 201

/*
202 203 204 205 206 207 208 209 210 211
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212
 */
213
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214
{
215 216
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
217

218
	__update_inv_weight(lw);
219

220 221 222 223 224
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
225 226
	}

227 228
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
229

230 231 232 233
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
234

235
	return mul_u64_u32_shr(delta_exec, fact, shift);
236 237 238 239
}


const struct sched_class fair_sched_class;
240

241 242 243 244
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

245
#ifdef CONFIG_FAIR_GROUP_SCHED
246

247
/* cpu runqueue to which this cfs_rq is attached */
248 249
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
250
	return cfs_rq->rq;
251 252
}

253 254
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
255

256 257 258 259 260 261 262 263
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
287

288 289 290
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
291 292 293 294 295 296 297 298 299 300 301 302
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
304
		}
305 306

		cfs_rq->on_list = 1;
307
		/* We should have no load, but we need to update last_decay. */
308
		update_cfs_rq_blocked_load(cfs_rq, 0);
309 310 311 312 313 314 315 316 317 318 319
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
320 321 322 323 324
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
325
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
326 327 328
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
329
		return se->cfs_rq;
P
Peter Zijlstra 已提交
330

P
Peter Zijlstra 已提交
331
	return NULL;
P
Peter Zijlstra 已提交
332 333 334 335 336 337 338
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

339 340 341 342 343 344 345 346 347 348 349 350 351
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
352 353
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

371 372 373 374 375 376
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
377

378 379 380
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
381 382 383 384
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
385 386
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
387

P
Peter Zijlstra 已提交
388
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389
{
P
Peter Zijlstra 已提交
390
	return &task_rq(p)->cfs;
391 392
}

P
Peter Zijlstra 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

407 408 409 410 411 412 413 414
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
415 416 417 418 419 420 421 422
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

423 424 425 426 427
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
428 429
#endif	/* CONFIG_FAIR_GROUP_SCHED */

430
static __always_inline
431
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432 433 434 435 436

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

437
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438
{
439
	s64 delta = (s64)(vruntime - max_vruntime);
440
	if (delta > 0)
441
		max_vruntime = vruntime;
442

443
	return max_vruntime;
444 445
}

446
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
447 448 449 450 451 452 453 454
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

455 456 457 458 459 460
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

461 462 463 464 465 466 467 468 469 470 471 472
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
473
		if (!cfs_rq->curr)
474 475 476 477 478
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

479
	/* ensure we never gain time by being placed backwards. */
480
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481 482 483 484
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
485 486
}

487 488 489
/*
 * Enqueue an entity into the rb-tree:
 */
490
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
507
		if (entity_before(se, entry)) {
508 509 510 511 512 513 514 515 516 517 518
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
519
	if (leftmost)
I
Ingo Molnar 已提交
520
		cfs_rq->rb_leftmost = &se->run_node;
521 522 523 524 525

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

526
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527
{
P
Peter Zijlstra 已提交
528 529 530 531 532 533
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
534

535 536 537
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

538
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539
{
540 541 542 543 544 545
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
546 547
}

548 549 550 551 552 553 554 555 556 557 558
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
559
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560
{
561
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562

563 564
	if (!last)
		return NULL;
565 566

	return rb_entry(last, struct sched_entity, run_node);
567 568
}

569 570 571 572
/**************************************************************
 * Scheduling class statistics methods:
 */

573
int sched_proc_update_handler(struct ctl_table *table, int write,
574
		void __user *buffer, size_t *lenp,
575 576
		loff_t *ppos)
{
577
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578
	int factor = get_update_sysctl_factor();
579 580 581 582 583 584 585

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

586 587 588 589 590 591 592
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

593 594 595
	return 0;
}
#endif
596

597
/*
598
 * delta /= w
599
 */
600
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601
{
602
	if (unlikely(se->load.weight != NICE_0_LOAD))
603
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604 605 606 607

	return delta;
}

608 609 610
/*
 * The idea is to set a period in which each task runs once.
 *
611
 * When there are too many tasks (sched_nr_latency) we have to stretch
612 613 614 615
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
616 617 618
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
619
	unsigned long nr_latency = sched_nr_latency;
620 621

	if (unlikely(nr_running > nr_latency)) {
622
		period = sysctl_sched_min_granularity;
623 624 625 626 627 628
		period *= nr_running;
	}

	return period;
}

629 630 631 632
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
633
 * s = p*P[w/rw]
634
 */
P
Peter Zijlstra 已提交
635
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
636
{
M
Mike Galbraith 已提交
637
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
638

M
Mike Galbraith 已提交
639
	for_each_sched_entity(se) {
L
Lin Ming 已提交
640
		struct load_weight *load;
641
		struct load_weight lw;
L
Lin Ming 已提交
642 643 644

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
645

M
Mike Galbraith 已提交
646
		if (unlikely(!se->on_rq)) {
647
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
648 649 650 651

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
652
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
653 654
	}
	return slice;
655 656
}

657
/*
A
Andrei Epure 已提交
658
 * We calculate the vruntime slice of a to-be-inserted task.
659
 *
660
 * vs = s/w
661
 */
662
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
663
{
664
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
665 666
}

667
#ifdef CONFIG_SMP
668 669
static unsigned long task_h_load(struct task_struct *p);

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

689
/*
690
 * Update the current task's runtime statistics.
691
 */
692
static void update_curr(struct cfs_rq *cfs_rq)
693
{
694
	struct sched_entity *curr = cfs_rq->curr;
695
	u64 now = rq_clock_task(rq_of(cfs_rq));
696
	u64 delta_exec;
697 698 699 700

	if (unlikely(!curr))
		return;

701 702
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
703
		return;
704

I
Ingo Molnar 已提交
705
	curr->exec_start = now;
706

707 708 709 710 711 712 713 714 715
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

716 717 718
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

719
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720
		cpuacct_charge(curtask, delta_exec);
721
		account_group_exec_runtime(curtask, delta_exec);
722
	}
723 724

	account_cfs_rq_runtime(cfs_rq, delta_exec);
725 726 727
}

static inline void
728
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
729
{
730
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
731 732 733 734 735
}

/*
 * Task is being enqueued - update stats:
 */
736
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 738 739 740 741
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
742
	if (se != cfs_rq->curr)
743
		update_stats_wait_start(cfs_rq, se);
744 745 746
}

static void
747
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
748
{
749
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 752
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754 755 756
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
757
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
758 759
	}
#endif
760
	schedstat_set(se->statistics.wait_start, 0);
761 762 763
}

static inline void
764
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 766 767 768 769
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
770
	if (se != cfs_rq->curr)
771
		update_stats_wait_end(cfs_rq, se);
772 773 774 775 776 777
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
778
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 780 781 782
{
	/*
	 * We are starting a new run period:
	 */
783
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
784 785 786 787 788 789
}

/**************************************************
 * Scheduling class queueing methods:
 */

790 791
#ifdef CONFIG_NUMA_BALANCING
/*
792 793 794
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
795
 */
796 797
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
798 799 800

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
801

802 803 804
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
	unsigned int scan, floor;
	unsigned int windows = 1;

	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

850 851 852 853 854 855 856 857 858 859 860 861
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

862 863 864 865 866
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
867
	pid_t gid;
868 869 870
	struct list_head task_list;

	struct rcu_head rcu;
871
	nodemask_t active_nodes;
872
	unsigned long total_faults;
873 874 875 876 877
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
878
	unsigned long *faults_cpu;
879
	unsigned long faults[0];
880 881
};

882 883 884 885 886 887 888 889 890
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

891 892 893 894 895
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

896 897
static inline int task_faults_idx(int nid, int priv)
{
898
	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
899 900 901 902
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
903
	if (!p->numa_faults_memory)
904 905
		return 0;

906 907
	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
		p->numa_faults_memory[task_faults_idx(nid, 1)];
908 909
}

910 911 912 913 914
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

915 916
	return p->numa_group->faults[task_faults_idx(nid, 0)] +
		p->numa_group->faults[task_faults_idx(nid, 1)];
917 918
}

919 920 921 922 923 924
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
	return group->faults_cpu[task_faults_idx(nid, 0)] +
		group->faults_cpu[task_faults_idx(nid, 1)];
}

925 926 927 928 929 930 931 932 933 934
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
static inline unsigned long task_weight(struct task_struct *p, int nid)
{
	unsigned long total_faults;

935
	if (!p->numa_faults_memory)
936 937 938 939 940 941 942 943 944 945 946 947
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

	return 1000 * task_faults(p, nid) / total_faults;
}

static inline unsigned long group_weight(struct task_struct *p, int nid)
{
948
	if (!p->numa_group || !p->numa_group->total_faults)
949 950
		return 0;

951
	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
952 953
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Do not migrate if the destination is not a node that
	 * is actively used by this numa group.
	 */
	if (!node_isset(dst_nid, ng->active_nodes))
		return false;

	/*
	 * Source is a node that is not actively used by this
	 * numa group, while the destination is. Migrate.
	 */
	if (!node_isset(src_nid, ng->active_nodes))
		return true;

	/*
	 * Both source and destination are nodes in active
	 * use by this numa group. Maximize memory bandwidth
	 * by migrating from more heavily used groups, to less
	 * heavily used ones, spreading the load around.
	 * Use a 1/4 hysteresis to avoid spurious page movement.
	 */
	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}

1017
static unsigned long weighted_cpuload(const int cpu);
1018 1019 1020 1021 1022
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long power_of(int cpu);
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1023
/* Cached statistics for all CPUs within a node */
1024
struct numa_stats {
1025
	unsigned long nr_running;
1026
	unsigned long load;
1027 1028 1029 1030 1031 1032 1033

	/* Total compute capacity of CPUs on a node */
	unsigned long power;

	/* Approximate capacity in terms of runnable tasks on a node */
	unsigned long capacity;
	int has_capacity;
1034
};
1035

1036 1037 1038 1039 1040
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1041
	int cpu, cpus = 0;
1042 1043 1044 1045 1046 1047 1048 1049

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
		ns->power += power_of(cpu);
1050 1051

		cpus++;
1052 1053
	}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
	 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
	 * and bail there.
	 */
	if (!cpus)
		return;

1065 1066 1067 1068 1069
	ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
	ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
	ns->has_capacity = (ns->nr_running < ns->capacity);
}

1070 1071
struct task_numa_env {
	struct task_struct *p;
1072

1073 1074
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1075

1076
	struct numa_stats src_stats, dst_stats;
1077

1078
	int imbalance_pct;
1079 1080 1081

	struct task_struct *best_task;
	long best_imp;
1082 1083 1084
	int best_cpu;
};

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1104 1105
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1106 1107 1108 1109 1110 1111
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
	long dst_load, src_load;
	long load;
1112
	long imp = (groupimp > 0) ? groupimp : taskimp;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

	rcu_read_lock();
	cur = ACCESS_ONCE(dst_rq->curr);
	if (cur->pid == 0) /* idle */
		cur = NULL;

	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1131 1132
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1133
		 * in any group then look only at task weights.
1134
		 */
1135
		if (cur->numa_group == env->p->numa_group) {
1136 1137
			imp = taskimp + task_weight(cur, env->src_nid) -
			      task_weight(cur, env->dst_nid);
1138 1139 1140 1141 1142 1143
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1144
		} else {
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (env->p->numa_group)
				imp = groupimp;
			else
				imp = taskimp;

			if (cur->numa_group)
				imp += group_weight(cur, env->src_nid) -
				       group_weight(cur, env->dst_nid);
			else
				imp += task_weight(cur, env->src_nid) -
				       task_weight(cur, env->dst_nid);
1161
		}
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	}

	if (imp < env->best_imp)
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
		if (env->src_stats.has_capacity &&
		    !env->dst_stats.has_capacity)
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
	if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
	dst_load = env->dst_stats.load;
	src_load = env->src_stats.load;

	/* XXX missing power terms */
	load = task_h_load(env->p);
	dst_load += load;
	src_load -= load;

	if (cur) {
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
	}

	/* make src_load the smaller */
	if (dst_load < src_load)
		swap(dst_load, src_load);

	if (src_load * env->imbalance_pct < dst_load * 100)
		goto unlock;

assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1211 1212
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1213 1214 1215 1216 1217 1218 1219 1220 1221
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1222
		task_numa_compare(env, taskimp, groupimp);
1223 1224 1225
	}
}

1226 1227 1228 1229
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1230

1231
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1232
		.src_nid = task_node(p),
1233 1234 1235 1236 1237 1238

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1239 1240
	};
	struct sched_domain *sd;
1241
	unsigned long taskweight, groupweight;
1242
	int nid, ret;
1243
	long taskimp, groupimp;
1244

1245
	/*
1246 1247 1248 1249 1250 1251
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1252 1253
	 */
	rcu_read_lock();
1254
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1255 1256
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1257 1258
	rcu_read_unlock();

1259 1260 1261 1262 1263 1264 1265
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1266
		p->numa_preferred_nid = task_node(p);
1267 1268 1269
		return -EINVAL;
	}

1270 1271
	taskweight = task_weight(p, env.src_nid);
	groupweight = group_weight(p, env.src_nid);
1272
	update_numa_stats(&env.src_stats, env.src_nid);
1273
	env.dst_nid = p->numa_preferred_nid;
1274 1275
	taskimp = task_weight(p, env.dst_nid) - taskweight;
	groupimp = group_weight(p, env.dst_nid) - groupweight;
1276
	update_numa_stats(&env.dst_stats, env.dst_nid);
1277

1278 1279
	/* If the preferred nid has capacity, try to use it. */
	if (env.dst_stats.has_capacity)
1280
		task_numa_find_cpu(&env, taskimp, groupimp);
1281 1282 1283

	/* No space available on the preferred nid. Look elsewhere. */
	if (env.best_cpu == -1) {
1284 1285 1286
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1287

1288
			/* Only consider nodes where both task and groups benefit */
1289 1290 1291
			taskimp = task_weight(p, nid) - taskweight;
			groupimp = group_weight(p, nid) - groupweight;
			if (taskimp < 0 && groupimp < 0)
1292 1293
				continue;

1294 1295
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1296
			task_numa_find_cpu(&env, taskimp, groupimp);
1297 1298 1299
		}
	}

1300 1301 1302 1303
	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;

1304 1305
	sched_setnuma(p, env.dst_nid);

1306 1307 1308 1309 1310 1311
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1312
	if (env.best_task == NULL) {
1313 1314 1315
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1316 1317 1318 1319
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1320 1321
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1322 1323
	put_task_struct(env.best_task);
	return ret;
1324 1325
}

1326 1327 1328
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1329
	/* This task has no NUMA fault statistics yet */
1330
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1331 1332
		return;

1333 1334 1335 1336
	/* Periodically retry migrating the task to the preferred node */
	p->numa_migrate_retry = jiffies + HZ;

	/* Success if task is already running on preferred CPU */
1337
	if (task_node(p) == p->numa_preferred_nid)
1338 1339 1340
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1341
	task_numa_migrate(p);
1342 1343
}

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
 * period will be for the next scan window. If local/remote ratio is below
 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
 * scan period will decrease
 */
#define NUMA_PERIOD_SLOTS 10
#define NUMA_PERIOD_THRESHOLD 3

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
	 * to automatic numa balancing. Scan slower
	 */
	if (local + shared == 0) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
		delta = p->se.avg.runnable_avg_sum;
		*period = p->se.avg.runnable_avg_period;
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1478 1479
static void task_numa_placement(struct task_struct *p)
{
1480 1481
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1482
	unsigned long fault_types[2] = { 0, 0 };
1483 1484
	unsigned long total_faults;
	u64 runtime, period;
1485
	spinlock_t *group_lock = NULL;
1486

1487
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1488 1489 1490
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1491
	p->numa_scan_period_max = task_scan_max(p);
1492

1493 1494 1495 1496
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1497 1498 1499 1500 1501 1502
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
		spin_lock(group_lock);
	}

1503 1504
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1505
		unsigned long faults = 0, group_faults = 0;
1506
		int priv, i;
1507

1508
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1509
			long diff, f_diff, f_weight;
1510

1511
			i = task_faults_idx(nid, priv);
1512

1513
			/* Decay existing window, copy faults since last scan */
1514
			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1515 1516
			fault_types[priv] += p->numa_faults_buffer_memory[i];
			p->numa_faults_buffer_memory[i] = 0;
1517

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
				   (total_faults + 1);
1528
			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1529 1530
			p->numa_faults_buffer_cpu[i] = 0;

1531 1532
			p->numa_faults_memory[i] += diff;
			p->numa_faults_cpu[i] += f_diff;
1533
			faults += p->numa_faults_memory[i];
1534
			p->total_numa_faults += diff;
1535 1536
			if (p->numa_group) {
				/* safe because we can only change our own group */
1537
				p->numa_group->faults[i] += diff;
1538
				p->numa_group->faults_cpu[i] += f_diff;
1539 1540
				p->numa_group->total_faults += diff;
				group_faults += p->numa_group->faults[i];
1541
			}
1542 1543
		}

1544 1545 1546 1547
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1548 1549 1550 1551 1552 1553 1554

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1555 1556
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1557
	if (p->numa_group) {
1558
		update_numa_active_node_mask(p->numa_group);
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
		/*
		 * If the preferred task and group nids are different,
		 * iterate over the nodes again to find the best place.
		 */
		if (max_nid != max_group_nid) {
			unsigned long weight, max_weight = 0;

			for_each_online_node(nid) {
				weight = task_weight(p, nid) + group_weight(p, nid);
				if (weight > max_weight) {
					max_weight = weight;
					max_nid = nid;
				}
1572 1573
			}
		}
1574 1575

		spin_unlock(group_lock);
1576 1577
	}

1578
	/* Preferred node as the node with the most faults */
1579
	if (max_faults && max_nid != p->numa_preferred_nid) {
1580
		/* Update the preferred nid and migrate task if possible */
1581
		sched_setnuma(p, max_nid);
1582
		numa_migrate_preferred(p);
1583
	}
1584 1585
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1597 1598
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1599 1600 1601 1602 1603 1604 1605 1606 1607
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1608
				    4*nr_node_ids*sizeof(unsigned long);
1609 1610 1611 1612 1613 1614 1615 1616

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
		INIT_LIST_HEAD(&grp->task_list);
1617
		grp->gid = p->pid;
1618
		/* Second half of the array tracks nids where faults happen */
1619 1620
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
1621

1622 1623
		node_set(task_node(current), grp->active_nodes);

1624
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1625
			grp->faults[i] = p->numa_faults_memory[i];
1626

1627
		grp->total_faults = p->total_numa_faults;
1628

1629 1630 1631 1632 1633 1634 1635 1636 1637
		list_add(&p->numa_entry, &grp->task_list);
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
1638
		goto no_join;
1639 1640 1641

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1642
		goto no_join;
1643 1644 1645

	my_grp = p->numa_group;
	if (grp == my_grp)
1646
		goto no_join;
1647 1648 1649 1650 1651 1652

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1653
		goto no_join;
1654 1655 1656 1657 1658

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1659
		goto no_join;
1660

1661 1662 1663 1664 1665 1666 1667
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
1668

1669 1670 1671
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

1672
	if (join && !get_numa_group(grp))
1673
		goto no_join;
1674 1675 1676 1677 1678 1679

	rcu_read_unlock();

	if (!join)
		return;

1680 1681
	double_lock(&my_grp->lock, &grp->lock);

1682
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1683 1684
		my_grp->faults[i] -= p->numa_faults_memory[i];
		grp->faults[i] += p->numa_faults_memory[i];
1685
	}
1686 1687
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698

	list_move(&p->numa_entry, &grp->task_list);
	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
	spin_unlock(&grp->lock);

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
1699 1700 1701 1702 1703
	return;

no_join:
	rcu_read_unlock();
	return;
1704 1705 1706 1707 1708 1709
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
	int i;
1710
	void *numa_faults = p->numa_faults_memory;
1711 1712

	if (grp) {
1713
		spin_lock(&grp->lock);
1714
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1715
			grp->faults[i] -= p->numa_faults_memory[i];
1716
		grp->total_faults -= p->total_numa_faults;
1717

1718 1719 1720 1721 1722 1723 1724
		list_del(&p->numa_entry);
		grp->nr_tasks--;
		spin_unlock(&grp->lock);
		rcu_assign_pointer(p->numa_group, NULL);
		put_numa_group(grp);
	}

1725 1726
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1727 1728
	p->numa_faults_cpu= NULL;
	p->numa_faults_buffer_cpu = NULL;
1729
	kfree(numa_faults);
1730 1731
}

1732 1733 1734
/*
 * Got a PROT_NONE fault for a page on @node.
 */
1735
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1736 1737
{
	struct task_struct *p = current;
1738
	bool migrated = flags & TNF_MIGRATED;
1739
	int cpu_node = task_node(current);
1740
	int priv;
1741

1742
	if (!numabalancing_enabled)
1743 1744
		return;

1745 1746 1747 1748
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

1749 1750 1751 1752
	/* Do not worry about placement if exiting */
	if (p->state == TASK_DEAD)
		return;

1753
	/* Allocate buffer to track faults on a per-node basis */
1754
	if (unlikely(!p->numa_faults_memory)) {
1755 1756
		int size = sizeof(*p->numa_faults_memory) *
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1757

1758
		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1759
		if (!p->numa_faults_memory)
1760
			return;
1761

1762
		BUG_ON(p->numa_faults_buffer_memory);
1763 1764 1765 1766 1767 1768
		/*
		 * The averaged statistics, shared & private, memory & cpu,
		 * occupy the first half of the array. The second half of the
		 * array is for current counters, which are averaged into the
		 * first set by task_numa_placement.
		 */
1769 1770 1771
		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1772
		p->total_numa_faults = 0;
1773
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1774
	}
1775

1776 1777 1778 1779 1780 1781 1782 1783
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
1784
		if (!priv && !(flags & TNF_NO_GROUP))
1785
			task_numa_group(p, last_cpupid, flags, &priv);
1786 1787
	}

1788
	task_numa_placement(p);
1789

1790 1791 1792 1793 1794
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
1795 1796
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
1797 1798 1799
	if (migrated)
		p->numa_pages_migrated += pages;

1800 1801
	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1802
	p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1803 1804
}

1805 1806 1807 1808 1809 1810
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

1811 1812 1813 1814 1815 1816 1817 1818 1819
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
1820
	struct vm_area_struct *vma;
1821
	unsigned long start, end;
1822
	unsigned long nr_pte_updates = 0;
1823
	long pages;
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

1839
	if (!mm->numa_next_scan) {
1840 1841
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1842 1843
	}

1844 1845 1846 1847 1848 1849 1850
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

1851 1852 1853 1854
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
1855

1856
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1857 1858 1859
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

1860 1861 1862 1863 1864 1865
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

1866 1867 1868 1869 1870
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
1871

1872
	down_read(&mm->mmap_sem);
1873
	vma = find_vma(mm, start);
1874 1875
	if (!vma) {
		reset_ptenuma_scan(p);
1876
		start = 0;
1877 1878
		vma = mm->mmap;
	}
1879
	for (; vma; vma = vma->vm_next) {
1880
		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1881 1882
			continue;

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
1893 1894 1895 1896 1897 1898
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
1899

1900 1901 1902 1903
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
1904 1905 1906 1907 1908 1909 1910 1911 1912
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
1913

1914 1915 1916
			start = end;
			if (pages <= 0)
				goto out;
1917 1918

			cond_resched();
1919
		} while (end != vma->vm_end);
1920
	}
1921

1922
out:
1923
	/*
P
Peter Zijlstra 已提交
1924 1925 1926 1927
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
1928 1929
	 */
	if (vma)
1930
		mm->numa_scan_offset = start;
1931 1932 1933
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
1960
		if (!curr->node_stamp)
1961
			curr->numa_scan_period = task_scan_min(curr);
1962
		curr->node_stamp += period;
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
1974 1975 1976 1977 1978 1979 1980 1981

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
1982 1983
#endif /* CONFIG_NUMA_BALANCING */

1984 1985 1986 1987
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
1988
	if (!parent_entity(se))
1989
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1990
#ifdef CONFIG_SMP
1991 1992 1993 1994 1995 1996
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
1997
#endif
1998 1999 2000 2001 2002 2003 2004
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2005
	if (!parent_entity(se))
2006
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2007 2008
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2009
		list_del_init(&se->group_node);
2010
	}
2011 2012 2013
	cfs_rq->nr_running--;
}

2014 2015
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2016 2017 2018 2019 2020 2021 2022 2023 2024
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
2025
	tg_weight = atomic_long_read(&tg->load_avg);
2026
	tg_weight -= cfs_rq->tg_load_contrib;
2027 2028 2029 2030 2031
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

2032
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2033
{
2034
	long tg_weight, load, shares;
2035

2036
	tg_weight = calc_tg_weight(tg, cfs_rq);
2037
	load = cfs_rq->load.weight;
2038 2039

	shares = (tg->shares * load);
2040 2041
	if (tg_weight)
		shares /= tg_weight;
2042 2043 2044 2045 2046 2047 2048 2049 2050

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2051
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2052 2053 2054 2055
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2056 2057 2058
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2059 2060 2061 2062
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2063
		account_entity_dequeue(cfs_rq, se);
2064
	}
P
Peter Zijlstra 已提交
2065 2066 2067 2068 2069 2070 2071

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2072 2073
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2074
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2075 2076 2077
{
	struct task_group *tg;
	struct sched_entity *se;
2078
	long shares;
P
Peter Zijlstra 已提交
2079 2080 2081

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2082
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2083
		return;
2084 2085 2086 2087
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2088
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2089 2090 2091 2092

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2093
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2094 2095 2096 2097
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2098
#ifdef CONFIG_SMP
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2127 2128 2129 2130 2131 2132
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
	 * With a look-up table which covers k^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2153 2154
	}

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
2220 2221
	u64 delta, periods;
	u32 runnable_contrib;
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

2285
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2286
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2287 2288 2289 2290 2291 2292
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
2293
		return 0;
2294 2295 2296

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
2297 2298

	return decays;
2299 2300
}

2301 2302 2303 2304 2305
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
2306
	long tg_contrib;
2307 2308 2309 2310

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

2311 2312
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
2313 2314 2315
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
2316

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
2328
	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2329 2330 2331 2332 2333 2334 2335 2336 2337
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

2338 2339 2340 2341
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
2342 2343
	int runnable_avg;

2344 2345 2346
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
2347 2348
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
2378
}
2379 2380 2381 2382 2383 2384

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
}
2385
#else /* CONFIG_FAIR_GROUP_SCHED */
2386 2387
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
2388 2389
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
2390
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2391
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2392
#endif /* CONFIG_FAIR_GROUP_SCHED */
2393

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

2404 2405 2406 2407 2408
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

2409 2410 2411
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
2412
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2413 2414
		__update_group_entity_contrib(se);
	}
2415 2416 2417 2418

	return se->avg.load_avg_contrib - old_contrib;
}

2419 2420 2421 2422 2423 2424 2425 2426 2427
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

2428 2429
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

2430
/* Update a sched_entity's runnable average */
2431 2432
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
2433
{
2434 2435
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
2436
	u64 now;
2437

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2448 2449 2450
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
2451 2452 2453 2454

	if (!update_cfs_rq)
		return;

2455 2456
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
2457 2458 2459 2460 2461 2462 2463 2464
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
2465
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2466
{
2467
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2468 2469 2470
	u64 decays;

	decays = now - cfs_rq->last_decay;
2471
	if (!decays && !force_update)
2472 2473
		return;

2474 2475 2476
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2477 2478
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
2479

2480 2481 2482 2483 2484 2485
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
2486 2487

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2488
}
2489

2490 2491
/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2492 2493
						  struct sched_entity *se,
						  int wakeup)
2494
{
2495 2496 2497 2498
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
2499 2500 2501 2502
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
2503 2504
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
2505
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
2521 2522
		wakeup = 0;
	} else {
2523
		__synchronize_entity_decay(se);
2524 2525
	}

2526 2527
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
2528
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2529 2530
		update_entity_load_avg(se, 0);
	}
2531

2532
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2533 2534
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2535 2536
}

2537 2538 2539 2540 2541
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
2542
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2543 2544
						  struct sched_entity *se,
						  int sleep)
2545
{
2546
	update_entity_load_avg(se, 1);
2547 2548
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2549

2550
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2551 2552 2553 2554
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2555
}
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

2577 2578
static int idle_balance(struct rq *this_rq);

2579 2580
#else /* CONFIG_SMP */

2581 2582
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
2583
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2584
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2585 2586
					   struct sched_entity *se,
					   int wakeup) {}
2587
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2588 2589
					   struct sched_entity *se,
					   int sleep) {}
2590 2591
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
2592 2593 2594 2595 2596 2597

static inline int idle_balance(struct rq *rq)
{
	return 0;
}

2598
#endif /* CONFIG_SMP */
2599

2600
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2601 2602
{
#ifdef CONFIG_SCHEDSTATS
2603 2604 2605 2606 2607
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2608
	if (se->statistics.sleep_start) {
2609
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2610 2611 2612 2613

		if ((s64)delta < 0)
			delta = 0;

2614 2615
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2616

2617
		se->statistics.sleep_start = 0;
2618
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2619

2620
		if (tsk) {
2621
			account_scheduler_latency(tsk, delta >> 10, 1);
2622 2623
			trace_sched_stat_sleep(tsk, delta);
		}
2624
	}
2625
	if (se->statistics.block_start) {
2626
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2627 2628 2629 2630

		if ((s64)delta < 0)
			delta = 0;

2631 2632
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2633

2634
		se->statistics.block_start = 0;
2635
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2636

2637
		if (tsk) {
2638
			if (tsk->in_iowait) {
2639 2640
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2641
				trace_sched_stat_iowait(tsk, delta);
2642 2643
			}

2644 2645
			trace_sched_stat_blocked(tsk, delta);

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2657
		}
2658 2659 2660 2661
	}
#endif
}

P
Peter Zijlstra 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2675 2676 2677
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2678
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2679

2680 2681 2682 2683 2684 2685
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2686
	if (initial && sched_feat(START_DEBIT))
2687
		vruntime += sched_vslice(cfs_rq, se);
2688

2689
	/* sleeps up to a single latency don't count. */
2690
	if (!initial) {
2691
		unsigned long thresh = sysctl_sched_latency;
2692

2693 2694 2695 2696 2697 2698
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2699

2700
		vruntime -= thresh;
2701 2702
	}

2703
	/* ensure we never gain time by being placed backwards. */
2704
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2705 2706
}

2707 2708
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2709
static void
2710
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2711
{
2712 2713
	/*
	 * Update the normalized vruntime before updating min_vruntime
2714
	 * through calling update_curr().
2715
	 */
2716
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2717 2718
		se->vruntime += cfs_rq->min_vruntime;

2719
	/*
2720
	 * Update run-time statistics of the 'current'.
2721
	 */
2722
	update_curr(cfs_rq);
2723
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2724 2725
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
2726

2727
	if (flags & ENQUEUE_WAKEUP) {
2728
		place_entity(cfs_rq, se, 0);
2729
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
2730
	}
2731

2732
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
2733
	check_spread(cfs_rq, se);
2734 2735
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
2736
	se->on_rq = 1;
2737

2738
	if (cfs_rq->nr_running == 1) {
2739
		list_add_leaf_cfs_rq(cfs_rq);
2740 2741
		check_enqueue_throttle(cfs_rq);
	}
2742 2743
}

2744
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
2745
{
2746 2747
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2748
		if (cfs_rq->last != se)
2749
			break;
2750 2751

		cfs_rq->last = NULL;
2752 2753
	}
}
P
Peter Zijlstra 已提交
2754

2755 2756 2757 2758
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2759
		if (cfs_rq->next != se)
2760
			break;
2761 2762

		cfs_rq->next = NULL;
2763
	}
P
Peter Zijlstra 已提交
2764 2765
}

2766 2767 2768 2769
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2770
		if (cfs_rq->skip != se)
2771
			break;
2772 2773

		cfs_rq->skip = NULL;
2774 2775 2776
	}
}

P
Peter Zijlstra 已提交
2777 2778
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2779 2780 2781 2782 2783
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
2784 2785 2786

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
2787 2788
}

2789
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2790

2791
static void
2792
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2793
{
2794 2795 2796 2797
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
2798
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2799

2800
	update_stats_dequeue(cfs_rq, se);
2801
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
2802
#ifdef CONFIG_SCHEDSTATS
2803 2804 2805 2806
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
2807
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2808
			if (tsk->state & TASK_UNINTERRUPTIBLE)
2809
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2810
		}
2811
#endif
P
Peter Zijlstra 已提交
2812 2813
	}

P
Peter Zijlstra 已提交
2814
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2815

2816
	if (se != cfs_rq->curr)
2817
		__dequeue_entity(cfs_rq, se);
2818
	se->on_rq = 0;
2819
	account_entity_dequeue(cfs_rq, se);
2820 2821 2822 2823 2824 2825

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
2826
	if (!(flags & DEQUEUE_SLEEP))
2827
		se->vruntime -= cfs_rq->min_vruntime;
2828

2829 2830 2831
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

2832
	update_min_vruntime(cfs_rq);
2833
	update_cfs_shares(cfs_rq);
2834 2835 2836 2837 2838
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
2839
static void
I
Ingo Molnar 已提交
2840
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2841
{
2842
	unsigned long ideal_runtime, delta_exec;
2843 2844
	struct sched_entity *se;
	s64 delta;
2845

P
Peter Zijlstra 已提交
2846
	ideal_runtime = sched_slice(cfs_rq, curr);
2847
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2848
	if (delta_exec > ideal_runtime) {
2849
		resched_task(rq_of(cfs_rq)->curr);
2850 2851 2852 2853 2854
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

2866 2867
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
2868

2869 2870
	if (delta < 0)
		return;
2871

2872 2873
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
2874 2875
}

2876
static void
2877
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2878
{
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

2890
	update_stats_curr_start(cfs_rq, se);
2891
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
2892 2893 2894 2895 2896 2897
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
2898
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2899
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
2900 2901 2902
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
2903
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2904 2905
}

2906 2907 2908
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

2909 2910 2911 2912 2913 2914 2915
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
2916 2917
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2918
{
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
2930

2931 2932 2933 2934 2935
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

2946 2947 2948
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
2949

2950 2951 2952 2953 2954 2955
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

2956 2957 2958 2959 2960 2961
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

2962
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2963 2964

	return se;
2965 2966
}

2967
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2968

2969
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2970 2971 2972 2973 2974 2975
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
2976
		update_curr(cfs_rq);
2977

2978 2979 2980
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
2981
	check_spread(cfs_rq, prev);
2982
	if (prev->on_rq) {
2983
		update_stats_wait_start(cfs_rq, prev);
2984 2985
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
2986
		/* in !on_rq case, update occurred at dequeue */
2987
		update_entity_load_avg(prev, 1);
2988
	}
2989
	cfs_rq->curr = NULL;
2990 2991
}

P
Peter Zijlstra 已提交
2992 2993
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2994 2995
{
	/*
2996
	 * Update run-time statistics of the 'current'.
2997
	 */
2998
	update_curr(cfs_rq);
2999

3000 3001 3002
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3003
	update_entity_load_avg(curr, 1);
3004
	update_cfs_rq_blocked_load(cfs_rq, 1);
3005
	update_cfs_shares(cfs_rq);
3006

P
Peter Zijlstra 已提交
3007 3008 3009 3010 3011
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3012 3013 3014 3015
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
3016 3017 3018 3019 3020 3021 3022 3023
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3024
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3025
		check_preempt_tick(cfs_rq, curr);
3026 3027
}

3028 3029 3030 3031 3032 3033

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3034 3035

#ifdef HAVE_JUMP_LABEL
3036
static struct static_key __cfs_bandwidth_used;
3037 3038 3039

static inline bool cfs_bandwidth_used(void)
{
3040
	return static_key_false(&__cfs_bandwidth_used);
3041 3042
}

3043
void cfs_bandwidth_usage_inc(void)
3044
{
3045 3046 3047 3048 3049 3050
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3051 3052 3053 3054 3055 3056 3057
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3058 3059
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3060 3061
#endif /* HAVE_JUMP_LABEL */

3062 3063 3064 3065 3066 3067 3068 3069
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3070 3071 3072 3073 3074 3075

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3076 3077 3078 3079 3080 3081 3082
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3083
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3095 3096 3097 3098 3099
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3100 3101 3102 3103 3104 3105
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3106
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3107 3108
}

3109 3110
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3111 3112 3113
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3114
	u64 amount = 0, min_amount, expires;
3115 3116 3117 3118 3119 3120 3121

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3122
	else {
P
Paul Turner 已提交
3123 3124 3125 3126 3127 3128 3129 3130
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
3131
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
3132
		}
3133 3134 3135 3136 3137 3138

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3139
	}
P
Paul Turner 已提交
3140
	expires = cfs_b->runtime_expires;
3141 3142 3143
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3144 3145 3146 3147 3148 3149 3150
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3151 3152

	return cfs_rq->runtime_remaining > 0;
3153 3154
}

P
Paul Turner 已提交
3155 3156 3157 3158 3159
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3160
{
P
Paul Turner 已提交
3161 3162 3163
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3164
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3165 3166
		return;

P
Paul Turner 已提交
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3188
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3189 3190
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3191
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3192 3193 3194
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3195 3196
		return;

3197 3198 3199 3200 3201 3202
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
3203 3204
}

3205
static __always_inline
3206
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3207
{
3208
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3209 3210 3211 3212 3213
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3214 3215
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3216
	return cfs_bandwidth_used() && cfs_rq->throttled;
3217 3218
}

3219 3220 3221
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3222
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3251
		/* adjust cfs_rq_clock_task() */
3252
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3253
					     cfs_rq->throttled_clock_task;
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3265 3266
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3267
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3268 3269 3270 3271 3272
	cfs_rq->throttle_count++;

	return 0;
}

3273
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3274 3275 3276 3277 3278 3279 3280 3281
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3282
	/* freeze hierarchy runnable averages while throttled */
3283 3284 3285
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
3306
	cfs_rq->throttled_clock = rq_clock(rq);
3307 3308
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3309 3310
	if (!cfs_b->timer_active)
		__start_cfs_bandwidth(cfs_b);
3311 3312 3313
	raw_spin_unlock(&cfs_b->lock);
}

3314
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3315 3316 3317 3318 3319 3320 3321
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3322
	se = cfs_rq->tg->se[cpu_of(rq)];
3323 3324

	cfs_rq->throttled = 0;
3325 3326 3327

	update_rq_clock(rq);

3328
	raw_spin_lock(&cfs_b->lock);
3329
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3330 3331 3332
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3333 3334 3335
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

3399 3400 3401 3402 3403 3404 3405 3406
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3407 3408
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
3409 3410 3411 3412 3413 3414

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

3415 3416 3417
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
3418
	cfs_b->nr_periods += overrun;
3419

P
Paul Turner 已提交
3420 3421 3422 3423
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

3424 3425 3426 3427 3428 3429 3430
	/*
	 * if we have relooped after returning idle once, we need to update our
	 * status as actually running, so that other cpus doing
	 * __start_cfs_bandwidth will stop trying to cancel us.
	 */
	cfs_b->timer_active = 1;

P
Paul Turner 已提交
3431 3432
	__refill_cfs_bandwidth_runtime(cfs_b);

3433 3434 3435 3436 3437 3438
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

3439 3440 3441
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
3466

3467 3468 3469 3470 3471 3472 3473 3474 3475
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3476 3477 3478 3479 3480 3481 3482
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
3483

3484 3485 3486 3487 3488 3489 3490
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3491 3492 3493 3494 3495 3496 3497
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3554 3555 3556
	if (!cfs_bandwidth_used())
		return;

3557
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3573 3574 3575
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3576
		return;
3577
	}
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596

	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

3597 3598 3599 3600 3601 3602 3603
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3604 3605 3606
	if (!cfs_bandwidth_used())
		return;

3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
3622
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3623
{
3624
	if (!cfs_bandwidth_used())
3625
		return false;
3626

3627
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3628
		return false;
3629 3630 3631 3632 3633 3634

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
3635
		return true;
3636 3637

	throttle_cfs_rq(cfs_rq);
3638
	return true;
3639
}
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
3700 3701 3702
	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3703
		raw_spin_unlock(&cfs_b->lock);
3704
		cpu_relax();
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

3721
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
3742 3743
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
3744
	return rq_clock_task(rq_of(cfs_rq));
3745 3746
}

3747
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3748
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3749
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3750
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3751 3752 3753 3754 3755

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
3767 3768 3769 3770 3771

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3772 3773
#endif

3774 3775 3776 3777 3778
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3779
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3780 3781 3782

#endif /* CONFIG_CFS_BANDWIDTH */

3783 3784 3785 3786
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
3787 3788 3789 3790 3791 3792 3793 3794
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

3795
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
3810
		if (rq->curr != p)
3811
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
3812

3813
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
3814 3815
	}
}
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

3826
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3827 3828 3829 3830 3831
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
3832
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
3833 3834 3835 3836
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
3837 3838 3839 3840

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
3841 3842
#endif

3843 3844 3845 3846 3847
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
3848
static void
3849
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3850 3851
{
	struct cfs_rq *cfs_rq;
3852
	struct sched_entity *se = &p->se;
3853 3854

	for_each_sched_entity(se) {
3855
		if (se->on_rq)
3856 3857
			break;
		cfs_rq = cfs_rq_of(se);
3858
		enqueue_entity(cfs_rq, se, flags);
3859 3860 3861 3862 3863 3864 3865 3866 3867

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3868
		cfs_rq->h_nr_running++;
3869

3870
		flags = ENQUEUE_WAKEUP;
3871
	}
P
Peter Zijlstra 已提交
3872

P
Peter Zijlstra 已提交
3873
	for_each_sched_entity(se) {
3874
		cfs_rq = cfs_rq_of(se);
3875
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
3876

3877 3878 3879
		if (cfs_rq_throttled(cfs_rq))
			break;

3880
		update_cfs_shares(cfs_rq);
3881
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3882 3883
	}

3884 3885
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
3886
		inc_nr_running(rq);
3887
	}
3888
	hrtick_update(rq);
3889 3890
}

3891 3892
static void set_next_buddy(struct sched_entity *se);

3893 3894 3895 3896 3897
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
3898
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3899 3900
{
	struct cfs_rq *cfs_rq;
3901
	struct sched_entity *se = &p->se;
3902
	int task_sleep = flags & DEQUEUE_SLEEP;
3903 3904 3905

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3906
		dequeue_entity(cfs_rq, se, flags);
3907 3908 3909 3910 3911 3912 3913 3914 3915

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3916
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3917

3918
		/* Don't dequeue parent if it has other entities besides us */
3919 3920 3921 3922 3923 3924 3925
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
3926 3927 3928

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
3929
			break;
3930
		}
3931
		flags |= DEQUEUE_SLEEP;
3932
	}
P
Peter Zijlstra 已提交
3933

P
Peter Zijlstra 已提交
3934
	for_each_sched_entity(se) {
3935
		cfs_rq = cfs_rq_of(se);
3936
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3937

3938 3939 3940
		if (cfs_rq_throttled(cfs_rq))
			break;

3941
		update_cfs_shares(cfs_rq);
3942
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3943 3944
	}

3945
	if (!se) {
3946
		dec_nr_running(rq);
3947 3948
		update_rq_runnable_avg(rq, 1);
	}
3949
	hrtick_update(rq);
3950 3951
}

3952
#ifdef CONFIG_SMP
3953 3954 3955
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
3956
	return cpu_rq(cpu)->cfs.runnable_load_avg;
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4001
	unsigned long load_avg = rq->cfs.runnable_load_avg;
4002 4003

	if (nr_running)
4004
		return load_avg / nr_running;
4005 4006 4007 4008

	return 0;
}

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
	if (jiffies > current->wakee_flip_decay_ts + HZ) {
		current->wakee_flips = 0;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4026

4027
static void task_waking_fair(struct task_struct *p)
4028 4029 4030
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4031 4032 4033 4034
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4035

4036 4037 4038 4039 4040 4041 4042 4043
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4044

4045
	se->vruntime -= min_vruntime;
4046
	record_wakee(p);
4047 4048
}

4049
#ifdef CONFIG_FAIR_GROUP_SCHED
4050 4051 4052 4053 4054 4055
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4099
 */
P
Peter Zijlstra 已提交
4100
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4101
{
P
Peter Zijlstra 已提交
4102
	struct sched_entity *se = tg->se[cpu];
4103

4104
	if (!tg->parent)	/* the trivial, non-cgroup case */
4105 4106
		return wl;

P
Peter Zijlstra 已提交
4107
	for_each_sched_entity(se) {
4108
		long w, W;
P
Peter Zijlstra 已提交
4109

4110
		tg = se->my_q->tg;
4111

4112 4113 4114 4115
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4116

4117 4118 4119 4120
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
4121

4122 4123 4124 4125 4126
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
4127 4128
		else
			wl = tg->shares;
4129

4130 4131 4132 4133 4134
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4135 4136
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4137 4138 4139 4140

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4141
		wl -= se->load.weight;
4142 4143 4144 4145 4146 4147 4148 4149

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4150 4151
		wg = 0;
	}
4152

P
Peter Zijlstra 已提交
4153
	return wl;
4154 4155
}
#else
P
Peter Zijlstra 已提交
4156

4157
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4158
{
4159
	return wl;
4160
}
P
Peter Zijlstra 已提交
4161

4162 4163
#endif

4164 4165
static int wake_wide(struct task_struct *p)
{
4166
	int factor = this_cpu_read(sd_llc_size);
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

4186
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4187
{
4188
	s64 this_load, load;
4189
	int idx, this_cpu, prev_cpu;
4190
	unsigned long tl_per_task;
4191
	struct task_group *tg;
4192
	unsigned long weight;
4193
	int balanced;
4194

4195 4196 4197 4198 4199 4200 4201
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

4202 4203 4204 4205 4206
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4207

4208 4209 4210 4211 4212
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4213 4214 4215 4216
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

4217
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4218 4219
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4220

4221 4222
	tg = task_group(p);
	weight = p->se.load.weight;
4223

4224 4225
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4226 4227 4228
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4229 4230 4231 4232
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4233 4234
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
4248

4249
	/*
I
Ingo Molnar 已提交
4250 4251 4252
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
4253
	 */
4254 4255
	if (sync && balanced)
		return 1;
4256

4257
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4258 4259
	tl_per_task = cpu_avg_load_per_task(this_cpu);

4260 4261 4262
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4263 4264 4265 4266 4267
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
4268
		schedstat_inc(sd, ttwu_move_affine);
4269
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4270 4271 4272 4273 4274 4275

		return 1;
	}
	return 0;
}

4276 4277 4278 4279 4280
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4281
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4282
		  int this_cpu, int sd_flag)
4283
{
4284
	struct sched_group *idlest = NULL, *group = sd->groups;
4285
	unsigned long min_load = ULONG_MAX, this_load = 0;
4286
	int load_idx = sd->forkexec_idx;
4287
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4288

4289 4290 4291
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4292 4293 4294 4295
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4296

4297 4298
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4299
					tsk_cpus_allowed(p)))
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
4319
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
4345
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4346 4347 4348 4349 4350
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
4351 4352 4353
		}
	}

4354 4355
	return idlest;
}
4356

4357 4358 4359
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4360
static int select_idle_sibling(struct task_struct *p, int target)
4361
{
4362
	struct sched_domain *sd;
4363
	struct sched_group *sg;
4364
	int i = task_cpu(p);
4365

4366 4367
	if (idle_cpu(target))
		return target;
4368 4369

	/*
4370
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4371
	 */
4372 4373
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4374 4375

	/*
4376
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4377
	 */
4378
	sd = rcu_dereference(per_cpu(sd_llc, target));
4379
	for_each_lower_domain(sd) {
4380 4381 4382 4383 4384 4385 4386
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4387
				if (i == target || !idle_cpu(i))
4388 4389
					goto next;
			}
4390

4391 4392 4393 4394 4395 4396 4397 4398
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4399 4400 4401
	return target;
}

4402
/*
4403 4404 4405
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4406
 *
4407 4408
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4409
 *
4410
 * Returns the target cpu number.
4411 4412 4413
 *
 * preempt must be disabled.
 */
4414
static int
4415
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4416
{
4417
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4418 4419
	int cpu = smp_processor_id();
	int new_cpu = cpu;
4420
	int want_affine = 0;
4421
	int sync = wake_flags & WF_SYNC;
4422

4423
	if (p->nr_cpus_allowed == 1)
4424 4425
		return prev_cpu;

4426
	if (sd_flag & SD_BALANCE_WAKE) {
4427
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4428 4429 4430
			want_affine = 1;
		new_cpu = prev_cpu;
	}
4431

4432
	rcu_read_lock();
4433
	for_each_domain(cpu, tmp) {
4434 4435 4436
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

4437
		/*
4438 4439
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4440
		 */
4441 4442 4443
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4444
			break;
4445
		}
4446

4447
		if (tmp->flags & sd_flag)
4448 4449 4450
			sd = tmp;
	}

4451
	if (affine_sd) {
4452
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4453 4454 4455 4456
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
4457
	}
4458

4459 4460
	while (sd) {
		struct sched_group *group;
4461
		int weight;
4462

4463
		if (!(sd->flags & sd_flag)) {
4464 4465 4466
			sd = sd->child;
			continue;
		}
4467

4468
		group = find_idlest_group(sd, p, cpu, sd_flag);
4469 4470 4471 4472
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4473

4474
		new_cpu = find_idlest_cpu(group, p, cpu);
4475 4476 4477 4478
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4479
		}
4480 4481 4482

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4483
		weight = sd->span_weight;
4484 4485
		sd = NULL;
		for_each_domain(cpu, tmp) {
4486
			if (weight <= tmp->span_weight)
4487
				break;
4488
			if (tmp->flags & sd_flag)
4489 4490 4491
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4492
	}
4493 4494
unlock:
	rcu_read_unlock();
4495

4496
	return new_cpu;
4497
}
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
4519 4520
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
4521
	}
4522
}
4523 4524
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
4525 4526
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4527 4528 4529 4530
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
4531 4532
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
4533 4534 4535 4536 4537 4538 4539 4540 4541
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
4542
	 */
4543
	return calc_delta_fair(gran, se);
4544 4545
}

4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
4568
	gran = wakeup_gran(curr, se);
4569 4570 4571 4572 4573 4574
	if (vdiff > gran)
		return 1;

	return 0;
}

4575 4576
static void set_last_buddy(struct sched_entity *se)
{
4577 4578 4579 4580 4581
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
4582 4583 4584 4585
}

static void set_next_buddy(struct sched_entity *se)
{
4586 4587 4588 4589 4590
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
4591 4592
}

4593 4594
static void set_skip_buddy(struct sched_entity *se)
{
4595 4596
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
4597 4598
}

4599 4600 4601
/*
 * Preempt the current task with a newly woken task if needed:
 */
4602
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4603 4604
{
	struct task_struct *curr = rq->curr;
4605
	struct sched_entity *se = &curr->se, *pse = &p->se;
4606
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4607
	int scale = cfs_rq->nr_running >= sched_nr_latency;
4608
	int next_buddy_marked = 0;
4609

I
Ingo Molnar 已提交
4610 4611 4612
	if (unlikely(se == pse))
		return;

4613
	/*
4614
	 * This is possible from callers such as move_task(), in which we
4615 4616 4617 4618 4619 4620 4621
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

4622
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
4623
		set_next_buddy(pse);
4624 4625
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
4626

4627 4628 4629
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
4630 4631 4632 4633 4634 4635
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
4636 4637 4638 4639
	 */
	if (test_tsk_need_resched(curr))
		return;

4640 4641 4642 4643 4644
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

4645
	/*
4646 4647
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
4648
	 */
4649
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4650
		return;
4651

4652
	find_matching_se(&se, &pse);
4653
	update_curr(cfs_rq_of(se));
4654
	BUG_ON(!pse);
4655 4656 4657 4658 4659 4660 4661
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
4662
		goto preempt;
4663
	}
4664

4665
	return;
4666

4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
4683 4684
}

4685 4686
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4687 4688 4689
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
4690
	struct task_struct *p;
4691
	int new_tasks;
4692

4693
again:
4694 4695
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
4696
		goto idle;
4697

4698
	if (prev->sched_class != &fair_sched_class)
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
		if (curr && curr->on_rq)
			update_curr(cfs_rq);
		else
			curr = NULL;

		/*
		 * This call to check_cfs_rq_runtime() will do the throttle and
		 * dequeue its entity in the parent(s). Therefore the 'simple'
		 * nr_running test will indeed be correct.
		 */
		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
			goto simple;

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
4770

4771
	if (!cfs_rq->nr_running)
4772
		goto idle;
4773

4774
	put_prev_task(rq, prev);
4775

4776
	do {
4777
		se = pick_next_entity(cfs_rq, NULL);
4778
		set_next_entity(cfs_rq, se);
4779 4780 4781
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
4782
	p = task_of(se);
4783

4784 4785
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
4786 4787

	return p;
4788 4789

idle:
4790
	new_tasks = idle_balance(rq);
4791 4792 4793 4794 4795
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
4796
	if (new_tasks < 0)
4797 4798
		return RETRY_TASK;

4799
	if (new_tasks > 0)
4800 4801 4802
		goto again;

	return NULL;
4803 4804 4805 4806 4807
}

/*
 * Account for a descheduled task:
 */
4808
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4809 4810 4811 4812 4813 4814
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4815
		put_prev_entity(cfs_rq, se);
4816 4817 4818
	}
}

4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
4844 4845 4846 4847 4848 4849
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
4850 4851 4852 4853 4854
	}

	set_skip_buddy(se);
}

4855 4856 4857 4858
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

4859 4860
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

4871
#ifdef CONFIG_SMP
4872
/**************************************************
P
Peter Zijlstra 已提交
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
4989

4990 4991
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

4992 4993
enum fbq_type { regular, remote, all };

4994
#define LBF_ALL_PINNED	0x01
4995
#define LBF_NEED_BREAK	0x02
4996 4997
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
4998 4999 5000 5001 5002

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5003
	int			src_cpu;
5004 5005 5006 5007

	int			dst_cpu;
	struct rq		*dst_rq;

5008 5009
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5010
	enum cpu_idle_type	idle;
5011
	long			imbalance;
5012 5013 5014
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5015
	unsigned int		flags;
5016 5017 5018 5019

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5020 5021

	enum fbq_type		fbq_type;
5022 5023
};

5024
/*
5025
 * move_task - move a task from one runqueue to another runqueue.
5026 5027
 * Both runqueues must be locked.
 */
5028
static void move_task(struct task_struct *p, struct lb_env *env)
5029
{
5030 5031 5032 5033
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
5034 5035
}

5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
/*
 * Is this task likely cache-hot:
 */
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

5068 5069 5070 5071 5072 5073
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
	int src_nid, dst_nid;

5074
	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5075 5076 5077 5078 5079 5080 5081
	    !(env->sd->flags & SD_NUMA)) {
		return false;
	}

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5082
	if (src_nid == dst_nid)
5083 5084
		return false;

5085 5086 5087 5088
	/* Always encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
		return true;

5089 5090 5091
	/* If both task and group weight improve, this move is a winner. */
	if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
	    group_weight(p, dst_nid) > group_weight(p, src_nid))
5092 5093 5094 5095
		return true;

	return false;
}
5096 5097 5098 5099 5100 5101 5102 5103 5104


static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
	int src_nid, dst_nid;

	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
		return false;

5105
	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5106 5107 5108 5109 5110
		return false;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5111
	if (src_nid == dst_nid)
5112 5113
		return false;

5114 5115 5116 5117
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid)
		return true;

5118 5119 5120
	/* If either task or group weight get worse, don't do it. */
	if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
	    group_weight(p, dst_nid) < group_weight(p, src_nid))
5121 5122 5123 5124 5125
		return true;

	return false;
}

5126 5127 5128 5129 5130 5131
#else
static inline bool migrate_improves_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5132 5133 5134 5135 5136 5137

static inline bool migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5138 5139
#endif

5140 5141 5142 5143
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5144
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5145 5146 5147 5148
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
5149
	 * 1) throttled_lb_pair, or
5150
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5151 5152
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5153
	 */
5154 5155 5156
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5157
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5158
		int cpu;
5159

5160
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5161

5162 5163
		env->flags |= LBF_SOME_PINNED;

5164 5165 5166 5167 5168 5169 5170 5171
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5172
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5173 5174
			return 0;

5175 5176 5177
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5178
				env->flags |= LBF_DST_PINNED;
5179 5180 5181
				env->new_dst_cpu = cpu;
				break;
			}
5182
		}
5183

5184 5185
		return 0;
	}
5186 5187

	/* Record that we found atleast one task that could run on dst_cpu */
5188
	env->flags &= ~LBF_ALL_PINNED;
5189

5190
	if (task_running(env->src_rq, p)) {
5191
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5192 5193 5194 5195 5196
		return 0;
	}

	/*
	 * Aggressive migration if:
5197 5198 5199
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5200
	 */
5201
	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
5202 5203
	if (!tsk_cache_hot)
		tsk_cache_hot = migrate_degrades_locality(p, env);
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214

	if (migrate_improves_locality(p, env)) {
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
#endif
		return 1;
	}

5215
	if (!tsk_cache_hot ||
5216
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Z
Zhang Hang 已提交
5217

5218
		if (tsk_cache_hot) {
5219
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5220
			schedstat_inc(p, se.statistics.nr_forced_migrations);
5221
		}
Z
Zhang Hang 已提交
5222

5223 5224 5225
		return 1;
	}

Z
Zhang Hang 已提交
5226 5227
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5228 5229
}

5230 5231 5232 5233 5234 5235 5236
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
5237
static int move_one_task(struct lb_env *env)
5238 5239 5240
{
	struct task_struct *p, *n;

5241 5242 5243
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5244

5245 5246 5247 5248 5249 5250 5251 5252
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
5253 5254 5255 5256
	}
	return 0;
}

5257 5258
static const unsigned int sched_nr_migrate_break = 32;

5259
/*
5260
 * move_tasks tries to move up to imbalance weighted load from busiest to
5261 5262 5263 5264 5265 5266
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
5267
{
5268 5269
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5270 5271
	unsigned long load;
	int pulled = 0;
5272

5273
	if (env->imbalance <= 0)
5274
		return 0;
5275

5276 5277
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5278

5279 5280
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5281
		if (env->loop > env->loop_max)
5282
			break;
5283 5284

		/* take a breather every nr_migrate tasks */
5285
		if (env->loop > env->loop_break) {
5286
			env->loop_break += sched_nr_migrate_break;
5287
			env->flags |= LBF_NEED_BREAK;
5288
			break;
5289
		}
5290

5291
		if (!can_migrate_task(p, env))
5292 5293 5294
			goto next;

		load = task_h_load(p);
5295

5296
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5297 5298
			goto next;

5299
		if ((load / 2) > env->imbalance)
5300
			goto next;
5301

5302
		move_task(p, env);
5303
		pulled++;
5304
		env->imbalance -= load;
5305 5306

#ifdef CONFIG_PREEMPT
5307 5308 5309 5310 5311
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
5312
		if (env->idle == CPU_NEWLY_IDLE)
5313
			break;
5314 5315
#endif

5316 5317 5318 5319
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5320
		if (env->imbalance <= 0)
5321
			break;
5322 5323 5324

		continue;
next:
5325
		list_move_tail(&p->se.group_node, tasks);
5326
	}
5327

5328
	/*
5329 5330 5331
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
5332
	 */
5333
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
5334

5335
	return pulled;
5336 5337
}

P
Peter Zijlstra 已提交
5338
#ifdef CONFIG_FAIR_GROUP_SCHED
5339 5340 5341
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
5342
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5343
{
5344 5345
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5346

5347 5348 5349
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
5350

5351
	update_cfs_rq_blocked_load(cfs_rq, 1);
5352

5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
5367
		struct rq *rq = rq_of(cfs_rq);
5368 5369
		update_rq_runnable_avg(rq, rq->nr_running);
	}
5370 5371
}

5372
static void update_blocked_averages(int cpu)
5373 5374
{
	struct rq *rq = cpu_rq(cpu);
5375 5376
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5377

5378 5379
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5380 5381 5382 5383
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5384
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5385 5386 5387 5388 5389 5390
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5391
	}
5392 5393

	raw_spin_unlock_irqrestore(&rq->lock, flags);
5394 5395
}

5396
/*
5397
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5398 5399 5400
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5401
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5402
{
5403 5404
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5405
	unsigned long now = jiffies;
5406
	unsigned long load;
5407

5408
	if (cfs_rq->last_h_load_update == now)
5409 5410
		return;

5411 5412 5413 5414 5415 5416 5417
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5418

5419
	if (!se) {
5420
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5432 5433
}

5434
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5435
{
5436
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5437

5438
	update_cfs_rq_h_load(cfs_rq);
5439 5440
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
5441 5442
}
#else
5443
static inline void update_blocked_averages(int cpu)
5444 5445 5446
{
}

5447
static unsigned long task_h_load(struct task_struct *p)
5448
{
5449
	return p->se.avg.load_avg_contrib;
5450
}
P
Peter Zijlstra 已提交
5451
#endif
5452 5453 5454 5455 5456 5457 5458 5459 5460

/********** Helpers for find_busiest_group ************************/
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5461
	unsigned long load_per_task;
5462
	unsigned long group_power;
5463 5464 5465 5466
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int group_capacity;
	unsigned int idle_cpus;
	unsigned int group_weight;
5467
	int group_imb; /* Is there an imbalance in the group ? */
5468
	int group_has_capacity; /* Is there extra capacity in the group? */
5469 5470 5471 5472
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
5473 5474
};

J
Joonsoo Kim 已提交
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
	unsigned long total_pwr;	/* Total power of all groups in sd */
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5487
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5488 5489
};

5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
		.total_pwr = 0UL,
		.busiest_stat = {
			.avg_load = 0UL,
		},
	};
}

5509 5510 5511
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
5512
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5513 5514
 *
 * Return: The load index.
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

5537
static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5538
{
5539
	return SCHED_POWER_SCALE;
5540 5541 5542 5543 5544 5545 5546
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

5547
static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5548
{
5549
	unsigned long weight = sd->span_weight;
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

5562
static unsigned long scale_rt_power(int cpu)
5563 5564
{
	struct rq *rq = cpu_rq(cpu);
5565
	u64 total, available, age_stamp, avg;
5566

5567 5568 5569 5570 5571 5572 5573
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

5574
	total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5575

5576
	if (unlikely(total < avg)) {
5577 5578 5579
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
5580
		available = total - avg;
5581
	}
5582

5583 5584
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
5585

5586
	total >>= SCHED_POWER_SHIFT;
5587 5588 5589 5590 5591 5592

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
5593
	unsigned long weight = sd->span_weight;
5594
	unsigned long power = SCHED_POWER_SCALE;
5595 5596 5597 5598 5599 5600 5601 5602
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

5603
		power >>= SCHED_POWER_SHIFT;
5604 5605
	}

5606
	sdg->sgp->power_orig = power;
5607 5608 5609 5610 5611 5612

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

5613
	power >>= SCHED_POWER_SHIFT;
5614

5615
	power *= scale_rt_power(cpu);
5616
	power >>= SCHED_POWER_SHIFT;
5617 5618 5619 5620

	if (!power)
		power = 1;

5621
	cpu_rq(cpu)->cpu_power = power;
5622
	sdg->sgp->power = power;
5623 5624
}

5625
void update_group_power(struct sched_domain *sd, int cpu)
5626 5627 5628
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
5629
	unsigned long power, power_orig;
5630 5631 5632 5633 5634
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
5635 5636 5637 5638 5639 5640

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

5641
	power_orig = power = 0;
5642

P
Peter Zijlstra 已提交
5643 5644 5645 5646 5647 5648
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

5649
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5650 5651
			struct sched_group_power *sgp;
			struct rq *rq = cpu_rq(cpu);
5652

5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670
			/*
			 * build_sched_domains() -> init_sched_groups_power()
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
			 * Use power_of(), which is set irrespective of domains
			 * in update_cpu_power().
			 *
			 * This avoids power/power_orig from being 0 and
			 * causing divide-by-zero issues on boot.
			 *
			 * Runtime updates will correct power_orig.
			 */
			if (unlikely(!rq->sd)) {
				power_orig += power_of(cpu);
				power += power_of(cpu);
				continue;
			}
5671

5672 5673 5674
			sgp = rq->sd->groups->sgp;
			power_orig += sgp->power_orig;
			power += sgp->power;
5675
		}
P
Peter Zijlstra 已提交
5676 5677 5678 5679 5680 5681 5682 5683
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
5684
			power_orig += group->sgp->power_orig;
P
Peter Zijlstra 已提交
5685 5686 5687 5688
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
5689

5690 5691
	sdg->sgp->power_orig = power_orig;
	sdg->sgp->power = power;
5692 5693
}

5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
5705
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
5706
	 */
P
Peter Zijlstra 已提交
5707
	if (!(sd->flags & SD_SHARE_CPUPOWER))
5708 5709 5710 5711 5712
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
5713
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5714 5715 5716 5717 5718
		return 1;

	return 0;
}

5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
5735 5736
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
5737 5738
 *
 * When this is so detected; this group becomes a candidate for busiest; see
5739
 * update_sd_pick_busiest(). And calculate_imbalance() and
5740
 * find_busiest_group() avoid some of the usual balance conditions to allow it
5741 5742 5743 5744 5745 5746 5747
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

5748
static inline int sg_imbalanced(struct sched_group *group)
5749
{
5750
	return group->sgp->imbalance;
5751 5752
}

5753 5754 5755
/*
 * Compute the group capacity.
 *
5756 5757 5758
 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
 * first dividing out the smt factor and computing the actual number of cores
 * and limit power unit capacity with that.
5759 5760 5761
 */
static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
{
5762 5763 5764 5765 5766 5767
	unsigned int capacity, smt, cpus;
	unsigned int power, power_orig;

	power = group->sgp->power;
	power_orig = group->sgp->power_orig;
	cpus = group->group_weight;
5768

5769 5770 5771
	/* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
	capacity = cpus / smt; /* cores */
5772

5773
	capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5774 5775 5776 5777 5778 5779
	if (!capacity)
		capacity = fix_small_capacity(env->sd, group);

	return capacity;
}

5780 5781
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5782
 * @env: The load balancing environment.
5783 5784 5785 5786 5787
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
 */
5788 5789
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
5790
			int local_group, struct sg_lb_stats *sgs)
5791
{
5792
	unsigned long load;
5793
	int i;
5794

5795 5796
	memset(sgs, 0, sizeof(*sgs));

5797
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5798 5799 5800
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
5801
		if (local_group)
5802
			load = target_load(i, load_idx);
5803
		else
5804 5805 5806
			load = source_load(i, load_idx);

		sgs->group_load += load;
5807
		sgs->sum_nr_running += rq->nr_running;
5808 5809 5810 5811
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
5812
		sgs->sum_weighted_load += weighted_cpuload(i);
5813 5814
		if (idle_cpu(i))
			sgs->idle_cpus++;
5815 5816 5817
	}

	/* Adjust by relative CPU power of the group */
5818 5819
	sgs->group_power = group->sgp->power;
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5820

5821
	if (sgs->sum_nr_running)
5822
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5823

5824
	sgs->group_weight = group->group_weight;
5825

5826 5827 5828
	sgs->group_imb = sg_imbalanced(group);
	sgs->group_capacity = sg_capacity(env, group);

5829 5830
	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
5831 5832
}

5833 5834
/**
 * update_sd_pick_busiest - return 1 on busiest group
5835
 * @env: The load balancing environment.
5836 5837
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
5838
 * @sgs: sched_group statistics
5839 5840 5841
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
5842 5843 5844
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
5845
 */
5846
static bool update_sd_pick_busiest(struct lb_env *env,
5847 5848
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
5849
				   struct sg_lb_stats *sgs)
5850
{
J
Joonsoo Kim 已提交
5851
	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
5865 5866
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

5907
/**
5908
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5909
 * @env: The load balancing environment.
5910 5911
 * @sds: variable to hold the statistics for this sched_domain.
 */
5912
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5913
{
5914 5915
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
5916
	struct sg_lb_stats tmp_sgs;
5917 5918 5919 5920 5921
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

5922
	load_idx = get_sd_load_idx(env->sd, env->idle);
5923 5924

	do {
J
Joonsoo Kim 已提交
5925
		struct sg_lb_stats *sgs = &tmp_sgs;
5926 5927
		int local_group;

5928
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
5929 5930 5931
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
5932 5933 5934 5935

			if (env->idle != CPU_NEWLY_IDLE ||
			    time_after_eq(jiffies, sg->sgp->next_update))
				update_group_power(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
5936
		}
5937

J
Joonsoo Kim 已提交
5938
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5939

5940 5941 5942
		if (local_group)
			goto next_group;

5943 5944
		/*
		 * In case the child domain prefers tasks go to siblings
5945
		 * first, lower the sg capacity to one so that we'll try
5946 5947 5948 5949 5950 5951
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
5952
		 */
5953 5954
		if (prefer_sibling && sds->local &&
		    sds->local_stat.group_has_capacity)
5955
			sgs->group_capacity = min(sgs->group_capacity, 1U);
5956

5957
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5958
			sds->busiest = sg;
J
Joonsoo Kim 已提交
5959
			sds->busiest_stat = *sgs;
5960 5961
		}

5962 5963 5964 5965 5966
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
		sds->total_pwr += sgs->group_power;

5967
		sg = sg->next;
5968
	} while (sg != env->sd->groups);
5969 5970 5971

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
5991
 * Return: 1 when packing is required and a task should be moved to
5992 5993
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
5994
 * @env: The load balancing environment.
5995 5996
 * @sds: Statistics of the sched_domain which is to be packed
 */
5997
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5998 5999 6000
{
	int busiest_cpu;

6001
	if (!(env->sd->flags & SD_ASYM_PACKING))
6002 6003 6004 6005 6006 6007
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6008
	if (env->dst_cpu > busiest_cpu)
6009 6010
		return 0;

6011
	env->imbalance = DIV_ROUND_CLOSEST(
6012 6013
		sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
		SCHED_POWER_SCALE);
6014

6015
	return 1;
6016 6017 6018 6019 6020 6021
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6022
 * @env: The load balancing environment.
6023 6024
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6025 6026
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6027 6028 6029
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
6030
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6031
	struct sg_lb_stats *local, *busiest;
6032

J
Joonsoo Kim 已提交
6033 6034
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6035

J
Joonsoo Kim 已提交
6036 6037 6038 6039
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6040

J
Joonsoo Kim 已提交
6041 6042
	scaled_busy_load_per_task =
		(busiest->load_per_task * SCHED_POWER_SCALE) /
6043
		busiest->group_power;
J
Joonsoo Kim 已提交
6044

6045 6046
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6047
		env->imbalance = busiest->load_per_task;
6048 6049 6050 6051 6052 6053 6054 6055 6056
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

6057
	pwr_now += busiest->group_power *
J
Joonsoo Kim 已提交
6058
			min(busiest->load_per_task, busiest->avg_load);
6059
	pwr_now += local->group_power *
J
Joonsoo Kim 已提交
6060
			min(local->load_per_task, local->avg_load);
6061
	pwr_now /= SCHED_POWER_SCALE;
6062 6063

	/* Amount of load we'd subtract */
J
Joonsoo Kim 已提交
6064
	tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
6065
		busiest->group_power;
J
Joonsoo Kim 已提交
6066
	if (busiest->avg_load > tmp) {
6067
		pwr_move += busiest->group_power *
J
Joonsoo Kim 已提交
6068 6069 6070
			    min(busiest->load_per_task,
				busiest->avg_load - tmp);
	}
6071 6072

	/* Amount of load we'd add */
6073
	if (busiest->avg_load * busiest->group_power <
J
Joonsoo Kim 已提交
6074
	    busiest->load_per_task * SCHED_POWER_SCALE) {
6075 6076
		tmp = (busiest->avg_load * busiest->group_power) /
		      local->group_power;
J
Joonsoo Kim 已提交
6077 6078
	} else {
		tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
6079
		      local->group_power;
J
Joonsoo Kim 已提交
6080
	}
6081 6082
	pwr_move += local->group_power *
		    min(local->load_per_task, local->avg_load + tmp);
6083
	pwr_move /= SCHED_POWER_SCALE;
6084 6085 6086

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
J
Joonsoo Kim 已提交
6087
		env->imbalance = busiest->load_per_task;
6088 6089 6090 6091 6092
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
6093
 * @env: load balance environment
6094 6095
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
6096
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6097
{
6098
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
6099 6100 6101 6102
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6103

J
Joonsoo Kim 已提交
6104
	if (busiest->group_imb) {
6105 6106 6107 6108
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
6109 6110
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
6111 6112
	}

6113 6114 6115 6116 6117
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
6118 6119
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6120 6121
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6122 6123
	}

J
Joonsoo Kim 已提交
6124
	if (!busiest->group_imb) {
6125 6126
		/*
		 * Don't want to pull so many tasks that a group would go idle.
6127 6128
		 * Except of course for the group_imb case, since then we might
		 * have to drop below capacity to reach cpu-load equilibrium.
6129
		 */
J
Joonsoo Kim 已提交
6130 6131
		load_above_capacity =
			(busiest->sum_nr_running - busiest->group_capacity);
6132

6133
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
6134
		load_above_capacity /= busiest->group_power;
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6145
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6146 6147

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6148
	env->imbalance = min(
6149 6150
		max_pull * busiest->group_power,
		(sds->avg_load - local->avg_load) * local->group_power
J
Joonsoo Kim 已提交
6151
	) / SCHED_POWER_SCALE;
6152 6153 6154

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6155
	 * there is no guarantee that any tasks will be moved so we'll have
6156 6157 6158
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6159
	if (env->imbalance < busiest->load_per_task)
6160
		return fix_small_imbalance(env, sds);
6161
}
6162

6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6175
 * @env: The load balancing environment.
6176
 *
6177
 * Return:	- The busiest group if imbalance exists.
6178 6179 6180 6181
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6182
static struct sched_group *find_busiest_group(struct lb_env *env)
6183
{
J
Joonsoo Kim 已提交
6184
	struct sg_lb_stats *local, *busiest;
6185 6186
	struct sd_lb_stats sds;

6187
	init_sd_lb_stats(&sds);
6188 6189 6190 6191 6192

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6193
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6194 6195
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6196

6197 6198
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6199 6200
		return sds.busiest;

6201
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6202
	if (!sds.busiest || busiest->sum_nr_running == 0)
6203 6204
		goto out_balanced;

6205
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
6206

P
Peter Zijlstra 已提交
6207 6208
	/*
	 * If the busiest group is imbalanced the below checks don't
6209
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6210 6211
	 * isn't true due to cpus_allowed constraints and the like.
	 */
J
Joonsoo Kim 已提交
6212
	if (busiest->group_imb)
P
Peter Zijlstra 已提交
6213 6214
		goto force_balance;

6215
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
J
Joonsoo Kim 已提交
6216 6217
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
	    !busiest->group_has_capacity)
6218 6219
		goto force_balance;

6220 6221 6222 6223
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
6224
	if (local->avg_load >= busiest->avg_load)
6225 6226
		goto out_balanced;

6227 6228 6229 6230
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
6231
	if (local->avg_load >= sds.avg_load)
6232 6233
		goto out_balanced;

6234
	if (env->idle == CPU_IDLE) {
6235 6236 6237 6238 6239 6240
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
J
Joonsoo Kim 已提交
6241 6242
		if ((local->idle_cpus < busiest->idle_cpus) &&
		    busiest->sum_nr_running <= busiest->group_weight)
6243
			goto out_balanced;
6244 6245 6246 6247 6248
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6249 6250
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6251
			goto out_balanced;
6252
	}
6253

6254
force_balance:
6255
	/* Looks like there is an imbalance. Compute it */
6256
	calculate_imbalance(env, &sds);
6257 6258 6259
	return sds.busiest;

out_balanced:
6260
	env->imbalance = 0;
6261 6262 6263 6264 6265 6266
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6267
static struct rq *find_busiest_queue(struct lb_env *env,
6268
				     struct sched_group *group)
6269 6270
{
	struct rq *busiest = NULL, *rq;
6271
	unsigned long busiest_load = 0, busiest_power = 1;
6272 6273
	int i;

6274
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6275 6276 6277 6278 6279
		unsigned long power, capacity, wl;
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6280

6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

		power = power_of(i);
		capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6305
		if (!capacity)
6306
			capacity = fix_small_capacity(env->sd, group);
6307

6308
		wl = weighted_cpuload(i);
6309

6310 6311 6312 6313
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
6314
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6315 6316
			continue;

6317 6318 6319 6320 6321
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
6322 6323 6324 6325 6326
		 *
		 * Thus we're looking for max(wl_i / power_i), crosswise
		 * multiplication to rid ourselves of the division works out
		 * to: wl_i * power_j > wl_j * power_i;  where j is our
		 * previous maximum.
6327
		 */
6328 6329 6330
		if (wl * busiest_power > busiest_load * power) {
			busiest_load = wl;
			busiest_power = power;
6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6345
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6346

6347
static int need_active_balance(struct lb_env *env)
6348
{
6349 6350 6351
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6352 6353 6354 6355 6356 6357

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6358
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6359
			return 1;
6360 6361 6362 6363 6364
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6365 6366
static int active_load_balance_cpu_stop(void *data);

6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6398
	return balance_cpu == env->dst_cpu;
6399 6400
}

6401 6402 6403 6404 6405 6406
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6407
			int *continue_balancing)
6408
{
6409
	int ld_moved, cur_ld_moved, active_balance = 0;
6410
	struct sched_domain *sd_parent = sd->parent;
6411 6412 6413
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6414
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6415

6416 6417
	struct lb_env env = {
		.sd		= sd,
6418 6419
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6420
		.dst_grpmask    = sched_group_cpus(sd->groups),
6421
		.idle		= idle,
6422
		.loop_break	= sched_nr_migrate_break,
6423
		.cpus		= cpus,
6424
		.fbq_type	= all,
6425 6426
	};

6427 6428 6429 6430
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6431
	if (idle == CPU_NEWLY_IDLE)
6432 6433
		env.dst_grpmask = NULL;

6434 6435 6436 6437 6438
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6439 6440
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6441
		goto out_balanced;
6442
	}
6443

6444
	group = find_busiest_group(&env);
6445 6446 6447 6448 6449
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6450
	busiest = find_busiest_queue(&env, group);
6451 6452 6453 6454 6455
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

6456
	BUG_ON(busiest == env.dst_rq);
6457

6458
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6459 6460 6461 6462 6463 6464 6465 6466 6467

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
6468
		env.flags |= LBF_ALL_PINNED;
6469 6470 6471
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6472

6473
more_balance:
6474
		local_irq_save(flags);
6475
		double_rq_lock(env.dst_rq, busiest);
6476 6477 6478 6479 6480 6481 6482

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
6483
		double_rq_unlock(env.dst_rq, busiest);
6484 6485 6486 6487 6488
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
6489 6490 6491
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

6492 6493 6494 6495 6496
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
6516
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6517

6518 6519 6520
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

6521
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6522
			env.dst_cpu	 = env.new_dst_cpu;
6523
			env.flags	&= ~LBF_DST_PINNED;
6524 6525
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
6526

6527 6528 6529 6530 6531 6532
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
6533

6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
			int *group_imbalance = &sd_parent->groups->sgp->imbalance;

			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
				*group_imbalance = 1;
			} else if (*group_imbalance)
				*group_imbalance = 0;
		}

6546
		/* All tasks on this runqueue were pinned by CPU affinity */
6547
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6548
			cpumask_clear_cpu(cpu_of(busiest), cpus);
6549 6550 6551
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
6552
				goto redo;
6553
			}
6554 6555 6556 6557 6558 6559
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
6560 6561 6562 6563 6564 6565 6566 6567
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
6568

6569
		if (need_active_balance(&env)) {
6570 6571
			raw_spin_lock_irqsave(&busiest->lock, flags);

6572 6573 6574
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
6575 6576
			 */
			if (!cpumask_test_cpu(this_cpu,
6577
					tsk_cpus_allowed(busiest->curr))) {
6578 6579
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
6580
				env.flags |= LBF_ALL_PINNED;
6581 6582 6583
				goto out_one_pinned;
			}

6584 6585 6586 6587 6588
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
6589 6590 6591 6592 6593 6594
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6595

6596
			if (active_balance) {
6597 6598 6599
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
6600
			}
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
6634
	if (((env.flags & LBF_ALL_PINNED) &&
6635
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6636 6637 6638
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

6639
	ld_moved = 0;
6640 6641 6642 6643 6644 6645 6646 6647
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
6648
static int idle_balance(struct rq *this_rq)
6649 6650 6651 6652
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;
6653
	u64 curr_cost = 0;
6654
	int this_cpu = this_rq->cpu;
6655

6656 6657 6658 6659 6660 6661 6662
	idle_enter_fair(this_rq);
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

6663
	if (this_rq->avg_idle < sysctl_sched_migration_cost)
6664
		goto out;
6665

6666 6667 6668 6669 6670
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

6671
	update_blocked_averages(this_cpu);
6672
	rcu_read_lock();
6673 6674
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
6675
		int continue_balancing = 1;
6676
		u64 t0, domain_cost;
6677 6678 6679 6680

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6681 6682 6683
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
			break;

6684
		if (sd->flags & SD_BALANCE_NEWIDLE) {
6685 6686
			t0 = sched_clock_cpu(this_cpu);

6687
			/* If we've pulled tasks over stop searching: */
6688
			pulled_task = load_balance(this_cpu, this_rq,
6689 6690
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
6691 6692 6693 6694 6695 6696

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
6697
		}
6698 6699 6700 6701

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
6702
		if (pulled_task)
6703 6704
			break;
	}
6705
	rcu_read_unlock();
6706 6707 6708

	raw_spin_lock(&this_rq->lock);

6709 6710 6711 6712
	/*
	 * While browsing the domains, we released the rq lock.
	 * A task could have be enqueued in the meantime
	 */
6713
	if (this_rq->cfs.h_nr_running && !pulled_task) {
6714 6715 6716
		pulled_task = 1;
		goto out;
	}
6717

6718 6719 6720 6721 6722 6723 6724
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
6725 6726 6727

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;
6728

6729
out:
6730
	/* Is there a task of a high priority class? */
6731 6732 6733
	if (this_rq->nr_running != this_rq->cfs.h_nr_running &&
	    (this_rq->dl.dl_nr_running ||
	     (this_rq->rt.rt_nr_running && !rt_rq_throttled(&this_rq->rt))))
6734 6735 6736 6737
		pulled_task = -1;

	if (pulled_task) {
		idle_exit_fair(this_rq);
6738
		this_rq->idle_stamp = 0;
6739
	}
6740

6741
	return pulled_task;
6742 6743 6744
}

/*
6745 6746 6747 6748
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
6749
 */
6750
static int active_load_balance_cpu_stop(void *data)
6751
{
6752 6753
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
6754
	int target_cpu = busiest_rq->push_cpu;
6755
	struct rq *target_rq = cpu_rq(target_cpu);
6756
	struct sched_domain *sd;
6757 6758 6759 6760 6761 6762 6763

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
6764 6765 6766

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
6767
		goto out_unlock;
6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
6780
	rcu_read_lock();
6781 6782 6783 6784 6785 6786 6787
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
6788 6789
		struct lb_env env = {
			.sd		= sd,
6790 6791 6792 6793
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
6794 6795 6796
			.idle		= CPU_IDLE,
		};

6797 6798
		schedstat_inc(sd, alb_count);

6799
		if (move_one_task(&env))
6800 6801 6802 6803
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
6804
	rcu_read_unlock();
6805
	double_unlock_balance(busiest_rq, target_rq);
6806 6807 6808 6809
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
6810 6811
}

6812 6813 6814 6815 6816
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

6817
#ifdef CONFIG_NO_HZ_COMMON
6818 6819 6820 6821 6822 6823
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
6824
static struct {
6825
	cpumask_var_t idle_cpus_mask;
6826
	atomic_t nr_cpus;
6827 6828
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
6829

6830
static inline int find_new_ilb(void)
6831
{
6832
	int ilb = cpumask_first(nohz.idle_cpus_mask);
6833

6834 6835 6836 6837
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
6838 6839
}

6840 6841 6842 6843 6844
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
6845
static void nohz_balancer_kick(void)
6846 6847 6848 6849 6850
{
	int ilb_cpu;

	nohz.next_balance++;

6851
	ilb_cpu = find_new_ilb();
6852

6853 6854
	if (ilb_cpu >= nr_cpu_ids)
		return;
6855

6856
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6857 6858 6859 6860 6861 6862 6863 6864
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
6865 6866 6867
	return;
}

6868
static inline void nohz_balance_exit_idle(int cpu)
6869 6870
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6871 6872 6873 6874 6875 6876 6877
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
6878 6879 6880 6881
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

6882 6883 6884
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
6885
	int cpu = smp_processor_id();
6886 6887

	rcu_read_lock();
6888
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
6889 6890 6891 6892 6893

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

6894
	atomic_inc(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6895
unlock:
6896 6897 6898 6899 6900 6901
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
6902
	int cpu = smp_processor_id();
6903 6904

	rcu_read_lock();
6905
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
6906 6907 6908 6909 6910

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

6911
	atomic_dec(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6912
unlock:
6913 6914 6915
	rcu_read_unlock();
}

6916
/*
6917
 * This routine will record that the cpu is going idle with tick stopped.
6918
 * This info will be used in performing idle load balancing in the future.
6919
 */
6920
void nohz_balance_enter_idle(int cpu)
6921
{
6922 6923 6924 6925 6926 6927
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

6928 6929
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
6930

6931 6932 6933 6934 6935 6936
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

6937 6938 6939
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6940
}
6941

6942
static int sched_ilb_notifier(struct notifier_block *nfb,
6943 6944 6945 6946
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
6947
		nohz_balance_exit_idle(smp_processor_id());
6948 6949 6950 6951 6952
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
6953 6954 6955 6956
#endif

static DEFINE_SPINLOCK(balancing);

6957 6958 6959 6960
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
6961
void update_max_interval(void)
6962 6963 6964 6965
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

6966 6967 6968 6969
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
6970
 * Balancing parameters are set up in init_sched_domains.
6971
 */
6972
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
6973
{
6974
	int continue_balancing = 1;
6975
	int cpu = rq->cpu;
6976
	unsigned long interval;
6977
	struct sched_domain *sd;
6978 6979 6980
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
6981 6982
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
6983

6984
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
6985

6986
	rcu_read_lock();
6987
	for_each_domain(cpu, sd) {
6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7000 7001 7002
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

7014 7015 7016 7017 7018 7019
		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
7020
		interval = clamp(interval, 1UL, max_load_balance_interval);
7021 7022 7023 7024 7025 7026 7027 7028 7029

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7030
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7031
				/*
7032
				 * The LBF_DST_PINNED logic could have changed
7033 7034
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
7035
				 */
7036
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7037 7038 7039 7040 7041 7042 7043 7044 7045 7046
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
7047 7048
	}
	if (need_decay) {
7049
		/*
7050 7051
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
7052
		 */
7053 7054
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
7055
	}
7056
	rcu_read_unlock();
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

7067
#ifdef CONFIG_NO_HZ_COMMON
7068
/*
7069
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7070 7071
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
7072
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7073
{
7074
	int this_cpu = this_rq->cpu;
7075 7076 7077
	struct rq *rq;
	int balance_cpu;

7078 7079 7080
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
7081 7082

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7083
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7084 7085 7086 7087 7088 7089 7090
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
7091
		if (need_resched())
7092 7093
			break;

V
Vincent Guittot 已提交
7094 7095 7096 7097 7098 7099
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
7100

7101
		rebalance_domains(rq, CPU_IDLE);
7102 7103 7104 7105 7106

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
7107 7108
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7109 7110 7111
}

/*
7112 7113 7114 7115 7116 7117 7118
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
7119
 */
7120
static inline int nohz_kick_needed(struct rq *rq)
7121 7122
{
	unsigned long now = jiffies;
7123
	struct sched_domain *sd;
7124
	struct sched_group_power *sgp;
7125
	int nr_busy, cpu = rq->cpu;
7126

7127
	if (unlikely(rq->idle_balance))
7128 7129
		return 0;

7130 7131 7132 7133
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
7134
	set_cpu_sd_state_busy();
7135
	nohz_balance_exit_idle(cpu);
7136 7137 7138 7139 7140 7141 7142

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
7143 7144

	if (time_before(now, nohz.next_balance))
7145 7146
		return 0;

7147 7148
	if (rq->nr_running >= 2)
		goto need_kick;
7149

7150
	rcu_read_lock();
7151
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7152

7153 7154 7155
	if (sd) {
		sgp = sd->groups->sgp;
		nr_busy = atomic_read(&sgp->nr_busy_cpus);
7156

7157
		if (nr_busy > 1)
7158
			goto need_kick_unlock;
7159
	}
7160 7161 7162 7163 7164 7165 7166

	sd = rcu_dereference(per_cpu(sd_asym, cpu));

	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
				  sched_domain_span(sd)) < cpu))
		goto need_kick_unlock;

7167
	rcu_read_unlock();
7168
	return 0;
7169 7170 7171

need_kick_unlock:
	rcu_read_unlock();
7172 7173
need_kick:
	return 1;
7174 7175
}
#else
7176
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7177 7178 7179 7180 7181 7182
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
7183 7184
static void run_rebalance_domains(struct softirq_action *h)
{
7185
	struct rq *this_rq = this_rq();
7186
	enum cpu_idle_type idle = this_rq->idle_balance ?
7187 7188
						CPU_IDLE : CPU_NOT_IDLE;

7189
	rebalance_domains(this_rq, idle);
7190 7191

	/*
7192
	 * If this cpu has a pending nohz_balance_kick, then do the
7193 7194 7195
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
7196
	nohz_idle_balance(this_rq, idle);
7197 7198 7199 7200 7201
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
7202
void trigger_load_balance(struct rq *rq)
7203 7204
{
	/* Don't need to rebalance while attached to NULL domain */
7205 7206 7207 7208
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
7209
		raise_softirq(SCHED_SOFTIRQ);
7210
#ifdef CONFIG_NO_HZ_COMMON
7211
	if (nohz_kick_needed(rq))
7212
		nohz_balancer_kick();
7213
#endif
7214 7215
}

7216 7217 7218 7219 7220 7221 7222 7223
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
7224 7225 7226

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
7227 7228
}

7229
#endif /* CONFIG_SMP */
7230

7231 7232 7233
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
7234
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7235 7236 7237 7238 7239 7240
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
7241
		entity_tick(cfs_rq, se, queued);
7242
	}
7243

7244
	if (numabalancing_enabled)
7245
		task_tick_numa(rq, curr);
7246

7247
	update_rq_runnable_avg(rq, 1);
7248 7249 7250
}

/*
P
Peter Zijlstra 已提交
7251 7252 7253
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
7254
 */
P
Peter Zijlstra 已提交
7255
static void task_fork_fair(struct task_struct *p)
7256
{
7257 7258
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
7259
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
7260 7261 7262
	struct rq *rq = this_rq();
	unsigned long flags;

7263
	raw_spin_lock_irqsave(&rq->lock, flags);
7264

7265 7266
	update_rq_clock(rq);

7267 7268 7269
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

7270 7271 7272 7273 7274 7275 7276 7277 7278
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
7279

7280
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
7281

7282 7283
	if (curr)
		se->vruntime = curr->vruntime;
7284
	place_entity(cfs_rq, se, 1);
7285

P
Peter Zijlstra 已提交
7286
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
7287
		/*
7288 7289 7290
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
7291
		swap(curr->vruntime, se->vruntime);
7292
		resched_task(rq->curr);
7293
	}
7294

7295 7296
	se->vruntime -= cfs_rq->min_vruntime;

7297
	raw_spin_unlock_irqrestore(&rq->lock, flags);
7298 7299
}

7300 7301 7302 7303
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
7304 7305
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7306
{
P
Peter Zijlstra 已提交
7307 7308 7309
	if (!p->se.on_rq)
		return;

7310 7311 7312 7313 7314
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
7315
	if (rq->curr == p) {
7316 7317 7318
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
7319
		check_preempt_curr(rq, p, 0);
7320 7321
}

P
Peter Zijlstra 已提交
7322 7323 7324 7325 7326 7327
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
7328
	 * Ensure the task's vruntime is normalized, so that when it's
P
Peter Zijlstra 已提交
7329 7330 7331
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
7332 7333
	 * If it's on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it's !on_rq, then only when
P
Peter Zijlstra 已提交
7334 7335
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
7336
	if (!p->on_rq && p->state != TASK_RUNNING) {
P
Peter Zijlstra 已提交
7337 7338 7339 7340 7341 7342 7343
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
7344

7345
#ifdef CONFIG_SMP
7346 7347 7348 7349 7350
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
7351 7352 7353
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7354 7355
	}
#endif
P
Peter Zijlstra 已提交
7356 7357
}

7358 7359 7360
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
7361
static void switched_to_fair(struct rq *rq, struct task_struct *p)
7362
{
7363 7364 7365 7366 7367 7368 7369 7370 7371
	struct sched_entity *se = &p->se;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
	if (!se->on_rq)
P
Peter Zijlstra 已提交
7372 7373
		return;

7374 7375 7376 7377 7378
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
7379
	if (rq->curr == p)
7380 7381
		resched_task(rq->curr);
	else
7382
		check_preempt_curr(rq, p, 0);
7383 7384
}

7385 7386 7387 7388 7389 7390 7391 7392 7393
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

7394 7395 7396 7397 7398 7399 7400
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
7401 7402
}

7403 7404 7405 7406 7407 7408 7409
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
7410
#ifdef CONFIG_SMP
7411
	atomic64_set(&cfs_rq->decay_counter, 1);
7412
	atomic_long_set(&cfs_rq->removed_load, 0);
7413
#endif
7414 7415
}

P
Peter Zijlstra 已提交
7416
#ifdef CONFIG_FAIR_GROUP_SCHED
7417
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
7418
{
P
Peter Zijlstra 已提交
7419
	struct sched_entity *se = &p->se;
7420
	struct cfs_rq *cfs_rq;
P
Peter Zijlstra 已提交
7421

7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
7435 7436 7437 7438 7439 7440
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
7441 7442
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
7443 7444 7445 7446
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
P
Peter Zijlstra 已提交
7447
	if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7448 7449
		on_rq = 1;

7450
	if (!on_rq)
P
Peter Zijlstra 已提交
7451
		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7452
	set_task_rq(p, task_cpu(p));
P
Peter Zijlstra 已提交
7453
	se->depth = se->parent ? se->parent->depth + 1 : 0;
7454
	if (!on_rq) {
P
Peter Zijlstra 已提交
7455 7456
		cfs_rq = cfs_rq_of(se);
		se->vruntime += cfs_rq->min_vruntime;
7457 7458 7459 7460 7461 7462
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
P
Peter Zijlstra 已提交
7463 7464
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7465 7466
#endif
	}
P
Peter Zijlstra 已提交
7467
}
7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
7560
	if (!parent) {
7561
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
7562 7563
		se->depth = 0;
	} else {
7564
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
7565 7566
		se->depth = parent->depth + 1;
	}
7567 7568

	se->my_q = cfs_rq;
7569 7570
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
7601 7602 7603

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
7604
		for_each_sched_entity(se)
7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
7626

7627
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7628 7629 7630 7631 7632 7633 7634 7635 7636
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
7637
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7638 7639 7640 7641

	return rr_interval;
}

7642 7643 7644
/*
 * All the scheduling class methods:
 */
7645
const struct sched_class fair_sched_class = {
7646
	.next			= &idle_sched_class,
7647 7648 7649
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
7650
	.yield_to_task		= yield_to_task_fair,
7651

I
Ingo Molnar 已提交
7652
	.check_preempt_curr	= check_preempt_wakeup,
7653 7654 7655 7656

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

7657
#ifdef CONFIG_SMP
L
Li Zefan 已提交
7658
	.select_task_rq		= select_task_rq_fair,
7659
	.migrate_task_rq	= migrate_task_rq_fair,
7660

7661 7662
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
7663 7664

	.task_waking		= task_waking_fair,
7665
#endif
7666

7667
	.set_curr_task          = set_curr_task_fair,
7668
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
7669
	.task_fork		= task_fork_fair,
7670 7671

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
7672
	.switched_from		= switched_from_fair,
7673
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
7674

7675 7676
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
7677
#ifdef CONFIG_FAIR_GROUP_SCHED
7678
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
7679
#endif
7680 7681 7682
};

#ifdef CONFIG_SCHED_DEBUG
7683
void print_cfs_stats(struct seq_file *m, int cpu)
7684 7685 7686
{
	struct cfs_rq *cfs_rq;

7687
	rcu_read_lock();
7688
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7689
		print_cfs_rq(m, cpu, cfs_rq);
7690
	rcu_read_unlock();
7691 7692
}
#endif
7693 7694 7695 7696 7697 7698

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

7699
#ifdef CONFIG_NO_HZ_COMMON
7700
	nohz.next_balance = jiffies;
7701
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7702
	cpu_notifier(sched_ilb_notifier, 0);
7703 7704 7705 7706
#endif
#endif /* SMP */

}