fair.c 182.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29
#include <linux/mempolicy.h>
30
#include <linux/migrate.h>
31
#include <linux/task_work.h>
32 33 34 35

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
36

37
/*
38
 * Targeted preemption latency for CPU-bound tasks:
39
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48
 */
49 50
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

64
/*
65
 * Minimal preemption granularity for CPU-bound tasks:
66
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67
 */
68 69
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 71

/*
72 73
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
74
static unsigned int sched_nr_latency = 8;
75 76

/*
77
 * After fork, child runs first. If set to 0 (default) then
78
 * parent will (try to) run first.
79
 */
80
unsigned int sysctl_sched_child_runs_first __read_mostly;
81 82 83

/*
 * SCHED_OTHER wake-up granularity.
84
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 86 87 88 89
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
90
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92

93 94
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

95 96 97 98 99 100 101
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

102 103 104 105 106 107 108 109 110 111 112 113 114 115
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

/*
 * Shift right and round:
 */
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))

/*
 * delta *= weight / lw
 */
static unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	/*
	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
	 * 2^SCHED_LOAD_RESOLUTION.
	 */
	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
		tmp = (u64)delta_exec * scale_load_down(weight);
	else
		tmp = (u64)delta_exec;

	if (!lw->inv_weight) {
		unsigned long w = scale_load_down(lw->weight);

		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
			lw->inv_weight = 1;
		else if (unlikely(!w))
			lw->inv_weight = WMULT_CONST;
		else
			lw->inv_weight = WMULT_CONST / w;
	}

	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST))
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
			WMULT_SHIFT/2);
	else
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);

	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
}


const struct sched_class fair_sched_class;
238

239 240 241 242
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

243
#ifdef CONFIG_FAIR_GROUP_SCHED
244

245
/* cpu runqueue to which this cfs_rq is attached */
246 247
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
248
	return cfs_rq->rq;
249 250
}

251 252
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
253

254 255 256 257 258 259 260 261
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

283 284
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
285

286 287 288
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302
		}
303 304

		cfs_rq->on_list = 1;
305
		/* We should have no load, but we need to update last_decay. */
306
		update_cfs_rq_blocked_load(cfs_rq, 0);
307 308 309 310 311 312 313 314 315 316 317
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

380 381 382 383 384 385
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
386

387 388 389
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
390 391 392 393
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
394 395
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
396

P
Peter Zijlstra 已提交
397
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
398
{
P
Peter Zijlstra 已提交
399
	return &task_rq(p)->cfs;
400 401
}

P
Peter Zijlstra 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

416 417 418 419 420 421 422 423
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

438 439 440 441 442
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
443 444
#endif	/* CONFIG_FAIR_GROUP_SCHED */

445 446
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
447 448 449 450 451

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

452
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
453
{
454
	s64 delta = (s64)(vruntime - max_vruntime);
455
	if (delta > 0)
456
		max_vruntime = vruntime;
457

458
	return max_vruntime;
459 460
}

461
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
462 463 464 465 466 467 468 469
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

470 471 472 473 474 475
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

476 477 478 479 480 481 482 483 484 485 486 487
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
488
		if (!cfs_rq->curr)
489 490 491 492 493
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

494
	/* ensure we never gain time by being placed backwards. */
495
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
496 497 498 499
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
500 501
}

502 503 504
/*
 * Enqueue an entity into the rb-tree:
 */
505
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
522
		if (entity_before(se, entry)) {
523 524 525 526 527 528 529 530 531 532 533
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
534
	if (leftmost)
I
Ingo Molnar 已提交
535
		cfs_rq->rb_leftmost = &se->run_node;
536 537 538 539 540

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

541
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
542
{
P
Peter Zijlstra 已提交
543 544 545 546 547 548
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
549

550 551 552
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

553
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
554
{
555 556 557 558 559 560
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
561 562
}

563 564 565 566 567 568 569 570 571 572 573
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
574
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
575
{
576
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
577

578 579
	if (!last)
		return NULL;
580 581

	return rb_entry(last, struct sched_entity, run_node);
582 583
}

584 585 586 587
/**************************************************************
 * Scheduling class statistics methods:
 */

588
int sched_proc_update_handler(struct ctl_table *table, int write,
589
		void __user *buffer, size_t *lenp,
590 591
		loff_t *ppos)
{
592
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593
	int factor = get_update_sysctl_factor();
594 595 596 597 598 599 600

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

601 602 603 604 605 606 607
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

608 609 610
	return 0;
}
#endif
611

612
/*
613
 * delta /= w
614 615 616 617
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
618 619
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
620 621 622 623

	return delta;
}

624 625 626
/*
 * The idea is to set a period in which each task runs once.
 *
627
 * When there are too many tasks (sched_nr_latency) we have to stretch
628 629 630 631
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
632 633 634
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
635
	unsigned long nr_latency = sched_nr_latency;
636 637

	if (unlikely(nr_running > nr_latency)) {
638
		period = sysctl_sched_min_granularity;
639 640 641 642 643 644
		period *= nr_running;
	}

	return period;
}

645 646 647 648
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
649
 * s = p*P[w/rw]
650
 */
P
Peter Zijlstra 已提交
651
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652
{
M
Mike Galbraith 已提交
653
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
654

M
Mike Galbraith 已提交
655
	for_each_sched_entity(se) {
L
Lin Ming 已提交
656
		struct load_weight *load;
657
		struct load_weight lw;
L
Lin Ming 已提交
658 659 660

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
661

M
Mike Galbraith 已提交
662
		if (unlikely(!se->on_rq)) {
663
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
664 665 666 667 668 669 670

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
671 672
}

673
/*
A
Andrei Epure 已提交
674
 * We calculate the vruntime slice of a to-be-inserted task.
675
 *
676
 * vs = s/w
677
 */
678
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
679
{
680
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
681 682
}

683
#ifdef CONFIG_SMP
684 685
static unsigned long task_h_load(struct task_struct *p);

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

705 706 707 708 709
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
710 711
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
712
{
713
	unsigned long delta_exec_weighted;
714

715 716
	schedstat_set(curr->statistics.exec_max,
		      max((u64)delta_exec, curr->statistics.exec_max));
717 718

	curr->sum_exec_runtime += delta_exec;
719
	schedstat_add(cfs_rq, exec_clock, delta_exec);
720
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
721

I
Ingo Molnar 已提交
722
	curr->vruntime += delta_exec_weighted;
723
	update_min_vruntime(cfs_rq);
724 725
}

726
static void update_curr(struct cfs_rq *cfs_rq)
727
{
728
	struct sched_entity *curr = cfs_rq->curr;
729
	u64 now = rq_clock_task(rq_of(cfs_rq));
730 731 732 733 734 735 736 737 738 739
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
740
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
741 742
	if (!delta_exec)
		return;
743

I
Ingo Molnar 已提交
744 745
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
746 747 748 749

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

750
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
751
		cpuacct_charge(curtask, delta_exec);
752
		account_group_exec_runtime(curtask, delta_exec);
753
	}
754 755

	account_cfs_rq_runtime(cfs_rq, delta_exec);
756 757 758
}

static inline void
759
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
760
{
761
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
762 763 764 765 766
}

/*
 * Task is being enqueued - update stats:
 */
767
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 769 770 771 772
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
773
	if (se != cfs_rq->curr)
774
		update_stats_wait_start(cfs_rq, se);
775 776 777
}

static void
778
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
779
{
780
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
781
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
782 783
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
784
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
785 786 787
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
788
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
789 790
	}
#endif
791
	schedstat_set(se->statistics.wait_start, 0);
792 793 794
}

static inline void
795
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 797 798 799 800
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
801
	if (se != cfs_rq->curr)
802
		update_stats_wait_end(cfs_rq, se);
803 804 805 806 807 808
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
809
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
810 811 812 813
{
	/*
	 * We are starting a new run period:
	 */
814
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
815 816 817 818 819 820
}

/**************************************************
 * Scheduling class queueing methods:
 */

821 822
#ifdef CONFIG_NUMA_BALANCING
/*
823 824 825
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
826
 */
827 828 829
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
830 831 832

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
833

834 835 836
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
	unsigned int scan, floor;
	unsigned int windows = 1;

	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

882 883 884 885 886 887 888
/*
 * Once a preferred node is selected the scheduler balancer will prefer moving
 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
 * scans. This will give the process the chance to accumulate more faults on
 * the preferred node but still allow the scheduler to move the task again if
 * the nodes CPUs are overloaded.
 */
889
unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
890

891 892 893 894 895
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
896
	pid_t gid;
897 898 899
	struct list_head task_list;

	struct rcu_head rcu;
900
	atomic_long_t total_faults;
901 902 903
	atomic_long_t faults[0];
};

904 905 906 907 908
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

909 910 911 912 913 914 915 916 917 918 919 920 921 922
static inline int task_faults_idx(int nid, int priv)
{
	return 2 * nid + priv;
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
	if (!p->numa_faults)
		return 0;

	return p->numa_faults[task_faults_idx(nid, 0)] +
		p->numa_faults[task_faults_idx(nid, 1)];
}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

	return atomic_long_read(&p->numa_group->faults[2*nid]) +
	       atomic_long_read(&p->numa_group->faults[2*nid+1]);
}

/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
static inline unsigned long task_weight(struct task_struct *p, int nid)
{
	unsigned long total_faults;

	if (!p->numa_faults)
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

	return 1000 * task_faults(p, nid) / total_faults;
}

static inline unsigned long group_weight(struct task_struct *p, int nid)
{
	unsigned long total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = atomic_long_read(&p->numa_group->total_faults);

	if (!total_faults)
		return 0;

	return 1200 * group_faults(p, nid) / total_faults;
}

968
static unsigned long weighted_cpuload(const int cpu);
969 970 971 972 973
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long power_of(int cpu);
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

974
/* Cached statistics for all CPUs within a node */
975
struct numa_stats {
976
	unsigned long nr_running;
977
	unsigned long load;
978 979 980 981 982 983 984

	/* Total compute capacity of CPUs on a node */
	unsigned long power;

	/* Approximate capacity in terms of runnable tasks on a node */
	unsigned long capacity;
	int has_capacity;
985
};
986

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
	int cpu;

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
		ns->power += power_of(cpu);
	}

	ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
	ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
	ns->has_capacity = (ns->nr_running < ns->capacity);
}

1008 1009
struct task_numa_env {
	struct task_struct *p;
1010

1011 1012
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1013

1014
	struct numa_stats src_stats, dst_stats;
1015

1016 1017 1018 1019
	int imbalance_pct, idx;

	struct task_struct *best_task;
	long best_imp;
1020 1021 1022
	int best_cpu;
};

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
static void task_numa_compare(struct task_numa_env *env, long imp)
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
	long dst_load, src_load;
	long load;

	rcu_read_lock();
	cur = ACCESS_ONCE(dst_rq->curr);
	if (cur->pid == 0) /* idle */
		cur = NULL;

	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1067 1068 1069 1070
		imp += task_weight(cur, env->src_nid) +
		       group_weight(cur, env->src_nid) -
		       task_weight(cur, env->dst_nid) -
		       group_weight(cur, env->dst_nid);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	}

	if (imp < env->best_imp)
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
		if (env->src_stats.has_capacity &&
		    !env->dst_stats.has_capacity)
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
	if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
	dst_load = env->dst_stats.load;
	src_load = env->src_stats.load;

	/* XXX missing power terms */
	load = task_h_load(env->p);
	dst_load += load;
	src_load -= load;

	if (cur) {
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
	}

	/* make src_load the smaller */
	if (dst_load < src_load)
		swap(dst_load, src_load);

	if (src_load * env->imbalance_pct < dst_load * 100)
		goto unlock;

assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
static void task_numa_find_cpu(struct task_numa_env *env, long imp)
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
		task_numa_compare(env, imp);
	}
}

1134 1135 1136 1137
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1138

1139
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1140
		.src_nid = task_node(p),
1141 1142 1143 1144 1145 1146

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1147 1148
	};
	struct sched_domain *sd;
1149
	unsigned long weight;
1150 1151
	int nid, ret;
	long imp;
1152

1153
	/*
1154 1155 1156 1157 1158 1159
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1160 1161
	 */
	rcu_read_lock();
1162 1163
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
	env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1164 1165
	rcu_read_unlock();

1166
	weight = task_weight(p, env.src_nid) + group_weight(p, env.src_nid);
1167
	update_numa_stats(&env.src_stats, env.src_nid);
1168
	env.dst_nid = p->numa_preferred_nid;
1169
	imp = task_weight(p, env.dst_nid) + group_weight(p, env.dst_nid) - weight;
1170
	update_numa_stats(&env.dst_stats, env.dst_nid);
1171

1172 1173
	/* If the preferred nid has capacity, try to use it. */
	if (env.dst_stats.has_capacity)
1174
		task_numa_find_cpu(&env, imp);
1175 1176 1177

	/* No space available on the preferred nid. Look elsewhere. */
	if (env.best_cpu == -1) {
1178 1179 1180
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1181

1182 1183
			/* Only consider nodes where both task and groups benefit */
			imp = task_weight(p, nid) + group_weight(p, nid) - weight;
1184
			if (imp < 0)
1185 1186
				continue;

1187 1188 1189
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
			task_numa_find_cpu(&env, imp);
1190 1191 1192
		}
	}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;

	if (env.best_task == NULL) {
		int ret = migrate_task_to(p, env.best_cpu);
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
	put_task_struct(env.best_task);
	return ret;
1205 1206
}

1207 1208 1209 1210 1211
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
	/* Success if task is already running on preferred CPU */
	p->numa_migrate_retry = 0;
1212 1213 1214 1215 1216 1217 1218 1219
	if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
		/*
		 * If migration is temporarily disabled due to a task migration
		 * then re-enable it now as the task is running on its
		 * preferred node and memory should migrate locally
		 */
		if (!p->numa_migrate_seq)
			p->numa_migrate_seq++;
1220
		return;
1221
	}
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231

	/* This task has no NUMA fault statistics yet */
	if (unlikely(p->numa_preferred_nid == -1))
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
	if (task_numa_migrate(p) != 0)
		p->numa_migrate_retry = jiffies + HZ*5;
}

1232 1233
static void task_numa_placement(struct task_struct *p)
{
1234 1235
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1236
	spinlock_t *group_lock = NULL;
1237

1238
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1239 1240 1241
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1242
	p->numa_migrate_seq++;
1243
	p->numa_scan_period_max = task_scan_max(p);
1244

1245 1246 1247 1248 1249 1250
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
		spin_lock(group_lock);
	}

1251 1252
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1253
		unsigned long faults = 0, group_faults = 0;
1254
		int priv, i;
1255

1256
		for (priv = 0; priv < 2; priv++) {
1257 1258
			long diff;

1259
			i = task_faults_idx(nid, priv);
1260
			diff = -p->numa_faults[i];
1261

1262 1263 1264 1265
			/* Decay existing window, copy faults since last scan */
			p->numa_faults[i] >>= 1;
			p->numa_faults[i] += p->numa_faults_buffer[i];
			p->numa_faults_buffer[i] = 0;
1266 1267

			faults += p->numa_faults[i];
1268
			diff += p->numa_faults[i];
1269
			p->total_numa_faults += diff;
1270 1271 1272
			if (p->numa_group) {
				/* safe because we can only change our own group */
				atomic_long_add(diff, &p->numa_group->faults[i]);
1273 1274
				atomic_long_add(diff, &p->numa_group->total_faults);
				group_faults += atomic_long_read(&p->numa_group->faults[i]);
1275
			}
1276 1277
		}

1278 1279 1280 1281
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1282 1283 1284 1285 1286 1287 1288

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	if (p->numa_group) {
		/*
		 * If the preferred task and group nids are different,
		 * iterate over the nodes again to find the best place.
		 */
		if (max_nid != max_group_nid) {
			unsigned long weight, max_weight = 0;

			for_each_online_node(nid) {
				weight = task_weight(p, nid) + group_weight(p, nid);
				if (weight > max_weight) {
					max_weight = weight;
					max_nid = nid;
				}
1303 1304
			}
		}
1305 1306

		spin_unlock(group_lock);
1307 1308
	}

1309
	/* Preferred node as the node with the most faults */
1310
	if (max_faults && max_nid != p->numa_preferred_nid) {
1311
		/* Update the preferred nid and migrate task if possible */
1312
		p->numa_preferred_nid = max_nid;
1313
		p->numa_migrate_seq = 1;
1314
		numa_migrate_preferred(p);
1315
	}
1316 1317
}

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

static void double_lock(spinlock_t *l1, spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	spin_lock(l1);
	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

static void task_numa_group(struct task_struct *p, int cpupid)
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
				    2*nr_node_ids*sizeof(atomic_long_t);

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
		INIT_LIST_HEAD(&grp->task_list);
1357
		grp->gid = p->pid;
1358 1359 1360 1361

		for (i = 0; i < 2*nr_node_ids; i++)
			atomic_long_set(&grp->faults[i], p->numa_faults[i]);

1362 1363
		atomic_long_set(&grp->total_faults, p->total_numa_faults);

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
		list_add(&p->numa_entry, &grp->task_list);
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
		goto unlock;

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
		goto unlock;

	my_grp = p->numa_group;
	if (grp == my_grp)
		goto unlock;

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
		goto unlock;

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
		goto unlock;

	if (!get_numa_group(grp))
		goto unlock;

	join = true;

unlock:
	rcu_read_unlock();

	if (!join)
		return;

	for (i = 0; i < 2*nr_node_ids; i++) {
		atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
		atomic_long_add(p->numa_faults[i], &grp->faults[i]);
	}
1411 1412
	atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
	atomic_long_add(p->total_numa_faults, &grp->total_faults);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

	double_lock(&my_grp->lock, &grp->lock);

	list_move(&p->numa_entry, &grp->task_list);
	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
	spin_unlock(&grp->lock);

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
	int i;
1432
	void *numa_faults = p->numa_faults;
1433 1434 1435 1436 1437

	if (grp) {
		for (i = 0; i < 2*nr_node_ids; i++)
			atomic_long_sub(p->numa_faults[i], &grp->faults[i]);

1438 1439
		atomic_long_sub(p->total_numa_faults, &grp->total_faults);

1440 1441 1442 1443 1444 1445 1446 1447
		spin_lock(&grp->lock);
		list_del(&p->numa_entry);
		grp->nr_tasks--;
		spin_unlock(&grp->lock);
		rcu_assign_pointer(p->numa_group, NULL);
		put_numa_group(grp);
	}

1448 1449 1450
	p->numa_faults = NULL;
	p->numa_faults_buffer = NULL;
	kfree(numa_faults);
1451 1452
}

1453 1454 1455
/*
 * Got a PROT_NONE fault for a page on @node.
 */
1456
void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1457 1458
{
	struct task_struct *p = current;
1459
	bool migrated = flags & TNF_MIGRATED;
1460
	int priv;
1461

1462
	if (!numabalancing_enabled)
1463 1464
		return;

1465 1466 1467 1468
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

1469 1470 1471 1472
	/* Do not worry about placement if exiting */
	if (p->state == TASK_DEAD)
		return;

1473 1474
	/* Allocate buffer to track faults on a per-node basis */
	if (unlikely(!p->numa_faults)) {
1475
		int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1476

1477 1478
		/* numa_faults and numa_faults_buffer share the allocation */
		p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1479 1480
		if (!p->numa_faults)
			return;
1481 1482

		BUG_ON(p->numa_faults_buffer);
1483
		p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1484
		p->total_numa_faults = 0;
1485
	}
1486

1487 1488 1489 1490 1491 1492 1493 1494
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
1495
		if (!priv && !(flags & TNF_NO_GROUP))
1496 1497 1498
			task_numa_group(p, last_cpupid);
	}

1499
	/*
1500 1501
	 * If pages are properly placed (did not migrate) then scan slower.
	 * This is reset periodically in case of phase changes
1502
	 */
1503 1504 1505 1506 1507 1508 1509 1510
	if (!migrated) {
		/* Initialise if necessary */
		if (!p->numa_scan_period_max)
			p->numa_scan_period_max = task_scan_max(p);

		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period + 10);
	}
1511

1512
	task_numa_placement(p);
1513

1514 1515 1516 1517
	/* Retry task to preferred node migration if it previously failed */
	if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
1518 1519 1520
	if (migrated)
		p->numa_pages_migrated += pages;

1521
	p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1522 1523
}

1524 1525 1526 1527 1528 1529
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

1530 1531 1532 1533 1534 1535 1536 1537 1538
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
1539
	struct vm_area_struct *vma;
1540
	unsigned long start, end;
1541
	unsigned long nr_pte_updates = 0;
1542
	long pages;
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

1558 1559 1560 1561 1562 1563 1564
	if (!mm->numa_next_reset || !mm->numa_next_scan) {
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
		mm->numa_next_reset = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
	}

1565 1566 1567 1568 1569 1570 1571 1572
	/*
	 * Reset the scan period if enough time has gone by. Objective is that
	 * scanning will be reduced if pages are properly placed. As tasks
	 * can enter different phases this needs to be re-examined. Lacking
	 * proper tracking of reference behaviour, this blunt hammer is used.
	 */
	migrate = mm->numa_next_reset;
	if (time_after(now, migrate)) {
1573
		p->numa_scan_period = task_scan_min(p);
1574 1575 1576 1577
		next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
		xchg(&mm->numa_next_reset, next_scan);
	}

1578 1579 1580 1581 1582 1583 1584
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

1585 1586 1587 1588
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
1589

1590
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1591 1592 1593
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

1594 1595 1596 1597 1598 1599
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

1600 1601 1602 1603 1604
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
1605

1606
	down_read(&mm->mmap_sem);
1607
	vma = find_vma(mm, start);
1608 1609
	if (!vma) {
		reset_ptenuma_scan(p);
1610
		start = 0;
1611 1612
		vma = mm->mmap;
	}
1613
	for (; vma; vma = vma->vm_next) {
1614
		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1615 1616
			continue;

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

1627 1628 1629 1630
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
1631 1632 1633 1634 1635 1636 1637 1638 1639
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
1640

1641 1642 1643 1644
			start = end;
			if (pages <= 0)
				goto out;
		} while (end != vma->vm_end);
1645
	}
1646

1647
out:
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	/*
	 * If the whole process was scanned without updates then no NUMA
	 * hinting faults are being recorded and scan rate should be lower.
	 */
	if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		next_scan = now + msecs_to_jiffies(p->numa_scan_period);
		mm->numa_next_scan = next_scan;
	}

1660
	/*
P
Peter Zijlstra 已提交
1661 1662 1663 1664
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
1665 1666
	 */
	if (vma)
1667
		mm->numa_scan_offset = start;
1668 1669 1670
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
1697
		if (!curr->node_stamp)
1698
			curr->numa_scan_period = task_scan_min(curr);
1699
		curr->node_stamp += period;
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
#endif /* CONFIG_NUMA_BALANCING */

1713 1714 1715 1716
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
1717
	if (!parent_entity(se))
1718
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1719 1720
#ifdef CONFIG_SMP
	if (entity_is_task(se))
1721
		list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1722
#endif
1723 1724 1725 1726 1727 1728 1729
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
1730
	if (!parent_entity(se))
1731
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1732
	if (entity_is_task(se))
1733
		list_del_init(&se->group_node);
1734 1735 1736
	cfs_rq->nr_running--;
}

1737 1738
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
1739 1740 1741 1742 1743 1744 1745 1746 1747
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
1748
	tg_weight = atomic_long_read(&tg->load_avg);
1749
	tg_weight -= cfs_rq->tg_load_contrib;
1750 1751 1752 1753 1754
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

1755
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1756
{
1757
	long tg_weight, load, shares;
1758

1759
	tg_weight = calc_tg_weight(tg, cfs_rq);
1760
	load = cfs_rq->load.weight;
1761 1762

	shares = (tg->shares * load);
1763 1764
	if (tg_weight)
		shares /= tg_weight;
1765 1766 1767 1768 1769 1770 1771 1772 1773

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
1774
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1775 1776 1777 1778
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1779 1780 1781
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
1782 1783 1784 1785
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1786
		account_entity_dequeue(cfs_rq, se);
1787
	}
P
Peter Zijlstra 已提交
1788 1789 1790 1791 1792 1793 1794

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

1795 1796
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

1797
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1798 1799 1800
{
	struct task_group *tg;
	struct sched_entity *se;
1801
	long shares;
P
Peter Zijlstra 已提交
1802 1803 1804

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
1805
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
1806
		return;
1807 1808 1809 1810
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
1811
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
1812 1813 1814 1815

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
1816
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1817 1818 1819 1820
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

1821
#ifdef CONFIG_SMP
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

1850 1851 1852 1853 1854 1855
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
	 * With a look-up table which covers k^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
1876 1877
	}

1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
1943 1944
	u64 delta, periods;
	u32 runnable_contrib;
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

2008
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2009
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2010 2011 2012 2013 2014 2015
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
2016
		return 0;
2017 2018 2019

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
2020 2021

	return decays;
2022 2023
}

2024 2025 2026 2027 2028
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
2029
	long tg_contrib;
2030 2031 2032 2033

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

2034 2035
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
2036 2037 2038
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
2039

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
	contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

2061 2062 2063 2064
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
2065 2066
	int runnable_avg;

2067 2068 2069
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
2070 2071
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
2101
}
2102 2103 2104
#else
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
2105 2106
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
2107
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2108 2109
#endif

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

2120 2121 2122 2123 2124
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

2125 2126 2127
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
2128
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2129 2130
		__update_group_entity_contrib(se);
	}
2131 2132 2133 2134

	return se->avg.load_avg_contrib - old_contrib;
}

2135 2136 2137 2138 2139 2140 2141 2142 2143
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

2144 2145
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

2146
/* Update a sched_entity's runnable average */
2147 2148
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
2149
{
2150 2151
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
2152
	u64 now;
2153

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2164 2165 2166
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
2167 2168 2169 2170

	if (!update_cfs_rq)
		return;

2171 2172
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
2173 2174 2175 2176 2177 2178 2179 2180
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
2181
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2182
{
2183
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2184 2185 2186
	u64 decays;

	decays = now - cfs_rq->last_decay;
2187
	if (!decays && !force_update)
2188 2189
		return;

2190 2191 2192
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2193 2194
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
2195

2196 2197 2198 2199 2200 2201
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
2202 2203

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2204
}
2205 2206 2207

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
2208
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2209
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2210
}
2211 2212 2213

/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2214 2215
						  struct sched_entity *se,
						  int wakeup)
2216
{
2217 2218 2219 2220
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
2221 2222 2223 2224
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
2225 2226
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
2227
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
2243 2244
		wakeup = 0;
	} else {
2245 2246 2247 2248 2249 2250 2251
		/*
		 * Task re-woke on same cpu (or else migrate_task_rq_fair()
		 * would have made count negative); we must be careful to avoid
		 * double-accounting blocked time after synchronizing decays.
		 */
		se->avg.last_runnable_update += __synchronize_entity_decay(se)
							<< 20;
2252 2253
	}

2254 2255
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
2256
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2257 2258
		update_entity_load_avg(se, 0);
	}
2259

2260
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2261 2262
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2263 2264
}

2265 2266 2267 2268 2269
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
2270
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2271 2272
						  struct sched_entity *se,
						  int sleep)
2273
{
2274
	update_entity_load_avg(se, 1);
2275 2276
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2277

2278
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2279 2280 2281 2282
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2283
}
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

2305
#else
2306 2307
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
2308
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2309
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2310 2311
					   struct sched_entity *se,
					   int wakeup) {}
2312
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2313 2314
					   struct sched_entity *se,
					   int sleep) {}
2315 2316
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
2317 2318
#endif

2319
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2320 2321
{
#ifdef CONFIG_SCHEDSTATS
2322 2323 2324 2325 2326
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2327
	if (se->statistics.sleep_start) {
2328
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2329 2330 2331 2332

		if ((s64)delta < 0)
			delta = 0;

2333 2334
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2335

2336
		se->statistics.sleep_start = 0;
2337
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2338

2339
		if (tsk) {
2340
			account_scheduler_latency(tsk, delta >> 10, 1);
2341 2342
			trace_sched_stat_sleep(tsk, delta);
		}
2343
	}
2344
	if (se->statistics.block_start) {
2345
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2346 2347 2348 2349

		if ((s64)delta < 0)
			delta = 0;

2350 2351
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2352

2353
		se->statistics.block_start = 0;
2354
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2355

2356
		if (tsk) {
2357
			if (tsk->in_iowait) {
2358 2359
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2360
				trace_sched_stat_iowait(tsk, delta);
2361 2362
			}

2363 2364
			trace_sched_stat_blocked(tsk, delta);

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2376
		}
2377 2378 2379 2380
	}
#endif
}

P
Peter Zijlstra 已提交
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2394 2395 2396
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2397
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2398

2399 2400 2401 2402 2403 2404
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2405
	if (initial && sched_feat(START_DEBIT))
2406
		vruntime += sched_vslice(cfs_rq, se);
2407

2408
	/* sleeps up to a single latency don't count. */
2409
	if (!initial) {
2410
		unsigned long thresh = sysctl_sched_latency;
2411

2412 2413 2414 2415 2416 2417
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2418

2419
		vruntime -= thresh;
2420 2421
	}

2422
	/* ensure we never gain time by being placed backwards. */
2423
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2424 2425
}

2426 2427
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2428
static void
2429
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2430
{
2431 2432
	/*
	 * Update the normalized vruntime before updating min_vruntime
2433
	 * through calling update_curr().
2434
	 */
2435
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2436 2437
		se->vruntime += cfs_rq->min_vruntime;

2438
	/*
2439
	 * Update run-time statistics of the 'current'.
2440
	 */
2441
	update_curr(cfs_rq);
2442
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2443 2444
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
2445

2446
	if (flags & ENQUEUE_WAKEUP) {
2447
		place_entity(cfs_rq, se, 0);
2448
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
2449
	}
2450

2451
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
2452
	check_spread(cfs_rq, se);
2453 2454
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
2455
	se->on_rq = 1;
2456

2457
	if (cfs_rq->nr_running == 1) {
2458
		list_add_leaf_cfs_rq(cfs_rq);
2459 2460
		check_enqueue_throttle(cfs_rq);
	}
2461 2462
}

2463
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
2464
{
2465 2466 2467 2468 2469 2470 2471 2472
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}
}
P
Peter Zijlstra 已提交
2473

2474 2475 2476 2477 2478 2479 2480 2481 2482
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next == se)
			cfs_rq->next = NULL;
		else
			break;
	}
P
Peter Zijlstra 已提交
2483 2484
}

2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip == se)
			cfs_rq->skip = NULL;
		else
			break;
	}
}

P
Peter Zijlstra 已提交
2496 2497
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2498 2499 2500 2501 2502
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
2503 2504 2505

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
2506 2507
}

2508
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2509

2510
static void
2511
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2512
{
2513 2514 2515 2516
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
2517
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2518

2519
	update_stats_dequeue(cfs_rq, se);
2520
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
2521
#ifdef CONFIG_SCHEDSTATS
2522 2523 2524 2525
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
2526
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2527
			if (tsk->state & TASK_UNINTERRUPTIBLE)
2528
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2529
		}
2530
#endif
P
Peter Zijlstra 已提交
2531 2532
	}

P
Peter Zijlstra 已提交
2533
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2534

2535
	if (se != cfs_rq->curr)
2536
		__dequeue_entity(cfs_rq, se);
2537
	se->on_rq = 0;
2538
	account_entity_dequeue(cfs_rq, se);
2539 2540 2541 2542 2543 2544

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
2545
	if (!(flags & DEQUEUE_SLEEP))
2546
		se->vruntime -= cfs_rq->min_vruntime;
2547

2548 2549 2550
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

2551
	update_min_vruntime(cfs_rq);
2552
	update_cfs_shares(cfs_rq);
2553 2554 2555 2556 2557
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
2558
static void
I
Ingo Molnar 已提交
2559
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2560
{
2561
	unsigned long ideal_runtime, delta_exec;
2562 2563
	struct sched_entity *se;
	s64 delta;
2564

P
Peter Zijlstra 已提交
2565
	ideal_runtime = sched_slice(cfs_rq, curr);
2566
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2567
	if (delta_exec > ideal_runtime) {
2568
		resched_task(rq_of(cfs_rq)->curr);
2569 2570 2571 2572 2573
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

2585 2586
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
2587

2588 2589
	if (delta < 0)
		return;
2590

2591 2592
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
2593 2594
}

2595
static void
2596
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2597
{
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

2609
	update_stats_curr_start(cfs_rq, se);
2610
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
2611 2612 2613 2614 2615 2616
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
2617
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2618
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
2619 2620 2621
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
2622
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2623 2624
}

2625 2626 2627
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

2628 2629 2630 2631 2632 2633 2634
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
2635
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2636
{
2637
	struct sched_entity *se = __pick_first_entity(cfs_rq);
2638
	struct sched_entity *left = se;
2639

2640 2641 2642 2643 2644 2645 2646 2647 2648
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second = __pick_next_entity(se);
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
2649

2650 2651 2652 2653 2654 2655
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

2656 2657 2658 2659 2660 2661
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

2662
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2663 2664

	return se;
2665 2666
}

2667 2668
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

2669
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2670 2671 2672 2673 2674 2675
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
2676
		update_curr(cfs_rq);
2677

2678 2679 2680
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
2681
	check_spread(cfs_rq, prev);
2682
	if (prev->on_rq) {
2683
		update_stats_wait_start(cfs_rq, prev);
2684 2685
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
2686
		/* in !on_rq case, update occurred at dequeue */
2687
		update_entity_load_avg(prev, 1);
2688
	}
2689
	cfs_rq->curr = NULL;
2690 2691
}

P
Peter Zijlstra 已提交
2692 2693
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2694 2695
{
	/*
2696
	 * Update run-time statistics of the 'current'.
2697
	 */
2698
	update_curr(cfs_rq);
2699

2700 2701 2702
	/*
	 * Ensure that runnable average is periodically updated.
	 */
2703
	update_entity_load_avg(curr, 1);
2704
	update_cfs_rq_blocked_load(cfs_rq, 1);
2705
	update_cfs_shares(cfs_rq);
2706

P
Peter Zijlstra 已提交
2707 2708 2709 2710 2711
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
2712 2713 2714 2715
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
2716 2717 2718 2719 2720 2721 2722 2723
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
2724
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
2725
		check_preempt_tick(cfs_rq, curr);
2726 2727
}

2728 2729 2730 2731 2732 2733

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
2734 2735

#ifdef HAVE_JUMP_LABEL
2736
static struct static_key __cfs_bandwidth_used;
2737 2738 2739

static inline bool cfs_bandwidth_used(void)
{
2740
	return static_key_false(&__cfs_bandwidth_used);
2741 2742 2743 2744 2745 2746
}

void account_cfs_bandwidth_used(int enabled, int was_enabled)
{
	/* only need to count groups transitioning between enabled/!enabled */
	if (enabled && !was_enabled)
2747
		static_key_slow_inc(&__cfs_bandwidth_used);
2748
	else if (!enabled && was_enabled)
2749
		static_key_slow_dec(&__cfs_bandwidth_used);
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
#endif /* HAVE_JUMP_LABEL */

2760 2761 2762 2763 2764 2765 2766 2767
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
2768 2769 2770 2771 2772 2773

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
2774 2775 2776 2777 2778 2779 2780
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
2781
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

2793 2794 2795 2796 2797
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

2798 2799 2800 2801 2802 2803
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

2804
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2805 2806
}

2807 2808
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2809 2810 2811
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
2812
	u64 amount = 0, min_amount, expires;
2813 2814 2815 2816 2817 2818 2819

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
2820
	else {
P
Paul Turner 已提交
2821 2822 2823 2824 2825 2826 2827 2828
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
2829
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
2830
		}
2831 2832 2833 2834 2835 2836

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
2837
	}
P
Paul Turner 已提交
2838
	expires = cfs_b->runtime_expires;
2839 2840 2841
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
2842 2843 2844 2845 2846 2847 2848
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
2849 2850

	return cfs_rq->runtime_remaining > 0;
2851 2852
}

P
Paul Turner 已提交
2853 2854 2855 2856 2857
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2858
{
P
Paul Turner 已提交
2859 2860 2861
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
2862
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2863 2864
		return;

P
Paul Turner 已提交
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec)
{
	/* dock delta_exec before expiring quota (as it could span periods) */
2890
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
2891 2892 2893
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
2894 2895
		return;

2896 2897 2898 2899 2900 2901
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
2902 2903
}

2904 2905
static __always_inline
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2906
{
2907
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2908 2909 2910 2911 2912
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

2913 2914
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
2915
	return cfs_bandwidth_used() && cfs_rq->throttled;
2916 2917
}

2918 2919 2920
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
2921
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
2950
		/* adjust cfs_rq_clock_task() */
2951
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
2952
					     cfs_rq->throttled_clock_task;
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

2964 2965
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
2966
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
2967 2968 2969 2970 2971
	cfs_rq->throttle_count++;

	return 0;
}

2972
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2973 2974 2975 2976 2977 2978 2979 2980
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

2981
	/* freeze hierarchy runnable averages while throttled */
2982 2983 2984
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
3005
	cfs_rq->throttled_clock = rq_clock(rq);
3006 3007 3008 3009 3010
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
	raw_spin_unlock(&cfs_b->lock);
}

3011
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3012 3013 3014 3015 3016 3017 3018
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3019
	se = cfs_rq->tg->se[cpu_of(rq)];
3020 3021

	cfs_rq->throttled = 0;
3022 3023 3024

	update_rq_clock(rq);

3025
	raw_spin_lock(&cfs_b->lock);
3026
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3027 3028 3029
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3030 3031 3032
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

3096 3097 3098 3099 3100 3101 3102 3103
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3104 3105
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
3106 3107 3108 3109 3110 3111

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

3112 3113 3114
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
3115
	cfs_b->nr_periods += overrun;
3116

P
Paul Turner 已提交
3117 3118 3119 3120 3121 3122
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

	__refill_cfs_bandwidth_runtime(cfs_b);

3123 3124 3125 3126 3127 3128
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

3129 3130 3131
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
3156

3157 3158 3159 3160 3161 3162 3163 3164 3165
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3166 3167 3168 3169 3170 3171 3172
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
3173

3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

/* are we near the end of the current quota period? */
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3238 3239 3240
	if (!cfs_bandwidth_used())
		return;

3241
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

3279 3280 3281 3282 3283 3284 3285
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3286 3287 3288
	if (!cfs_bandwidth_used())
		return;

3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3306 3307 3308
	if (!cfs_bandwidth_used())
		return;

3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return;

	throttle_cfs_rq(cfs_rq);
}
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
		raw_spin_unlock(&cfs_b->lock);
		/* ensure cfs_b->lock is available while we wait */
		hrtimer_cancel(&cfs_b->period_timer);

		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

3402
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
3423 3424
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
3425
	return rq_clock_task(rq_of(cfs_rq));
3426 3427 3428 3429
}

static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
				     unsigned long delta_exec) {}
3430 3431
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3432
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3433 3434 3435 3436 3437

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
3449 3450 3451 3452 3453

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3454 3455
#endif

3456 3457 3458 3459 3460
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3461
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3462 3463 3464

#endif /* CONFIG_CFS_BANDWIDTH */

3465 3466 3467 3468
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
3469 3470 3471 3472 3473 3474 3475 3476
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

3477
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
3492
		if (rq->curr != p)
3493
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
3494

3495
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
3496 3497
	}
}
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

3508
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3509 3510 3511 3512 3513
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
3514
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
3515 3516 3517 3518
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
3519 3520 3521 3522

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
3523 3524
#endif

3525 3526 3527 3528 3529
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
3530
static void
3531
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3532 3533
{
	struct cfs_rq *cfs_rq;
3534
	struct sched_entity *se = &p->se;
3535 3536

	for_each_sched_entity(se) {
3537
		if (se->on_rq)
3538 3539
			break;
		cfs_rq = cfs_rq_of(se);
3540
		enqueue_entity(cfs_rq, se, flags);
3541 3542 3543 3544 3545 3546 3547 3548 3549

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3550
		cfs_rq->h_nr_running++;
3551

3552
		flags = ENQUEUE_WAKEUP;
3553
	}
P
Peter Zijlstra 已提交
3554

P
Peter Zijlstra 已提交
3555
	for_each_sched_entity(se) {
3556
		cfs_rq = cfs_rq_of(se);
3557
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
3558

3559 3560 3561
		if (cfs_rq_throttled(cfs_rq))
			break;

3562
		update_cfs_shares(cfs_rq);
3563
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3564 3565
	}

3566 3567
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
3568
		inc_nr_running(rq);
3569
	}
3570
	hrtick_update(rq);
3571 3572
}

3573 3574
static void set_next_buddy(struct sched_entity *se);

3575 3576 3577 3578 3579
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
3580
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3581 3582
{
	struct cfs_rq *cfs_rq;
3583
	struct sched_entity *se = &p->se;
3584
	int task_sleep = flags & DEQUEUE_SLEEP;
3585 3586 3587

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3588
		dequeue_entity(cfs_rq, se, flags);
3589 3590 3591 3592 3593 3594 3595 3596 3597

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3598
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3599

3600
		/* Don't dequeue parent if it has other entities besides us */
3601 3602 3603 3604 3605 3606 3607
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
3608 3609 3610

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
3611
			break;
3612
		}
3613
		flags |= DEQUEUE_SLEEP;
3614
	}
P
Peter Zijlstra 已提交
3615

P
Peter Zijlstra 已提交
3616
	for_each_sched_entity(se) {
3617
		cfs_rq = cfs_rq_of(se);
3618
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3619

3620 3621 3622
		if (cfs_rq_throttled(cfs_rq))
			break;

3623
		update_cfs_shares(cfs_rq);
3624
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3625 3626
	}

3627
	if (!se) {
3628
		dec_nr_running(rq);
3629 3630
		update_rq_runnable_avg(rq, 1);
	}
3631
	hrtick_update(rq);
3632 3633
}

3634
#ifdef CONFIG_SMP
3635 3636 3637
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
3638
	return cpu_rq(cpu)->cfs.runnable_load_avg;
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3683
	unsigned long load_avg = rq->cfs.runnable_load_avg;
3684 3685

	if (nr_running)
3686
		return load_avg / nr_running;
3687 3688 3689 3690

	return 0;
}

3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
	if (jiffies > current->wakee_flip_decay_ts + HZ) {
		current->wakee_flips = 0;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
3708

3709
static void task_waking_fair(struct task_struct *p)
3710 3711 3712
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3713 3714 3715 3716
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
3717

3718 3719 3720 3721 3722 3723 3724 3725
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
3726

3727
	se->vruntime -= min_vruntime;
3728
	record_wakee(p);
3729 3730
}

3731
#ifdef CONFIG_FAIR_GROUP_SCHED
3732 3733 3734 3735 3736 3737
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
3781
 */
P
Peter Zijlstra 已提交
3782
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3783
{
P
Peter Zijlstra 已提交
3784
	struct sched_entity *se = tg->se[cpu];
3785

3786
	if (!tg->parent || !wl)	/* the trivial, non-cgroup case */
3787 3788
		return wl;

P
Peter Zijlstra 已提交
3789
	for_each_sched_entity(se) {
3790
		long w, W;
P
Peter Zijlstra 已提交
3791

3792
		tg = se->my_q->tg;
3793

3794 3795 3796 3797
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
3798

3799 3800 3801 3802
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
3803

3804 3805 3806 3807 3808
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
3809 3810
		else
			wl = tg->shares;
3811

3812 3813 3814 3815 3816
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
3817 3818
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
3819 3820 3821 3822

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
3823
		wl -= se->load.weight;
3824 3825 3826 3827 3828 3829 3830 3831

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
3832 3833
		wg = 0;
	}
3834

P
Peter Zijlstra 已提交
3835
	return wl;
3836 3837
}
#else
P
Peter Zijlstra 已提交
3838

3839
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
3840
{
3841
	return wl;
3842
}
P
Peter Zijlstra 已提交
3843

3844 3845
#endif

3846 3847
static int wake_wide(struct task_struct *p)
{
3848
	int factor = this_cpu_read(sd_llc_size);
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

3868
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3869
{
3870
	s64 this_load, load;
3871
	int idx, this_cpu, prev_cpu;
3872
	unsigned long tl_per_task;
3873
	struct task_group *tg;
3874
	unsigned long weight;
3875
	int balanced;
3876

3877 3878 3879 3880 3881 3882 3883
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

3884 3885 3886 3887 3888
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
3889

3890 3891 3892 3893 3894
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
3895 3896 3897 3898
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

3899
		this_load += effective_load(tg, this_cpu, -weight, -weight);
3900 3901
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
3902

3903 3904
	tg = task_group(p);
	weight = p->se.load.weight;
3905

3906 3907
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3908 3909 3910
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
3911 3912 3913 3914
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
3915 3916
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
3930

3931
	/*
I
Ingo Molnar 已提交
3932 3933 3934
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
3935
	 */
3936 3937
	if (sync && balanced)
		return 1;
3938

3939
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3940 3941
	tl_per_task = cpu_avg_load_per_task(this_cpu);

3942 3943 3944
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3945 3946 3947 3948 3949
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
3950
		schedstat_inc(sd, ttwu_move_affine);
3951
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
3952 3953 3954 3955 3956 3957

		return 1;
	}
	return 0;
}

3958 3959 3960 3961 3962
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
3963
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3964
		  int this_cpu, int load_idx)
3965
{
3966
	struct sched_group *idlest = NULL, *group = sd->groups;
3967 3968
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
3969

3970 3971 3972 3973
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
3974

3975 3976
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
3977
					tsk_cpus_allowed(p)))
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
3997
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
4023
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4024 4025 4026 4027 4028
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
4029 4030 4031
		}
	}

4032 4033
	return idlest;
}
4034

4035 4036 4037
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4038
static int select_idle_sibling(struct task_struct *p, int target)
4039
{
4040
	struct sched_domain *sd;
4041
	struct sched_group *sg;
4042
	int i = task_cpu(p);
4043

4044 4045
	if (idle_cpu(target))
		return target;
4046 4047

	/*
4048
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4049
	 */
4050 4051
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4052 4053

	/*
4054
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4055
	 */
4056
	sd = rcu_dereference(per_cpu(sd_llc, target));
4057
	for_each_lower_domain(sd) {
4058 4059 4060 4061 4062 4063 4064
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4065
				if (i == target || !idle_cpu(i))
4066 4067
					goto next;
			}
4068

4069 4070 4071 4072 4073 4074 4075 4076
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4077 4078 4079
	return target;
}

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
4091
static int
4092
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4093
{
4094
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4095 4096
	int cpu = smp_processor_id();
	int new_cpu = cpu;
4097
	int want_affine = 0;
4098
	int sync = wake_flags & WF_SYNC;
4099

4100
	if (p->nr_cpus_allowed == 1)
4101 4102
		return prev_cpu;

4103
	if (sd_flag & SD_BALANCE_WAKE) {
4104
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4105 4106 4107
			want_affine = 1;
		new_cpu = prev_cpu;
	}
4108

4109
	rcu_read_lock();
4110
	for_each_domain(cpu, tmp) {
4111 4112 4113
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

4114
		/*
4115 4116
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4117
		 */
4118 4119 4120
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4121
			break;
4122
		}
4123

4124
		if (tmp->flags & sd_flag)
4125 4126 4127
			sd = tmp;
	}

4128
	if (affine_sd) {
4129
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4130 4131 4132 4133
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
4134
	}
4135

4136
	while (sd) {
4137
		int load_idx = sd->forkexec_idx;
4138
		struct sched_group *group;
4139
		int weight;
4140

4141
		if (!(sd->flags & sd_flag)) {
4142 4143 4144
			sd = sd->child;
			continue;
		}
4145

4146 4147
		if (sd_flag & SD_BALANCE_WAKE)
			load_idx = sd->wake_idx;
4148

4149
		group = find_idlest_group(sd, p, cpu, load_idx);
4150 4151 4152 4153
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4154

4155
		new_cpu = find_idlest_cpu(group, p, cpu);
4156 4157 4158 4159
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4160
		}
4161 4162 4163

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4164
		weight = sd->span_weight;
4165 4166
		sd = NULL;
		for_each_domain(cpu, tmp) {
4167
			if (weight <= tmp->span_weight)
4168
				break;
4169
			if (tmp->flags & sd_flag)
4170 4171 4172
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4173
	}
4174 4175
unlock:
	rcu_read_unlock();
4176

4177
	return new_cpu;
4178
}
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
4200 4201
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
4202
	}
4203
}
4204 4205
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
4206 4207
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4208 4209 4210 4211
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
4212 4213
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
4214 4215 4216 4217 4218 4219 4220 4221 4222
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
4223
	 */
4224
	return calc_delta_fair(gran, se);
4225 4226
}

4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
4249
	gran = wakeup_gran(curr, se);
4250 4251 4252 4253 4254 4255
	if (vdiff > gran)
		return 1;

	return 0;
}

4256 4257
static void set_last_buddy(struct sched_entity *se)
{
4258 4259 4260 4261 4262
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
4263 4264 4265 4266
}

static void set_next_buddy(struct sched_entity *se)
{
4267 4268 4269 4270 4271
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
4272 4273
}

4274 4275
static void set_skip_buddy(struct sched_entity *se)
{
4276 4277
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
4278 4279
}

4280 4281 4282
/*
 * Preempt the current task with a newly woken task if needed:
 */
4283
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4284 4285
{
	struct task_struct *curr = rq->curr;
4286
	struct sched_entity *se = &curr->se, *pse = &p->se;
4287
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4288
	int scale = cfs_rq->nr_running >= sched_nr_latency;
4289
	int next_buddy_marked = 0;
4290

I
Ingo Molnar 已提交
4291 4292 4293
	if (unlikely(se == pse))
		return;

4294
	/*
4295
	 * This is possible from callers such as move_task(), in which we
4296 4297 4298 4299 4300 4301 4302
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

4303
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
4304
		set_next_buddy(pse);
4305 4306
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
4307

4308 4309 4310
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
4311 4312 4313 4314 4315 4316
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
4317 4318 4319 4320
	 */
	if (test_tsk_need_resched(curr))
		return;

4321 4322 4323 4324 4325
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

4326
	/*
4327 4328
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
4329
	 */
4330
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4331
		return;
4332

4333
	find_matching_se(&se, &pse);
4334
	update_curr(cfs_rq_of(se));
4335
	BUG_ON(!pse);
4336 4337 4338 4339 4340 4341 4342
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
4343
		goto preempt;
4344
	}
4345

4346
	return;
4347

4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
4364 4365
}

4366
static struct task_struct *pick_next_task_fair(struct rq *rq)
4367
{
P
Peter Zijlstra 已提交
4368
	struct task_struct *p;
4369 4370 4371
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

4372
	if (!cfs_rq->nr_running)
4373 4374 4375
		return NULL;

	do {
4376
		se = pick_next_entity(cfs_rq);
4377
		set_next_entity(cfs_rq, se);
4378 4379 4380
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
4381
	p = task_of(se);
4382 4383
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
4384 4385

	return p;
4386 4387 4388 4389 4390
}

/*
 * Account for a descheduled task:
 */
4391
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4392 4393 4394 4395 4396 4397
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4398
		put_prev_entity(cfs_rq, se);
4399 4400 4401
	}
}

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
4427 4428 4429 4430 4431 4432
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
4433 4434 4435 4436 4437
	}

	set_skip_buddy(se);
}

4438 4439 4440 4441
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

4442 4443
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

4454
#ifdef CONFIG_SMP
4455
/**************************************************
P
Peter Zijlstra 已提交
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
4572

4573 4574
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

4575
#define LBF_ALL_PINNED	0x01
4576
#define LBF_NEED_BREAK	0x02
4577 4578
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
4579 4580 4581 4582 4583

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
4584
	int			src_cpu;
4585 4586 4587 4588

	int			dst_cpu;
	struct rq		*dst_rq;

4589 4590
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
4591
	enum cpu_idle_type	idle;
4592
	long			imbalance;
4593 4594 4595
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

4596
	unsigned int		flags;
4597 4598 4599 4600

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
4601 4602
};

4603
/*
4604
 * move_task - move a task from one runqueue to another runqueue.
4605 4606
 * Both runqueues must be locked.
 */
4607
static void move_task(struct task_struct *p, struct lb_env *env)
4608
{
4609 4610 4611 4612
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
#ifdef CONFIG_NUMA_BALANCING
	if (p->numa_preferred_nid != -1) {
		int src_nid = cpu_to_node(env->src_cpu);
		int dst_nid = cpu_to_node(env->dst_cpu);

		/*
		 * If the load balancer has moved the task then limit
		 * migrations from taking place in the short term in
		 * case this is a short-lived migration.
		 */
		if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
			p->numa_migrate_seq = 0;
	}
#endif
4627 4628
}

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
/*
 * Is this task likely cache-hot:
 */
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
	int src_nid, dst_nid;

	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
	    !(env->sd->flags & SD_NUMA)) {
		return false;
	}

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

4675
	if (src_nid == dst_nid)
4676 4677
		return false;

4678 4679 4680 4681 4682 4683 4684 4685
	/* Always encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
		return true;

	/* After the task has settled, check if the new node is better. */
	if (p->numa_migrate_seq >= sysctl_numa_balancing_settle_count &&
			task_weight(p, dst_nid) + group_weight(p, dst_nid) >
			task_weight(p, src_nid) + group_weight(p, src_nid))
4686 4687 4688 4689
		return true;

	return false;
}
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704


static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
	int src_nid, dst_nid;

	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
		return false;

	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
		return false;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

4705
	if (src_nid == dst_nid)
4706 4707
		return false;

4708 4709 4710 4711 4712 4713 4714 4715
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid)
		return true;

	/* After the task has settled, check if the new node is worse. */
	if (p->numa_migrate_seq >= sysctl_numa_balancing_settle_count &&
			task_weight(p, dst_nid) + group_weight(p, dst_nid) <
			task_weight(p, src_nid) + group_weight(p, src_nid))
4716 4717 4718 4719 4720
		return true;

	return false;
}

4721 4722 4723 4724 4725 4726
#else
static inline bool migrate_improves_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
4727 4728 4729 4730 4731 4732

static inline bool migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
4733 4734
#endif

4735 4736 4737 4738
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
4739
int can_migrate_task(struct task_struct *p, struct lb_env *env)
4740 4741 4742 4743
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
4744
	 * 1) throttled_lb_pair, or
4745
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4746 4747
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
4748
	 */
4749 4750 4751
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

4752
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4753
		int cpu;
4754

4755
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4756

4757 4758
		env->flags |= LBF_SOME_PINNED;

4759 4760 4761 4762 4763 4764 4765 4766
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
4767
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4768 4769
			return 0;

4770 4771 4772
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4773
				env->flags |= LBF_DST_PINNED;
4774 4775 4776
				env->new_dst_cpu = cpu;
				break;
			}
4777
		}
4778

4779 4780
		return 0;
	}
4781 4782

	/* Record that we found atleast one task that could run on dst_cpu */
4783
	env->flags &= ~LBF_ALL_PINNED;
4784

4785
	if (task_running(env->src_rq, p)) {
4786
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4787 4788 4789 4790 4791
		return 0;
	}

	/*
	 * Aggressive migration if:
4792 4793 4794
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
4795
	 */
4796
	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4797 4798
	if (!tsk_cache_hot)
		tsk_cache_hot = migrate_degrades_locality(p, env);
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809

	if (migrate_improves_locality(p, env)) {
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
#endif
		return 1;
	}

4810
	if (!tsk_cache_hot ||
4811
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Z
Zhang Hang 已提交
4812

4813
		if (tsk_cache_hot) {
4814
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4815
			schedstat_inc(p, se.statistics.nr_forced_migrations);
4816
		}
Z
Zhang Hang 已提交
4817

4818 4819 4820
		return 1;
	}

Z
Zhang Hang 已提交
4821 4822
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
4823 4824
}

4825 4826 4827 4828 4829 4830 4831
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
4832
static int move_one_task(struct lb_env *env)
4833 4834 4835
{
	struct task_struct *p, *n;

4836 4837 4838
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
4839

4840 4841 4842 4843 4844 4845 4846 4847
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
4848 4849 4850 4851
	}
	return 0;
}

4852 4853
static const unsigned int sched_nr_migrate_break = 32;

4854
/*
4855
 * move_tasks tries to move up to imbalance weighted load from busiest to
4856 4857 4858 4859 4860 4861
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
4862
{
4863 4864
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
4865 4866
	unsigned long load;
	int pulled = 0;
4867

4868
	if (env->imbalance <= 0)
4869
		return 0;
4870

4871 4872
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
4873

4874 4875
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
4876
		if (env->loop > env->loop_max)
4877
			break;
4878 4879

		/* take a breather every nr_migrate tasks */
4880
		if (env->loop > env->loop_break) {
4881
			env->loop_break += sched_nr_migrate_break;
4882
			env->flags |= LBF_NEED_BREAK;
4883
			break;
4884
		}
4885

4886
		if (!can_migrate_task(p, env))
4887 4888 4889
			goto next;

		load = task_h_load(p);
4890

4891
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4892 4893
			goto next;

4894
		if ((load / 2) > env->imbalance)
4895
			goto next;
4896

4897
		move_task(p, env);
4898
		pulled++;
4899
		env->imbalance -= load;
4900 4901

#ifdef CONFIG_PREEMPT
4902 4903 4904 4905 4906
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
4907
		if (env->idle == CPU_NEWLY_IDLE)
4908
			break;
4909 4910
#endif

4911 4912 4913 4914
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
4915
		if (env->imbalance <= 0)
4916
			break;
4917 4918 4919

		continue;
next:
4920
		list_move_tail(&p->se.group_node, tasks);
4921
	}
4922

4923
	/*
4924 4925 4926
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
4927
	 */
4928
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
4929

4930
	return pulled;
4931 4932
}

P
Peter Zijlstra 已提交
4933
#ifdef CONFIG_FAIR_GROUP_SCHED
4934 4935 4936
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
4937
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4938
{
4939 4940
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4941

4942 4943 4944
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
4945

4946
	update_cfs_rq_blocked_load(cfs_rq, 1);
4947

4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
4962
		struct rq *rq = rq_of(cfs_rq);
4963 4964
		update_rq_runnable_avg(rq, rq->nr_running);
	}
4965 4966
}

4967
static void update_blocked_averages(int cpu)
4968 4969
{
	struct rq *rq = cpu_rq(cpu);
4970 4971
	struct cfs_rq *cfs_rq;
	unsigned long flags;
4972

4973 4974
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
4975 4976 4977 4978
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
4979
	for_each_leaf_cfs_rq(rq, cfs_rq) {
4980 4981 4982 4983 4984 4985
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4986
	}
4987 4988

	raw_spin_unlock_irqrestore(&rq->lock, flags);
4989 4990
}

4991
/*
4992
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
4993 4994 4995
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
4996
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
4997
{
4998 4999
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5000
	unsigned long now = jiffies;
5001
	unsigned long load;
5002

5003
	if (cfs_rq->last_h_load_update == now)
5004 5005
		return;

5006 5007 5008 5009 5010 5011 5012
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5013

5014
	if (!se) {
5015
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5027 5028
}

5029
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5030
{
5031
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5032

5033
	update_cfs_rq_h_load(cfs_rq);
5034 5035
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
5036 5037
}
#else
5038
static inline void update_blocked_averages(int cpu)
5039 5040 5041
{
}

5042
static unsigned long task_h_load(struct task_struct *p)
5043
{
5044
	return p->se.avg.load_avg_contrib;
5045
}
P
Peter Zijlstra 已提交
5046
#endif
5047 5048 5049 5050 5051 5052 5053 5054 5055

/********** Helpers for find_busiest_group ************************/
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5056
	unsigned long load_per_task;
5057
	unsigned long group_power;
5058 5059 5060 5061
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int group_capacity;
	unsigned int idle_cpus;
	unsigned int group_weight;
5062
	int group_imb; /* Is there an imbalance in the group ? */
5063
	int group_has_capacity; /* Is there extra capacity in the group? */
5064 5065
};

J
Joonsoo Kim 已提交
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
	unsigned long total_pwr;	/* Total power of all groups in sd */
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5078
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5079 5080
};

5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
		.total_pwr = 0UL,
		.busiest_stat = {
			.avg_load = 0UL,
		},
	};
}

5100 5101 5102 5103
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
5104 5105
 *
 * Return: The load index.
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

5128
static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5129
{
5130
	return SCHED_POWER_SCALE;
5131 5132 5133 5134 5135 5136 5137
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

5138
static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5139
{
5140
	unsigned long weight = sd->span_weight;
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

5153
static unsigned long scale_rt_power(int cpu)
5154 5155
{
	struct rq *rq = cpu_rq(cpu);
5156
	u64 total, available, age_stamp, avg;
5157

5158 5159 5160 5161 5162 5163 5164
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

5165
	total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5166

5167
	if (unlikely(total < avg)) {
5168 5169 5170
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
5171
		available = total - avg;
5172
	}
5173

5174 5175
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
5176

5177
	total >>= SCHED_POWER_SHIFT;
5178 5179 5180 5181 5182 5183

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
5184
	unsigned long weight = sd->span_weight;
5185
	unsigned long power = SCHED_POWER_SCALE;
5186 5187 5188 5189 5190 5191 5192 5193
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

5194
		power >>= SCHED_POWER_SHIFT;
5195 5196
	}

5197
	sdg->sgp->power_orig = power;
5198 5199 5200 5201 5202 5203

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

5204
	power >>= SCHED_POWER_SHIFT;
5205

5206
	power *= scale_rt_power(cpu);
5207
	power >>= SCHED_POWER_SHIFT;
5208 5209 5210 5211

	if (!power)
		power = 1;

5212
	cpu_rq(cpu)->cpu_power = power;
5213
	sdg->sgp->power = power;
5214 5215
}

5216
void update_group_power(struct sched_domain *sd, int cpu)
5217 5218 5219
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
5220
	unsigned long power, power_orig;
5221 5222 5223 5224 5225
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
5226 5227 5228 5229 5230 5231

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

5232
	power_orig = power = 0;
5233

P
Peter Zijlstra 已提交
5234 5235 5236 5237 5238 5239
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

5240 5241 5242 5243 5244 5245
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
			struct sched_group *sg = cpu_rq(cpu)->sd->groups;

			power_orig += sg->sgp->power_orig;
			power += sg->sgp->power;
		}
P
Peter Zijlstra 已提交
5246 5247 5248 5249 5250 5251 5252 5253
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
5254
			power_orig += group->sgp->power_orig;
P
Peter Zijlstra 已提交
5255 5256 5257 5258
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
5259

5260 5261
	sdg->sgp->power_orig = power_orig;
	sdg->sgp->power = power;
5262 5263
}

5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
5275
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
5276
	 */
P
Peter Zijlstra 已提交
5277
	if (!(sd->flags & SD_SHARE_CPUPOWER))
5278 5279 5280 5281 5282
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
5283
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5284 5285 5286 5287 5288
		return 1;

	return 0;
}

5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
5305 5306
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
5307 5308 5309
 *
 * When this is so detected; this group becomes a candidate for busiest; see
 * update_sd_pick_busiest(). And calculcate_imbalance() and
5310
 * find_busiest_group() avoid some of the usual balance conditions to allow it
5311 5312 5313 5314 5315 5316 5317
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

5318
static inline int sg_imbalanced(struct sched_group *group)
5319
{
5320
	return group->sgp->imbalance;
5321 5322
}

5323 5324 5325
/*
 * Compute the group capacity.
 *
5326 5327 5328
 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
 * first dividing out the smt factor and computing the actual number of cores
 * and limit power unit capacity with that.
5329 5330 5331
 */
static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
{
5332 5333 5334 5335 5336 5337
	unsigned int capacity, smt, cpus;
	unsigned int power, power_orig;

	power = group->sgp->power;
	power_orig = group->sgp->power_orig;
	cpus = group->group_weight;
5338

5339 5340 5341
	/* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
	capacity = cpus / smt; /* cores */
5342

5343
	capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5344 5345 5346 5347 5348 5349
	if (!capacity)
		capacity = fix_small_capacity(env->sd, group);

	return capacity;
}

5350 5351
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5352
 * @env: The load balancing environment.
5353 5354 5355 5356 5357
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
 */
5358 5359
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
5360
			int local_group, struct sg_lb_stats *sgs)
5361
{
5362 5363
	unsigned long nr_running;
	unsigned long load;
5364
	int i;
5365

5366 5367
	memset(sgs, 0, sizeof(*sgs));

5368
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5369 5370
		struct rq *rq = cpu_rq(i);

5371 5372
		nr_running = rq->nr_running;

5373
		/* Bias balancing toward cpus of our domain */
5374
		if (local_group)
5375
			load = target_load(i, load_idx);
5376
		else
5377 5378 5379
			load = source_load(i, load_idx);

		sgs->group_load += load;
5380
		sgs->sum_nr_running += nr_running;
5381
		sgs->sum_weighted_load += weighted_cpuload(i);
5382 5383
		if (idle_cpu(i))
			sgs->idle_cpus++;
5384 5385 5386
	}

	/* Adjust by relative CPU power of the group */
5387 5388
	sgs->group_power = group->sgp->power;
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5389

5390
	if (sgs->sum_nr_running)
5391
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5392

5393
	sgs->group_weight = group->group_weight;
5394

5395 5396 5397
	sgs->group_imb = sg_imbalanced(group);
	sgs->group_capacity = sg_capacity(env, group);

5398 5399
	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
5400 5401
}

5402 5403
/**
 * update_sd_pick_busiest - return 1 on busiest group
5404
 * @env: The load balancing environment.
5405 5406
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
5407
 * @sgs: sched_group statistics
5408 5409 5410
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
5411 5412 5413
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
5414
 */
5415
static bool update_sd_pick_busiest(struct lb_env *env,
5416 5417
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
5418
				   struct sg_lb_stats *sgs)
5419
{
J
Joonsoo Kim 已提交
5420
	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
5434 5435
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

5446
/**
5447
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5448
 * @env: The load balancing environment.
5449 5450 5451
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
 */
5452
static inline void update_sd_lb_stats(struct lb_env *env,
5453
					struct sd_lb_stats *sds)
5454
{
5455 5456
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
5457
	struct sg_lb_stats tmp_sgs;
5458 5459 5460 5461 5462
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

5463
	load_idx = get_sd_load_idx(env->sd, env->idle);
5464 5465

	do {
J
Joonsoo Kim 已提交
5466
		struct sg_lb_stats *sgs = &tmp_sgs;
5467 5468
		int local_group;

5469
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
5470 5471 5472
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
5473 5474 5475 5476

			if (env->idle != CPU_NEWLY_IDLE ||
			    time_after_eq(jiffies, sg->sgp->next_update))
				update_group_power(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
5477
		}
5478

J
Joonsoo Kim 已提交
5479
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5480

5481 5482 5483
		if (local_group)
			goto next_group;

5484 5485
		/*
		 * In case the child domain prefers tasks go to siblings
5486
		 * first, lower the sg capacity to one so that we'll try
5487 5488 5489 5490 5491 5492
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
5493
		 */
5494 5495
		if (prefer_sibling && sds->local &&
		    sds->local_stat.group_has_capacity)
5496
			sgs->group_capacity = min(sgs->group_capacity, 1U);
5497

5498
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5499
			sds->busiest = sg;
J
Joonsoo Kim 已提交
5500
			sds->busiest_stat = *sgs;
5501 5502
		}

5503 5504 5505 5506 5507
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
		sds->total_pwr += sgs->group_power;

5508
		sg = sg->next;
5509
	} while (sg != env->sd->groups);
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
5529
 * Return: 1 when packing is required and a task should be moved to
5530 5531
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
5532
 * @env: The load balancing environment.
5533 5534
 * @sds: Statistics of the sched_domain which is to be packed
 */
5535
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5536 5537 5538
{
	int busiest_cpu;

5539
	if (!(env->sd->flags & SD_ASYM_PACKING))
5540 5541 5542 5543 5544 5545
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
5546
	if (env->dst_cpu > busiest_cpu)
5547 5548
		return 0;

5549
	env->imbalance = DIV_ROUND_CLOSEST(
5550 5551
		sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
		SCHED_POWER_SCALE);
5552

5553
	return 1;
5554 5555 5556 5557 5558 5559
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
5560
 * @env: The load balancing environment.
5561 5562
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
5563 5564
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5565 5566 5567
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
5568
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
5569
	struct sg_lb_stats *local, *busiest;
5570

J
Joonsoo Kim 已提交
5571 5572
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
5573

J
Joonsoo Kim 已提交
5574 5575 5576 5577
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
5578

J
Joonsoo Kim 已提交
5579 5580
	scaled_busy_load_per_task =
		(busiest->load_per_task * SCHED_POWER_SCALE) /
5581
		busiest->group_power;
J
Joonsoo Kim 已提交
5582

5583 5584
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
5585
		env->imbalance = busiest->load_per_task;
5586 5587 5588 5589 5590 5591 5592 5593 5594
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

5595
	pwr_now += busiest->group_power *
J
Joonsoo Kim 已提交
5596
			min(busiest->load_per_task, busiest->avg_load);
5597
	pwr_now += local->group_power *
J
Joonsoo Kim 已提交
5598
			min(local->load_per_task, local->avg_load);
5599
	pwr_now /= SCHED_POWER_SCALE;
5600 5601

	/* Amount of load we'd subtract */
J
Joonsoo Kim 已提交
5602
	tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5603
		busiest->group_power;
J
Joonsoo Kim 已提交
5604
	if (busiest->avg_load > tmp) {
5605
		pwr_move += busiest->group_power *
J
Joonsoo Kim 已提交
5606 5607 5608
			    min(busiest->load_per_task,
				busiest->avg_load - tmp);
	}
5609 5610

	/* Amount of load we'd add */
5611
	if (busiest->avg_load * busiest->group_power <
J
Joonsoo Kim 已提交
5612
	    busiest->load_per_task * SCHED_POWER_SCALE) {
5613 5614
		tmp = (busiest->avg_load * busiest->group_power) /
		      local->group_power;
J
Joonsoo Kim 已提交
5615 5616
	} else {
		tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5617
		      local->group_power;
J
Joonsoo Kim 已提交
5618
	}
5619 5620
	pwr_move += local->group_power *
		    min(local->load_per_task, local->avg_load + tmp);
5621
	pwr_move /= SCHED_POWER_SCALE;
5622 5623 5624

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
J
Joonsoo Kim 已提交
5625
		env->imbalance = busiest->load_per_task;
5626 5627 5628 5629 5630
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
5631
 * @env: load balance environment
5632 5633
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
5634
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5635
{
5636
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
5637 5638 5639 5640
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
5641

J
Joonsoo Kim 已提交
5642
	if (busiest->group_imb) {
5643 5644 5645 5646
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
5647 5648
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
5649 5650
	}

5651 5652 5653 5654 5655
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
5656 5657
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
5658 5659
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
5660 5661
	}

J
Joonsoo Kim 已提交
5662
	if (!busiest->group_imb) {
5663 5664
		/*
		 * Don't want to pull so many tasks that a group would go idle.
5665 5666
		 * Except of course for the group_imb case, since then we might
		 * have to drop below capacity to reach cpu-load equilibrium.
5667
		 */
J
Joonsoo Kim 已提交
5668 5669
		load_above_capacity =
			(busiest->sum_nr_running - busiest->group_capacity);
5670

5671
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5672
		load_above_capacity /= busiest->group_power;
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
5683
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5684 5685

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
5686
	env->imbalance = min(
5687 5688
		max_pull * busiest->group_power,
		(sds->avg_load - local->avg_load) * local->group_power
J
Joonsoo Kim 已提交
5689
	) / SCHED_POWER_SCALE;
5690 5691 5692

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
5693
	 * there is no guarantee that any tasks will be moved so we'll have
5694 5695 5696
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
5697
	if (env->imbalance < busiest->load_per_task)
5698
		return fix_small_imbalance(env, sds);
5699
}
5700

5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
5713
 * @env: The load balancing environment.
5714
 *
5715
 * Return:	- The busiest group if imbalance exists.
5716 5717 5718 5719
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
5720
static struct sched_group *find_busiest_group(struct lb_env *env)
5721
{
J
Joonsoo Kim 已提交
5722
	struct sg_lb_stats *local, *busiest;
5723 5724
	struct sd_lb_stats sds;

5725
	init_sd_lb_stats(&sds);
5726 5727 5728 5729 5730

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
5731
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
5732 5733
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
5734

5735 5736
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
5737 5738
		return sds.busiest;

5739
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
5740
	if (!sds.busiest || busiest->sum_nr_running == 0)
5741 5742
		goto out_balanced;

5743
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5744

P
Peter Zijlstra 已提交
5745 5746
	/*
	 * If the busiest group is imbalanced the below checks don't
5747
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
5748 5749
	 * isn't true due to cpus_allowed constraints and the like.
	 */
J
Joonsoo Kim 已提交
5750
	if (busiest->group_imb)
P
Peter Zijlstra 已提交
5751 5752
		goto force_balance;

5753
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
J
Joonsoo Kim 已提交
5754 5755
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
	    !busiest->group_has_capacity)
5756 5757
		goto force_balance;

5758 5759 5760 5761
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
5762
	if (local->avg_load >= busiest->avg_load)
5763 5764
		goto out_balanced;

5765 5766 5767 5768
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
5769
	if (local->avg_load >= sds.avg_load)
5770 5771
		goto out_balanced;

5772
	if (env->idle == CPU_IDLE) {
5773 5774 5775 5776 5777 5778
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
J
Joonsoo Kim 已提交
5779 5780
		if ((local->idle_cpus < busiest->idle_cpus) &&
		    busiest->sum_nr_running <= busiest->group_weight)
5781
			goto out_balanced;
5782 5783 5784 5785 5786
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
5787 5788
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
5789
			goto out_balanced;
5790
	}
5791

5792
force_balance:
5793
	/* Looks like there is an imbalance. Compute it */
5794
	calculate_imbalance(env, &sds);
5795 5796 5797
	return sds.busiest;

out_balanced:
5798
	env->imbalance = 0;
5799 5800 5801 5802 5803 5804
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
5805
static struct rq *find_busiest_queue(struct lb_env *env,
5806
				     struct sched_group *group)
5807 5808
{
	struct rq *busiest = NULL, *rq;
5809
	unsigned long busiest_load = 0, busiest_power = 1;
5810 5811
	int i;

5812
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5813
		unsigned long power = power_of(i);
5814 5815
		unsigned long capacity = DIV_ROUND_CLOSEST(power,
							   SCHED_POWER_SCALE);
5816 5817
		unsigned long wl;

5818
		if (!capacity)
5819
			capacity = fix_small_capacity(env->sd, group);
5820

5821
		rq = cpu_rq(i);
5822
		wl = weighted_cpuload(i);
5823

5824 5825 5826 5827
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
5828
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
5829 5830
			continue;

5831 5832 5833 5834 5835
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
5836 5837 5838 5839 5840
		 *
		 * Thus we're looking for max(wl_i / power_i), crosswise
		 * multiplication to rid ourselves of the division works out
		 * to: wl_i * power_j > wl_j * power_i;  where j is our
		 * previous maximum.
5841
		 */
5842 5843 5844
		if (wl * busiest_power > busiest_load * power) {
			busiest_load = wl;
			busiest_power = power;
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
5859
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5860

5861
static int need_active_balance(struct lb_env *env)
5862
{
5863 5864 5865
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
5866 5867 5868 5869 5870 5871

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
5872
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
5873
			return 1;
5874 5875 5876 5877 5878
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

5879 5880
static int active_load_balance_cpu_stop(void *data);

5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
5912
	return balance_cpu == env->dst_cpu;
5913 5914
}

5915 5916 5917 5918 5919 5920
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
5921
			int *continue_balancing)
5922
{
5923
	int ld_moved, cur_ld_moved, active_balance = 0;
5924
	struct sched_domain *sd_parent = sd->parent;
5925 5926 5927
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
5928
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5929

5930 5931
	struct lb_env env = {
		.sd		= sd,
5932 5933
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
5934
		.dst_grpmask    = sched_group_cpus(sd->groups),
5935
		.idle		= idle,
5936
		.loop_break	= sched_nr_migrate_break,
5937
		.cpus		= cpus,
5938 5939
	};

5940 5941 5942 5943
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
5944
	if (idle == CPU_NEWLY_IDLE)
5945 5946
		env.dst_grpmask = NULL;

5947 5948 5949 5950 5951
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
5952 5953
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
5954
		goto out_balanced;
5955
	}
5956

5957
	group = find_busiest_group(&env);
5958 5959 5960 5961 5962
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

5963
	busiest = find_busiest_queue(&env, group);
5964 5965 5966 5967 5968
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

5969
	BUG_ON(busiest == env.dst_rq);
5970

5971
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5972 5973 5974 5975 5976 5977 5978 5979 5980

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
5981
		env.flags |= LBF_ALL_PINNED;
5982 5983 5984
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
5985

5986
more_balance:
5987
		local_irq_save(flags);
5988
		double_rq_lock(env.dst_rq, busiest);
5989 5990 5991 5992 5993 5994 5995

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
5996
		double_rq_unlock(env.dst_rq, busiest);
5997 5998 5999 6000 6001
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
6002 6003 6004
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

6005 6006 6007 6008 6009
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
6029
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6030

6031 6032 6033
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

6034
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6035
			env.dst_cpu	 = env.new_dst_cpu;
6036
			env.flags	&= ~LBF_DST_PINNED;
6037 6038
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
6039

6040 6041 6042 6043 6044 6045
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
6046

6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
			int *group_imbalance = &sd_parent->groups->sgp->imbalance;

			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
				*group_imbalance = 1;
			} else if (*group_imbalance)
				*group_imbalance = 0;
		}

6059
		/* All tasks on this runqueue were pinned by CPU affinity */
6060
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6061
			cpumask_clear_cpu(cpu_of(busiest), cpus);
6062 6063 6064
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
6065
				goto redo;
6066
			}
6067 6068 6069 6070 6071 6072
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
6073 6074 6075 6076 6077 6078 6079 6080
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
6081

6082
		if (need_active_balance(&env)) {
6083 6084
			raw_spin_lock_irqsave(&busiest->lock, flags);

6085 6086 6087
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
6088 6089
			 */
			if (!cpumask_test_cpu(this_cpu,
6090
					tsk_cpus_allowed(busiest->curr))) {
6091 6092
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
6093
				env.flags |= LBF_ALL_PINNED;
6094 6095 6096
				goto out_one_pinned;
			}

6097 6098 6099 6100 6101
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
6102 6103 6104 6105 6106 6107
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6108

6109
			if (active_balance) {
6110 6111 6112
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
6113
			}
6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
6147
	if (((env.flags & LBF_ALL_PINNED) &&
6148
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6149 6150 6151
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

6152
	ld_moved = 0;
6153 6154 6155 6156 6157 6158 6159 6160
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
6161
void idle_balance(int this_cpu, struct rq *this_rq)
6162 6163 6164 6165
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;
6166
	u64 curr_cost = 0;
6167

6168
	this_rq->idle_stamp = rq_clock(this_rq);
6169 6170 6171 6172

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

6173 6174 6175 6176 6177
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

6178
	update_blocked_averages(this_cpu);
6179
	rcu_read_lock();
6180 6181
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
6182
		int continue_balancing = 1;
6183
		u64 t0, domain_cost;
6184 6185 6186 6187

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6188 6189 6190
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
			break;

6191
		if (sd->flags & SD_BALANCE_NEWIDLE) {
6192 6193
			t0 = sched_clock_cpu(this_cpu);

6194
			/* If we've pulled tasks over stop searching: */
6195
			pulled_task = load_balance(this_cpu, this_rq,
6196 6197
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
6198 6199 6200 6201 6202 6203

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
6204
		}
6205 6206 6207 6208

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
N
Nikhil Rao 已提交
6209 6210
		if (pulled_task) {
			this_rq->idle_stamp = 0;
6211
			break;
N
Nikhil Rao 已提交
6212
		}
6213
	}
6214
	rcu_read_unlock();
6215 6216 6217

	raw_spin_lock(&this_rq->lock);

6218 6219 6220 6221 6222 6223 6224
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
6225 6226 6227

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;
6228 6229 6230
}

/*
6231 6232 6233 6234
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
6235
 */
6236
static int active_load_balance_cpu_stop(void *data)
6237
{
6238 6239
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
6240
	int target_cpu = busiest_rq->push_cpu;
6241
	struct rq *target_rq = cpu_rq(target_cpu);
6242
	struct sched_domain *sd;
6243 6244 6245 6246 6247 6248 6249

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
6250 6251 6252

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
6253
		goto out_unlock;
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
6266
	rcu_read_lock();
6267 6268 6269 6270 6271 6272 6273
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
6274 6275
		struct lb_env env = {
			.sd		= sd,
6276 6277 6278 6279
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
6280 6281 6282
			.idle		= CPU_IDLE,
		};

6283 6284
		schedstat_inc(sd, alb_count);

6285
		if (move_one_task(&env))
6286 6287 6288 6289
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
6290
	rcu_read_unlock();
6291
	double_unlock_balance(busiest_rq, target_rq);
6292 6293 6294 6295
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
6296 6297
}

6298
#ifdef CONFIG_NO_HZ_COMMON
6299 6300 6301 6302 6303 6304
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
6305
static struct {
6306
	cpumask_var_t idle_cpus_mask;
6307
	atomic_t nr_cpus;
6308 6309
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
6310

6311
static inline int find_new_ilb(int call_cpu)
6312
{
6313
	int ilb = cpumask_first(nohz.idle_cpus_mask);
6314

6315 6316 6317 6318
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
6319 6320
}

6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void nohz_balancer_kick(int cpu)
{
	int ilb_cpu;

	nohz.next_balance++;

6332
	ilb_cpu = find_new_ilb(cpu);
6333

6334 6335
	if (ilb_cpu >= nr_cpu_ids)
		return;
6336

6337
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6338 6339 6340 6341 6342 6343 6344 6345
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
6346 6347 6348
	return;
}

6349
static inline void nohz_balance_exit_idle(int cpu)
6350 6351 6352 6353 6354 6355 6356 6357
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
		atomic_dec(&nohz.nr_cpus);
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

6358 6359 6360 6361 6362
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;

	rcu_read_lock();
N
Nathan Zimmer 已提交
6363
	sd = rcu_dereference_check_sched_domain(this_rq()->sd);
V
Vincent Guittot 已提交
6364 6365 6366 6367 6368 6369

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

	for (; sd; sd = sd->parent)
6370
		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6371
unlock:
6372 6373 6374 6375 6376 6377 6378 6379
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;

	rcu_read_lock();
N
Nathan Zimmer 已提交
6380
	sd = rcu_dereference_check_sched_domain(this_rq()->sd);
V
Vincent Guittot 已提交
6381 6382 6383 6384 6385 6386

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

	for (; sd; sd = sd->parent)
6387
		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6388
unlock:
6389 6390 6391
	rcu_read_unlock();
}

6392
/*
6393
 * This routine will record that the cpu is going idle with tick stopped.
6394
 * This info will be used in performing idle load balancing in the future.
6395
 */
6396
void nohz_balance_enter_idle(int cpu)
6397
{
6398 6399 6400 6401 6402 6403
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

6404 6405
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
6406

6407 6408 6409
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6410
}
6411

6412
static int sched_ilb_notifier(struct notifier_block *nfb,
6413 6414 6415 6416
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
6417
		nohz_balance_exit_idle(smp_processor_id());
6418 6419 6420 6421 6422
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
6423 6424 6425 6426
#endif

static DEFINE_SPINLOCK(balancing);

6427 6428 6429 6430
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
6431
void update_max_interval(void)
6432 6433 6434 6435
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

6436 6437 6438 6439
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
6440
 * Balancing parameters are set up in init_sched_domains.
6441 6442 6443
 */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
6444
	int continue_balancing = 1;
6445 6446
	struct rq *rq = cpu_rq(cpu);
	unsigned long interval;
6447
	struct sched_domain *sd;
6448 6449 6450
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
6451 6452
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
6453

6454
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
6455

6456
	rcu_read_lock();
6457
	for_each_domain(cpu, sd) {
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

6470 6471 6472
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

6484 6485 6486 6487 6488 6489
		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
6490
		interval = clamp(interval, 1UL, max_load_balance_interval);
6491 6492 6493 6494 6495 6496 6497 6498 6499

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
6500
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6501
				/*
6502
				 * The LBF_DST_PINNED logic could have changed
6503 6504
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
6505
				 */
6506
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6507 6508 6509 6510 6511 6512 6513 6514 6515 6516
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
6517 6518
	}
	if (need_decay) {
6519
		/*
6520 6521
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
6522
		 */
6523 6524
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
6525
	}
6526
	rcu_read_unlock();
6527 6528 6529 6530 6531 6532 6533 6534 6535 6536

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

6537
#ifdef CONFIG_NO_HZ_COMMON
6538
/*
6539
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6540 6541
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
6542 6543 6544 6545 6546 6547
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
{
	struct rq *this_rq = cpu_rq(this_cpu);
	struct rq *rq;
	int balance_cpu;

6548 6549 6550
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
6551 6552

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6553
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6554 6555 6556 6557 6558 6559 6560
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
6561
		if (need_resched())
6562 6563
			break;

V
Vincent Guittot 已提交
6564 6565 6566 6567 6568 6569
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
6570 6571 6572 6573 6574 6575 6576

		rebalance_domains(balance_cpu, CPU_IDLE);

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
6577 6578
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6579 6580 6581
}

/*
6582 6583 6584 6585 6586 6587 6588
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
6589 6590 6591 6592
 */
static inline int nohz_kick_needed(struct rq *rq, int cpu)
{
	unsigned long now = jiffies;
6593
	struct sched_domain *sd;
6594

6595
	if (unlikely(idle_cpu(cpu)))
6596 6597
		return 0;

6598 6599 6600 6601
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
6602
	set_cpu_sd_state_busy();
6603
	nohz_balance_exit_idle(cpu);
6604 6605 6606 6607 6608 6609 6610

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
6611 6612

	if (time_before(now, nohz.next_balance))
6613 6614
		return 0;

6615 6616
	if (rq->nr_running >= 2)
		goto need_kick;
6617

6618
	rcu_read_lock();
6619 6620 6621 6622
	for_each_domain(cpu, sd) {
		struct sched_group *sg = sd->groups;
		struct sched_group_power *sgp = sg->sgp;
		int nr_busy = atomic_read(&sgp->nr_busy_cpus);
6623

6624
		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
6625
			goto need_kick_unlock;
6626 6627 6628 6629

		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
		    && (cpumask_first_and(nohz.idle_cpus_mask,
					  sched_domain_span(sd)) < cpu))
6630
			goto need_kick_unlock;
6631 6632 6633

		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
			break;
6634
	}
6635
	rcu_read_unlock();
6636
	return 0;
6637 6638 6639

need_kick_unlock:
	rcu_read_unlock();
6640 6641
need_kick:
	return 1;
6642 6643 6644 6645 6646 6647 6648 6649 6650
}
#else
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
6651 6652 6653 6654
static void run_rebalance_domains(struct softirq_action *h)
{
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
6655
	enum cpu_idle_type idle = this_rq->idle_balance ?
6656 6657 6658 6659 6660
						CPU_IDLE : CPU_NOT_IDLE;

	rebalance_domains(this_cpu, idle);

	/*
6661
	 * If this cpu has a pending nohz_balance_kick, then do the
6662 6663 6664
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
6665
	nohz_idle_balance(this_cpu, idle);
6666 6667 6668 6669
}

static inline int on_null_domain(int cpu)
{
6670
	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6671 6672 6673 6674 6675
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
6676
void trigger_load_balance(struct rq *rq, int cpu)
6677 6678 6679 6680 6681
{
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
		raise_softirq(SCHED_SOFTIRQ);
6682
#ifdef CONFIG_NO_HZ_COMMON
6683
	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6684 6685
		nohz_balancer_kick(cpu);
#endif
6686 6687
}

6688 6689 6690 6691 6692 6693 6694 6695
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
6696 6697 6698

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
6699 6700
}

6701
#endif /* CONFIG_SMP */
6702

6703 6704 6705
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
6706
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6707 6708 6709 6710 6711 6712
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
6713
		entity_tick(cfs_rq, se, queued);
6714
	}
6715

6716
	if (numabalancing_enabled)
6717
		task_tick_numa(rq, curr);
6718

6719
	update_rq_runnable_avg(rq, 1);
6720 6721 6722
}

/*
P
Peter Zijlstra 已提交
6723 6724 6725
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
6726
 */
P
Peter Zijlstra 已提交
6727
static void task_fork_fair(struct task_struct *p)
6728
{
6729 6730
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
6731
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
6732 6733 6734
	struct rq *rq = this_rq();
	unsigned long flags;

6735
	raw_spin_lock_irqsave(&rq->lock, flags);
6736

6737 6738
	update_rq_clock(rq);

6739 6740 6741
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

6742 6743 6744 6745 6746 6747 6748 6749 6750
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
6751

6752
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
6753

6754 6755
	if (curr)
		se->vruntime = curr->vruntime;
6756
	place_entity(cfs_rq, se, 1);
6757

P
Peter Zijlstra 已提交
6758
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
6759
		/*
6760 6761 6762
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
6763
		swap(curr->vruntime, se->vruntime);
6764
		resched_task(rq->curr);
6765
	}
6766

6767 6768
	se->vruntime -= cfs_rq->min_vruntime;

6769
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6770 6771
}

6772 6773 6774 6775
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
6776 6777
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6778
{
P
Peter Zijlstra 已提交
6779 6780 6781
	if (!p->se.on_rq)
		return;

6782 6783 6784 6785 6786
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
6787
	if (rq->curr == p) {
6788 6789 6790
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
6791
		check_preempt_curr(rq, p, 0);
6792 6793
}

P
Peter Zijlstra 已提交
6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Ensure the task's vruntime is normalized, so that when its
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it was !on_rq, then only when
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
	if (!se->on_rq && p->state != TASK_RUNNING) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
6816

6817
#ifdef CONFIG_SMP
6818 6819 6820 6821 6822
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
6823 6824 6825
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
6826 6827
	}
#endif
P
Peter Zijlstra 已提交
6828 6829
}

6830 6831 6832
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
6833
static void switched_to_fair(struct rq *rq, struct task_struct *p)
6834
{
P
Peter Zijlstra 已提交
6835 6836 6837
	if (!p->se.on_rq)
		return;

6838 6839 6840 6841 6842
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
6843
	if (rq->curr == p)
6844 6845
		resched_task(rq->curr);
	else
6846
		check_preempt_curr(rq, p, 0);
6847 6848
}

6849 6850 6851 6852 6853 6854 6855 6856 6857
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

6858 6859 6860 6861 6862 6863 6864
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
6865 6866
}

6867 6868 6869 6870 6871 6872 6873
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
6874
#ifdef CONFIG_SMP
6875
	atomic64_set(&cfs_rq->decay_counter, 1);
6876
	atomic_long_set(&cfs_rq->removed_load, 0);
6877
#endif
6878 6879
}

P
Peter Zijlstra 已提交
6880
#ifdef CONFIG_FAIR_GROUP_SCHED
6881
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
6882
{
6883
	struct cfs_rq *cfs_rq;
6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
6897 6898 6899 6900 6901 6902
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
6903 6904
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
6905 6906 6907 6908
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
6909
	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
6910 6911
		on_rq = 1;

6912 6913 6914
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927
	if (!on_rq) {
		cfs_rq = cfs_rq_of(&p->se);
		p->se.vruntime += cfs_rq->min_vruntime;
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
		p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
#endif
	}
P
Peter Zijlstra 已提交
6928
}
6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

	se->my_q = cfs_rq;
	update_load_set(&se->load, 0);
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
7058 7059 7060

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
7061
		for_each_sched_entity(se)
7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
7083

7084
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7085 7086 7087 7088 7089 7090 7091 7092 7093
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
7094
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7095 7096 7097 7098

	return rr_interval;
}

7099 7100 7101
/*
 * All the scheduling class methods:
 */
7102
const struct sched_class fair_sched_class = {
7103
	.next			= &idle_sched_class,
7104 7105 7106
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
7107
	.yield_to_task		= yield_to_task_fair,
7108

I
Ingo Molnar 已提交
7109
	.check_preempt_curr	= check_preempt_wakeup,
7110 7111 7112 7113

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

7114
#ifdef CONFIG_SMP
L
Li Zefan 已提交
7115
	.select_task_rq		= select_task_rq_fair,
7116
	.migrate_task_rq	= migrate_task_rq_fair,
7117

7118 7119
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
7120 7121

	.task_waking		= task_waking_fair,
7122
#endif
7123

7124
	.set_curr_task          = set_curr_task_fair,
7125
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
7126
	.task_fork		= task_fork_fair,
7127 7128

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
7129
	.switched_from		= switched_from_fair,
7130
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
7131

7132 7133
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
7134
#ifdef CONFIG_FAIR_GROUP_SCHED
7135
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
7136
#endif
7137 7138 7139
};

#ifdef CONFIG_SCHED_DEBUG
7140
void print_cfs_stats(struct seq_file *m, int cpu)
7141 7142 7143
{
	struct cfs_rq *cfs_rq;

7144
	rcu_read_lock();
7145
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7146
		print_cfs_rq(m, cpu, cfs_rq);
7147
	rcu_read_unlock();
7148 7149
}
#endif
7150 7151 7152 7153 7154 7155

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

7156
#ifdef CONFIG_NO_HZ_COMMON
7157
	nohz.next_balance = jiffies;
7158
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7159
	cpu_notifier(sched_ilb_notifier, 0);
7160 7161 7162 7163
#endif
#endif /* SMP */

}