fair.c 159.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29
#include <linux/mempolicy.h>
30
#include <linux/migrate.h>
31
#include <linux/task_work.h>
32 33 34 35

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
36

37
/*
38
 * Targeted preemption latency for CPU-bound tasks:
39
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48
 */
49 50
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

64
/*
65
 * Minimal preemption granularity for CPU-bound tasks:
66
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67
 */
68 69
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 71

/*
72 73
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
74
static unsigned int sched_nr_latency = 8;
75 76

/*
77
 * After fork, child runs first. If set to 0 (default) then
78
 * parent will (try to) run first.
79
 */
80
unsigned int sysctl_sched_child_runs_first __read_mostly;
81 82 83

/*
 * SCHED_OTHER wake-up granularity.
84
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 86 87 88 89
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
90
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92

93 94
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

95 96 97 98 99 100 101
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

102 103 104 105 106 107 108 109 110 111 112 113 114 115
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

/*
 * Shift right and round:
 */
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))

/*
 * delta *= weight / lw
 */
static unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	/*
	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
	 * 2^SCHED_LOAD_RESOLUTION.
	 */
	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
		tmp = (u64)delta_exec * scale_load_down(weight);
	else
		tmp = (u64)delta_exec;

	if (!lw->inv_weight) {
		unsigned long w = scale_load_down(lw->weight);

		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
			lw->inv_weight = 1;
		else if (unlikely(!w))
			lw->inv_weight = WMULT_CONST;
		else
			lw->inv_weight = WMULT_CONST / w;
	}

	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST))
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
			WMULT_SHIFT/2);
	else
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);

	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
}


const struct sched_class fair_sched_class;
238

239 240 241 242
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

243
#ifdef CONFIG_FAIR_GROUP_SCHED
244

245
/* cpu runqueue to which this cfs_rq is attached */
246 247
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
248
	return cfs_rq->rq;
249 250
}

251 252
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
253

254 255 256 257 258 259 260 261
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

283 284
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
285

286 287 288
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302
		}
303 304

		cfs_rq->on_list = 1;
305
		/* We should have no load, but we need to update last_decay. */
306
		update_cfs_rq_blocked_load(cfs_rq, 0);
307 308 309 310 311 312 313 314 315 316 317
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

380 381 382 383 384 385
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
386

387 388 389
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
390 391 392 393
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
394 395
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
396

P
Peter Zijlstra 已提交
397
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
398
{
P
Peter Zijlstra 已提交
399
	return &task_rq(p)->cfs;
400 401
}

P
Peter Zijlstra 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

416 417 418 419 420 421 422 423
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

438 439 440 441 442
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
443 444
#endif	/* CONFIG_FAIR_GROUP_SCHED */

445 446
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
447 448 449 450 451

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

452
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
453
{
454
	s64 delta = (s64)(vruntime - max_vruntime);
455
	if (delta > 0)
456
		max_vruntime = vruntime;
457

458
	return max_vruntime;
459 460
}

461
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
462 463 464 465 466 467 468 469
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

470 471 472 473 474 475
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

476 477 478 479 480 481 482 483 484 485 486 487
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
488
		if (!cfs_rq->curr)
489 490 491 492 493
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

494
	/* ensure we never gain time by being placed backwards. */
495
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
496 497 498 499
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
500 501
}

502 503 504
/*
 * Enqueue an entity into the rb-tree:
 */
505
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
522
		if (entity_before(se, entry)) {
523 524 525 526 527 528 529 530 531 532 533
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
534
	if (leftmost)
I
Ingo Molnar 已提交
535
		cfs_rq->rb_leftmost = &se->run_node;
536 537 538 539 540

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

541
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
542
{
P
Peter Zijlstra 已提交
543 544 545 546 547 548
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
549

550 551 552
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

553
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
554
{
555 556 557 558 559 560
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
561 562
}

563 564 565 566 567 568 569 570 571 572 573
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
574
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
575
{
576
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
577

578 579
	if (!last)
		return NULL;
580 581

	return rb_entry(last, struct sched_entity, run_node);
582 583
}

584 585 586 587
/**************************************************************
 * Scheduling class statistics methods:
 */

588
int sched_proc_update_handler(struct ctl_table *table, int write,
589
		void __user *buffer, size_t *lenp,
590 591
		loff_t *ppos)
{
592
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593
	int factor = get_update_sysctl_factor();
594 595 596 597 598 599 600

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

601 602 603 604 605 606 607
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

608 609 610
	return 0;
}
#endif
611

612
/*
613
 * delta /= w
614 615 616 617
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
618 619
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
620 621 622 623

	return delta;
}

624 625 626
/*
 * The idea is to set a period in which each task runs once.
 *
627
 * When there are too many tasks (sched_nr_latency) we have to stretch
628 629 630 631
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
632 633 634
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
635
	unsigned long nr_latency = sched_nr_latency;
636 637

	if (unlikely(nr_running > nr_latency)) {
638
		period = sysctl_sched_min_granularity;
639 640 641 642 643 644
		period *= nr_running;
	}

	return period;
}

645 646 647 648
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
649
 * s = p*P[w/rw]
650
 */
P
Peter Zijlstra 已提交
651
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652
{
M
Mike Galbraith 已提交
653
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
654

M
Mike Galbraith 已提交
655
	for_each_sched_entity(se) {
L
Lin Ming 已提交
656
		struct load_weight *load;
657
		struct load_weight lw;
L
Lin Ming 已提交
658 659 660

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
661

M
Mike Galbraith 已提交
662
		if (unlikely(!se->on_rq)) {
663
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
664 665 666 667 668 669 670

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
671 672
}

673
/*
A
Andrei Epure 已提交
674
 * We calculate the vruntime slice of a to-be-inserted task.
675
 *
676
 * vs = s/w
677
 */
678
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
679
{
680
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
681 682
}

683 684 685 686 687
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
688 689
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
690
{
691
	unsigned long delta_exec_weighted;
692

693 694
	schedstat_set(curr->statistics.exec_max,
		      max((u64)delta_exec, curr->statistics.exec_max));
695 696

	curr->sum_exec_runtime += delta_exec;
697
	schedstat_add(cfs_rq, exec_clock, delta_exec);
698
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
699

I
Ingo Molnar 已提交
700
	curr->vruntime += delta_exec_weighted;
701
	update_min_vruntime(cfs_rq);
702 703
}

704
static void update_curr(struct cfs_rq *cfs_rq)
705
{
706
	struct sched_entity *curr = cfs_rq->curr;
707
	u64 now = rq_of(cfs_rq)->clock_task;
708 709 710 711 712 713 714 715 716 717
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
718
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
719 720
	if (!delta_exec)
		return;
721

I
Ingo Molnar 已提交
722 723
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
724 725 726 727

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

728
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
729
		cpuacct_charge(curtask, delta_exec);
730
		account_group_exec_runtime(curtask, delta_exec);
731
	}
732 733

	account_cfs_rq_runtime(cfs_rq, delta_exec);
734 735 736
}

static inline void
737
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
738
{
739
	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
740 741 742 743 744
}

/*
 * Task is being enqueued - update stats:
 */
745
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
746 747 748 749 750
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
751
	if (se != cfs_rq->curr)
752
		update_stats_wait_start(cfs_rq, se);
753 754 755
}

static void
756
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
757
{
758 759 760 761 762
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
			rq_of(cfs_rq)->clock - se->statistics.wait_start));
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
763 764 765
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
766
			rq_of(cfs_rq)->clock - se->statistics.wait_start);
767 768
	}
#endif
769
	schedstat_set(se->statistics.wait_start, 0);
770 771 772
}

static inline void
773
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
774 775 776 777 778
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
779
	if (se != cfs_rq->curr)
780
		update_stats_wait_end(cfs_rq, se);
781 782 783 784 785 786
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
787
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
788 789 790 791
{
	/*
	 * We are starting a new run period:
	 */
792
	se->exec_start = rq_of(cfs_rq)->clock_task;
793 794 795 796 797 798
}

/**************************************************
 * Scheduling class queueing methods:
 */

799 800
#ifdef CONFIG_NUMA_BALANCING
/*
801
 * numa task sample period in ms
802
 */
803
unsigned int sysctl_numa_balancing_scan_period_min = 100;
804 805
unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
806 807 808

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
809

810 811 812
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

813 814
static void task_numa_placement(struct task_struct *p)
{
815
	int seq;
816

817 818 819
	if (!p->mm)	/* for example, ksmd faulting in a user's mm */
		return;
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
820 821 822 823 824 825 826 827 828 829
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;

	/* FIXME: Scheduling placement policy hints go here */
}

/*
 * Got a PROT_NONE fault for a page on @node.
 */
830
void task_numa_fault(int node, int pages, bool migrated)
831 832 833
{
	struct task_struct *p = current;

834 835 836
	if (!sched_feat_numa(NUMA))
		return;

837 838
	/* FIXME: Allocate task-specific structure for placement policy here */

839
	/*
840 841
	 * If pages are properly placed (did not migrate) then scan slower.
	 * This is reset periodically in case of phase changes
842
	 */
843 844 845
        if (!migrated)
		p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
			p->numa_scan_period + jiffies_to_msecs(10));
846

847 848 849
	task_numa_placement(p);
}

850 851 852 853 854 855
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

856 857 858 859 860 861 862 863 864
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
865
	struct vm_area_struct *vma;
866 867
	unsigned long start, end;
	long pages;
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
	/*
	 * We do not care about task placement until a task runs on a node
	 * other than the first one used by the address space. This is
	 * largely because migrations are driven by what CPU the task
	 * is running on. If it's never scheduled on another node, it'll
	 * not migrate so why bother trapping the fault.
	 */
	if (mm->first_nid == NUMA_PTE_SCAN_INIT)
		mm->first_nid = numa_node_id();
	if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
		/* Are we running on a new node yet? */
		if (numa_node_id() == mm->first_nid &&
		    !sched_feat_numa(NUMA_FORCE))
			return;

		mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
	}

901 902 903 904 905 906 907 908 909 910 911 912 913
	/*
	 * Reset the scan period if enough time has gone by. Objective is that
	 * scanning will be reduced if pages are properly placed. As tasks
	 * can enter different phases this needs to be re-examined. Lacking
	 * proper tracking of reference behaviour, this blunt hammer is used.
	 */
	migrate = mm->numa_next_reset;
	if (time_after(now, migrate)) {
		p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
		next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
		xchg(&mm->numa_next_reset, next_scan);
	}

914 915 916 917 918 919 920 921 922 923
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

	if (p->numa_scan_period == 0)
		p->numa_scan_period = sysctl_numa_balancing_scan_period_min;

924
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
925 926 927
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

928 929 930 931 932 933 934 935
	/*
	 * Do not set pte_numa if the current running node is rate-limited.
	 * This loses statistics on the fault but if we are unwilling to
	 * migrate to this node, it is less likely we can do useful work
	 */
	if (migrate_ratelimited(numa_node_id()))
		return;

936 937 938 939 940
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
941

942
	down_read(&mm->mmap_sem);
943
	vma = find_vma(mm, start);
944 945
	if (!vma) {
		reset_ptenuma_scan(p);
946
		start = 0;
947 948
		vma = mm->mmap;
	}
949
	for (; vma; vma = vma->vm_next) {
950 951 952 953
		if (!vma_migratable(vma))
			continue;

		/* Skip small VMAs. They are not likely to be of relevance */
954
		if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
955 956
			continue;

957 958 959 960 961
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
			pages -= change_prot_numa(vma, start, end);
962

963 964 965 966
			start = end;
			if (pages <= 0)
				goto out;
		} while (end != vma->vm_end);
967
	}
968

969
out:
970 971 972 973 974 975 976
	/*
	 * It is possible to reach the end of the VMA list but the last few VMAs are
	 * not guaranteed to the vma_migratable. If they are not, we would find the
	 * !migratable VMA on the next scan but not reset the scanner to the start
	 * so check it now.
	 */
	if (vma)
977
		mm->numa_scan_offset = start;
978 979 980
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
1007 1008
		if (!curr->node_stamp)
			curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
		curr->node_stamp = now;

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
#endif /* CONFIG_NUMA_BALANCING */

1023 1024 1025 1026
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
1027
	if (!parent_entity(se))
1028
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1029 1030
#ifdef CONFIG_SMP
	if (entity_is_task(se))
1031
		list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1032
#endif
1033 1034 1035 1036 1037 1038 1039
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
1040
	if (!parent_entity(se))
1041
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1042
	if (entity_is_task(se))
1043
		list_del_init(&se->group_node);
1044 1045 1046
	cfs_rq->nr_running--;
}

1047 1048
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
1049 1050 1051 1052 1053 1054 1055 1056 1057
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
1058 1059
	tg_weight = atomic64_read(&tg->load_avg);
	tg_weight -= cfs_rq->tg_load_contrib;
1060 1061 1062 1063 1064
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

1065
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1066
{
1067
	long tg_weight, load, shares;
1068

1069
	tg_weight = calc_tg_weight(tg, cfs_rq);
1070
	load = cfs_rq->load.weight;
1071 1072

	shares = (tg->shares * load);
1073 1074
	if (tg_weight)
		shares /= tg_weight;
1075 1076 1077 1078 1079 1080 1081 1082 1083

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
1084
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1085 1086 1087 1088
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1089 1090 1091
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
1092 1093 1094 1095
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1096
		account_entity_dequeue(cfs_rq, se);
1097
	}
P
Peter Zijlstra 已提交
1098 1099 1100 1101 1102 1103 1104

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

1105 1106
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

1107
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1108 1109 1110
{
	struct task_group *tg;
	struct sched_entity *se;
1111
	long shares;
P
Peter Zijlstra 已提交
1112 1113 1114

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
1115
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
1116
		return;
1117 1118 1119 1120
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
1121
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
1122 1123 1124 1125

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
1126
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1127 1128 1129 1130
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

1131 1132
/* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

1161 1162 1163 1164 1165 1166
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
	 * With a look-up table which covers k^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
1187 1188
	}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
1254 1255
	u64 delta, periods;
	u32 runnable_contrib;
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

1319
/* Synchronize an entity's decay with its parenting cfs_rq.*/
1320
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1321 1322 1323 1324 1325 1326
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
1327
		return 0;
1328 1329 1330

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
1331 1332

	return decays;
1333 1334
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
	s64 tg_contrib;

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

	if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic64_add(tg_contrib, &tg->load_avg);
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
	contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

1372 1373 1374 1375
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
1376 1377
	int runnable_avg;

1378 1379 1380 1381 1382
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
	se->avg.load_avg_contrib = div64_u64(contrib,
					     atomic64_read(&tg->load_avg) + 1);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
1412
}
1413 1414 1415
#else
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
1416 1417
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
1418
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1419 1420
#endif

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

1431 1432 1433 1434 1435
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

1436 1437 1438
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
1439
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1440 1441
		__update_group_entity_contrib(se);
	}
1442 1443 1444 1445

	return se->avg.load_avg_contrib - old_contrib;
}

1446 1447 1448 1449 1450 1451 1452 1453 1454
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

1455 1456
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

1457
/* Update a sched_entity's runnable average */
1458 1459
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
1460
{
1461 1462
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
1463
	u64 now;
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1475 1476 1477
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
1478 1479 1480 1481

	if (!update_cfs_rq)
		return;

1482 1483
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
1484 1485 1486 1487 1488 1489 1490 1491
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
1492
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1493
{
1494
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1495 1496 1497
	u64 decays;

	decays = now - cfs_rq->last_decay;
1498
	if (!decays && !force_update)
1499 1500
		return;

1501 1502 1503 1504
	if (atomic64_read(&cfs_rq->removed_load)) {
		u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
1505

1506 1507 1508 1509 1510 1511
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
1512 1513

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1514
}
1515 1516 1517 1518

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
	__update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
1519
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
1520
}
1521 1522 1523

/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1524 1525
						  struct sched_entity *se,
						  int wakeup)
1526
{
1527 1528 1529 1530 1531 1532
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
1533
		se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
1549 1550 1551 1552 1553
		wakeup = 0;
	} else {
		__synchronize_entity_decay(se);
	}

1554 1555
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
1556
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1557 1558
		update_entity_load_avg(se, 0);
	}
1559

1560
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1561 1562
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1563 1564
}

1565 1566 1567 1568 1569
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
1570
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1571 1572
						  struct sched_entity *se,
						  int sleep)
1573
{
1574
	update_entity_load_avg(se, 1);
1575 1576
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
1577

1578
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1579 1580 1581 1582
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
1583
}
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

1605
#else
1606 1607
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
1608
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1609
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1610 1611
					   struct sched_entity *se,
					   int wakeup) {}
1612
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1613 1614
					   struct sched_entity *se,
					   int sleep) {}
1615 1616
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
1617 1618
#endif

1619
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1620 1621
{
#ifdef CONFIG_SCHEDSTATS
1622 1623 1624 1625 1626
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

1627 1628
	if (se->statistics.sleep_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1629 1630 1631 1632

		if ((s64)delta < 0)
			delta = 0;

1633 1634
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
1635

1636
		se->statistics.sleep_start = 0;
1637
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
1638

1639
		if (tsk) {
1640
			account_scheduler_latency(tsk, delta >> 10, 1);
1641 1642
			trace_sched_stat_sleep(tsk, delta);
		}
1643
	}
1644 1645
	if (se->statistics.block_start) {
		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1646 1647 1648 1649

		if ((s64)delta < 0)
			delta = 0;

1650 1651
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
1652

1653
		se->statistics.block_start = 0;
1654
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
1655

1656
		if (tsk) {
1657
			if (tsk->in_iowait) {
1658 1659
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
1660
				trace_sched_stat_iowait(tsk, delta);
1661 1662
			}

1663 1664
			trace_sched_stat_blocked(tsk, delta);

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
1676
		}
1677 1678 1679 1680
	}
#endif
}

P
Peter Zijlstra 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

1694 1695 1696
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
1697
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
1698

1699 1700 1701 1702 1703 1704
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
1705
	if (initial && sched_feat(START_DEBIT))
1706
		vruntime += sched_vslice(cfs_rq, se);
1707

1708
	/* sleeps up to a single latency don't count. */
1709
	if (!initial) {
1710
		unsigned long thresh = sysctl_sched_latency;
1711

1712 1713 1714 1715 1716 1717
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
1718

1719
		vruntime -= thresh;
1720 1721
	}

1722
	/* ensure we never gain time by being placed backwards. */
1723
	se->vruntime = max_vruntime(se->vruntime, vruntime);
1724 1725
}

1726 1727
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

1728
static void
1729
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1730
{
1731 1732 1733 1734
	/*
	 * Update the normalized vruntime before updating min_vruntime
	 * through callig update_curr().
	 */
1735
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1736 1737
		se->vruntime += cfs_rq->min_vruntime;

1738
	/*
1739
	 * Update run-time statistics of the 'current'.
1740
	 */
1741
	update_curr(cfs_rq);
1742
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1743 1744
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
1745

1746
	if (flags & ENQUEUE_WAKEUP) {
1747
		place_entity(cfs_rq, se, 0);
1748
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
1749
	}
1750

1751
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
1752
	check_spread(cfs_rq, se);
1753 1754
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
1755
	se->on_rq = 1;
1756

1757
	if (cfs_rq->nr_running == 1) {
1758
		list_add_leaf_cfs_rq(cfs_rq);
1759 1760
		check_enqueue_throttle(cfs_rq);
	}
1761 1762
}

1763
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
1764
{
1765 1766 1767 1768 1769 1770 1771 1772
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}
}
P
Peter Zijlstra 已提交
1773

1774 1775 1776 1777 1778 1779 1780 1781 1782
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next == se)
			cfs_rq->next = NULL;
		else
			break;
	}
P
Peter Zijlstra 已提交
1783 1784
}

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip == se)
			cfs_rq->skip = NULL;
		else
			break;
	}
}

P
Peter Zijlstra 已提交
1796 1797
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
1798 1799 1800 1801 1802
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
1803 1804 1805

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
1806 1807
}

1808
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1809

1810
static void
1811
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1812
{
1813 1814 1815 1816
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
1817
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1818

1819
	update_stats_dequeue(cfs_rq, se);
1820
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
1821
#ifdef CONFIG_SCHEDSTATS
1822 1823 1824 1825
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
1826
				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1827
			if (tsk->state & TASK_UNINTERRUPTIBLE)
1828
				se->statistics.block_start = rq_of(cfs_rq)->clock;
1829
		}
1830
#endif
P
Peter Zijlstra 已提交
1831 1832
	}

P
Peter Zijlstra 已提交
1833
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1834

1835
	if (se != cfs_rq->curr)
1836
		__dequeue_entity(cfs_rq, se);
1837
	se->on_rq = 0;
1838
	account_entity_dequeue(cfs_rq, se);
1839 1840 1841 1842 1843 1844

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
1845
	if (!(flags & DEQUEUE_SLEEP))
1846
		se->vruntime -= cfs_rq->min_vruntime;
1847

1848 1849 1850
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

1851
	update_min_vruntime(cfs_rq);
1852
	update_cfs_shares(cfs_rq);
1853 1854 1855 1856 1857
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
1858
static void
I
Ingo Molnar 已提交
1859
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1860
{
1861
	unsigned long ideal_runtime, delta_exec;
1862 1863
	struct sched_entity *se;
	s64 delta;
1864

P
Peter Zijlstra 已提交
1865
	ideal_runtime = sched_slice(cfs_rq, curr);
1866
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1867
	if (delta_exec > ideal_runtime) {
1868
		resched_task(rq_of(cfs_rq)->curr);
1869 1870 1871 1872 1873
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

1885 1886
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
1887

1888 1889
	if (delta < 0)
		return;
1890

1891 1892
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
1893 1894
}

1895
static void
1896
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1897
{
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

1909
	update_stats_curr_start(cfs_rq, se);
1910
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
1911 1912 1913 1914 1915 1916
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
1917
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1918
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
1919 1920 1921
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
1922
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1923 1924
}

1925 1926 1927
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

1928 1929 1930 1931 1932 1933 1934
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
1935
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1936
{
1937
	struct sched_entity *se = __pick_first_entity(cfs_rq);
1938
	struct sched_entity *left = se;
1939

1940 1941 1942 1943 1944 1945 1946 1947 1948
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second = __pick_next_entity(se);
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
1949

1950 1951 1952 1953 1954 1955
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

1956 1957 1958 1959 1960 1961
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

1962
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
1963 1964

	return se;
1965 1966
}

1967 1968
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

1969
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1970 1971 1972 1973 1974 1975
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
1976
		update_curr(cfs_rq);
1977

1978 1979 1980
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
1981
	check_spread(cfs_rq, prev);
1982
	if (prev->on_rq) {
1983
		update_stats_wait_start(cfs_rq, prev);
1984 1985
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
1986
		/* in !on_rq case, update occurred at dequeue */
1987
		update_entity_load_avg(prev, 1);
1988
	}
1989
	cfs_rq->curr = NULL;
1990 1991
}

P
Peter Zijlstra 已提交
1992 1993
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1994 1995
{
	/*
1996
	 * Update run-time statistics of the 'current'.
1997
	 */
1998
	update_curr(cfs_rq);
1999

2000 2001 2002
	/*
	 * Ensure that runnable average is periodically updated.
	 */
2003
	update_entity_load_avg(curr, 1);
2004
	update_cfs_rq_blocked_load(cfs_rq, 1);
2005

P
Peter Zijlstra 已提交
2006 2007 2008 2009 2010
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
2011 2012 2013 2014
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
2015 2016 2017 2018 2019 2020 2021 2022
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
2023
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
2024
		check_preempt_tick(cfs_rq, curr);
2025 2026
}

2027 2028 2029 2030 2031 2032

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
2033 2034

#ifdef HAVE_JUMP_LABEL
2035
static struct static_key __cfs_bandwidth_used;
2036 2037 2038

static inline bool cfs_bandwidth_used(void)
{
2039
	return static_key_false(&__cfs_bandwidth_used);
2040 2041 2042 2043 2044 2045
}

void account_cfs_bandwidth_used(int enabled, int was_enabled)
{
	/* only need to count groups transitioning between enabled/!enabled */
	if (enabled && !was_enabled)
2046
		static_key_slow_inc(&__cfs_bandwidth_used);
2047
	else if (!enabled && was_enabled)
2048
		static_key_slow_dec(&__cfs_bandwidth_used);
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
#endif /* HAVE_JUMP_LABEL */

2059 2060 2061 2062 2063 2064 2065 2066
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
2067 2068 2069 2070 2071 2072

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
2073 2074 2075 2076 2077 2078 2079
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
2080
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

2092 2093 2094 2095 2096
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

2097 2098 2099 2100 2101 2102 2103 2104 2105
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

	return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
}

2106 2107
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2108 2109 2110
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
2111
	u64 amount = 0, min_amount, expires;
2112 2113 2114 2115 2116 2117 2118

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
2119
	else {
P
Paul Turner 已提交
2120 2121 2122 2123 2124 2125 2126 2127
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
2128
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
2129
		}
2130 2131 2132 2133 2134 2135

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
2136
	}
P
Paul Turner 已提交
2137
	expires = cfs_b->runtime_expires;
2138 2139 2140
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
2141 2142 2143 2144 2145 2146 2147
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
2148 2149

	return cfs_rq->runtime_remaining > 0;
2150 2151
}

P
Paul Turner 已提交
2152 2153 2154 2155 2156
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2157
{
P
Paul Turner 已提交
2158 2159 2160 2161 2162
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct rq *rq = rq_of(cfs_rq);

	/* if the deadline is ahead of our clock, nothing to do */
	if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
2163 2164
		return;

P
Paul Turner 已提交
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec)
{
	/* dock delta_exec before expiring quota (as it could span periods) */
2190
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
2191 2192 2193
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
2194 2195
		return;

2196 2197 2198 2199 2200 2201
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
2202 2203
}

2204 2205
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2206
{
2207
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2208 2209 2210 2211 2212
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

2213 2214
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
2215
	return cfs_bandwidth_used() && cfs_rq->throttled;
2216 2217
}

2218 2219 2220
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
2221
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
2250 2251 2252
		/* adjust cfs_rq_clock_task() */
		cfs_rq->throttled_clock_task_time += rq->clock_task -
					     cfs_rq->throttled_clock_task;
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

2264 2265
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
2266
		cfs_rq->throttled_clock_task = rq->clock_task;
2267 2268 2269 2270 2271
	cfs_rq->throttle_count++;

	return 0;
}

2272
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2273 2274 2275 2276 2277 2278 2279 2280
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

2281
	/* freeze hierarchy runnable averages while throttled */
2282 2283 2284
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
2305
	cfs_rq->throttled_clock = rq->clock;
2306 2307 2308 2309 2310
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
	raw_spin_unlock(&cfs_b->lock);
}

2311
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

	cfs_rq->throttled = 0;
2322 2323 2324

	update_rq_clock(rq);

2325
	raw_spin_lock(&cfs_b->lock);
2326
	cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
2327 2328 2329
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

2330 2331 2332
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

2396 2397 2398 2399 2400 2401 2402 2403
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
2404 2405
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
2406 2407 2408 2409 2410 2411

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

2412 2413 2414
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
2415
	cfs_b->nr_periods += overrun;
2416

P
Paul Turner 已提交
2417 2418 2419 2420 2421 2422
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

	__refill_cfs_bandwidth_runtime(cfs_b);

2423 2424 2425 2426 2427 2428
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

2429 2430 2431
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
2456

2457 2458 2459 2460 2461 2462 2463 2464 2465
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
2466 2467 2468 2469 2470 2471 2472
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
2473

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

/* are we near the end of the current quota period? */
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
2538 2539 2540
	if (!cfs_bandwidth_used())
		return;

2541
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

2579 2580 2581 2582 2583 2584 2585
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
2586 2587 2588
	if (!cfs_bandwidth_used())
		return;

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
2606 2607 2608
	if (!cfs_bandwidth_used())
		return;

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return;

	throttle_cfs_rq(cfs_rq);
}
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705

static inline u64 default_cfs_period(void);
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
		raw_spin_unlock(&cfs_b->lock);
		/* ensure cfs_b->lock is available while we wait */
		hrtimer_cancel(&cfs_b->period_timer);

		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

2706
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
2727 2728 2729 2730 2731 2732 2733
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	return rq_of(cfs_rq)->clock_task;
}

static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec) {}
2734 2735
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2736
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2737 2738 2739 2740 2741

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
2753 2754 2755 2756 2757

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2758 2759
#endif

2760 2761 2762 2763 2764
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2765
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2766 2767 2768

#endif /* CONFIG_CFS_BANDWIDTH */

2769 2770 2771 2772
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
2773 2774 2775 2776 2777 2778 2779 2780
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

2781
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
2796
		if (rq->curr != p)
2797
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
2798

2799
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
2800 2801
	}
}
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

2812
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2813 2814 2815 2816 2817
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
2818
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
2819 2820 2821 2822
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
2823 2824 2825 2826

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
2827 2828
#endif

2829 2830 2831 2832 2833
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
2834
static void
2835
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2836 2837
{
	struct cfs_rq *cfs_rq;
2838
	struct sched_entity *se = &p->se;
2839 2840

	for_each_sched_entity(se) {
2841
		if (se->on_rq)
2842 2843
			break;
		cfs_rq = cfs_rq_of(se);
2844
		enqueue_entity(cfs_rq, se, flags);
2845 2846 2847 2848 2849 2850 2851 2852 2853

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
2854
		cfs_rq->h_nr_running++;
2855

2856
		flags = ENQUEUE_WAKEUP;
2857
	}
P
Peter Zijlstra 已提交
2858

P
Peter Zijlstra 已提交
2859
	for_each_sched_entity(se) {
2860
		cfs_rq = cfs_rq_of(se);
2861
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
2862

2863 2864 2865
		if (cfs_rq_throttled(cfs_rq))
			break;

2866
		update_cfs_shares(cfs_rq);
2867
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
2868 2869
	}

2870 2871
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
2872
		inc_nr_running(rq);
2873
	}
2874
	hrtick_update(rq);
2875 2876
}

2877 2878
static void set_next_buddy(struct sched_entity *se);

2879 2880 2881 2882 2883
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
2884
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2885 2886
{
	struct cfs_rq *cfs_rq;
2887
	struct sched_entity *se = &p->se;
2888
	int task_sleep = flags & DEQUEUE_SLEEP;
2889 2890 2891

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
2892
		dequeue_entity(cfs_rq, se, flags);
2893 2894 2895 2896 2897 2898 2899 2900 2901

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
2902
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2903

2904
		/* Don't dequeue parent if it has other entities besides us */
2905 2906 2907 2908 2909 2910 2911
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
2912 2913 2914

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
2915
			break;
2916
		}
2917
		flags |= DEQUEUE_SLEEP;
2918
	}
P
Peter Zijlstra 已提交
2919

P
Peter Zijlstra 已提交
2920
	for_each_sched_entity(se) {
2921
		cfs_rq = cfs_rq_of(se);
2922
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
2923

2924 2925 2926
		if (cfs_rq_throttled(cfs_rq))
			break;

2927
		update_cfs_shares(cfs_rq);
2928
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
2929 2930
	}

2931
	if (!se) {
2932
		dec_nr_running(rq);
2933 2934
		update_rq_runnable_avg(rq, 1);
	}
2935
	hrtick_update(rq);
2936 2937
}

2938
#ifdef CONFIG_SMP
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);

	if (nr_running)
		return rq->load.weight / nr_running;

	return 0;
}

2994

2995
static void task_waking_fair(struct task_struct *p)
2996 2997 2998
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2999 3000 3001 3002
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
3003

3004 3005 3006 3007 3008 3009 3010 3011
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
3012

3013
	se->vruntime -= min_vruntime;
3014 3015
}

3016
#ifdef CONFIG_FAIR_GROUP_SCHED
3017 3018 3019 3020 3021 3022
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
3066
 */
P
Peter Zijlstra 已提交
3067
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3068
{
P
Peter Zijlstra 已提交
3069
	struct sched_entity *se = tg->se[cpu];
3070

3071
	if (!tg->parent)	/* the trivial, non-cgroup case */
3072 3073
		return wl;

P
Peter Zijlstra 已提交
3074
	for_each_sched_entity(se) {
3075
		long w, W;
P
Peter Zijlstra 已提交
3076

3077
		tg = se->my_q->tg;
3078

3079 3080 3081 3082
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
3083

3084 3085 3086 3087
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
3088

3089 3090 3091 3092 3093
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
3094 3095
		else
			wl = tg->shares;
3096

3097 3098 3099 3100 3101
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
3102 3103
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
3104 3105 3106 3107

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
3108
		wl -= se->load.weight;
3109 3110 3111 3112 3113 3114 3115 3116

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
3117 3118
		wg = 0;
	}
3119

P
Peter Zijlstra 已提交
3120
	return wl;
3121 3122
}
#else
P
Peter Zijlstra 已提交
3123

3124 3125
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
3126
{
3127
	return wl;
3128
}
P
Peter Zijlstra 已提交
3129

3130 3131
#endif

3132
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3133
{
3134
	s64 this_load, load;
3135
	int idx, this_cpu, prev_cpu;
3136
	unsigned long tl_per_task;
3137
	struct task_group *tg;
3138
	unsigned long weight;
3139
	int balanced;
3140

3141 3142 3143 3144 3145
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
3146

3147 3148 3149 3150 3151
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
3152 3153 3154 3155
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

3156
		this_load += effective_load(tg, this_cpu, -weight, -weight);
3157 3158
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
3159

3160 3161
	tg = task_group(p);
	weight = p->se.load.weight;
3162

3163 3164
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3165 3166 3167
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
3168 3169 3170 3171
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
3172 3173
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
3187

3188
	/*
I
Ingo Molnar 已提交
3189 3190 3191
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
3192
	 */
3193 3194
	if (sync && balanced)
		return 1;
3195

3196
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3197 3198
	tl_per_task = cpu_avg_load_per_task(this_cpu);

3199 3200 3201
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3202 3203 3204 3205 3206
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
3207
		schedstat_inc(sd, ttwu_move_affine);
3208
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
3209 3210 3211 3212 3213 3214

		return 1;
	}
	return 0;
}

3215 3216 3217 3218 3219
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
3220
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3221
		  int this_cpu, int load_idx)
3222
{
3223
	struct sched_group *idlest = NULL, *group = sd->groups;
3224 3225
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
3226

3227 3228 3229 3230
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
3231

3232 3233
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
3234
					tsk_cpus_allowed(p)))
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
3254
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
3280
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3281 3282 3283 3284 3285
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
3286 3287 3288
		}
	}

3289 3290
	return idlest;
}
3291

3292 3293 3294
/*
 * Try and locate an idle CPU in the sched_domain.
 */
3295
static int select_idle_sibling(struct task_struct *p, int target)
3296
{
3297
	struct sched_domain *sd;
3298
	struct sched_group *sg;
3299
	int i = task_cpu(p);
3300

3301 3302
	if (idle_cpu(target))
		return target;
3303 3304

	/*
3305
	 * If the prevous cpu is cache affine and idle, don't be stupid.
3306
	 */
3307 3308
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
3309 3310

	/*
3311
	 * Otherwise, iterate the domains and find an elegible idle cpu.
3312
	 */
3313
	sd = rcu_dereference(per_cpu(sd_llc, target));
3314
	for_each_lower_domain(sd) {
3315 3316 3317 3318 3319 3320 3321
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
3322
				if (i == target || !idle_cpu(i))
3323 3324
					goto next;
			}
3325

3326 3327 3328 3329 3330 3331 3332 3333
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
3334 3335 3336
	return target;
}

3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
3348
static int
3349
select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3350
{
3351
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3352 3353 3354
	int cpu = smp_processor_id();
	int prev_cpu = task_cpu(p);
	int new_cpu = cpu;
3355
	int want_affine = 0;
3356
	int sync = wake_flags & WF_SYNC;
3357

3358
	if (p->nr_cpus_allowed == 1)
3359 3360
		return prev_cpu;

3361
	if (sd_flag & SD_BALANCE_WAKE) {
3362
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3363 3364 3365
			want_affine = 1;
		new_cpu = prev_cpu;
	}
3366

3367
	rcu_read_lock();
3368
	for_each_domain(cpu, tmp) {
3369 3370 3371
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

3372
		/*
3373 3374
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
3375
		 */
3376 3377 3378
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
3379
			break;
3380
		}
3381

3382
		if (tmp->flags & sd_flag)
3383 3384 3385
			sd = tmp;
	}

3386
	if (affine_sd) {
3387
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3388 3389 3390 3391
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
3392
	}
3393

3394
	while (sd) {
3395
		int load_idx = sd->forkexec_idx;
3396
		struct sched_group *group;
3397
		int weight;
3398

3399
		if (!(sd->flags & sd_flag)) {
3400 3401 3402
			sd = sd->child;
			continue;
		}
3403

3404 3405
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
3406

3407
		group = find_idlest_group(sd, p, cpu, load_idx);
3408 3409 3410 3411
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
3412

3413
		new_cpu = find_idlest_cpu(group, p, cpu);
3414 3415 3416 3417
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
3418
		}
3419 3420 3421

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
3422
		weight = sd->span_weight;
3423 3424
		sd = NULL;
		for_each_domain(cpu, tmp) {
3425
			if (weight <= tmp->span_weight)
3426
				break;
3427
			if (tmp->flags & sd_flag)
3428 3429 3430
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
3431
	}
3432 3433
unlock:
	rcu_read_unlock();
3434

3435
	return new_cpu;
3436
}
3437

3438 3439 3440 3441 3442 3443
/*
 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
 * removed when useful for applications beyond shares distribution (e.g.
 * load-balance).
 */
#ifdef CONFIG_FAIR_GROUP_SCHED
3444 3445 3446 3447 3448 3449 3450 3451 3452
/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
		atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
	}
3466
}
3467
#endif
3468 3469
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
3470 3471
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3472 3473 3474 3475
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
3476 3477
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
3478 3479 3480 3481 3482 3483 3484 3485 3486
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
3487
	 */
3488
	return calc_delta_fair(gran, se);
3489 3490
}

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
3513
	gran = wakeup_gran(curr, se);
3514 3515 3516 3517 3518 3519
	if (vdiff > gran)
		return 1;

	return 0;
}

3520 3521
static void set_last_buddy(struct sched_entity *se)
{
3522 3523 3524 3525 3526
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
3527 3528 3529 3530
}

static void set_next_buddy(struct sched_entity *se)
{
3531 3532 3533 3534 3535
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
3536 3537
}

3538 3539
static void set_skip_buddy(struct sched_entity *se)
{
3540 3541
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
3542 3543
}

3544 3545 3546
/*
 * Preempt the current task with a newly woken task if needed:
 */
3547
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3548 3549
{
	struct task_struct *curr = rq->curr;
3550
	struct sched_entity *se = &curr->se, *pse = &p->se;
3551
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3552
	int scale = cfs_rq->nr_running >= sched_nr_latency;
3553
	int next_buddy_marked = 0;
3554

I
Ingo Molnar 已提交
3555 3556 3557
	if (unlikely(se == pse))
		return;

3558
	/*
3559
	 * This is possible from callers such as move_task(), in which we
3560 3561 3562 3563 3564 3565 3566
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

3567
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
3568
		set_next_buddy(pse);
3569 3570
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
3571

3572 3573 3574
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
3575 3576 3577 3578 3579 3580
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
3581 3582 3583 3584
	 */
	if (test_tsk_need_resched(curr))
		return;

3585 3586 3587 3588 3589
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

3590
	/*
3591 3592
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
3593
	 */
3594
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3595
		return;
3596

3597
	find_matching_se(&se, &pse);
3598
	update_curr(cfs_rq_of(se));
3599
	BUG_ON(!pse);
3600 3601 3602 3603 3604 3605 3606
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
3607
		goto preempt;
3608
	}
3609

3610
	return;
3611

3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
3628 3629
}

3630
static struct task_struct *pick_next_task_fair(struct rq *rq)
3631
{
P
Peter Zijlstra 已提交
3632
	struct task_struct *p;
3633 3634 3635
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

3636
	if (!cfs_rq->nr_running)
3637 3638 3639
		return NULL;

	do {
3640
		se = pick_next_entity(cfs_rq);
3641
		set_next_entity(cfs_rq, se);
3642 3643 3644
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
3645
	p = task_of(se);
3646 3647
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
3648 3649

	return p;
3650 3651 3652 3653 3654
}

/*
 * Account for a descheduled task:
 */
3655
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3656 3657 3658 3659 3660 3661
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3662
		put_prev_entity(cfs_rq, se);
3663 3664 3665
	}
}

3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
3691 3692 3693 3694 3695 3696
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
3697 3698 3699 3700 3701
	}

	set_skip_buddy(se);
}

3702 3703 3704 3705
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

3706 3707
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

3718
#ifdef CONFIG_SMP
3719
/**************************************************
P
Peter Zijlstra 已提交
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
3836

3837 3838
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

3839
#define LBF_ALL_PINNED	0x01
3840
#define LBF_NEED_BREAK	0x02
3841
#define LBF_SOME_PINNED 0x04
3842 3843 3844 3845 3846

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
3847
	int			src_cpu;
3848 3849 3850 3851

	int			dst_cpu;
	struct rq		*dst_rq;

3852 3853
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
3854
	enum cpu_idle_type	idle;
3855
	long			imbalance;
3856 3857 3858
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

3859
	unsigned int		flags;
3860 3861 3862 3863

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
3864 3865
};

3866
/*
3867
 * move_task - move a task from one runqueue to another runqueue.
3868 3869
 * Both runqueues must be locked.
 */
3870
static void move_task(struct task_struct *p, struct lb_env *env)
3871
{
3872 3873 3874 3875
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
3876 3877
}

3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
/*
 * Is this task likely cache-hot:
 */
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

3910 3911 3912 3913
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
3914
int can_migrate_task(struct task_struct *p, struct lb_env *env)
3915 3916 3917 3918
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
3919
	 * 1) throttled_lb_pair, or
3920
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3921 3922
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
3923
	 */
3924 3925 3926
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

3927
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3928
		int cpu;
3929

3930
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942

		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
		if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
			return 0;

3943 3944 3945 3946 3947 3948 3949
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
				env->flags |= LBF_SOME_PINNED;
				env->new_dst_cpu = cpu;
				break;
			}
3950
		}
3951

3952 3953
		return 0;
	}
3954 3955

	/* Record that we found atleast one task that could run on dst_cpu */
3956
	env->flags &= ~LBF_ALL_PINNED;
3957

3958
	if (task_running(env->src_rq, p)) {
3959
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3960 3961 3962 3963 3964 3965 3966 3967 3968
		return 0;
	}

	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3969
	tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3970
	if (!tsk_cache_hot ||
3971
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Z
Zhang Hang 已提交
3972

3973
		if (tsk_cache_hot) {
3974
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3975
			schedstat_inc(p, se.statistics.nr_forced_migrations);
3976
		}
Z
Zhang Hang 已提交
3977

3978 3979 3980
		return 1;
	}

Z
Zhang Hang 已提交
3981 3982
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
3983 3984
}

3985 3986 3987 3988 3989 3990 3991
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
3992
static int move_one_task(struct lb_env *env)
3993 3994 3995
{
	struct task_struct *p, *n;

3996 3997 3998
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
3999

4000 4001 4002 4003 4004 4005 4006 4007
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
4008 4009 4010 4011
	}
	return 0;
}

4012 4013
static unsigned long task_h_load(struct task_struct *p);

4014 4015
static const unsigned int sched_nr_migrate_break = 32;

4016
/*
4017
 * move_tasks tries to move up to imbalance weighted load from busiest to
4018 4019 4020 4021 4022 4023
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
4024
{
4025 4026
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
4027 4028
	unsigned long load;
	int pulled = 0;
4029

4030
	if (env->imbalance <= 0)
4031
		return 0;
4032

4033 4034
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
4035

4036 4037
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
4038
		if (env->loop > env->loop_max)
4039
			break;
4040 4041

		/* take a breather every nr_migrate tasks */
4042
		if (env->loop > env->loop_break) {
4043
			env->loop_break += sched_nr_migrate_break;
4044
			env->flags |= LBF_NEED_BREAK;
4045
			break;
4046
		}
4047

4048
		if (!can_migrate_task(p, env))
4049 4050 4051
			goto next;

		load = task_h_load(p);
4052

4053
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4054 4055
			goto next;

4056
		if ((load / 2) > env->imbalance)
4057
			goto next;
4058

4059
		move_task(p, env);
4060
		pulled++;
4061
		env->imbalance -= load;
4062 4063

#ifdef CONFIG_PREEMPT
4064 4065 4066 4067 4068
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
4069
		if (env->idle == CPU_NEWLY_IDLE)
4070
			break;
4071 4072
#endif

4073 4074 4075 4076
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
4077
		if (env->imbalance <= 0)
4078
			break;
4079 4080 4081

		continue;
next:
4082
		list_move_tail(&p->se.group_node, tasks);
4083
	}
4084

4085
	/*
4086 4087 4088
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
4089
	 */
4090
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
4091

4092
	return pulled;
4093 4094
}

P
Peter Zijlstra 已提交
4095
#ifdef CONFIG_FAIR_GROUP_SCHED
4096 4097 4098
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
4099
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4100
{
4101 4102
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4103

4104 4105 4106
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
4107

4108
	update_cfs_rq_blocked_load(cfs_rq, 1);
4109

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
4124
		struct rq *rq = rq_of(cfs_rq);
4125 4126
		update_rq_runnable_avg(rq, rq->nr_running);
	}
4127 4128
}

4129
static void update_blocked_averages(int cpu)
4130 4131
{
	struct rq *rq = cpu_rq(cpu);
4132 4133
	struct cfs_rq *cfs_rq;
	unsigned long flags;
4134

4135 4136
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
4137 4138 4139 4140
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
4141
	for_each_leaf_cfs_rq(rq, cfs_rq) {
4142 4143 4144 4145 4146 4147
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4148
	}
4149 4150

	raw_spin_unlock_irqrestore(&rq->lock, flags);
4151 4152
}

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
/*
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
static int tg_load_down(struct task_group *tg, void *data)
{
	unsigned long load;
	long cpu = (long)data;

	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->se[cpu]->load.weight;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}

	tg->cfs_rq[cpu]->h_load = load;

	return 0;
}

static void update_h_load(long cpu)
{
4178 4179 4180 4181 4182 4183 4184 4185
	struct rq *rq = cpu_rq(cpu);
	unsigned long now = jiffies;

	if (rq->h_load_throttle == now)
		return;

	rq->h_load_throttle = now;

4186
	rcu_read_lock();
4187
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
4188
	rcu_read_unlock();
4189 4190
}

4191
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
4192
{
4193 4194
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
	unsigned long load;
P
Peter Zijlstra 已提交
4195

4196 4197
	load = p->se.load.weight;
	load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
P
Peter Zijlstra 已提交
4198

4199
	return load;
P
Peter Zijlstra 已提交
4200 4201
}
#else
4202
static inline void update_blocked_averages(int cpu)
4203 4204 4205
{
}

4206
static inline void update_h_load(long cpu)
P
Peter Zijlstra 已提交
4207 4208 4209
{
}

4210
static unsigned long task_h_load(struct task_struct *p)
4211
{
4212
	return p->se.load.weight;
4213
}
P
Peter Zijlstra 已提交
4214
#endif
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231

/********** Helpers for find_busiest_group ************************/
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;
4232
	unsigned long this_has_capacity;
4233
	unsigned int  this_idle_cpus;
4234 4235

	/* Statistics of the busiest group */
4236
	unsigned int  busiest_idle_cpus;
4237 4238 4239
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;
4240
	unsigned long busiest_group_capacity;
4241
	unsigned long busiest_has_capacity;
4242
	unsigned int  busiest_group_weight;
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255

	int group_imb; /* Is there imbalance in this sd */
};

/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
4256 4257
	unsigned long idle_cpus;
	unsigned long group_weight;
4258
	int group_imb; /* Is there an imbalance in the group ? */
4259
	int group_has_capacity; /* Is there extra capacity in the group? */
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
};

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

4288
static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4289
{
4290
	return SCHED_POWER_SCALE;
4291 4292 4293 4294 4295 4296 4297
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

4298
static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4299
{
4300
	unsigned long weight = sd->span_weight;
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

4313
static unsigned long scale_rt_power(int cpu)
4314 4315
{
	struct rq *rq = cpu_rq(cpu);
4316
	u64 total, available, age_stamp, avg;
4317

4318 4319 4320 4321 4322 4323 4324 4325
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

	total = sched_avg_period() + (rq->clock - age_stamp);
4326

4327
	if (unlikely(total < avg)) {
4328 4329 4330
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
4331
		available = total - avg;
4332
	}
4333

4334 4335
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
4336

4337
	total >>= SCHED_POWER_SHIFT;
4338 4339 4340 4341 4342 4343

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
4344
	unsigned long weight = sd->span_weight;
4345
	unsigned long power = SCHED_POWER_SCALE;
4346 4347 4348 4349 4350 4351 4352 4353
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

4354
		power >>= SCHED_POWER_SHIFT;
4355 4356
	}

4357
	sdg->sgp->power_orig = power;
4358 4359 4360 4361 4362 4363

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

4364
	power >>= SCHED_POWER_SHIFT;
4365

4366
	power *= scale_rt_power(cpu);
4367
	power >>= SCHED_POWER_SHIFT;
4368 4369 4370 4371

	if (!power)
		power = 1;

4372
	cpu_rq(cpu)->cpu_power = power;
4373
	sdg->sgp->power = power;
4374 4375
}

4376
void update_group_power(struct sched_domain *sd, int cpu)
4377 4378 4379 4380
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
	unsigned long power;
4381 4382 4383 4384 4385
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
4386 4387 4388 4389 4390 4391 4392 4393

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

	power = 0;

P
Peter Zijlstra 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

		for_each_cpu(cpu, sched_group_cpus(sdg))
			power += power_of(cpu);
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
4414

4415
	sdg->sgp->power_orig = sdg->sgp->power = power;
4416 4417
}

4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
4429
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
4430
	 */
P
Peter Zijlstra 已提交
4431
	if (!(sd->flags & SD_SHARE_CPUPOWER))
4432 4433 4434 4435 4436
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
4437
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4438 4439 4440 4441 4442
		return 1;

	return 0;
}

4443 4444
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4445
 * @env: The load balancing environment.
4446 4447 4448 4449 4450 4451
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
4452 4453
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
4454
			int local_group, int *balance, struct sg_lb_stats *sgs)
4455
{
4456 4457
	unsigned long nr_running, max_nr_running, min_nr_running;
	unsigned long load, max_cpu_load, min_cpu_load;
4458
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
4459
	unsigned long avg_load_per_task = 0;
4460
	int i;
4461

4462
	if (local_group)
P
Peter Zijlstra 已提交
4463
		balance_cpu = group_balance_cpu(group);
4464 4465 4466 4467

	/* Tally up the load of all CPUs in the group */
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
4468
	max_nr_running = 0;
4469
	min_nr_running = ~0UL;
4470

4471
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4472 4473
		struct rq *rq = cpu_rq(i);

4474 4475
		nr_running = rq->nr_running;

4476 4477
		/* Bias balancing toward cpus of our domain */
		if (local_group) {
P
Peter Zijlstra 已提交
4478 4479
			if (idle_cpu(i) && !first_idle_cpu &&
					cpumask_test_cpu(i, sched_group_mask(group))) {
4480
				first_idle_cpu = 1;
4481 4482
				balance_cpu = i;
			}
4483 4484

			load = target_load(i, load_idx);
4485 4486
		} else {
			load = source_load(i, load_idx);
4487
			if (load > max_cpu_load)
4488 4489 4490
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
4491 4492 4493 4494 4495

			if (nr_running > max_nr_running)
				max_nr_running = nr_running;
			if (min_nr_running > nr_running)
				min_nr_running = nr_running;
4496 4497 4498
		}

		sgs->group_load += load;
4499
		sgs->sum_nr_running += nr_running;
4500
		sgs->sum_weighted_load += weighted_cpuload(i);
4501 4502
		if (idle_cpu(i))
			sgs->idle_cpus++;
4503 4504 4505 4506 4507 4508 4509 4510
	}

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
4511
	if (local_group) {
4512
		if (env->idle != CPU_NEWLY_IDLE) {
4513
			if (balance_cpu != env->dst_cpu) {
4514 4515 4516
				*balance = 0;
				return;
			}
4517
			update_group_power(env->sd, env->dst_cpu);
4518
		} else if (time_after_eq(jiffies, group->sgp->next_update))
4519
			update_group_power(env->sd, env->dst_cpu);
4520 4521 4522
	}

	/* Adjust by relative CPU power of the group */
4523
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
4524 4525 4526

	/*
	 * Consider the group unbalanced when the imbalance is larger
P
Peter Zijlstra 已提交
4527
	 * than the average weight of a task.
4528 4529 4530 4531 4532 4533
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
4534 4535
	if (sgs->sum_nr_running)
		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4536

4537 4538
	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
	    (max_nr_running - min_nr_running) > 1)
4539 4540
		sgs->group_imb = 1;

4541
	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
4542
						SCHED_POWER_SCALE);
4543
	if (!sgs->group_capacity)
4544
		sgs->group_capacity = fix_small_capacity(env->sd, group);
4545
	sgs->group_weight = group->group_weight;
4546 4547 4548

	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
4549 4550
}

4551 4552
/**
 * update_sd_pick_busiest - return 1 on busiest group
4553
 * @env: The load balancing environment.
4554 4555
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
4556
 * @sgs: sched_group statistics
4557 4558 4559 4560
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
 */
4561
static bool update_sd_pick_busiest(struct lb_env *env,
4562 4563
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
4564
				   struct sg_lb_stats *sgs)
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
{
	if (sgs->avg_load <= sds->max_load)
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
4580 4581
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

4592
/**
4593
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4594
 * @env: The load balancing environment.
4595 4596 4597
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
 */
4598
static inline void update_sd_lb_stats(struct lb_env *env,
4599
					int *balance, struct sd_lb_stats *sds)
4600
{
4601 4602
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
4603 4604 4605 4606 4607 4608
	struct sg_lb_stats sgs;
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

4609
	load_idx = get_sd_load_idx(env->sd, env->idle);
4610 4611 4612 4613

	do {
		int local_group;

4614
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4615
		memset(&sgs, 0, sizeof(sgs));
4616
		update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4617

P
Peter Zijlstra 已提交
4618
		if (local_group && !(*balance))
4619 4620 4621
			return;

		sds->total_load += sgs.group_load;
4622
		sds->total_pwr += sg->sgp->power;
4623 4624 4625

		/*
		 * In case the child domain prefers tasks go to siblings
4626
		 * first, lower the sg capacity to one so that we'll try
4627 4628 4629 4630 4631 4632
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
4633
		 */
4634
		if (prefer_sibling && !local_group && sds->this_has_capacity)
4635 4636 4637 4638
			sgs.group_capacity = min(sgs.group_capacity, 1UL);

		if (local_group) {
			sds->this_load = sgs.avg_load;
4639
			sds->this = sg;
4640 4641
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
4642
			sds->this_has_capacity = sgs.group_has_capacity;
4643
			sds->this_idle_cpus = sgs.idle_cpus;
4644
		} else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4645
			sds->max_load = sgs.avg_load;
4646
			sds->busiest = sg;
4647
			sds->busiest_nr_running = sgs.sum_nr_running;
4648
			sds->busiest_idle_cpus = sgs.idle_cpus;
4649
			sds->busiest_group_capacity = sgs.group_capacity;
4650
			sds->busiest_load_per_task = sgs.sum_weighted_load;
4651
			sds->busiest_has_capacity = sgs.group_has_capacity;
4652
			sds->busiest_group_weight = sgs.group_weight;
4653 4654 4655
			sds->group_imb = sgs.group_imb;
		}

4656
		sg = sg->next;
4657
	} while (sg != env->sd->groups);
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
4677 4678 4679
 * Returns 1 when packing is required and a task should be moved to
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
4680
 * @env: The load balancing environment.
4681 4682
 * @sds: Statistics of the sched_domain which is to be packed
 */
4683
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4684 4685 4686
{
	int busiest_cpu;

4687
	if (!(env->sd->flags & SD_ASYM_PACKING))
4688 4689 4690 4691 4692 4693
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
4694
	if (env->dst_cpu > busiest_cpu)
4695 4696
		return 0;

4697 4698 4699
	env->imbalance = DIV_ROUND_CLOSEST(
		sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);

4700
	return 1;
4701 4702 4703 4704 4705 4706
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
4707
 * @env: The load balancing environment.
4708 4709
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
4710 4711
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4712 4713 4714
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
4715
	unsigned long scaled_busy_load_per_task;
4716 4717 4718 4719 4720 4721

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
4722
	} else {
4723
		sds->this_load_per_task =
4724 4725
			cpu_avg_load_per_task(env->dst_cpu);
	}
4726

4727
	scaled_busy_load_per_task = sds->busiest_load_per_task
4728
					 * SCHED_POWER_SCALE;
4729
	scaled_busy_load_per_task /= sds->busiest->sgp->power;
4730 4731 4732

	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
			(scaled_busy_load_per_task * imbn)) {
4733
		env->imbalance = sds->busiest_load_per_task;
4734 4735 4736 4737 4738 4739 4740 4741 4742
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

4743
	pwr_now += sds->busiest->sgp->power *
4744
			min(sds->busiest_load_per_task, sds->max_load);
4745
	pwr_now += sds->this->sgp->power *
4746
			min(sds->this_load_per_task, sds->this_load);
4747
	pwr_now /= SCHED_POWER_SCALE;
4748 4749

	/* Amount of load we'd subtract */
4750
	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4751
		sds->busiest->sgp->power;
4752
	if (sds->max_load > tmp)
4753
		pwr_move += sds->busiest->sgp->power *
4754 4755 4756
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
4757
	if (sds->max_load * sds->busiest->sgp->power <
4758
		sds->busiest_load_per_task * SCHED_POWER_SCALE)
4759 4760
		tmp = (sds->max_load * sds->busiest->sgp->power) /
			sds->this->sgp->power;
4761
	else
4762
		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4763 4764
			sds->this->sgp->power;
	pwr_move += sds->this->sgp->power *
4765
			min(sds->this_load_per_task, sds->this_load + tmp);
4766
	pwr_move /= SCHED_POWER_SCALE;
4767 4768 4769

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
4770
		env->imbalance = sds->busiest_load_per_task;
4771 4772 4773 4774 4775
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
4776
 * @env: load balance environment
4777 4778
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
4779
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4780
{
4781 4782 4783 4784 4785 4786 4787 4788
	unsigned long max_pull, load_above_capacity = ~0UL;

	sds->busiest_load_per_task /= sds->busiest_nr_running;
	if (sds->group_imb) {
		sds->busiest_load_per_task =
			min(sds->busiest_load_per_task, sds->avg_load);
	}

4789 4790 4791 4792 4793 4794
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (sds->max_load < sds->avg_load) {
4795 4796
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
4797 4798
	}

4799 4800 4801 4802 4803 4804 4805
	if (!sds->group_imb) {
		/*
		 * Don't want to pull so many tasks that a group would go idle.
		 */
		load_above_capacity = (sds->busiest_nr_running -
						sds->busiest_group_capacity);

4806
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4807

4808
		load_above_capacity /= sds->busiest->sgp->power;
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 * Be careful of negative numbers as they'll appear as very large values
	 * with unsigned longs.
	 */
	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4822 4823

	/* How much load to actually move to equalise the imbalance */
4824
	env->imbalance = min(max_pull * sds->busiest->sgp->power,
4825
		(sds->avg_load - sds->this_load) * sds->this->sgp->power)
4826
			/ SCHED_POWER_SCALE;
4827 4828 4829

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
4830
	 * there is no guarantee that any tasks will be moved so we'll have
4831 4832 4833
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
4834 4835
	if (env->imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(env, sds);
4836 4837

}
4838

4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
4851
 * @env: The load balancing environment.
4852 4853 4854 4855 4856 4857 4858 4859 4860
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
static struct sched_group *
4861
find_busiest_group(struct lb_env *env, int *balance)
4862 4863 4864 4865 4866 4867 4868 4869 4870
{
	struct sd_lb_stats sds;

	memset(&sds, 0, sizeof(sds));

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
4871
	update_sd_lb_stats(env, balance, &sds);
4872

4873 4874 4875
	/*
	 * this_cpu is not the appropriate cpu to perform load balancing at
	 * this level.
4876
	 */
P
Peter Zijlstra 已提交
4877
	if (!(*balance))
4878 4879
		goto ret;

4880 4881
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
4882 4883
		return sds.busiest;

4884
	/* There is no busy sibling group to pull tasks from */
4885 4886 4887
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;

4888
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4889

P
Peter Zijlstra 已提交
4890 4891 4892 4893 4894 4895 4896 4897
	/*
	 * If the busiest group is imbalanced the below checks don't
	 * work because they assumes all things are equal, which typically
	 * isn't true due to cpus_allowed constraints and the like.
	 */
	if (sds.group_imb)
		goto force_balance;

4898
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4899
	if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4900 4901 4902
			!sds.busiest_has_capacity)
		goto force_balance;

4903 4904 4905 4906
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
4907 4908 4909
	if (sds.this_load >= sds.max_load)
		goto out_balanced;

4910 4911 4912 4913
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
4914 4915 4916
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

4917
	if (env->idle == CPU_IDLE) {
4918 4919 4920 4921 4922 4923
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
4924
		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4925 4926
		    sds.busiest_nr_running <= sds.busiest_group_weight)
			goto out_balanced;
4927 4928 4929 4930 4931
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
4932
		if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4933
			goto out_balanced;
4934
	}
4935

4936
force_balance:
4937
	/* Looks like there is an imbalance. Compute it */
4938
	calculate_imbalance(env, &sds);
4939 4940 4941 4942
	return sds.busiest;

out_balanced:
ret:
4943
	env->imbalance = 0;
4944 4945 4946 4947 4948 4949
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4950
static struct rq *find_busiest_queue(struct lb_env *env,
4951
				     struct sched_group *group)
4952 4953 4954 4955 4956 4957 4958
{
	struct rq *busiest = NULL, *rq;
	unsigned long max_load = 0;
	int i;

	for_each_cpu(i, sched_group_cpus(group)) {
		unsigned long power = power_of(i);
4959 4960
		unsigned long capacity = DIV_ROUND_CLOSEST(power,
							   SCHED_POWER_SCALE);
4961 4962
		unsigned long wl;

4963
		if (!capacity)
4964
			capacity = fix_small_capacity(env->sd, group);
4965

4966
		if (!cpumask_test_cpu(i, env->cpus))
4967 4968 4969
			continue;

		rq = cpu_rq(i);
4970
		wl = weighted_cpuload(i);
4971

4972 4973 4974 4975
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
4976
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4977 4978
			continue;

4979 4980 4981 4982 4983 4984
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
		 */
4985
		wl = (wl * SCHED_POWER_SCALE) / power;
4986

4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
		if (wl > max_load) {
			max_load = wl;
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
5003
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5004

5005
static int need_active_balance(struct lb_env *env)
5006
{
5007 5008 5009
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
5010 5011 5012 5013 5014 5015

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
5016
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
5017
			return 1;
5018 5019 5020 5021 5022
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

5023 5024
static int active_load_balance_cpu_stop(void *data);

5025 5026 5027 5028 5029 5030 5031 5032
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
			int *balance)
{
5033
	int ld_moved, cur_ld_moved, active_balance = 0;
5034 5035 5036
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
5037
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5038

5039 5040
	struct lb_env env = {
		.sd		= sd,
5041 5042
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
5043
		.dst_grpmask    = sched_group_cpus(sd->groups),
5044
		.idle		= idle,
5045
		.loop_break	= sched_nr_migrate_break,
5046
		.cpus		= cpus,
5047 5048
	};

5049 5050 5051 5052
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
5053
	if (idle == CPU_NEWLY_IDLE)
5054 5055
		env.dst_grpmask = NULL;

5056 5057 5058 5059 5060
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
5061
	group = find_busiest_group(&env, balance);
5062 5063 5064 5065 5066 5067 5068 5069 5070

	if (*balance == 0)
		goto out_balanced;

	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

5071
	busiest = find_busiest_queue(&env, group);
5072 5073 5074 5075 5076
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

5077
	BUG_ON(busiest == env.dst_rq);
5078

5079
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5080 5081 5082 5083 5084 5085 5086 5087 5088

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
5089
		env.flags |= LBF_ALL_PINNED;
5090 5091 5092
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
5093

5094
		update_h_load(env.src_cpu);
5095
more_balance:
5096
		local_irq_save(flags);
5097
		double_rq_lock(env.dst_rq, busiest);
5098 5099 5100 5101 5102 5103 5104

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
5105
		double_rq_unlock(env.dst_rq, busiest);
5106 5107 5108 5109 5110
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
5111 5112 5113
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

5114 5115 5116 5117 5118
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
5138
		if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5139

5140
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
5141 5142 5143 5144
			env.dst_cpu	 = env.new_dst_cpu;
			env.flags	&= ~LBF_SOME_PINNED;
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
5145 5146 5147 5148

			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

5149 5150 5151 5152 5153 5154
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
5155 5156

		/* All tasks on this runqueue were pinned by CPU affinity */
5157
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
5158
			cpumask_clear_cpu(cpu_of(busiest), cpus);
5159 5160 5161
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
5162
				goto redo;
5163
			}
5164 5165 5166 5167 5168 5169
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
5170 5171 5172 5173 5174 5175 5176 5177
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
5178

5179
		if (need_active_balance(&env)) {
5180 5181
			raw_spin_lock_irqsave(&busiest->lock, flags);

5182 5183 5184
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
5185 5186
			 */
			if (!cpumask_test_cpu(this_cpu,
5187
					tsk_cpus_allowed(busiest->curr))) {
5188 5189
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
5190
				env.flags |= LBF_ALL_PINNED;
5191 5192 5193
				goto out_one_pinned;
			}

5194 5195 5196 5197 5198
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
5199 5200 5201 5202 5203 5204
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
5205

5206
			if (active_balance) {
5207 5208 5209
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
5210
			}
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
5244
	if (((env.flags & LBF_ALL_PINNED) &&
5245
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
5246 5247 5248
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

5249
	ld_moved = 0;
5250 5251 5252 5253 5254 5255 5256 5257
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
5258
void idle_balance(int this_cpu, struct rq *this_rq)
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;

	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

5269 5270 5271 5272 5273
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

5274
	update_blocked_averages(this_cpu);
5275
	rcu_read_lock();
5276 5277
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
5278
		int balance = 1;
5279 5280 5281 5282

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

5283
		if (sd->flags & SD_BALANCE_NEWIDLE) {
5284
			/* If we've pulled tasks over stop searching: */
5285 5286 5287
			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE, &balance);
		}
5288 5289 5290 5291

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
N
Nikhil Rao 已提交
5292 5293
		if (pulled_task) {
			this_rq->idle_stamp = 0;
5294
			break;
N
Nikhil Rao 已提交
5295
		}
5296
	}
5297
	rcu_read_unlock();
5298 5299 5300

	raw_spin_lock(&this_rq->lock);

5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
}

/*
5311 5312 5313 5314
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
5315
 */
5316
static int active_load_balance_cpu_stop(void *data)
5317
{
5318 5319
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
5320
	int target_cpu = busiest_rq->push_cpu;
5321
	struct rq *target_rq = cpu_rq(target_cpu);
5322
	struct sched_domain *sd;
5323 5324 5325 5326 5327 5328 5329

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
5330 5331 5332

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
5333
		goto out_unlock;
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
5346
	rcu_read_lock();
5347 5348 5349 5350 5351 5352 5353
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
5354 5355
		struct lb_env env = {
			.sd		= sd,
5356 5357 5358 5359
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
5360 5361 5362
			.idle		= CPU_IDLE,
		};

5363 5364
		schedstat_inc(sd, alb_count);

5365
		if (move_one_task(&env))
5366 5367 5368 5369
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
5370
	rcu_read_unlock();
5371
	double_unlock_balance(busiest_rq, target_rq);
5372 5373 5374 5375
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
5376 5377
}

5378
#ifdef CONFIG_NO_HZ_COMMON
5379 5380 5381 5382 5383 5384
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
5385
static struct {
5386
	cpumask_var_t idle_cpus_mask;
5387
	atomic_t nr_cpus;
5388 5389
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
5390

5391
static inline int find_new_ilb(int call_cpu)
5392
{
5393
	int ilb = cpumask_first(nohz.idle_cpus_mask);
5394

5395 5396 5397 5398
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
5399 5400
}

5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void nohz_balancer_kick(int cpu)
{
	int ilb_cpu;

	nohz.next_balance++;

5412
	ilb_cpu = find_new_ilb(cpu);
5413

5414 5415
	if (ilb_cpu >= nr_cpu_ids)
		return;
5416

5417
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5418 5419 5420 5421 5422 5423 5424 5425
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
5426 5427 5428
	return;
}

5429
static inline void nohz_balance_exit_idle(int cpu)
5430 5431 5432 5433 5434 5435 5436 5437
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
		atomic_dec(&nohz.nr_cpus);
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

5438 5439 5440 5441 5442
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;

	rcu_read_lock();
N
Nathan Zimmer 已提交
5443
	sd = rcu_dereference_check_sched_domain(this_rq()->sd);
V
Vincent Guittot 已提交
5444 5445 5446 5447 5448 5449

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

	for (; sd; sd = sd->parent)
5450
		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
5451
unlock:
5452 5453 5454 5455 5456 5457 5458 5459
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;

	rcu_read_lock();
N
Nathan Zimmer 已提交
5460
	sd = rcu_dereference_check_sched_domain(this_rq()->sd);
V
Vincent Guittot 已提交
5461 5462 5463 5464 5465 5466

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

	for (; sd; sd = sd->parent)
5467
		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
5468
unlock:
5469 5470 5471
	rcu_read_unlock();
}

5472
/*
5473
 * This routine will record that the cpu is going idle with tick stopped.
5474
 * This info will be used in performing idle load balancing in the future.
5475
 */
5476
void nohz_balance_enter_idle(int cpu)
5477
{
5478 5479 5480 5481 5482 5483
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

5484 5485
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
5486

5487 5488 5489
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5490
}
5491 5492 5493 5494 5495 5496

static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
5497
		nohz_balance_exit_idle(smp_processor_id());
5498 5499 5500 5501 5502
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
5503 5504 5505 5506
#endif

static DEFINE_SPINLOCK(balancing);

5507 5508 5509 5510
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
5511
void update_max_interval(void)
5512 5513 5514 5515
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

5516 5517 5518 5519
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
5520
 * Balancing parameters are set up in init_sched_domains.
5521 5522 5523 5524 5525 5526
 */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
	unsigned long interval;
5527
	struct sched_domain *sd;
5528 5529 5530 5531 5532
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize;

5533
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
5534

5535
	rcu_read_lock();
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
	for_each_domain(cpu, sd) {
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
5546
		interval = clamp(interval, 1UL, max_load_balance_interval);
5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &balance)) {
				/*
5558 5559 5560
				 * The LBF_SOME_PINNED logic could have changed
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
5561
				 */
5562
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
	}
5582
	rcu_read_unlock();
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

5593
#ifdef CONFIG_NO_HZ_COMMON
5594
/*
5595
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
5596 5597
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
5598 5599 5600 5601 5602 5603
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
{
	struct rq *this_rq = cpu_rq(this_cpu);
	struct rq *rq;
	int balance_cpu;

5604 5605 5606
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
5607 5608

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5609
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5610 5611 5612 5613 5614 5615 5616
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
5617
		if (need_resched())
5618 5619
			break;

V
Vincent Guittot 已提交
5620 5621 5622 5623 5624 5625
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
5626 5627 5628 5629 5630 5631 5632

		rebalance_domains(balance_cpu, CPU_IDLE);

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
5633 5634
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5635 5636 5637
}

/*
5638 5639 5640 5641 5642 5643 5644
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
5645 5646 5647 5648
 */
static inline int nohz_kick_needed(struct rq *rq, int cpu)
{
	unsigned long now = jiffies;
5649
	struct sched_domain *sd;
5650

5651
	if (unlikely(idle_cpu(cpu)))
5652 5653
		return 0;

5654 5655 5656 5657
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
5658
	set_cpu_sd_state_busy();
5659
	nohz_balance_exit_idle(cpu);
5660 5661 5662 5663 5664 5665 5666

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
5667 5668

	if (time_before(now, nohz.next_balance))
5669 5670
		return 0;

5671 5672
	if (rq->nr_running >= 2)
		goto need_kick;
5673

5674
	rcu_read_lock();
5675 5676 5677 5678
	for_each_domain(cpu, sd) {
		struct sched_group *sg = sd->groups;
		struct sched_group_power *sgp = sg->sgp;
		int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5679

5680
		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5681
			goto need_kick_unlock;
5682 5683 5684 5685

		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
		    && (cpumask_first_and(nohz.idle_cpus_mask,
					  sched_domain_span(sd)) < cpu))
5686
			goto need_kick_unlock;
5687 5688 5689

		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
			break;
5690
	}
5691
	rcu_read_unlock();
5692
	return 0;
5693 5694 5695

need_kick_unlock:
	rcu_read_unlock();
5696 5697
need_kick:
	return 1;
5698 5699 5700 5701 5702 5703 5704 5705 5706
}
#else
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
5707 5708 5709 5710
static void run_rebalance_domains(struct softirq_action *h)
{
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
5711
	enum cpu_idle_type idle = this_rq->idle_balance ?
5712 5713 5714 5715 5716
						CPU_IDLE : CPU_NOT_IDLE;

	rebalance_domains(this_cpu, idle);

	/*
5717
	 * If this cpu has a pending nohz_balance_kick, then do the
5718 5719 5720
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
5721
	nohz_idle_balance(this_cpu, idle);
5722 5723 5724 5725
}

static inline int on_null_domain(int cpu)
{
5726
	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5727 5728 5729 5730 5731
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
5732
void trigger_load_balance(struct rq *rq, int cpu)
5733 5734 5735 5736 5737
{
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
		raise_softirq(SCHED_SOFTIRQ);
5738
#ifdef CONFIG_NO_HZ_COMMON
5739
	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5740 5741
		nohz_balancer_kick(cpu);
#endif
5742 5743
}

5744 5745 5746 5747 5748 5749 5750 5751
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
5752 5753 5754

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
5755 5756
}

5757
#endif /* CONFIG_SMP */
5758

5759 5760 5761
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
5762
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5763 5764 5765 5766 5767 5768
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
5769
		entity_tick(cfs_rq, se, queued);
5770
	}
5771

5772 5773
	if (sched_feat_numa(NUMA))
		task_tick_numa(rq, curr);
5774

5775
	update_rq_runnable_avg(rq, 1);
5776 5777 5778
}

/*
P
Peter Zijlstra 已提交
5779 5780 5781
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
5782
 */
P
Peter Zijlstra 已提交
5783
static void task_fork_fair(struct task_struct *p)
5784
{
5785 5786
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
5787
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
5788 5789 5790
	struct rq *rq = this_rq();
	unsigned long flags;

5791
	raw_spin_lock_irqsave(&rq->lock, flags);
5792

5793 5794
	update_rq_clock(rq);

5795 5796 5797
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

5798 5799
	if (unlikely(task_cpu(p) != this_cpu)) {
		rcu_read_lock();
P
Peter Zijlstra 已提交
5800
		__set_task_cpu(p, this_cpu);
5801 5802
		rcu_read_unlock();
	}
5803

5804
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
5805

5806 5807
	if (curr)
		se->vruntime = curr->vruntime;
5808
	place_entity(cfs_rq, se, 1);
5809

P
Peter Zijlstra 已提交
5810
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
5811
		/*
5812 5813 5814
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
5815
		swap(curr->vruntime, se->vruntime);
5816
		resched_task(rq->curr);
5817
	}
5818

5819 5820
	se->vruntime -= cfs_rq->min_vruntime;

5821
	raw_spin_unlock_irqrestore(&rq->lock, flags);
5822 5823
}

5824 5825 5826 5827
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
5828 5829
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5830
{
P
Peter Zijlstra 已提交
5831 5832 5833
	if (!p->se.on_rq)
		return;

5834 5835 5836 5837 5838
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
5839
	if (rq->curr == p) {
5840 5841 5842
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
5843
		check_preempt_curr(rq, p, 0);
5844 5845
}

P
Peter Zijlstra 已提交
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Ensure the task's vruntime is normalized, so that when its
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it was !on_rq, then only when
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
	if (!se->on_rq && p->state != TASK_RUNNING) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881

#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
	if (p->se.avg.decay_count) {
		struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
		__synchronize_entity_decay(&p->se);
		subtract_blocked_load_contrib(cfs_rq,
				p->se.avg.load_avg_contrib);
	}
#endif
P
Peter Zijlstra 已提交
5882 5883
}

5884 5885 5886
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
5887
static void switched_to_fair(struct rq *rq, struct task_struct *p)
5888
{
P
Peter Zijlstra 已提交
5889 5890 5891
	if (!p->se.on_rq)
		return;

5892 5893 5894 5895 5896
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
5897
	if (rq->curr == p)
5898 5899
		resched_task(rq->curr);
	else
5900
		check_preempt_curr(rq, p, 0);
5901 5902
}

5903 5904 5905 5906 5907 5908 5909 5910 5911
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

5912 5913 5914 5915 5916 5917 5918
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
5919 5920
}

5921 5922 5923 5924 5925 5926 5927
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
5928 5929
#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
	atomic64_set(&cfs_rq->decay_counter, 1);
5930
	atomic64_set(&cfs_rq->removed_load, 0);
5931
#endif
5932 5933
}

P
Peter Zijlstra 已提交
5934
#ifdef CONFIG_FAIR_GROUP_SCHED
5935
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
5936
{
5937
	struct cfs_rq *cfs_rq;
5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
5951 5952 5953 5954 5955 5956
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
5957 5958
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
5959 5960 5961 5962
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
5963
	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5964 5965
		on_rq = 1;

5966 5967 5968
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981
	if (!on_rq) {
		cfs_rq = cfs_rq_of(&p->se);
		p->se.vruntime += cfs_rq->min_vruntime;
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
		p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
#endif
	}
P
Peter Zijlstra 已提交
5982
}
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

	se->my_q = cfs_rq;
	update_load_set(&se->load, 0);
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
6112 6113 6114

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
6115
		for_each_sched_entity(se)
6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
6137

6138
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6139 6140 6141 6142 6143 6144 6145 6146 6147
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
6148
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6149 6150 6151 6152

	return rr_interval;
}

6153 6154 6155
/*
 * All the scheduling class methods:
 */
6156
const struct sched_class fair_sched_class = {
6157
	.next			= &idle_sched_class,
6158 6159 6160
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
6161
	.yield_to_task		= yield_to_task_fair,
6162

I
Ingo Molnar 已提交
6163
	.check_preempt_curr	= check_preempt_wakeup,
6164 6165 6166 6167

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

6168
#ifdef CONFIG_SMP
L
Li Zefan 已提交
6169
	.select_task_rq		= select_task_rq_fair,
6170
#ifdef CONFIG_FAIR_GROUP_SCHED
6171
	.migrate_task_rq	= migrate_task_rq_fair,
6172
#endif
6173 6174
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
6175 6176

	.task_waking		= task_waking_fair,
6177
#endif
6178

6179
	.set_curr_task          = set_curr_task_fair,
6180
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
6181
	.task_fork		= task_fork_fair,
6182 6183

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
6184
	.switched_from		= switched_from_fair,
6185
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
6186

6187 6188
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
6189
#ifdef CONFIG_FAIR_GROUP_SCHED
6190
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
6191
#endif
6192 6193 6194
};

#ifdef CONFIG_SCHED_DEBUG
6195
void print_cfs_stats(struct seq_file *m, int cpu)
6196 6197 6198
{
	struct cfs_rq *cfs_rq;

6199
	rcu_read_lock();
6200
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6201
		print_cfs_rq(m, cpu, cfs_rq);
6202
	rcu_read_unlock();
6203 6204
}
#endif
6205 6206 6207 6208 6209 6210

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

6211
#ifdef CONFIG_NO_HZ_COMMON
6212
	nohz.next_balance = jiffies;
6213
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6214
	cpu_notifier(sched_ilb_notifier, 0);
6215 6216 6217 6218
#endif
#endif /* SMP */

}