fair.c 194.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29
#include <linux/mempolicy.h>
30
#include <linux/migrate.h>
31
#include <linux/task_work.h>
32 33 34 35

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
36

37
/*
38
 * Targeted preemption latency for CPU-bound tasks:
39
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48
 */
49 50
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

64
/*
65
 * Minimal preemption granularity for CPU-bound tasks:
66
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67
 */
68 69
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 71

/*
72 73
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
74
static unsigned int sched_nr_latency = 8;
75 76

/*
77
 * After fork, child runs first. If set to 0 (default) then
78
 * parent will (try to) run first.
79
 */
80
unsigned int sysctl_sched_child_runs_first __read_mostly;
81 82 83

/*
 * SCHED_OTHER wake-up granularity.
84
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 86 87 88 89
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
90
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92

93 94
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

95 96 97 98 99 100 101
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

102 103 104 105 106 107 108 109 110 111 112 113 114 115
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

181
#define WMULT_CONST	(~0U)
182 183
#define WMULT_SHIFT	32

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
200 201

/*
202 203 204 205 206 207 208 209 210 211
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212
 */
213
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214
{
215 216
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
217

218
	__update_inv_weight(lw);
219

220 221 222 223 224
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
225 226
	}

227 228
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
229

230 231 232 233
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
234

235
	return mul_u64_u32_shr(delta_exec, fact, shift);
236 237 238 239
}


const struct sched_class fair_sched_class;
240

241 242 243 244
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

245
#ifdef CONFIG_FAIR_GROUP_SCHED
246

247
/* cpu runqueue to which this cfs_rq is attached */
248 249
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
250
	return cfs_rq->rq;
251 252
}

253 254
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
255

256 257 258 259 260 261 262 263
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
287

288 289 290
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
291 292 293 294 295 296 297 298 299 300 301 302
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
304
		}
305 306

		cfs_rq->on_list = 1;
307
		/* We should have no load, but we need to update last_decay. */
308
		update_cfs_rq_blocked_load(cfs_rq, 0);
309 310 311 312 313 314 315 316 317 318 319
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

382 383 384 385 386 387
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
388

389 390 391
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
392 393 394 395
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
396 397
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
398

P
Peter Zijlstra 已提交
399
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
400
{
P
Peter Zijlstra 已提交
401
	return &task_rq(p)->cfs;
402 403
}

P
Peter Zijlstra 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

418 419 420 421 422 423 424 425
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

440 441 442 443 444
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
445 446
#endif	/* CONFIG_FAIR_GROUP_SCHED */

447
static __always_inline
448
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
449 450 451 452 453

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

454
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
455
{
456
	s64 delta = (s64)(vruntime - max_vruntime);
457
	if (delta > 0)
458
		max_vruntime = vruntime;
459

460
	return max_vruntime;
461 462
}

463
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
464 465 466 467 468 469 470 471
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

472 473 474 475 476 477
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

478 479 480 481 482 483 484 485 486 487 488 489
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
490
		if (!cfs_rq->curr)
491 492 493 494 495
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

496
	/* ensure we never gain time by being placed backwards. */
497
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
498 499 500 501
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
502 503
}

504 505 506
/*
 * Enqueue an entity into the rb-tree:
 */
507
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
524
		if (entity_before(se, entry)) {
525 526 527 528 529 530 531 532 533 534 535
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
536
	if (leftmost)
I
Ingo Molnar 已提交
537
		cfs_rq->rb_leftmost = &se->run_node;
538 539 540 541 542

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

543
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
544
{
P
Peter Zijlstra 已提交
545 546 547 548 549 550
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
551

552 553 554
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

555
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
556
{
557 558 559 560 561 562
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
563 564
}

565 566 567 568 569 570 571 572 573 574 575
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
576
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
577
{
578
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
579

580 581
	if (!last)
		return NULL;
582 583

	return rb_entry(last, struct sched_entity, run_node);
584 585
}

586 587 588 589
/**************************************************************
 * Scheduling class statistics methods:
 */

590
int sched_proc_update_handler(struct ctl_table *table, int write,
591
		void __user *buffer, size_t *lenp,
592 593
		loff_t *ppos)
{
594
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
595
	int factor = get_update_sysctl_factor();
596 597 598 599 600 601 602

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

603 604 605 606 607 608 609
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

610 611 612
	return 0;
}
#endif
613

614
/*
615
 * delta /= w
616
 */
617
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
618
{
619
	if (unlikely(se->load.weight != NICE_0_LOAD))
620
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
621 622 623 624

	return delta;
}

625 626 627
/*
 * The idea is to set a period in which each task runs once.
 *
628
 * When there are too many tasks (sched_nr_latency) we have to stretch
629 630 631 632
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
633 634 635
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
636
	unsigned long nr_latency = sched_nr_latency;
637 638

	if (unlikely(nr_running > nr_latency)) {
639
		period = sysctl_sched_min_granularity;
640 641 642 643 644 645
		period *= nr_running;
	}

	return period;
}

646 647 648 649
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
650
 * s = p*P[w/rw]
651
 */
P
Peter Zijlstra 已提交
652
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
653
{
M
Mike Galbraith 已提交
654
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
655

M
Mike Galbraith 已提交
656
	for_each_sched_entity(se) {
L
Lin Ming 已提交
657
		struct load_weight *load;
658
		struct load_weight lw;
L
Lin Ming 已提交
659 660 661

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
662

M
Mike Galbraith 已提交
663
		if (unlikely(!se->on_rq)) {
664
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
665 666 667 668

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
669
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
670 671
	}
	return slice;
672 673
}

674
/*
A
Andrei Epure 已提交
675
 * We calculate the vruntime slice of a to-be-inserted task.
676
 *
677
 * vs = s/w
678
 */
679
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
680
{
681
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
682 683
}

684
#ifdef CONFIG_SMP
685 686
static unsigned long task_h_load(struct task_struct *p);

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

706
/*
707
 * Update the current task's runtime statistics.
708
 */
709
static void update_curr(struct cfs_rq *cfs_rq)
710
{
711
	struct sched_entity *curr = cfs_rq->curr;
712
	u64 now = rq_clock_task(rq_of(cfs_rq));
713
	u64 delta_exec;
714 715 716 717

	if (unlikely(!curr))
		return;

718 719
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
720
		return;
721

I
Ingo Molnar 已提交
722
	curr->exec_start = now;
723

724 725 726 727 728 729 730 731 732
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

733 734 735
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

736
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
737
		cpuacct_charge(curtask, delta_exec);
738
		account_group_exec_runtime(curtask, delta_exec);
739
	}
740 741

	account_cfs_rq_runtime(cfs_rq, delta_exec);
742 743 744
}

static inline void
745
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
746
{
747
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
748 749 750 751 752
}

/*
 * Task is being enqueued - update stats:
 */
753
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 755 756 757 758
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
759
	if (se != cfs_rq->curr)
760
		update_stats_wait_start(cfs_rq, se);
761 762 763
}

static void
764
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
765
{
766
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
767
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
768 769
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
770
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
771 772 773
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
774
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
775 776
	}
#endif
777
	schedstat_set(se->statistics.wait_start, 0);
778 779 780
}

static inline void
781
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
782 783 784 785 786
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
787
	if (se != cfs_rq->curr)
788
		update_stats_wait_end(cfs_rq, se);
789 790 791 792 793 794
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
795
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 797 798 799
{
	/*
	 * We are starting a new run period:
	 */
800
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
801 802 803 804 805 806
}

/**************************************************
 * Scheduling class queueing methods:
 */

807 808
#ifdef CONFIG_NUMA_BALANCING
/*
809 810 811
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
812
 */
813 814
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
815 816 817

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
818

819 820 821
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
	unsigned int scan, floor;
	unsigned int windows = 1;

	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

867 868 869 870 871 872 873 874 875 876 877 878
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

879 880 881 882 883
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
884
	pid_t gid;
885 886 887
	struct list_head task_list;

	struct rcu_head rcu;
888
	nodemask_t active_nodes;
889
	unsigned long total_faults;
890 891 892 893 894
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
895
	unsigned long *faults_cpu;
896
	unsigned long faults[0];
897 898
};

899 900 901 902 903 904 905 906 907
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

908 909 910 911 912
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

913 914
static inline int task_faults_idx(int nid, int priv)
{
915
	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
916 917 918 919
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
920
	if (!p->numa_faults_memory)
921 922
		return 0;

923 924
	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
		p->numa_faults_memory[task_faults_idx(nid, 1)];
925 926
}

927 928 929 930 931
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

932 933
	return p->numa_group->faults[task_faults_idx(nid, 0)] +
		p->numa_group->faults[task_faults_idx(nid, 1)];
934 935
}

936 937 938 939 940 941
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
	return group->faults_cpu[task_faults_idx(nid, 0)] +
		group->faults_cpu[task_faults_idx(nid, 1)];
}

942 943 944 945 946 947 948 949 950 951
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
static inline unsigned long task_weight(struct task_struct *p, int nid)
{
	unsigned long total_faults;

952
	if (!p->numa_faults_memory)
953 954 955 956 957 958 959 960 961 962 963 964
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

	return 1000 * task_faults(p, nid) / total_faults;
}

static inline unsigned long group_weight(struct task_struct *p, int nid)
{
965
	if (!p->numa_group || !p->numa_group->total_faults)
966 967
		return 0;

968
	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
969 970
}

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Do not migrate if the destination is not a node that
	 * is actively used by this numa group.
	 */
	if (!node_isset(dst_nid, ng->active_nodes))
		return false;

	/*
	 * Source is a node that is not actively used by this
	 * numa group, while the destination is. Migrate.
	 */
	if (!node_isset(src_nid, ng->active_nodes))
		return true;

	/*
	 * Both source and destination are nodes in active
	 * use by this numa group. Maximize memory bandwidth
	 * by migrating from more heavily used groups, to less
	 * heavily used ones, spreading the load around.
	 * Use a 1/4 hysteresis to avoid spurious page movement.
	 */
	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}

1034
static unsigned long weighted_cpuload(const int cpu);
1035 1036 1037 1038 1039
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long power_of(int cpu);
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1040
/* Cached statistics for all CPUs within a node */
1041
struct numa_stats {
1042
	unsigned long nr_running;
1043
	unsigned long load;
1044 1045 1046 1047 1048 1049 1050

	/* Total compute capacity of CPUs on a node */
	unsigned long power;

	/* Approximate capacity in terms of runnable tasks on a node */
	unsigned long capacity;
	int has_capacity;
1051
};
1052

1053 1054 1055 1056 1057
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1058
	int cpu, cpus = 0;
1059 1060 1061 1062 1063 1064 1065 1066

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
		ns->power += power_of(cpu);
1067 1068

		cpus++;
1069 1070
	}

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
	 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
	 * and bail there.
	 */
	if (!cpus)
		return;

1082 1083 1084 1085 1086
	ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
	ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
	ns->has_capacity = (ns->nr_running < ns->capacity);
}

1087 1088
struct task_numa_env {
	struct task_struct *p;
1089

1090 1091
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1092

1093
	struct numa_stats src_stats, dst_stats;
1094

1095
	int imbalance_pct;
1096 1097 1098

	struct task_struct *best_task;
	long best_imp;
1099 1100 1101
	int best_cpu;
};

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1121 1122
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1123 1124 1125 1126 1127 1128
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
	long dst_load, src_load;
	long load;
1129
	long imp = (groupimp > 0) ? groupimp : taskimp;
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147

	rcu_read_lock();
	cur = ACCESS_ONCE(dst_rq->curr);
	if (cur->pid == 0) /* idle */
		cur = NULL;

	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1148 1149
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1150
		 * in any group then look only at task weights.
1151
		 */
1152
		if (cur->numa_group == env->p->numa_group) {
1153 1154
			imp = taskimp + task_weight(cur, env->src_nid) -
			      task_weight(cur, env->dst_nid);
1155 1156 1157 1158 1159 1160
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1161
		} else {
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (env->p->numa_group)
				imp = groupimp;
			else
				imp = taskimp;

			if (cur->numa_group)
				imp += group_weight(cur, env->src_nid) -
				       group_weight(cur, env->dst_nid);
			else
				imp += task_weight(cur, env->src_nid) -
				       task_weight(cur, env->dst_nid);
1178
		}
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	}

	if (imp < env->best_imp)
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
		if (env->src_stats.has_capacity &&
		    !env->dst_stats.has_capacity)
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
	if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
	dst_load = env->dst_stats.load;
	src_load = env->src_stats.load;

	/* XXX missing power terms */
	load = task_h_load(env->p);
	dst_load += load;
	src_load -= load;

	if (cur) {
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
	}

	/* make src_load the smaller */
	if (dst_load < src_load)
		swap(dst_load, src_load);

	if (src_load * env->imbalance_pct < dst_load * 100)
		goto unlock;

assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1228 1229
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1230 1231 1232 1233 1234 1235 1236 1237 1238
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1239
		task_numa_compare(env, taskimp, groupimp);
1240 1241 1242
	}
}

1243 1244 1245 1246
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1247

1248
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1249
		.src_nid = task_node(p),
1250 1251 1252 1253 1254 1255

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1256 1257
	};
	struct sched_domain *sd;
1258
	unsigned long taskweight, groupweight;
1259
	int nid, ret;
1260
	long taskimp, groupimp;
1261

1262
	/*
1263 1264 1265 1266 1267 1268
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1269 1270
	 */
	rcu_read_lock();
1271
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1272 1273
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1274 1275
	rcu_read_unlock();

1276 1277 1278 1279 1280 1281 1282
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1283
		p->numa_preferred_nid = task_node(p);
1284 1285 1286
		return -EINVAL;
	}

1287 1288
	taskweight = task_weight(p, env.src_nid);
	groupweight = group_weight(p, env.src_nid);
1289
	update_numa_stats(&env.src_stats, env.src_nid);
1290
	env.dst_nid = p->numa_preferred_nid;
1291 1292
	taskimp = task_weight(p, env.dst_nid) - taskweight;
	groupimp = group_weight(p, env.dst_nid) - groupweight;
1293
	update_numa_stats(&env.dst_stats, env.dst_nid);
1294

1295 1296
	/* If the preferred nid has capacity, try to use it. */
	if (env.dst_stats.has_capacity)
1297
		task_numa_find_cpu(&env, taskimp, groupimp);
1298 1299 1300

	/* No space available on the preferred nid. Look elsewhere. */
	if (env.best_cpu == -1) {
1301 1302 1303
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1304

1305
			/* Only consider nodes where both task and groups benefit */
1306 1307 1308
			taskimp = task_weight(p, nid) - taskweight;
			groupimp = group_weight(p, nid) - groupweight;
			if (taskimp < 0 && groupimp < 0)
1309 1310
				continue;

1311 1312
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1313
			task_numa_find_cpu(&env, taskimp, groupimp);
1314 1315 1316
		}
	}

1317 1318 1319 1320
	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;

1321 1322
	sched_setnuma(p, env.dst_nid);

1323 1324 1325 1326 1327 1328
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1329
	if (env.best_task == NULL) {
1330 1331 1332
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1333 1334 1335 1336
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1337 1338
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1339 1340
	put_task_struct(env.best_task);
	return ret;
1341 1342
}

1343 1344 1345
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1346
	/* This task has no NUMA fault statistics yet */
1347
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1348 1349
		return;

1350 1351 1352 1353
	/* Periodically retry migrating the task to the preferred node */
	p->numa_migrate_retry = jiffies + HZ;

	/* Success if task is already running on preferred CPU */
1354
	if (task_node(p) == p->numa_preferred_nid)
1355 1356 1357
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1358
	task_numa_migrate(p);
1359 1360
}

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
 * period will be for the next scan window. If local/remote ratio is below
 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
 * scan period will decrease
 */
#define NUMA_PERIOD_SLOTS 10
#define NUMA_PERIOD_THRESHOLD 3

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
	 * to automatic numa balancing. Scan slower
	 */
	if (local + shared == 0) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
		delta = p->se.avg.runnable_avg_sum;
		*period = p->se.avg.runnable_avg_period;
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1495 1496
static void task_numa_placement(struct task_struct *p)
{
1497 1498
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1499
	unsigned long fault_types[2] = { 0, 0 };
1500 1501
	unsigned long total_faults;
	u64 runtime, period;
1502
	spinlock_t *group_lock = NULL;
1503

1504
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1505 1506 1507
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1508
	p->numa_scan_period_max = task_scan_max(p);
1509

1510 1511 1512 1513
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1514 1515 1516 1517 1518 1519
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
		spin_lock(group_lock);
	}

1520 1521
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1522
		unsigned long faults = 0, group_faults = 0;
1523
		int priv, i;
1524

1525
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1526
			long diff, f_diff, f_weight;
1527

1528
			i = task_faults_idx(nid, priv);
1529

1530
			/* Decay existing window, copy faults since last scan */
1531
			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1532 1533
			fault_types[priv] += p->numa_faults_buffer_memory[i];
			p->numa_faults_buffer_memory[i] = 0;
1534

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
				   (total_faults + 1);
1545
			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1546 1547
			p->numa_faults_buffer_cpu[i] = 0;

1548 1549
			p->numa_faults_memory[i] += diff;
			p->numa_faults_cpu[i] += f_diff;
1550
			faults += p->numa_faults_memory[i];
1551
			p->total_numa_faults += diff;
1552 1553
			if (p->numa_group) {
				/* safe because we can only change our own group */
1554
				p->numa_group->faults[i] += diff;
1555
				p->numa_group->faults_cpu[i] += f_diff;
1556 1557
				p->numa_group->total_faults += diff;
				group_faults += p->numa_group->faults[i];
1558
			}
1559 1560
		}

1561 1562 1563 1564
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1565 1566 1567 1568 1569 1570 1571

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1572 1573
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1574
	if (p->numa_group) {
1575
		update_numa_active_node_mask(p->numa_group);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
		/*
		 * If the preferred task and group nids are different,
		 * iterate over the nodes again to find the best place.
		 */
		if (max_nid != max_group_nid) {
			unsigned long weight, max_weight = 0;

			for_each_online_node(nid) {
				weight = task_weight(p, nid) + group_weight(p, nid);
				if (weight > max_weight) {
					max_weight = weight;
					max_nid = nid;
				}
1589 1590
			}
		}
1591 1592

		spin_unlock(group_lock);
1593 1594
	}

1595
	/* Preferred node as the node with the most faults */
1596
	if (max_faults && max_nid != p->numa_preferred_nid) {
1597
		/* Update the preferred nid and migrate task if possible */
1598
		sched_setnuma(p, max_nid);
1599
		numa_migrate_preferred(p);
1600
	}
1601 1602
}

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1614 1615
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1616 1617 1618 1619 1620 1621 1622 1623 1624
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1625
				    4*nr_node_ids*sizeof(unsigned long);
1626 1627 1628 1629 1630 1631 1632 1633

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
		INIT_LIST_HEAD(&grp->task_list);
1634
		grp->gid = p->pid;
1635
		/* Second half of the array tracks nids where faults happen */
1636 1637
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
1638

1639 1640
		node_set(task_node(current), grp->active_nodes);

1641
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1642
			grp->faults[i] = p->numa_faults_memory[i];
1643

1644
		grp->total_faults = p->total_numa_faults;
1645

1646 1647 1648 1649 1650 1651 1652 1653 1654
		list_add(&p->numa_entry, &grp->task_list);
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
1655
		goto no_join;
1656 1657 1658

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1659
		goto no_join;
1660 1661 1662

	my_grp = p->numa_group;
	if (grp == my_grp)
1663
		goto no_join;
1664 1665 1666 1667 1668 1669

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1670
		goto no_join;
1671 1672 1673 1674 1675

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1676
		goto no_join;
1677

1678 1679 1680 1681 1682 1683 1684
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
1685

1686 1687 1688
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

1689
	if (join && !get_numa_group(grp))
1690
		goto no_join;
1691 1692 1693 1694 1695 1696

	rcu_read_unlock();

	if (!join)
		return;

1697 1698
	double_lock(&my_grp->lock, &grp->lock);

1699
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1700 1701
		my_grp->faults[i] -= p->numa_faults_memory[i];
		grp->faults[i] += p->numa_faults_memory[i];
1702
	}
1703 1704
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

	list_move(&p->numa_entry, &grp->task_list);
	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
	spin_unlock(&grp->lock);

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
1716 1717 1718 1719 1720
	return;

no_join:
	rcu_read_unlock();
	return;
1721 1722 1723 1724 1725 1726
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
	int i;
1727
	void *numa_faults = p->numa_faults_memory;
1728 1729

	if (grp) {
1730
		spin_lock(&grp->lock);
1731
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1732
			grp->faults[i] -= p->numa_faults_memory[i];
1733
		grp->total_faults -= p->total_numa_faults;
1734

1735 1736 1737 1738 1739 1740 1741
		list_del(&p->numa_entry);
		grp->nr_tasks--;
		spin_unlock(&grp->lock);
		rcu_assign_pointer(p->numa_group, NULL);
		put_numa_group(grp);
	}

1742 1743
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1744 1745
	p->numa_faults_cpu= NULL;
	p->numa_faults_buffer_cpu = NULL;
1746
	kfree(numa_faults);
1747 1748
}

1749 1750 1751
/*
 * Got a PROT_NONE fault for a page on @node.
 */
1752
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1753 1754
{
	struct task_struct *p = current;
1755
	bool migrated = flags & TNF_MIGRATED;
1756
	int cpu_node = task_node(current);
1757
	int priv;
1758

1759
	if (!numabalancing_enabled)
1760 1761
		return;

1762 1763 1764 1765
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

1766 1767 1768 1769
	/* Do not worry about placement if exiting */
	if (p->state == TASK_DEAD)
		return;

1770
	/* Allocate buffer to track faults on a per-node basis */
1771
	if (unlikely(!p->numa_faults_memory)) {
1772 1773
		int size = sizeof(*p->numa_faults_memory) *
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1774

1775
		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1776
		if (!p->numa_faults_memory)
1777
			return;
1778

1779
		BUG_ON(p->numa_faults_buffer_memory);
1780 1781 1782 1783 1784 1785
		/*
		 * The averaged statistics, shared & private, memory & cpu,
		 * occupy the first half of the array. The second half of the
		 * array is for current counters, which are averaged into the
		 * first set by task_numa_placement.
		 */
1786 1787 1788
		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1789
		p->total_numa_faults = 0;
1790
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1791
	}
1792

1793 1794 1795 1796 1797 1798 1799 1800
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
1801
		if (!priv && !(flags & TNF_NO_GROUP))
1802
			task_numa_group(p, last_cpupid, flags, &priv);
1803 1804
	}

1805
	task_numa_placement(p);
1806

1807 1808 1809 1810 1811
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
1812 1813
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
1814 1815 1816
	if (migrated)
		p->numa_pages_migrated += pages;

1817 1818
	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1819
	p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1820 1821
}

1822 1823 1824 1825 1826 1827
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

1828 1829 1830 1831 1832 1833 1834 1835 1836
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
1837
	struct vm_area_struct *vma;
1838
	unsigned long start, end;
1839
	unsigned long nr_pte_updates = 0;
1840
	long pages;
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

1856
	if (!mm->numa_next_scan) {
1857 1858
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1859 1860
	}

1861 1862 1863 1864 1865 1866 1867
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

1868 1869 1870 1871
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
1872

1873
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1874 1875 1876
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

1877 1878 1879 1880 1881 1882
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

1883 1884 1885 1886 1887
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
1888

1889
	down_read(&mm->mmap_sem);
1890
	vma = find_vma(mm, start);
1891 1892
	if (!vma) {
		reset_ptenuma_scan(p);
1893
		start = 0;
1894 1895
		vma = mm->mmap;
	}
1896
	for (; vma; vma = vma->vm_next) {
1897
		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1898 1899
			continue;

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
1910 1911 1912 1913 1914 1915
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
1916

1917 1918 1919 1920
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
1921 1922 1923 1924 1925 1926 1927 1928 1929
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
1930

1931 1932 1933 1934
			start = end;
			if (pages <= 0)
				goto out;
		} while (end != vma->vm_end);
1935
	}
1936

1937
out:
1938
	/*
P
Peter Zijlstra 已提交
1939 1940 1941 1942
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
1943 1944
	 */
	if (vma)
1945
		mm->numa_scan_offset = start;
1946 1947 1948
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
1975
		if (!curr->node_stamp)
1976
			curr->numa_scan_period = task_scan_min(curr);
1977
		curr->node_stamp += period;
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
1989 1990 1991 1992 1993 1994 1995 1996

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
1997 1998
#endif /* CONFIG_NUMA_BALANCING */

1999 2000 2001 2002
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2003
	if (!parent_entity(se))
2004
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2005
#ifdef CONFIG_SMP
2006 2007 2008 2009 2010 2011
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2012
#endif
2013 2014 2015 2016 2017 2018 2019
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2020
	if (!parent_entity(se))
2021
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2022 2023
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2024
		list_del_init(&se->group_node);
2025
	}
2026 2027 2028
	cfs_rq->nr_running--;
}

2029 2030
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2031 2032 2033 2034 2035 2036 2037 2038 2039
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
2040
	tg_weight = atomic_long_read(&tg->load_avg);
2041
	tg_weight -= cfs_rq->tg_load_contrib;
2042 2043 2044 2045 2046
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

2047
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2048
{
2049
	long tg_weight, load, shares;
2050

2051
	tg_weight = calc_tg_weight(tg, cfs_rq);
2052
	load = cfs_rq->load.weight;
2053 2054

	shares = (tg->shares * load);
2055 2056
	if (tg_weight)
		shares /= tg_weight;
2057 2058 2059 2060 2061 2062 2063 2064 2065

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2066
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2067 2068 2069 2070
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2071 2072 2073
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2074 2075 2076 2077
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2078
		account_entity_dequeue(cfs_rq, se);
2079
	}
P
Peter Zijlstra 已提交
2080 2081 2082 2083 2084 2085 2086

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2087 2088
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2089
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2090 2091 2092
{
	struct task_group *tg;
	struct sched_entity *se;
2093
	long shares;
P
Peter Zijlstra 已提交
2094 2095 2096

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2097
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2098
		return;
2099 2100 2101 2102
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2103
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2104 2105 2106 2107

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2108
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2109 2110 2111 2112
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2113
#ifdef CONFIG_SMP
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2142 2143 2144 2145 2146 2147
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
	 * With a look-up table which covers k^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2168 2169
	}

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
2235 2236
	u64 delta, periods;
	u32 runnable_contrib;
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

2300
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2301
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2302 2303 2304 2305 2306 2307
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
2308
		return 0;
2309 2310 2311

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
2312 2313

	return decays;
2314 2315
}

2316 2317 2318 2319 2320
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
2321
	long tg_contrib;
2322 2323 2324 2325

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

2326 2327
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
2328 2329 2330
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
2331

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
2343
	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2344 2345 2346 2347 2348 2349 2350 2351 2352
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

2353 2354 2355 2356
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
2357 2358
	int runnable_avg;

2359 2360 2361
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
2362 2363
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
2393
}
2394 2395 2396
#else
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
2397 2398
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
2399
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2400 2401
#endif

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

2412 2413 2414 2415 2416
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

2417 2418 2419
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
2420
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2421 2422
		__update_group_entity_contrib(se);
	}
2423 2424 2425 2426

	return se->avg.load_avg_contrib - old_contrib;
}

2427 2428 2429 2430 2431 2432 2433 2434 2435
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

2436 2437
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

2438
/* Update a sched_entity's runnable average */
2439 2440
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
2441
{
2442 2443
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
2444
	u64 now;
2445

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2456 2457 2458
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
2459 2460 2461 2462

	if (!update_cfs_rq)
		return;

2463 2464
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
2465 2466 2467 2468 2469 2470 2471 2472
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
2473
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2474
{
2475
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2476 2477 2478
	u64 decays;

	decays = now - cfs_rq->last_decay;
2479
	if (!decays && !force_update)
2480 2481
		return;

2482 2483 2484
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2485 2486
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
2487

2488 2489 2490 2491 2492 2493
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
2494 2495

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2496
}
2497 2498 2499

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
2500
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2501
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2502
}
2503 2504 2505

/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2506 2507
						  struct sched_entity *se,
						  int wakeup)
2508
{
2509 2510 2511 2512
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
2513 2514 2515 2516
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
2517 2518
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
2519
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
2535 2536
		wakeup = 0;
	} else {
2537
		__synchronize_entity_decay(se);
2538 2539
	}

2540 2541
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
2542
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2543 2544
		update_entity_load_avg(se, 0);
	}
2545

2546
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2547 2548
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2549 2550
}

2551 2552 2553 2554 2555
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
2556
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2557 2558
						  struct sched_entity *se,
						  int sleep)
2559
{
2560
	update_entity_load_avg(se, 1);
2561 2562
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2563

2564
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2565 2566 2567 2568
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2569
}
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

2591
#else
2592 2593
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
2594
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2595
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2596 2597
					   struct sched_entity *se,
					   int wakeup) {}
2598
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2599 2600
					   struct sched_entity *se,
					   int sleep) {}
2601 2602
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
2603 2604
#endif

2605
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2606 2607
{
#ifdef CONFIG_SCHEDSTATS
2608 2609 2610 2611 2612
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2613
	if (se->statistics.sleep_start) {
2614
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2615 2616 2617 2618

		if ((s64)delta < 0)
			delta = 0;

2619 2620
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2621

2622
		se->statistics.sleep_start = 0;
2623
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2624

2625
		if (tsk) {
2626
			account_scheduler_latency(tsk, delta >> 10, 1);
2627 2628
			trace_sched_stat_sleep(tsk, delta);
		}
2629
	}
2630
	if (se->statistics.block_start) {
2631
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2632 2633 2634 2635

		if ((s64)delta < 0)
			delta = 0;

2636 2637
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2638

2639
		se->statistics.block_start = 0;
2640
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2641

2642
		if (tsk) {
2643
			if (tsk->in_iowait) {
2644 2645
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2646
				trace_sched_stat_iowait(tsk, delta);
2647 2648
			}

2649 2650
			trace_sched_stat_blocked(tsk, delta);

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2662
		}
2663 2664 2665 2666
	}
#endif
}

P
Peter Zijlstra 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2680 2681 2682
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2683
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2684

2685 2686 2687 2688 2689 2690
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2691
	if (initial && sched_feat(START_DEBIT))
2692
		vruntime += sched_vslice(cfs_rq, se);
2693

2694
	/* sleeps up to a single latency don't count. */
2695
	if (!initial) {
2696
		unsigned long thresh = sysctl_sched_latency;
2697

2698 2699 2700 2701 2702 2703
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2704

2705
		vruntime -= thresh;
2706 2707
	}

2708
	/* ensure we never gain time by being placed backwards. */
2709
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2710 2711
}

2712 2713
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2714
static void
2715
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2716
{
2717 2718
	/*
	 * Update the normalized vruntime before updating min_vruntime
2719
	 * through calling update_curr().
2720
	 */
2721
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2722 2723
		se->vruntime += cfs_rq->min_vruntime;

2724
	/*
2725
	 * Update run-time statistics of the 'current'.
2726
	 */
2727
	update_curr(cfs_rq);
2728
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2729 2730
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
2731

2732
	if (flags & ENQUEUE_WAKEUP) {
2733
		place_entity(cfs_rq, se, 0);
2734
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
2735
	}
2736

2737
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
2738
	check_spread(cfs_rq, se);
2739 2740
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
2741
	se->on_rq = 1;
2742

2743
	if (cfs_rq->nr_running == 1) {
2744
		list_add_leaf_cfs_rq(cfs_rq);
2745 2746
		check_enqueue_throttle(cfs_rq);
	}
2747 2748
}

2749
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
2750
{
2751 2752 2753 2754 2755 2756 2757 2758
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}
}
P
Peter Zijlstra 已提交
2759

2760 2761 2762 2763 2764 2765 2766 2767 2768
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next == se)
			cfs_rq->next = NULL;
		else
			break;
	}
P
Peter Zijlstra 已提交
2769 2770
}

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip == se)
			cfs_rq->skip = NULL;
		else
			break;
	}
}

P
Peter Zijlstra 已提交
2782 2783
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2784 2785 2786 2787 2788
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
2789 2790 2791

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
2792 2793
}

2794
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2795

2796
static void
2797
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2798
{
2799 2800 2801 2802
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
2803
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2804

2805
	update_stats_dequeue(cfs_rq, se);
2806
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
2807
#ifdef CONFIG_SCHEDSTATS
2808 2809 2810 2811
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
2812
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2813
			if (tsk->state & TASK_UNINTERRUPTIBLE)
2814
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2815
		}
2816
#endif
P
Peter Zijlstra 已提交
2817 2818
	}

P
Peter Zijlstra 已提交
2819
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2820

2821
	if (se != cfs_rq->curr)
2822
		__dequeue_entity(cfs_rq, se);
2823
	se->on_rq = 0;
2824
	account_entity_dequeue(cfs_rq, se);
2825 2826 2827 2828 2829 2830

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
2831
	if (!(flags & DEQUEUE_SLEEP))
2832
		se->vruntime -= cfs_rq->min_vruntime;
2833

2834 2835 2836
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

2837
	update_min_vruntime(cfs_rq);
2838
	update_cfs_shares(cfs_rq);
2839 2840 2841 2842 2843
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
2844
static void
I
Ingo Molnar 已提交
2845
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2846
{
2847
	unsigned long ideal_runtime, delta_exec;
2848 2849
	struct sched_entity *se;
	s64 delta;
2850

P
Peter Zijlstra 已提交
2851
	ideal_runtime = sched_slice(cfs_rq, curr);
2852
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2853
	if (delta_exec > ideal_runtime) {
2854
		resched_task(rq_of(cfs_rq)->curr);
2855 2856 2857 2858 2859
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

2871 2872
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
2873

2874 2875
	if (delta < 0)
		return;
2876

2877 2878
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
2879 2880
}

2881
static void
2882
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2883
{
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

2895
	update_stats_curr_start(cfs_rq, se);
2896
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
2897 2898 2899 2900 2901 2902
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
2903
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2904
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
2905 2906 2907
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
2908
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2909 2910
}

2911 2912 2913
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

2914 2915 2916 2917 2918 2919 2920
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
2921
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2922
{
2923
	struct sched_entity *se = __pick_first_entity(cfs_rq);
2924
	struct sched_entity *left = se;
2925

2926 2927 2928 2929 2930 2931 2932 2933 2934
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second = __pick_next_entity(se);
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
2935

2936 2937 2938 2939 2940 2941
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

2942 2943 2944 2945 2946 2947
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

2948
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2949 2950

	return se;
2951 2952
}

2953 2954
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

2955
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2956 2957 2958 2959 2960 2961
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
2962
		update_curr(cfs_rq);
2963

2964 2965 2966
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
2967
	check_spread(cfs_rq, prev);
2968
	if (prev->on_rq) {
2969
		update_stats_wait_start(cfs_rq, prev);
2970 2971
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
2972
		/* in !on_rq case, update occurred at dequeue */
2973
		update_entity_load_avg(prev, 1);
2974
	}
2975
	cfs_rq->curr = NULL;
2976 2977
}

P
Peter Zijlstra 已提交
2978 2979
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2980 2981
{
	/*
2982
	 * Update run-time statistics of the 'current'.
2983
	 */
2984
	update_curr(cfs_rq);
2985

2986 2987 2988
	/*
	 * Ensure that runnable average is periodically updated.
	 */
2989
	update_entity_load_avg(curr, 1);
2990
	update_cfs_rq_blocked_load(cfs_rq, 1);
2991
	update_cfs_shares(cfs_rq);
2992

P
Peter Zijlstra 已提交
2993 2994 2995 2996 2997
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
2998 2999 3000 3001
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
3002 3003 3004 3005 3006 3007 3008 3009
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3010
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3011
		check_preempt_tick(cfs_rq, curr);
3012 3013
}

3014 3015 3016 3017 3018 3019

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3020 3021

#ifdef HAVE_JUMP_LABEL
3022
static struct static_key __cfs_bandwidth_used;
3023 3024 3025

static inline bool cfs_bandwidth_used(void)
{
3026
	return static_key_false(&__cfs_bandwidth_used);
3027 3028
}

3029
void cfs_bandwidth_usage_inc(void)
3030
{
3031 3032 3033 3034 3035 3036
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3037 3038 3039 3040 3041 3042 3043
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3044 3045
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3046 3047
#endif /* HAVE_JUMP_LABEL */

3048 3049 3050 3051 3052 3053 3054 3055
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3056 3057 3058 3059 3060 3061

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3062 3063 3064 3065 3066 3067 3068
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3069
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3081 3082 3083 3084 3085
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3086 3087 3088 3089 3090 3091
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3092
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3093 3094
}

3095 3096
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3097 3098 3099
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3100
	u64 amount = 0, min_amount, expires;
3101 3102 3103 3104 3105 3106 3107

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3108
	else {
P
Paul Turner 已提交
3109 3110 3111 3112 3113 3114 3115 3116
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
3117
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
3118
		}
3119 3120 3121 3122 3123 3124

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3125
	}
P
Paul Turner 已提交
3126
	expires = cfs_b->runtime_expires;
3127 3128 3129
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3130 3131 3132 3133 3134 3135 3136
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3137 3138

	return cfs_rq->runtime_remaining > 0;
3139 3140
}

P
Paul Turner 已提交
3141 3142 3143 3144 3145
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3146
{
P
Paul Turner 已提交
3147 3148 3149
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3150
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3151 3152
		return;

P
Paul Turner 已提交
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3174
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3175 3176
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3177
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3178 3179 3180
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3181 3182
		return;

3183 3184 3185 3186 3187 3188
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
3189 3190
}

3191
static __always_inline
3192
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3193
{
3194
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3195 3196 3197 3198 3199
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3200 3201
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3202
	return cfs_bandwidth_used() && cfs_rq->throttled;
3203 3204
}

3205 3206 3207
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3208
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3237
		/* adjust cfs_rq_clock_task() */
3238
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3239
					     cfs_rq->throttled_clock_task;
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3251 3252
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3253
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3254 3255 3256 3257 3258
	cfs_rq->throttle_count++;

	return 0;
}

3259
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3260 3261 3262 3263 3264 3265 3266 3267
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3268
	/* freeze hierarchy runnable averages while throttled */
3269 3270 3271
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
3292
	cfs_rq->throttled_clock = rq_clock(rq);
3293 3294
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3295 3296
	if (!cfs_b->timer_active)
		__start_cfs_bandwidth(cfs_b);
3297 3298 3299
	raw_spin_unlock(&cfs_b->lock);
}

3300
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3301 3302 3303 3304 3305 3306 3307
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3308
	se = cfs_rq->tg->se[cpu_of(rq)];
3309 3310

	cfs_rq->throttled = 0;
3311 3312 3313

	update_rq_clock(rq);

3314
	raw_spin_lock(&cfs_b->lock);
3315
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3316 3317 3318
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3319 3320 3321
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

3385 3386 3387 3388 3389 3390 3391 3392
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3393 3394
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
3395 3396 3397 3398 3399 3400

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

3401 3402 3403
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
3404
	cfs_b->nr_periods += overrun;
3405

P
Paul Turner 已提交
3406 3407 3408 3409
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

3410 3411 3412 3413 3414 3415 3416
	/*
	 * if we have relooped after returning idle once, we need to update our
	 * status as actually running, so that other cpus doing
	 * __start_cfs_bandwidth will stop trying to cancel us.
	 */
	cfs_b->timer_active = 1;

P
Paul Turner 已提交
3417 3418
	__refill_cfs_bandwidth_runtime(cfs_b);

3419 3420 3421 3422 3423 3424
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

3425 3426 3427
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
3452

3453 3454 3455 3456 3457 3458 3459 3460 3461
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3462 3463 3464 3465 3466 3467 3468
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
3469

3470 3471 3472 3473 3474 3475 3476
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3477 3478 3479 3480 3481 3482 3483
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3540 3541 3542
	if (!cfs_bandwidth_used())
		return;

3543
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3559 3560 3561
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3562
		return;
3563
	}
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582

	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

3583 3584 3585 3586 3587 3588 3589
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3590 3591 3592
	if (!cfs_bandwidth_used())
		return;

3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3610 3611 3612
	if (!cfs_bandwidth_used())
		return;

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return;

	throttle_cfs_rq(cfs_rq);
}
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
3685 3686 3687
	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3688
		raw_spin_unlock(&cfs_b->lock);
3689
		cpu_relax();
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

3706
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
3727 3728
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
3729
	return rq_clock_task(rq_of(cfs_rq));
3730 3731
}

3732
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3733 3734
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3735
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3736 3737 3738 3739 3740

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
3752 3753 3754 3755 3756

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3757 3758
#endif

3759 3760 3761 3762 3763
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3764
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3765 3766 3767

#endif /* CONFIG_CFS_BANDWIDTH */

3768 3769 3770 3771
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
3772 3773 3774 3775 3776 3777 3778 3779
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

3780
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
3795
		if (rq->curr != p)
3796
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
3797

3798
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
3799 3800
	}
}
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

3811
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3812 3813 3814 3815 3816
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
3817
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
3818 3819 3820 3821
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
3822 3823 3824 3825

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
3826 3827
#endif

3828 3829 3830 3831 3832
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
3833
static void
3834
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3835 3836
{
	struct cfs_rq *cfs_rq;
3837
	struct sched_entity *se = &p->se;
3838 3839

	for_each_sched_entity(se) {
3840
		if (se->on_rq)
3841 3842
			break;
		cfs_rq = cfs_rq_of(se);
3843
		enqueue_entity(cfs_rq, se, flags);
3844 3845 3846 3847 3848 3849 3850 3851 3852

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3853
		cfs_rq->h_nr_running++;
3854

3855
		flags = ENQUEUE_WAKEUP;
3856
	}
P
Peter Zijlstra 已提交
3857

P
Peter Zijlstra 已提交
3858
	for_each_sched_entity(se) {
3859
		cfs_rq = cfs_rq_of(se);
3860
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
3861

3862 3863 3864
		if (cfs_rq_throttled(cfs_rq))
			break;

3865
		update_cfs_shares(cfs_rq);
3866
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3867 3868
	}

3869 3870
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
3871
		inc_nr_running(rq);
3872
	}
3873
	hrtick_update(rq);
3874 3875
}

3876 3877
static void set_next_buddy(struct sched_entity *se);

3878 3879 3880 3881 3882
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
3883
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3884 3885
{
	struct cfs_rq *cfs_rq;
3886
	struct sched_entity *se = &p->se;
3887
	int task_sleep = flags & DEQUEUE_SLEEP;
3888 3889 3890

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3891
		dequeue_entity(cfs_rq, se, flags);
3892 3893 3894 3895 3896 3897 3898 3899 3900

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3901
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3902

3903
		/* Don't dequeue parent if it has other entities besides us */
3904 3905 3906 3907 3908 3909 3910
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
3911 3912 3913

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
3914
			break;
3915
		}
3916
		flags |= DEQUEUE_SLEEP;
3917
	}
P
Peter Zijlstra 已提交
3918

P
Peter Zijlstra 已提交
3919
	for_each_sched_entity(se) {
3920
		cfs_rq = cfs_rq_of(se);
3921
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3922

3923 3924 3925
		if (cfs_rq_throttled(cfs_rq))
			break;

3926
		update_cfs_shares(cfs_rq);
3927
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3928 3929
	}

3930
	if (!se) {
3931
		dec_nr_running(rq);
3932 3933
		update_rq_runnable_avg(rq, 1);
	}
3934
	hrtick_update(rq);
3935 3936
}

3937
#ifdef CONFIG_SMP
3938 3939 3940
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
3941
	return cpu_rq(cpu)->cfs.runnable_load_avg;
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3986
	unsigned long load_avg = rq->cfs.runnable_load_avg;
3987 3988

	if (nr_running)
3989
		return load_avg / nr_running;
3990 3991 3992 3993

	return 0;
}

3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
	if (jiffies > current->wakee_flip_decay_ts + HZ) {
		current->wakee_flips = 0;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4011

4012
static void task_waking_fair(struct task_struct *p)
4013 4014 4015
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4016 4017 4018 4019
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4020

4021 4022 4023 4024 4025 4026 4027 4028
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4029

4030
	se->vruntime -= min_vruntime;
4031
	record_wakee(p);
4032 4033
}

4034
#ifdef CONFIG_FAIR_GROUP_SCHED
4035 4036 4037 4038 4039 4040
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4084
 */
P
Peter Zijlstra 已提交
4085
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4086
{
P
Peter Zijlstra 已提交
4087
	struct sched_entity *se = tg->se[cpu];
4088

4089
	if (!tg->parent)	/* the trivial, non-cgroup case */
4090 4091
		return wl;

P
Peter Zijlstra 已提交
4092
	for_each_sched_entity(se) {
4093
		long w, W;
P
Peter Zijlstra 已提交
4094

4095
		tg = se->my_q->tg;
4096

4097 4098 4099 4100
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4101

4102 4103 4104 4105
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
4106

4107 4108 4109 4110 4111
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
4112 4113
		else
			wl = tg->shares;
4114

4115 4116 4117 4118 4119
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4120 4121
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4122 4123 4124 4125

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4126
		wl -= se->load.weight;
4127 4128 4129 4130 4131 4132 4133 4134

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4135 4136
		wg = 0;
	}
4137

P
Peter Zijlstra 已提交
4138
	return wl;
4139 4140
}
#else
P
Peter Zijlstra 已提交
4141

4142
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4143
{
4144
	return wl;
4145
}
P
Peter Zijlstra 已提交
4146

4147 4148
#endif

4149 4150
static int wake_wide(struct task_struct *p)
{
4151
	int factor = this_cpu_read(sd_llc_size);
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

4171
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4172
{
4173
	s64 this_load, load;
4174
	int idx, this_cpu, prev_cpu;
4175
	unsigned long tl_per_task;
4176
	struct task_group *tg;
4177
	unsigned long weight;
4178
	int balanced;
4179

4180 4181 4182 4183 4184 4185 4186
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

4187 4188 4189 4190 4191
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4192

4193 4194 4195 4196 4197
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4198 4199 4200 4201
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

4202
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4203 4204
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4205

4206 4207
	tg = task_group(p);
	weight = p->se.load.weight;
4208

4209 4210
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4211 4212 4213
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4214 4215 4216 4217
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4218 4219
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
4233

4234
	/*
I
Ingo Molnar 已提交
4235 4236 4237
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
4238
	 */
4239 4240
	if (sync && balanced)
		return 1;
4241

4242
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4243 4244
	tl_per_task = cpu_avg_load_per_task(this_cpu);

4245 4246 4247
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4248 4249 4250 4251 4252
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
4253
		schedstat_inc(sd, ttwu_move_affine);
4254
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4255 4256 4257 4258 4259 4260

		return 1;
	}
	return 0;
}

4261 4262 4263 4264 4265
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4266
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4267
		  int this_cpu, int sd_flag)
4268
{
4269
	struct sched_group *idlest = NULL, *group = sd->groups;
4270
	unsigned long min_load = ULONG_MAX, this_load = 0;
4271
	int load_idx = sd->forkexec_idx;
4272
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4273

4274 4275 4276
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4277 4278 4279 4280
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4281

4282 4283
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4284
					tsk_cpus_allowed(p)))
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
4304
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
4330
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4331 4332 4333 4334 4335
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
4336 4337 4338
		}
	}

4339 4340
	return idlest;
}
4341

4342 4343 4344
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4345
static int select_idle_sibling(struct task_struct *p, int target)
4346
{
4347
	struct sched_domain *sd;
4348
	struct sched_group *sg;
4349
	int i = task_cpu(p);
4350

4351 4352
	if (idle_cpu(target))
		return target;
4353 4354

	/*
4355
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4356
	 */
4357 4358
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4359 4360

	/*
4361
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4362
	 */
4363
	sd = rcu_dereference(per_cpu(sd_llc, target));
4364
	for_each_lower_domain(sd) {
4365 4366 4367 4368 4369 4370 4371
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4372
				if (i == target || !idle_cpu(i))
4373 4374
					goto next;
			}
4375

4376 4377 4378 4379 4380 4381 4382 4383
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4384 4385 4386
	return target;
}

4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
4398
static int
4399
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4400
{
4401
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4402 4403
	int cpu = smp_processor_id();
	int new_cpu = cpu;
4404
	int want_affine = 0;
4405
	int sync = wake_flags & WF_SYNC;
4406

4407
	if (p->nr_cpus_allowed == 1)
4408 4409
		return prev_cpu;

4410
	if (sd_flag & SD_BALANCE_WAKE) {
4411
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4412 4413 4414
			want_affine = 1;
		new_cpu = prev_cpu;
	}
4415

4416
	rcu_read_lock();
4417
	for_each_domain(cpu, tmp) {
4418 4419 4420
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

4421
		/*
4422 4423
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4424
		 */
4425 4426 4427
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4428
			break;
4429
		}
4430

4431
		if (tmp->flags & sd_flag)
4432 4433 4434
			sd = tmp;
	}

4435
	if (affine_sd) {
4436
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4437 4438 4439 4440
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
4441
	}
4442

4443 4444
	while (sd) {
		struct sched_group *group;
4445
		int weight;
4446

4447
		if (!(sd->flags & sd_flag)) {
4448 4449 4450
			sd = sd->child;
			continue;
		}
4451

4452
		group = find_idlest_group(sd, p, cpu, sd_flag);
4453 4454 4455 4456
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4457

4458
		new_cpu = find_idlest_cpu(group, p, cpu);
4459 4460 4461 4462
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4463
		}
4464 4465 4466

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4467
		weight = sd->span_weight;
4468 4469
		sd = NULL;
		for_each_domain(cpu, tmp) {
4470
			if (weight <= tmp->span_weight)
4471
				break;
4472
			if (tmp->flags & sd_flag)
4473 4474 4475
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4476
	}
4477 4478
unlock:
	rcu_read_unlock();
4479

4480
	return new_cpu;
4481
}
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
4503 4504
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
4505
	}
4506
}
4507 4508
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
4509 4510
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4511 4512 4513 4514
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
4515 4516
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
4517 4518 4519 4520 4521 4522 4523 4524 4525
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
4526
	 */
4527
	return calc_delta_fair(gran, se);
4528 4529
}

4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
4552
	gran = wakeup_gran(curr, se);
4553 4554 4555 4556 4557 4558
	if (vdiff > gran)
		return 1;

	return 0;
}

4559 4560
static void set_last_buddy(struct sched_entity *se)
{
4561 4562 4563 4564 4565
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
4566 4567 4568 4569
}

static void set_next_buddy(struct sched_entity *se)
{
4570 4571 4572 4573 4574
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
4575 4576
}

4577 4578
static void set_skip_buddy(struct sched_entity *se)
{
4579 4580
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
4581 4582
}

4583 4584 4585
/*
 * Preempt the current task with a newly woken task if needed:
 */
4586
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4587 4588
{
	struct task_struct *curr = rq->curr;
4589
	struct sched_entity *se = &curr->se, *pse = &p->se;
4590
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4591
	int scale = cfs_rq->nr_running >= sched_nr_latency;
4592
	int next_buddy_marked = 0;
4593

I
Ingo Molnar 已提交
4594 4595 4596
	if (unlikely(se == pse))
		return;

4597
	/*
4598
	 * This is possible from callers such as move_task(), in which we
4599 4600 4601 4602 4603 4604 4605
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

4606
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
4607
		set_next_buddy(pse);
4608 4609
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
4610

4611 4612 4613
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
4614 4615 4616 4617 4618 4619
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
4620 4621 4622 4623
	 */
	if (test_tsk_need_resched(curr))
		return;

4624 4625 4626 4627 4628
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

4629
	/*
4630 4631
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
4632
	 */
4633
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4634
		return;
4635

4636
	find_matching_se(&se, &pse);
4637
	update_curr(cfs_rq_of(se));
4638
	BUG_ON(!pse);
4639 4640 4641 4642 4643 4644 4645
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
4646
		goto preempt;
4647
	}
4648

4649
	return;
4650

4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
4667 4668
}

4669
static struct task_struct *pick_next_task_fair(struct rq *rq)
4670
{
P
Peter Zijlstra 已提交
4671
	struct task_struct *p;
4672 4673 4674
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

4675
	if (!cfs_rq->nr_running)
4676 4677 4678
		return NULL;

	do {
4679
		se = pick_next_entity(cfs_rq);
4680
		set_next_entity(cfs_rq, se);
4681 4682 4683
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
4684
	p = task_of(se);
4685 4686
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
4687 4688

	return p;
4689 4690 4691 4692 4693
}

/*
 * Account for a descheduled task:
 */
4694
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4695 4696 4697 4698 4699 4700
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4701
		put_prev_entity(cfs_rq, se);
4702 4703 4704
	}
}

4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
4730 4731 4732 4733 4734 4735
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
4736 4737 4738 4739 4740
	}

	set_skip_buddy(se);
}

4741 4742 4743 4744
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

4745 4746
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

4757
#ifdef CONFIG_SMP
4758
/**************************************************
P
Peter Zijlstra 已提交
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
4875

4876 4877
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

4878 4879
enum fbq_type { regular, remote, all };

4880
#define LBF_ALL_PINNED	0x01
4881
#define LBF_NEED_BREAK	0x02
4882 4883
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
4884 4885 4886 4887 4888

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
4889
	int			src_cpu;
4890 4891 4892 4893

	int			dst_cpu;
	struct rq		*dst_rq;

4894 4895
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
4896
	enum cpu_idle_type	idle;
4897
	long			imbalance;
4898 4899 4900
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

4901
	unsigned int		flags;
4902 4903 4904 4905

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
4906 4907

	enum fbq_type		fbq_type;
4908 4909
};

4910
/*
4911
 * move_task - move a task from one runqueue to another runqueue.
4912 4913
 * Both runqueues must be locked.
 */
4914
static void move_task(struct task_struct *p, struct lb_env *env)
4915
{
4916 4917 4918 4919
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
4920 4921
}

4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
/*
 * Is this task likely cache-hot:
 */
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

4954 4955 4956 4957 4958 4959
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
	int src_nid, dst_nid;

4960
	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
4961 4962 4963 4964 4965 4966 4967
	    !(env->sd->flags & SD_NUMA)) {
		return false;
	}

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

4968
	if (src_nid == dst_nid)
4969 4970
		return false;

4971 4972 4973 4974
	/* Always encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
		return true;

4975 4976 4977
	/* If both task and group weight improve, this move is a winner. */
	if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
	    group_weight(p, dst_nid) > group_weight(p, src_nid))
4978 4979 4980 4981
		return true;

	return false;
}
4982 4983 4984 4985 4986 4987 4988 4989 4990


static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
	int src_nid, dst_nid;

	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
		return false;

4991
	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
4992 4993 4994 4995 4996
		return false;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

4997
	if (src_nid == dst_nid)
4998 4999
		return false;

5000 5001 5002 5003
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid)
		return true;

5004 5005 5006
	/* If either task or group weight get worse, don't do it. */
	if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
	    group_weight(p, dst_nid) < group_weight(p, src_nid))
5007 5008 5009 5010 5011
		return true;

	return false;
}

5012 5013 5014 5015 5016 5017
#else
static inline bool migrate_improves_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5018 5019 5020 5021 5022 5023

static inline bool migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5024 5025
#endif

5026 5027 5028 5029
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5030
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5031 5032 5033 5034
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
5035
	 * 1) throttled_lb_pair, or
5036
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5037 5038
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5039
	 */
5040 5041 5042
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5043
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5044
		int cpu;
5045

5046
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5047

5048 5049
		env->flags |= LBF_SOME_PINNED;

5050 5051 5052 5053 5054 5055 5056 5057
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5058
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5059 5060
			return 0;

5061 5062 5063
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5064
				env->flags |= LBF_DST_PINNED;
5065 5066 5067
				env->new_dst_cpu = cpu;
				break;
			}
5068
		}
5069

5070 5071
		return 0;
	}
5072 5073

	/* Record that we found atleast one task that could run on dst_cpu */
5074
	env->flags &= ~LBF_ALL_PINNED;
5075

5076
	if (task_running(env->src_rq, p)) {
5077
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5078 5079 5080 5081 5082
		return 0;
	}

	/*
	 * Aggressive migration if:
5083 5084 5085
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5086
	 */
5087
	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
5088 5089
	if (!tsk_cache_hot)
		tsk_cache_hot = migrate_degrades_locality(p, env);
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100

	if (migrate_improves_locality(p, env)) {
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
#endif
		return 1;
	}

5101
	if (!tsk_cache_hot ||
5102
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Z
Zhang Hang 已提交
5103

5104
		if (tsk_cache_hot) {
5105
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5106
			schedstat_inc(p, se.statistics.nr_forced_migrations);
5107
		}
Z
Zhang Hang 已提交
5108

5109 5110 5111
		return 1;
	}

Z
Zhang Hang 已提交
5112 5113
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5114 5115
}

5116 5117 5118 5119 5120 5121 5122
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
5123
static int move_one_task(struct lb_env *env)
5124 5125 5126
{
	struct task_struct *p, *n;

5127 5128 5129
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5130

5131 5132 5133 5134 5135 5136 5137 5138
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
5139 5140 5141 5142
	}
	return 0;
}

5143 5144
static const unsigned int sched_nr_migrate_break = 32;

5145
/*
5146
 * move_tasks tries to move up to imbalance weighted load from busiest to
5147 5148 5149 5150 5151 5152
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
5153
{
5154 5155
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5156 5157
	unsigned long load;
	int pulled = 0;
5158

5159
	if (env->imbalance <= 0)
5160
		return 0;
5161

5162 5163
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5164

5165 5166
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5167
		if (env->loop > env->loop_max)
5168
			break;
5169 5170

		/* take a breather every nr_migrate tasks */
5171
		if (env->loop > env->loop_break) {
5172
			env->loop_break += sched_nr_migrate_break;
5173
			env->flags |= LBF_NEED_BREAK;
5174
			break;
5175
		}
5176

5177
		if (!can_migrate_task(p, env))
5178 5179 5180
			goto next;

		load = task_h_load(p);
5181

5182
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5183 5184
			goto next;

5185
		if ((load / 2) > env->imbalance)
5186
			goto next;
5187

5188
		move_task(p, env);
5189
		pulled++;
5190
		env->imbalance -= load;
5191 5192

#ifdef CONFIG_PREEMPT
5193 5194 5195 5196 5197
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
5198
		if (env->idle == CPU_NEWLY_IDLE)
5199
			break;
5200 5201
#endif

5202 5203 5204 5205
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5206
		if (env->imbalance <= 0)
5207
			break;
5208 5209 5210

		continue;
next:
5211
		list_move_tail(&p->se.group_node, tasks);
5212
	}
5213

5214
	/*
5215 5216 5217
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
5218
	 */
5219
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
5220

5221
	return pulled;
5222 5223
}

P
Peter Zijlstra 已提交
5224
#ifdef CONFIG_FAIR_GROUP_SCHED
5225 5226 5227
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
5228
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5229
{
5230 5231
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5232

5233 5234 5235
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
5236

5237
	update_cfs_rq_blocked_load(cfs_rq, 1);
5238

5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
5253
		struct rq *rq = rq_of(cfs_rq);
5254 5255
		update_rq_runnable_avg(rq, rq->nr_running);
	}
5256 5257
}

5258
static void update_blocked_averages(int cpu)
5259 5260
{
	struct rq *rq = cpu_rq(cpu);
5261 5262
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5263

5264 5265
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5266 5267 5268 5269
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5270
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5271 5272 5273 5274 5275 5276
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5277
	}
5278 5279

	raw_spin_unlock_irqrestore(&rq->lock, flags);
5280 5281
}

5282
/*
5283
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5284 5285 5286
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5287
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5288
{
5289 5290
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5291
	unsigned long now = jiffies;
5292
	unsigned long load;
5293

5294
	if (cfs_rq->last_h_load_update == now)
5295 5296
		return;

5297 5298 5299 5300 5301 5302 5303
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5304

5305
	if (!se) {
5306
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5318 5319
}

5320
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5321
{
5322
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5323

5324
	update_cfs_rq_h_load(cfs_rq);
5325 5326
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
5327 5328
}
#else
5329
static inline void update_blocked_averages(int cpu)
5330 5331 5332
{
}

5333
static unsigned long task_h_load(struct task_struct *p)
5334
{
5335
	return p->se.avg.load_avg_contrib;
5336
}
P
Peter Zijlstra 已提交
5337
#endif
5338 5339 5340 5341 5342 5343 5344 5345 5346

/********** Helpers for find_busiest_group ************************/
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5347
	unsigned long load_per_task;
5348
	unsigned long group_power;
5349 5350 5351 5352
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int group_capacity;
	unsigned int idle_cpus;
	unsigned int group_weight;
5353
	int group_imb; /* Is there an imbalance in the group ? */
5354
	int group_has_capacity; /* Is there extra capacity in the group? */
5355 5356 5357 5358
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
5359 5360
};

J
Joonsoo Kim 已提交
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
	unsigned long total_pwr;	/* Total power of all groups in sd */
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5373
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5374 5375
};

5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
		.total_pwr = 0UL,
		.busiest_stat = {
			.avg_load = 0UL,
		},
	};
}

5395 5396 5397
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
5398
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5399 5400
 *
 * Return: The load index.
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

5423
static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5424
{
5425
	return SCHED_POWER_SCALE;
5426 5427 5428 5429 5430 5431 5432
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

5433
static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5434
{
5435
	unsigned long weight = sd->span_weight;
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

5448
static unsigned long scale_rt_power(int cpu)
5449 5450
{
	struct rq *rq = cpu_rq(cpu);
5451
	u64 total, available, age_stamp, avg;
5452

5453 5454 5455 5456 5457 5458 5459
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

5460
	total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5461

5462
	if (unlikely(total < avg)) {
5463 5464 5465
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
5466
		available = total - avg;
5467
	}
5468

5469 5470
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
5471

5472
	total >>= SCHED_POWER_SHIFT;
5473 5474 5475 5476 5477 5478

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
5479
	unsigned long weight = sd->span_weight;
5480
	unsigned long power = SCHED_POWER_SCALE;
5481 5482 5483 5484 5485 5486 5487 5488
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

5489
		power >>= SCHED_POWER_SHIFT;
5490 5491
	}

5492
	sdg->sgp->power_orig = power;
5493 5494 5495 5496 5497 5498

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

5499
	power >>= SCHED_POWER_SHIFT;
5500

5501
	power *= scale_rt_power(cpu);
5502
	power >>= SCHED_POWER_SHIFT;
5503 5504 5505 5506

	if (!power)
		power = 1;

5507
	cpu_rq(cpu)->cpu_power = power;
5508
	sdg->sgp->power = power;
5509 5510
}

5511
void update_group_power(struct sched_domain *sd, int cpu)
5512 5513 5514
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
5515
	unsigned long power, power_orig;
5516 5517 5518 5519 5520
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
5521 5522 5523 5524 5525 5526

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

5527
	power_orig = power = 0;
5528

P
Peter Zijlstra 已提交
5529 5530 5531 5532 5533 5534
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

5535
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5536 5537
			struct sched_group_power *sgp;
			struct rq *rq = cpu_rq(cpu);
5538

5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
			/*
			 * build_sched_domains() -> init_sched_groups_power()
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
			 * Use power_of(), which is set irrespective of domains
			 * in update_cpu_power().
			 *
			 * This avoids power/power_orig from being 0 and
			 * causing divide-by-zero issues on boot.
			 *
			 * Runtime updates will correct power_orig.
			 */
			if (unlikely(!rq->sd)) {
				power_orig += power_of(cpu);
				power += power_of(cpu);
				continue;
			}
5557

5558 5559 5560
			sgp = rq->sd->groups->sgp;
			power_orig += sgp->power_orig;
			power += sgp->power;
5561
		}
P
Peter Zijlstra 已提交
5562 5563 5564 5565 5566 5567 5568 5569
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
5570
			power_orig += group->sgp->power_orig;
P
Peter Zijlstra 已提交
5571 5572 5573 5574
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
5575

5576 5577
	sdg->sgp->power_orig = power_orig;
	sdg->sgp->power = power;
5578 5579
}

5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
5591
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
5592
	 */
P
Peter Zijlstra 已提交
5593
	if (!(sd->flags & SD_SHARE_CPUPOWER))
5594 5595 5596 5597 5598
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
5599
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5600 5601 5602 5603 5604
		return 1;

	return 0;
}

5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
5621 5622
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
5623 5624
 *
 * When this is so detected; this group becomes a candidate for busiest; see
5625
 * update_sd_pick_busiest(). And calculate_imbalance() and
5626
 * find_busiest_group() avoid some of the usual balance conditions to allow it
5627 5628 5629 5630 5631 5632 5633
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

5634
static inline int sg_imbalanced(struct sched_group *group)
5635
{
5636
	return group->sgp->imbalance;
5637 5638
}

5639 5640 5641
/*
 * Compute the group capacity.
 *
5642 5643 5644
 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
 * first dividing out the smt factor and computing the actual number of cores
 * and limit power unit capacity with that.
5645 5646 5647
 */
static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
{
5648 5649 5650 5651 5652 5653
	unsigned int capacity, smt, cpus;
	unsigned int power, power_orig;

	power = group->sgp->power;
	power_orig = group->sgp->power_orig;
	cpus = group->group_weight;
5654

5655 5656 5657
	/* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
	capacity = cpus / smt; /* cores */
5658

5659
	capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5660 5661 5662 5663 5664 5665
	if (!capacity)
		capacity = fix_small_capacity(env->sd, group);

	return capacity;
}

5666 5667
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5668
 * @env: The load balancing environment.
5669 5670 5671 5672 5673
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
 */
5674 5675
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
5676
			int local_group, struct sg_lb_stats *sgs)
5677
{
5678
	unsigned long load;
5679
	int i;
5680

5681 5682
	memset(sgs, 0, sizeof(*sgs));

5683
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5684 5685 5686
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
5687
		if (local_group)
5688
			load = target_load(i, load_idx);
5689
		else
5690 5691 5692
			load = source_load(i, load_idx);

		sgs->group_load += load;
5693
		sgs->sum_nr_running += rq->nr_running;
5694 5695 5696 5697
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
5698
		sgs->sum_weighted_load += weighted_cpuload(i);
5699 5700
		if (idle_cpu(i))
			sgs->idle_cpus++;
5701 5702 5703
	}

	/* Adjust by relative CPU power of the group */
5704 5705
	sgs->group_power = group->sgp->power;
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5706

5707
	if (sgs->sum_nr_running)
5708
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5709

5710
	sgs->group_weight = group->group_weight;
5711

5712 5713 5714
	sgs->group_imb = sg_imbalanced(group);
	sgs->group_capacity = sg_capacity(env, group);

5715 5716
	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
5717 5718
}

5719 5720
/**
 * update_sd_pick_busiest - return 1 on busiest group
5721
 * @env: The load balancing environment.
5722 5723
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
5724
 * @sgs: sched_group statistics
5725 5726 5727
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
5728 5729 5730
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
5731
 */
5732
static bool update_sd_pick_busiest(struct lb_env *env,
5733 5734
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
5735
				   struct sg_lb_stats *sgs)
5736
{
J
Joonsoo Kim 已提交
5737
	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
5751 5752
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

5793
/**
5794
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5795
 * @env: The load balancing environment.
5796 5797
 * @sds: variable to hold the statistics for this sched_domain.
 */
5798
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5799
{
5800 5801
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
5802
	struct sg_lb_stats tmp_sgs;
5803 5804 5805 5806 5807
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

5808
	load_idx = get_sd_load_idx(env->sd, env->idle);
5809 5810

	do {
J
Joonsoo Kim 已提交
5811
		struct sg_lb_stats *sgs = &tmp_sgs;
5812 5813
		int local_group;

5814
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
5815 5816 5817
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
5818 5819 5820 5821

			if (env->idle != CPU_NEWLY_IDLE ||
			    time_after_eq(jiffies, sg->sgp->next_update))
				update_group_power(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
5822
		}
5823

J
Joonsoo Kim 已提交
5824
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5825

5826 5827 5828
		if (local_group)
			goto next_group;

5829 5830
		/*
		 * In case the child domain prefers tasks go to siblings
5831
		 * first, lower the sg capacity to one so that we'll try
5832 5833 5834 5835 5836 5837
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
5838
		 */
5839 5840
		if (prefer_sibling && sds->local &&
		    sds->local_stat.group_has_capacity)
5841
			sgs->group_capacity = min(sgs->group_capacity, 1U);
5842

5843
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5844
			sds->busiest = sg;
J
Joonsoo Kim 已提交
5845
			sds->busiest_stat = *sgs;
5846 5847
		}

5848 5849 5850 5851 5852
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
		sds->total_pwr += sgs->group_power;

5853
		sg = sg->next;
5854
	} while (sg != env->sd->groups);
5855 5856 5857

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
5877
 * Return: 1 when packing is required and a task should be moved to
5878 5879
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
5880
 * @env: The load balancing environment.
5881 5882
 * @sds: Statistics of the sched_domain which is to be packed
 */
5883
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5884 5885 5886
{
	int busiest_cpu;

5887
	if (!(env->sd->flags & SD_ASYM_PACKING))
5888 5889 5890 5891 5892 5893
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
5894
	if (env->dst_cpu > busiest_cpu)
5895 5896
		return 0;

5897
	env->imbalance = DIV_ROUND_CLOSEST(
5898 5899
		sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
		SCHED_POWER_SCALE);
5900

5901
	return 1;
5902 5903 5904 5905 5906 5907
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
5908
 * @env: The load balancing environment.
5909 5910
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
5911 5912
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5913 5914 5915
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
5916
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
5917
	struct sg_lb_stats *local, *busiest;
5918

J
Joonsoo Kim 已提交
5919 5920
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
5921

J
Joonsoo Kim 已提交
5922 5923 5924 5925
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
5926

J
Joonsoo Kim 已提交
5927 5928
	scaled_busy_load_per_task =
		(busiest->load_per_task * SCHED_POWER_SCALE) /
5929
		busiest->group_power;
J
Joonsoo Kim 已提交
5930

5931 5932
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
5933
		env->imbalance = busiest->load_per_task;
5934 5935 5936 5937 5938 5939 5940 5941 5942
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

5943
	pwr_now += busiest->group_power *
J
Joonsoo Kim 已提交
5944
			min(busiest->load_per_task, busiest->avg_load);
5945
	pwr_now += local->group_power *
J
Joonsoo Kim 已提交
5946
			min(local->load_per_task, local->avg_load);
5947
	pwr_now /= SCHED_POWER_SCALE;
5948 5949

	/* Amount of load we'd subtract */
J
Joonsoo Kim 已提交
5950
	tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5951
		busiest->group_power;
J
Joonsoo Kim 已提交
5952
	if (busiest->avg_load > tmp) {
5953
		pwr_move += busiest->group_power *
J
Joonsoo Kim 已提交
5954 5955 5956
			    min(busiest->load_per_task,
				busiest->avg_load - tmp);
	}
5957 5958

	/* Amount of load we'd add */
5959
	if (busiest->avg_load * busiest->group_power <
J
Joonsoo Kim 已提交
5960
	    busiest->load_per_task * SCHED_POWER_SCALE) {
5961 5962
		tmp = (busiest->avg_load * busiest->group_power) /
		      local->group_power;
J
Joonsoo Kim 已提交
5963 5964
	} else {
		tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5965
		      local->group_power;
J
Joonsoo Kim 已提交
5966
	}
5967 5968
	pwr_move += local->group_power *
		    min(local->load_per_task, local->avg_load + tmp);
5969
	pwr_move /= SCHED_POWER_SCALE;
5970 5971 5972

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
J
Joonsoo Kim 已提交
5973
		env->imbalance = busiest->load_per_task;
5974 5975 5976 5977 5978
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
5979
 * @env: load balance environment
5980 5981
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
5982
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5983
{
5984
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
5985 5986 5987 5988
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
5989

J
Joonsoo Kim 已提交
5990
	if (busiest->group_imb) {
5991 5992 5993 5994
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
5995 5996
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
5997 5998
	}

5999 6000 6001 6002 6003
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
6004 6005
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6006 6007
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6008 6009
	}

J
Joonsoo Kim 已提交
6010
	if (!busiest->group_imb) {
6011 6012
		/*
		 * Don't want to pull so many tasks that a group would go idle.
6013 6014
		 * Except of course for the group_imb case, since then we might
		 * have to drop below capacity to reach cpu-load equilibrium.
6015
		 */
J
Joonsoo Kim 已提交
6016 6017
		load_above_capacity =
			(busiest->sum_nr_running - busiest->group_capacity);
6018

6019
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
6020
		load_above_capacity /= busiest->group_power;
6021 6022 6023 6024 6025 6026 6027 6028 6029 6030
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6031
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6032 6033

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6034
	env->imbalance = min(
6035 6036
		max_pull * busiest->group_power,
		(sds->avg_load - local->avg_load) * local->group_power
J
Joonsoo Kim 已提交
6037
	) / SCHED_POWER_SCALE;
6038 6039 6040

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6041
	 * there is no guarantee that any tasks will be moved so we'll have
6042 6043 6044
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6045
	if (env->imbalance < busiest->load_per_task)
6046
		return fix_small_imbalance(env, sds);
6047
}
6048

6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6061
 * @env: The load balancing environment.
6062
 *
6063
 * Return:	- The busiest group if imbalance exists.
6064 6065 6066 6067
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6068
static struct sched_group *find_busiest_group(struct lb_env *env)
6069
{
J
Joonsoo Kim 已提交
6070
	struct sg_lb_stats *local, *busiest;
6071 6072
	struct sd_lb_stats sds;

6073
	init_sd_lb_stats(&sds);
6074 6075 6076 6077 6078

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6079
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6080 6081
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6082

6083 6084
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6085 6086
		return sds.busiest;

6087
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6088
	if (!sds.busiest || busiest->sum_nr_running == 0)
6089 6090
		goto out_balanced;

6091
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
6092

P
Peter Zijlstra 已提交
6093 6094
	/*
	 * If the busiest group is imbalanced the below checks don't
6095
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6096 6097
	 * isn't true due to cpus_allowed constraints and the like.
	 */
J
Joonsoo Kim 已提交
6098
	if (busiest->group_imb)
P
Peter Zijlstra 已提交
6099 6100
		goto force_balance;

6101
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
J
Joonsoo Kim 已提交
6102 6103
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
	    !busiest->group_has_capacity)
6104 6105
		goto force_balance;

6106 6107 6108 6109
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
6110
	if (local->avg_load >= busiest->avg_load)
6111 6112
		goto out_balanced;

6113 6114 6115 6116
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
6117
	if (local->avg_load >= sds.avg_load)
6118 6119
		goto out_balanced;

6120
	if (env->idle == CPU_IDLE) {
6121 6122 6123 6124 6125 6126
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
J
Joonsoo Kim 已提交
6127 6128
		if ((local->idle_cpus < busiest->idle_cpus) &&
		    busiest->sum_nr_running <= busiest->group_weight)
6129
			goto out_balanced;
6130 6131 6132 6133 6134
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6135 6136
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6137
			goto out_balanced;
6138
	}
6139

6140
force_balance:
6141
	/* Looks like there is an imbalance. Compute it */
6142
	calculate_imbalance(env, &sds);
6143 6144 6145
	return sds.busiest;

out_balanced:
6146
	env->imbalance = 0;
6147 6148 6149 6150 6151 6152
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6153
static struct rq *find_busiest_queue(struct lb_env *env,
6154
				     struct sched_group *group)
6155 6156
{
	struct rq *busiest = NULL, *rq;
6157
	unsigned long busiest_load = 0, busiest_power = 1;
6158 6159
	int i;

6160
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6161 6162 6163 6164 6165
		unsigned long power, capacity, wl;
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6166

6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

		power = power_of(i);
		capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6191
		if (!capacity)
6192
			capacity = fix_small_capacity(env->sd, group);
6193

6194
		wl = weighted_cpuload(i);
6195

6196 6197 6198 6199
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
6200
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6201 6202
			continue;

6203 6204 6205 6206 6207
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
6208 6209 6210 6211 6212
		 *
		 * Thus we're looking for max(wl_i / power_i), crosswise
		 * multiplication to rid ourselves of the division works out
		 * to: wl_i * power_j > wl_j * power_i;  where j is our
		 * previous maximum.
6213
		 */
6214 6215 6216
		if (wl * busiest_power > busiest_load * power) {
			busiest_load = wl;
			busiest_power = power;
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6231
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6232

6233
static int need_active_balance(struct lb_env *env)
6234
{
6235 6236 6237
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6238 6239 6240 6241 6242 6243

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6244
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6245
			return 1;
6246 6247 6248 6249 6250
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6251 6252
static int active_load_balance_cpu_stop(void *data);

6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6284
	return balance_cpu == env->dst_cpu;
6285 6286
}

6287 6288 6289 6290 6291 6292
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6293
			int *continue_balancing)
6294
{
6295
	int ld_moved, cur_ld_moved, active_balance = 0;
6296
	struct sched_domain *sd_parent = sd->parent;
6297 6298 6299
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6300
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6301

6302 6303
	struct lb_env env = {
		.sd		= sd,
6304 6305
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6306
		.dst_grpmask    = sched_group_cpus(sd->groups),
6307
		.idle		= idle,
6308
		.loop_break	= sched_nr_migrate_break,
6309
		.cpus		= cpus,
6310
		.fbq_type	= all,
6311 6312
	};

6313 6314 6315 6316
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6317
	if (idle == CPU_NEWLY_IDLE)
6318 6319
		env.dst_grpmask = NULL;

6320 6321 6322 6323 6324
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6325 6326
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6327
		goto out_balanced;
6328
	}
6329

6330
	group = find_busiest_group(&env);
6331 6332 6333 6334 6335
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6336
	busiest = find_busiest_queue(&env, group);
6337 6338 6339 6340 6341
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

6342
	BUG_ON(busiest == env.dst_rq);
6343

6344
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6345 6346 6347 6348 6349 6350 6351 6352 6353

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
6354
		env.flags |= LBF_ALL_PINNED;
6355 6356 6357
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6358

6359
more_balance:
6360
		local_irq_save(flags);
6361
		double_rq_lock(env.dst_rq, busiest);
6362 6363 6364 6365 6366 6367 6368

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
6369
		double_rq_unlock(env.dst_rq, busiest);
6370 6371 6372 6373 6374
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
6375 6376 6377
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

6378 6379 6380 6381 6382
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
6402
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6403

6404 6405 6406
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

6407
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6408
			env.dst_cpu	 = env.new_dst_cpu;
6409
			env.flags	&= ~LBF_DST_PINNED;
6410 6411
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
6412

6413 6414 6415 6416 6417 6418
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
6419

6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
			int *group_imbalance = &sd_parent->groups->sgp->imbalance;

			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
				*group_imbalance = 1;
			} else if (*group_imbalance)
				*group_imbalance = 0;
		}

6432
		/* All tasks on this runqueue were pinned by CPU affinity */
6433
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6434
			cpumask_clear_cpu(cpu_of(busiest), cpus);
6435 6436 6437
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
6438
				goto redo;
6439
			}
6440 6441 6442 6443 6444 6445
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
6446 6447 6448 6449 6450 6451 6452 6453
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
6454

6455
		if (need_active_balance(&env)) {
6456 6457
			raw_spin_lock_irqsave(&busiest->lock, flags);

6458 6459 6460
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
6461 6462
			 */
			if (!cpumask_test_cpu(this_cpu,
6463
					tsk_cpus_allowed(busiest->curr))) {
6464 6465
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
6466
				env.flags |= LBF_ALL_PINNED;
6467 6468 6469
				goto out_one_pinned;
			}

6470 6471 6472 6473 6474
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
6475 6476 6477 6478 6479 6480
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6481

6482
			if (active_balance) {
6483 6484 6485
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
6486
			}
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
6520
	if (((env.flags & LBF_ALL_PINNED) &&
6521
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6522 6523 6524
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

6525
	ld_moved = 0;
6526 6527 6528 6529 6530 6531 6532 6533
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
6534
void idle_balance(struct rq *this_rq)
6535 6536 6537 6538
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;
6539
	u64 curr_cost = 0;
6540
	int this_cpu = this_rq->cpu;
6541

6542
	this_rq->idle_stamp = rq_clock(this_rq);
6543 6544 6545 6546

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

6547 6548 6549 6550 6551
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

6552
	update_blocked_averages(this_cpu);
6553
	rcu_read_lock();
6554 6555
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
6556
		int continue_balancing = 1;
6557
		u64 t0, domain_cost;
6558 6559 6560 6561

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6562 6563 6564
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
			break;

6565
		if (sd->flags & SD_BALANCE_NEWIDLE) {
6566 6567
			t0 = sched_clock_cpu(this_cpu);

6568
			/* If we've pulled tasks over stop searching: */
6569
			pulled_task = load_balance(this_cpu, this_rq,
6570 6571
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
6572 6573 6574 6575 6576 6577

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
6578
		}
6579 6580 6581 6582

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
N
Nikhil Rao 已提交
6583 6584
		if (pulled_task) {
			this_rq->idle_stamp = 0;
6585
			break;
N
Nikhil Rao 已提交
6586
		}
6587
	}
6588
	rcu_read_unlock();
6589 6590 6591

	raw_spin_lock(&this_rq->lock);

6592 6593 6594 6595 6596 6597 6598
	/*
	 * While browsing the domains, we released the rq lock.
	 * A task could have be enqueued in the meantime
	 */
	if (this_rq->nr_running && !pulled_task)
		return;

6599 6600 6601 6602 6603 6604 6605
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
6606 6607 6608

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;
6609 6610 6611
}

/*
6612 6613 6614 6615
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
6616
 */
6617
static int active_load_balance_cpu_stop(void *data)
6618
{
6619 6620
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
6621
	int target_cpu = busiest_rq->push_cpu;
6622
	struct rq *target_rq = cpu_rq(target_cpu);
6623
	struct sched_domain *sd;
6624 6625 6626 6627 6628 6629 6630

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
6631 6632 6633

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
6634
		goto out_unlock;
6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
6647
	rcu_read_lock();
6648 6649 6650 6651 6652 6653 6654
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
6655 6656
		struct lb_env env = {
			.sd		= sd,
6657 6658 6659 6660
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
6661 6662 6663
			.idle		= CPU_IDLE,
		};

6664 6665
		schedstat_inc(sd, alb_count);

6666
		if (move_one_task(&env))
6667 6668 6669 6670
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
6671
	rcu_read_unlock();
6672
	double_unlock_balance(busiest_rq, target_rq);
6673 6674 6675 6676
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
6677 6678
}

6679
#ifdef CONFIG_NO_HZ_COMMON
6680 6681 6682 6683 6684 6685
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
6686
static struct {
6687
	cpumask_var_t idle_cpus_mask;
6688
	atomic_t nr_cpus;
6689 6690
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
6691

6692
static inline int find_new_ilb(void)
6693
{
6694
	int ilb = cpumask_first(nohz.idle_cpus_mask);
6695

6696 6697 6698 6699
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
6700 6701
}

6702 6703 6704 6705 6706
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
6707
static void nohz_balancer_kick(void)
6708 6709 6710 6711 6712
{
	int ilb_cpu;

	nohz.next_balance++;

6713
	ilb_cpu = find_new_ilb();
6714

6715 6716
	if (ilb_cpu >= nr_cpu_ids)
		return;
6717

6718
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6719 6720 6721 6722 6723 6724 6725 6726
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
6727 6728 6729
	return;
}

6730
static inline void nohz_balance_exit_idle(int cpu)
6731 6732 6733 6734 6735 6736 6737 6738
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
		atomic_dec(&nohz.nr_cpus);
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

6739 6740 6741
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
6742
	int cpu = smp_processor_id();
6743 6744

	rcu_read_lock();
6745
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
6746 6747 6748 6749 6750

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

6751
	atomic_inc(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6752
unlock:
6753 6754 6755 6756 6757 6758
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
6759
	int cpu = smp_processor_id();
6760 6761

	rcu_read_lock();
6762
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
6763 6764 6765 6766 6767

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

6768
	atomic_dec(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6769
unlock:
6770 6771 6772
	rcu_read_unlock();
}

6773
/*
6774
 * This routine will record that the cpu is going idle with tick stopped.
6775
 * This info will be used in performing idle load balancing in the future.
6776
 */
6777
void nohz_balance_enter_idle(int cpu)
6778
{
6779 6780 6781 6782 6783 6784
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

6785 6786
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
6787

6788 6789 6790
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6791
}
6792

6793
static int sched_ilb_notifier(struct notifier_block *nfb,
6794 6795 6796 6797
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
6798
		nohz_balance_exit_idle(smp_processor_id());
6799 6800 6801 6802 6803
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
6804 6805 6806 6807
#endif

static DEFINE_SPINLOCK(balancing);

6808 6809 6810 6811
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
6812
void update_max_interval(void)
6813 6814 6815 6816
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

6817 6818 6819 6820
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
6821
 * Balancing parameters are set up in init_sched_domains.
6822
 */
6823
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
6824
{
6825
	int continue_balancing = 1;
6826
	int cpu = rq->cpu;
6827
	unsigned long interval;
6828
	struct sched_domain *sd;
6829 6830 6831
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
6832 6833
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
6834

6835
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
6836

6837
	rcu_read_lock();
6838
	for_each_domain(cpu, sd) {
6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

6851 6852 6853
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

6865 6866 6867 6868 6869 6870
		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
6871
		interval = clamp(interval, 1UL, max_load_balance_interval);
6872 6873 6874 6875 6876 6877 6878 6879 6880

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
6881
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6882
				/*
6883
				 * The LBF_DST_PINNED logic could have changed
6884 6885
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
6886
				 */
6887
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6888 6889 6890 6891 6892 6893 6894 6895 6896 6897
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
6898 6899
	}
	if (need_decay) {
6900
		/*
6901 6902
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
6903
		 */
6904 6905
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
6906
	}
6907
	rcu_read_unlock();
6908 6909 6910 6911 6912 6913 6914 6915 6916 6917

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

6918
#ifdef CONFIG_NO_HZ_COMMON
6919
/*
6920
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6921 6922
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
6923
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
6924
{
6925
	int this_cpu = this_rq->cpu;
6926 6927 6928
	struct rq *rq;
	int balance_cpu;

6929 6930 6931
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
6932 6933

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6934
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6935 6936 6937 6938 6939 6940 6941
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
6942
		if (need_resched())
6943 6944
			break;

V
Vincent Guittot 已提交
6945 6946 6947 6948 6949 6950
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
6951

6952
		rebalance_domains(rq, CPU_IDLE);
6953 6954 6955 6956 6957

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
6958 6959
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6960 6961 6962
}

/*
6963 6964 6965 6966 6967 6968 6969
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
6970
 */
6971
static inline int nohz_kick_needed(struct rq *rq)
6972 6973
{
	unsigned long now = jiffies;
6974
	struct sched_domain *sd;
6975
	struct sched_group_power *sgp;
6976
	int nr_busy, cpu = rq->cpu;
6977

6978
	if (unlikely(rq->idle_balance))
6979 6980
		return 0;

6981 6982 6983 6984
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
6985
	set_cpu_sd_state_busy();
6986
	nohz_balance_exit_idle(cpu);
6987 6988 6989 6990 6991 6992 6993

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
6994 6995

	if (time_before(now, nohz.next_balance))
6996 6997
		return 0;

6998 6999
	if (rq->nr_running >= 2)
		goto need_kick;
7000

7001
	rcu_read_lock();
7002
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7003

7004 7005 7006
	if (sd) {
		sgp = sd->groups->sgp;
		nr_busy = atomic_read(&sgp->nr_busy_cpus);
7007

7008
		if (nr_busy > 1)
7009
			goto need_kick_unlock;
7010
	}
7011 7012 7013 7014 7015 7016 7017

	sd = rcu_dereference(per_cpu(sd_asym, cpu));

	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
				  sched_domain_span(sd)) < cpu))
		goto need_kick_unlock;

7018
	rcu_read_unlock();
7019
	return 0;
7020 7021 7022

need_kick_unlock:
	rcu_read_unlock();
7023 7024
need_kick:
	return 1;
7025 7026
}
#else
7027
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7028 7029 7030 7031 7032 7033
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
7034 7035
static void run_rebalance_domains(struct softirq_action *h)
{
7036
	struct rq *this_rq = this_rq();
7037
	enum cpu_idle_type idle = this_rq->idle_balance ?
7038 7039
						CPU_IDLE : CPU_NOT_IDLE;

7040
	rebalance_domains(this_rq, idle);
7041 7042

	/*
7043
	 * If this cpu has a pending nohz_balance_kick, then do the
7044 7045 7046
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
7047
	nohz_idle_balance(this_rq, idle);
7048 7049
}

7050
static inline int on_null_domain(struct rq *rq)
7051
{
7052
	return !rcu_dereference_sched(rq->sd);
7053 7054 7055 7056 7057
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
7058
void trigger_load_balance(struct rq *rq)
7059 7060
{
	/* Don't need to rebalance while attached to NULL domain */
7061 7062 7063 7064
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
7065
		raise_softirq(SCHED_SOFTIRQ);
7066
#ifdef CONFIG_NO_HZ_COMMON
7067
	if (nohz_kick_needed(rq))
7068
		nohz_balancer_kick();
7069
#endif
7070 7071
}

7072 7073 7074 7075 7076 7077 7078 7079
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
7080 7081 7082

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
7083 7084
}

7085
#endif /* CONFIG_SMP */
7086

7087 7088 7089
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
7090
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7091 7092 7093 7094 7095 7096
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
7097
		entity_tick(cfs_rq, se, queued);
7098
	}
7099

7100
	if (numabalancing_enabled)
7101
		task_tick_numa(rq, curr);
7102

7103
	update_rq_runnable_avg(rq, 1);
7104 7105 7106
}

/*
P
Peter Zijlstra 已提交
7107 7108 7109
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
7110
 */
P
Peter Zijlstra 已提交
7111
static void task_fork_fair(struct task_struct *p)
7112
{
7113 7114
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
7115
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
7116 7117 7118
	struct rq *rq = this_rq();
	unsigned long flags;

7119
	raw_spin_lock_irqsave(&rq->lock, flags);
7120

7121 7122
	update_rq_clock(rq);

7123 7124 7125
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

7126 7127 7128 7129 7130 7131 7132 7133 7134
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
7135

7136
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
7137

7138 7139
	if (curr)
		se->vruntime = curr->vruntime;
7140
	place_entity(cfs_rq, se, 1);
7141

P
Peter Zijlstra 已提交
7142
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
7143
		/*
7144 7145 7146
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
7147
		swap(curr->vruntime, se->vruntime);
7148
		resched_task(rq->curr);
7149
	}
7150

7151 7152
	se->vruntime -= cfs_rq->min_vruntime;

7153
	raw_spin_unlock_irqrestore(&rq->lock, flags);
7154 7155
}

7156 7157 7158 7159
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
7160 7161
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7162
{
P
Peter Zijlstra 已提交
7163 7164 7165
	if (!p->se.on_rq)
		return;

7166 7167 7168 7169 7170
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
7171
	if (rq->curr == p) {
7172 7173 7174
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
7175
		check_preempt_curr(rq, p, 0);
7176 7177
}

P
Peter Zijlstra 已提交
7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Ensure the task's vruntime is normalized, so that when its
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it was !on_rq, then only when
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
	if (!se->on_rq && p->state != TASK_RUNNING) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
7200

7201
#ifdef CONFIG_SMP
7202 7203 7204 7205 7206
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
7207 7208 7209
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7210 7211
	}
#endif
P
Peter Zijlstra 已提交
7212 7213
}

7214 7215 7216
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
7217
static void switched_to_fair(struct rq *rq, struct task_struct *p)
7218
{
P
Peter Zijlstra 已提交
7219 7220 7221
	if (!p->se.on_rq)
		return;

7222 7223 7224 7225 7226
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
7227
	if (rq->curr == p)
7228 7229
		resched_task(rq->curr);
	else
7230
		check_preempt_curr(rq, p, 0);
7231 7232
}

7233 7234 7235 7236 7237 7238 7239 7240 7241
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

7242 7243 7244 7245 7246 7247 7248
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
7249 7250
}

7251 7252 7253 7254 7255 7256 7257
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
7258
#ifdef CONFIG_SMP
7259
	atomic64_set(&cfs_rq->decay_counter, 1);
7260
	atomic_long_set(&cfs_rq->removed_load, 0);
7261
#endif
7262 7263
}

P
Peter Zijlstra 已提交
7264
#ifdef CONFIG_FAIR_GROUP_SCHED
7265
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
7266
{
7267
	struct cfs_rq *cfs_rq;
7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
7281 7282 7283 7284 7285 7286
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
7287 7288
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
7289 7290 7291 7292
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
7293
	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7294 7295
		on_rq = 1;

7296 7297 7298
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311
	if (!on_rq) {
		cfs_rq = cfs_rq_of(&p->se);
		p->se.vruntime += cfs_rq->min_vruntime;
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
		p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
#endif
	}
P
Peter Zijlstra 已提交
7312
}
7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

	se->my_q = cfs_rq;
7411 7412
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
7443 7444 7445

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
7446
		for_each_sched_entity(se)
7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
7468

7469
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7470 7471 7472 7473 7474 7475 7476 7477 7478
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
7479
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7480 7481 7482 7483

	return rr_interval;
}

7484 7485 7486
/*
 * All the scheduling class methods:
 */
7487
const struct sched_class fair_sched_class = {
7488
	.next			= &idle_sched_class,
7489 7490 7491
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
7492
	.yield_to_task		= yield_to_task_fair,
7493

I
Ingo Molnar 已提交
7494
	.check_preempt_curr	= check_preempt_wakeup,
7495 7496 7497 7498

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

7499
#ifdef CONFIG_SMP
L
Li Zefan 已提交
7500
	.select_task_rq		= select_task_rq_fair,
7501
	.migrate_task_rq	= migrate_task_rq_fair,
7502

7503 7504
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
7505 7506

	.task_waking		= task_waking_fair,
7507
#endif
7508

7509
	.set_curr_task          = set_curr_task_fair,
7510
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
7511
	.task_fork		= task_fork_fair,
7512 7513

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
7514
	.switched_from		= switched_from_fair,
7515
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
7516

7517 7518
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
7519
#ifdef CONFIG_FAIR_GROUP_SCHED
7520
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
7521
#endif
7522 7523 7524
};

#ifdef CONFIG_SCHED_DEBUG
7525
void print_cfs_stats(struct seq_file *m, int cpu)
7526 7527 7528
{
	struct cfs_rq *cfs_rq;

7529
	rcu_read_lock();
7530
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7531
		print_cfs_rq(m, cpu, cfs_rq);
7532
	rcu_read_unlock();
7533 7534
}
#endif
7535 7536 7537 7538 7539 7540

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

7541
#ifdef CONFIG_NO_HZ_COMMON
7542
	nohz.next_balance = jiffies;
7543
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7544
	cpu_notifier(sched_ilb_notifier, 0);
7545 7546 7547 7548
#endif
#endif /* SMP */

}