fair.c 220.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

135 136 137 138 139 140 141 142 143
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
144
static unsigned int get_update_sysctl_factor(void)
145
{
146
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

182
#define WMULT_CONST	(~0U)
183 184
#define WMULT_SHIFT	32

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
201 202

/*
203 204 205 206 207 208 209 210 211 212
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213
 */
214
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215
{
216 217
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
218

219
	__update_inv_weight(lw);
220

221 222 223 224 225
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
226 227
	}

228 229
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
230

231 232 233 234
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
235

236
	return mul_u64_u32_shr(delta_exec, fact, shift);
237 238 239 240
}


const struct sched_class fair_sched_class;
241

242 243 244 245
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

246
#ifdef CONFIG_FAIR_GROUP_SCHED
247

248
/* cpu runqueue to which this cfs_rq is attached */
249 250
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
251
	return cfs_rq->rq;
252 253
}

254 255
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
256

257 258 259 260 261 262 263 264
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

286 287 288
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302
		}
303 304 305 306 307 308 309 310 311 312 313 314 315

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
316 317 318 319 320
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
321
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
322 323 324
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
325
		return se->cfs_rq;
P
Peter Zijlstra 已提交
326

P
Peter Zijlstra 已提交
327
	return NULL;
P
Peter Zijlstra 已提交
328 329 330 331 332 333 334
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

335 336 337 338 339 340 341 342 343 344 345 346 347
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
348 349
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

367 368 369 370 371 372
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
373

374 375 376
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
377 378 379 380
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
381 382
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
383

P
Peter Zijlstra 已提交
384
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385
{
P
Peter Zijlstra 已提交
386
	return &task_rq(p)->cfs;
387 388
}

P
Peter Zijlstra 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

403 404 405 406 407 408 409 410
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
411 412 413 414 415 416 417 418
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

419 420 421 422 423
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
424 425
#endif	/* CONFIG_FAIR_GROUP_SCHED */

426
static __always_inline
427
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428 429 430 431 432

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

433
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434
{
435
	s64 delta = (s64)(vruntime - max_vruntime);
436
	if (delta > 0)
437
		max_vruntime = vruntime;
438

439
	return max_vruntime;
440 441
}

442
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

451 452 453 454 455 456
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

457 458 459 460 461 462 463 464 465 466 467 468
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
469
		if (!cfs_rq->curr)
470 471 472 473 474
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

475
	/* ensure we never gain time by being placed backwards. */
476
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 478 479 480
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
481 482
}

483 484 485
/*
 * Enqueue an entity into the rb-tree:
 */
486
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
503
		if (entity_before(se, entry)) {
504 505 506 507 508 509 510 511 512 513 514
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
515
	if (leftmost)
I
Ingo Molnar 已提交
516
		cfs_rq->rb_leftmost = &se->run_node;
517 518 519 520 521

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

522
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523
{
P
Peter Zijlstra 已提交
524 525 526 527 528 529
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
530

531 532 533
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

534
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535
{
536 537 538 539 540 541
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
542 543
}

544 545 546 547 548 549 550 551 552 553 554
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
555
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556
{
557
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558

559 560
	if (!last)
		return NULL;
561 562

	return rb_entry(last, struct sched_entity, run_node);
563 564
}

565 566 567 568
/**************************************************************
 * Scheduling class statistics methods:
 */

569
int sched_proc_update_handler(struct ctl_table *table, int write,
570
		void __user *buffer, size_t *lenp,
571 572
		loff_t *ppos)
{
573
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574
	unsigned int factor = get_update_sysctl_factor();
575 576 577 578 579 580 581

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

582 583 584 585 586 587 588
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

589 590 591
	return 0;
}
#endif
592

593
/*
594
 * delta /= w
595
 */
596
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597
{
598
	if (unlikely(se->load.weight != NICE_0_LOAD))
599
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600 601 602 603

	return delta;
}

604 605 606
/*
 * The idea is to set a period in which each task runs once.
 *
607
 * When there are too many tasks (sched_nr_latency) we have to stretch
608 609 610 611
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
612 613
static u64 __sched_period(unsigned long nr_running)
{
614 615 616 617
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
618 619
}

620 621 622 623
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
624
 * s = p*P[w/rw]
625
 */
P
Peter Zijlstra 已提交
626
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627
{
M
Mike Galbraith 已提交
628
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629

M
Mike Galbraith 已提交
630
	for_each_sched_entity(se) {
L
Lin Ming 已提交
631
		struct load_weight *load;
632
		struct load_weight lw;
L
Lin Ming 已提交
633 634 635

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
636

M
Mike Galbraith 已提交
637
		if (unlikely(!se->on_rq)) {
638
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
639 640 641 642

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
643
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
644 645
	}
	return slice;
646 647
}

648
/*
A
Andrei Epure 已提交
649
 * We calculate the vruntime slice of a to-be-inserted task.
650
 *
651
 * vs = s/w
652
 */
653
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
654
{
655
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 657
}

658
#ifdef CONFIG_SMP
659
static int select_idle_sibling(struct task_struct *p, int cpu);
660 661
static unsigned long task_h_load(struct task_struct *p);

662 663
/*
 * We choose a half-life close to 1 scheduling period.
664 665
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
666 667 668
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670

671 672
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
673
{
674
	struct sched_avg *sa = &se->avg;
675

676 677 678 679 680 681 682
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
683
	sa->load_avg = scale_load_down(se->load.weight);
684 685
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
	sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
686
	sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
687
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
688
}
689 690 691

static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
692
#else
693
void init_entity_runnable_average(struct sched_entity *se)
694 695 696 697
{
}
#endif

698
/*
699
 * Update the current task's runtime statistics.
700
 */
701
static void update_curr(struct cfs_rq *cfs_rq)
702
{
703
	struct sched_entity *curr = cfs_rq->curr;
704
	u64 now = rq_clock_task(rq_of(cfs_rq));
705
	u64 delta_exec;
706 707 708 709

	if (unlikely(!curr))
		return;

710 711
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
712
		return;
713

I
Ingo Molnar 已提交
714
	curr->exec_start = now;
715

716 717 718 719 720 721 722 723 724
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

725 726 727
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

728
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
729
		cpuacct_charge(curtask, delta_exec);
730
		account_group_exec_runtime(curtask, delta_exec);
731
	}
732 733

	account_cfs_rq_runtime(cfs_rq, delta_exec);
734 735
}

736 737 738 739 740
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

741
#ifdef CONFIG_SCHEDSTATS
742
static inline void
743
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
744
{
745 746 747 748 749 750 751
	u64 wait_start = rq_clock(rq_of(cfs_rq));

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
	    likely(wait_start > se->statistics.wait_start))
		wait_start -= se->statistics.wait_start;

	se->statistics.wait_start = wait_start;
752 753
}

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
static void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
	u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
			se->statistics.wait_start = delta;
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

	se->statistics.wait_max = max(se->statistics.wait_max, delta);
	se->statistics.wait_count++;
	se->statistics.wait_sum += delta;
	se->statistics.wait_start = 0;
}
#else
static inline void
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}
#endif

791 792 793
/*
 * Task is being enqueued - update stats:
 */
794
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
795 796 797 798 799
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
800
	if (se != cfs_rq->curr)
801
		update_stats_wait_start(cfs_rq, se);
802 803 804
}

static inline void
805
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
806 807 808 809 810
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
811
	if (se != cfs_rq->curr)
812
		update_stats_wait_end(cfs_rq, se);
813 814 815 816 817 818
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
819
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
820 821 822 823
{
	/*
	 * We are starting a new run period:
	 */
824
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
825 826 827 828 829 830
}

/**************************************************
 * Scheduling class queueing methods:
 */

831 832
#ifdef CONFIG_NUMA_BALANCING
/*
833 834 835
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
836
 */
837 838
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
839 840 841

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
842

843 844 845
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
870
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
871 872 873
	unsigned int scan, floor;
	unsigned int windows = 1;

874 875
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

892 893 894 895 896 897 898 899 900 901 902 903
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

904 905 906 907 908
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
909
	pid_t gid;
910 911

	struct rcu_head rcu;
912
	nodemask_t active_nodes;
913
	unsigned long total_faults;
914 915 916 917 918
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
919
	unsigned long *faults_cpu;
920
	unsigned long faults[0];
921 922
};

923 924 925 926 927 928 929 930 931
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

932 933 934 935 936
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

937 938 939 940 941 942 943
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
944
{
945
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
946 947 948 949
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
950
	if (!p->numa_faults)
951 952
		return 0;

953 954
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
955 956
}

957 958 959 960 961
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

962 963
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
964 965
}

966 967
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
968 969
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
970 971
}

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1037 1038 1039 1040 1041 1042
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1043 1044
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1045
{
1046
	unsigned long faults, total_faults;
1047

1048
	if (!p->numa_faults)
1049 1050 1051 1052 1053 1054 1055
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1056
	faults = task_faults(p, nid);
1057 1058
	faults += score_nearby_nodes(p, nid, dist, true);

1059
	return 1000 * faults / total_faults;
1060 1061
}

1062 1063
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1064
{
1065 1066 1067 1068 1069 1070 1071 1072
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1073 1074
		return 0;

1075
	faults = group_faults(p, nid);
1076 1077
	faults += score_nearby_nodes(p, nid, dist, false);

1078
	return 1000 * faults / total_faults;
1079 1080
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Do not migrate if the destination is not a node that
	 * is actively used by this numa group.
	 */
	if (!node_isset(dst_nid, ng->active_nodes))
		return false;

	/*
	 * Source is a node that is not actively used by this
	 * numa group, while the destination is. Migrate.
	 */
	if (!node_isset(src_nid, ng->active_nodes))
		return true;

	/*
	 * Both source and destination are nodes in active
	 * use by this numa group. Maximize memory bandwidth
	 * by migrating from more heavily used groups, to less
	 * heavily used ones, spreading the load around.
	 * Use a 1/4 hysteresis to avoid spurious page movement.
	 */
	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}

1144
static unsigned long weighted_cpuload(const int cpu);
1145 1146
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1147
static unsigned long capacity_of(int cpu);
1148 1149
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1150
/* Cached statistics for all CPUs within a node */
1151
struct numa_stats {
1152
	unsigned long nr_running;
1153
	unsigned long load;
1154 1155

	/* Total compute capacity of CPUs on a node */
1156
	unsigned long compute_capacity;
1157 1158

	/* Approximate capacity in terms of runnable tasks on a node */
1159
	unsigned long task_capacity;
1160
	int has_free_capacity;
1161
};
1162

1163 1164 1165 1166 1167
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1168 1169
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1170 1171 1172 1173 1174 1175 1176

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1177
		ns->compute_capacity += capacity_of(cpu);
1178 1179

		cpus++;
1180 1181
	}

1182 1183 1184 1185 1186
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1187 1188
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1189 1190 1191 1192
	 */
	if (!cpus)
		return;

1193 1194 1195 1196 1197 1198
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1199
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1200 1201
}

1202 1203
struct task_numa_env {
	struct task_struct *p;
1204

1205 1206
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1207

1208
	struct numa_stats src_stats, dst_stats;
1209

1210
	int imbalance_pct;
1211
	int dist;
1212 1213 1214

	struct task_struct *best_task;
	long best_imp;
1215 1216 1217
	int best_cpu;
};

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1231
static bool load_too_imbalanced(long src_load, long dst_load,
1232 1233
				struct task_numa_env *env)
{
1234 1235
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1247 1248

	/* We care about the slope of the imbalance, not the direction. */
1249 1250
	if (dst_load < src_load)
		swap(dst_load, src_load);
1251 1252

	/* Is the difference below the threshold? */
1253 1254
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1255 1256 1257 1258 1259
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1260
	 * Compare it with the old imbalance.
1261
	 */
1262
	orig_src_load = env->src_stats.load;
1263
	orig_dst_load = env->dst_stats.load;
1264

1265 1266
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1267

1268 1269 1270 1271 1272
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1273 1274
}

1275 1276 1277 1278 1279 1280
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1281 1282
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1283 1284 1285 1286
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1287
	long src_load, dst_load;
1288
	long load;
1289
	long imp = env->p->numa_group ? groupimp : taskimp;
1290
	long moveimp = imp;
1291
	int dist = env->dist;
1292 1293

	rcu_read_lock();
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

	raw_spin_lock_irq(&dst_rq->lock);
	cur = dst_rq->curr;
	/*
	 * No need to move the exiting task, and this ensures that ->curr
	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
	 * is safe under RCU read lock.
	 * Note that rcu_read_lock() itself can't protect from the final
	 * put_task_struct() after the last schedule().
	 */
	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1305
		cur = NULL;
1306
	raw_spin_unlock_irq(&dst_rq->lock);
1307

1308 1309 1310 1311 1312 1313 1314
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1327 1328
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1329
		 * in any group then look only at task weights.
1330
		 */
1331
		if (cur->numa_group == env->p->numa_group) {
1332 1333
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1334 1335 1336 1337 1338 1339
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1340
		} else {
1341 1342 1343 1344 1345 1346
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1347 1348
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1349
			else
1350 1351
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1352
		}
1353 1354
	}

1355
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1356 1357 1358 1359
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1360
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1361
		    !env->dst_stats.has_free_capacity)
1362 1363 1364 1365 1366 1367
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1368 1369
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1370 1371 1372 1373 1374 1375
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1376 1377 1378
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1379

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1397
	if (cur) {
1398 1399 1400
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1401 1402
	}

1403
	if (load_too_imbalanced(src_load, dst_load, env))
1404 1405
		goto unlock;

1406 1407 1408 1409 1410 1411 1412
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur)
		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);

1413 1414 1415 1416 1417 1418
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1419 1420
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1421 1422 1423 1424 1425 1426 1427 1428 1429
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1430
		task_numa_compare(env, taskimp, groupimp);
1431 1432 1433
	}
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1451 1452 1453
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1454 1455 1456 1457 1458
		return true;

	return false;
}

1459 1460 1461 1462
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1463

1464
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1465
		.src_nid = task_node(p),
1466 1467 1468 1469 1470 1471

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1472 1473
	};
	struct sched_domain *sd;
1474
	unsigned long taskweight, groupweight;
1475
	int nid, ret, dist;
1476
	long taskimp, groupimp;
1477

1478
	/*
1479 1480 1481 1482 1483 1484
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1485 1486
	 */
	rcu_read_lock();
1487
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1488 1489
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1490 1491
	rcu_read_unlock();

1492 1493 1494 1495 1496 1497 1498
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1499
		p->numa_preferred_nid = task_node(p);
1500 1501 1502
		return -EINVAL;
	}

1503
	env.dst_nid = p->numa_preferred_nid;
1504 1505 1506 1507 1508 1509
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1510
	update_numa_stats(&env.dst_stats, env.dst_nid);
1511

1512
	/* Try to find a spot on the preferred nid. */
1513 1514
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
	if (env.best_cpu == -1 || (p->numa_group &&
			nodes_weight(p->numa_group->active_nodes) > 1)) {
1525 1526 1527
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1528

1529
			dist = node_distance(env.src_nid, env.dst_nid);
1530 1531 1532 1533 1534
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1535

1536
			/* Only consider nodes where both task and groups benefit */
1537 1538
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1539
			if (taskimp < 0 && groupimp < 0)
1540 1541
				continue;

1542
			env.dist = dist;
1543 1544
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1545 1546
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1547 1548 1549
		}
	}

1550 1551 1552 1553 1554 1555 1556 1557
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	if (p->numa_group) {
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

		if (node_isset(nid, p->numa_group->active_nodes))
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1571

1572 1573 1574 1575 1576 1577
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1578
	if (env.best_task == NULL) {
1579 1580 1581
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1582 1583 1584 1585
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1586 1587
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1588 1589
	put_task_struct(env.best_task);
	return ret;
1590 1591
}

1592 1593 1594
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1595 1596
	unsigned long interval = HZ;

1597
	/* This task has no NUMA fault statistics yet */
1598
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1599 1600
		return;

1601
	/* Periodically retry migrating the task to the preferred node */
1602 1603
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1604 1605

	/* Success if task is already running on preferred CPU */
1606
	if (task_node(p) == p->numa_preferred_nid)
1607 1608 1609
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1610
	task_numa_migrate(p);
1611 1612
}

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1645 1646 1647
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1648 1649 1650
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1651 1652
 */
#define NUMA_PERIOD_SLOTS 10
1653
#define NUMA_PERIOD_THRESHOLD 7
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1674 1675 1676
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1677
	 */
1678
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1712
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1713 1714 1715 1716 1717 1718 1719 1720
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1739 1740
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1741 1742 1743 1744 1745 1746 1747 1748
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
1796
		nodemask_t max_group = NODE_MASK_NONE;
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
1830 1831
		if (!max_faults)
			break;
1832 1833 1834 1835 1836
		nodes = max_group;
	}
	return nid;
}

1837 1838
static void task_numa_placement(struct task_struct *p)
{
1839 1840
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1841
	unsigned long fault_types[2] = { 0, 0 };
1842 1843
	unsigned long total_faults;
	u64 runtime, period;
1844
	spinlock_t *group_lock = NULL;
1845

1846 1847 1848 1849 1850
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
1851
	seq = READ_ONCE(p->mm->numa_scan_seq);
1852 1853 1854
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1855
	p->numa_scan_period_max = task_scan_max(p);
1856

1857 1858 1859 1860
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1861 1862 1863
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1864
		spin_lock_irq(group_lock);
1865 1866
	}

1867 1868
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1869 1870
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1871
		unsigned long faults = 0, group_faults = 0;
1872
		int priv;
1873

1874
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1875
			long diff, f_diff, f_weight;
1876

1877 1878 1879 1880
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1881

1882
			/* Decay existing window, copy faults since last scan */
1883 1884 1885
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
1886

1887 1888 1889 1890 1891 1892 1893 1894
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
1895
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1896
				   (total_faults + 1);
1897 1898
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
1899

1900 1901 1902
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
1903
			p->total_numa_faults += diff;
1904
			if (p->numa_group) {
1905 1906 1907 1908 1909 1910 1911 1912 1913
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
1914
				p->numa_group->total_faults += diff;
1915
				group_faults += p->numa_group->faults[mem_idx];
1916
			}
1917 1918
		}

1919 1920 1921 1922
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1923 1924 1925 1926 1927 1928 1929

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1930 1931
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1932
	if (p->numa_group) {
1933
		update_numa_active_node_mask(p->numa_group);
1934
		spin_unlock_irq(group_lock);
1935
		max_nid = preferred_group_nid(p, max_group_nid);
1936 1937
	}

1938 1939 1940 1941 1942 1943 1944
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
1945
	}
1946 1947
}

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1959 1960
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1961 1962 1963 1964 1965 1966 1967 1968 1969
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1970
				    4*nr_node_ids*sizeof(unsigned long);
1971 1972 1973 1974 1975 1976 1977

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
1978
		grp->gid = p->pid;
1979
		/* Second half of the array tracks nids where faults happen */
1980 1981
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
1982

1983 1984
		node_set(task_node(current), grp->active_nodes);

1985
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1986
			grp->faults[i] = p->numa_faults[i];
1987

1988
		grp->total_faults = p->total_numa_faults;
1989

1990 1991 1992 1993 1994
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
1995
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
1996 1997

	if (!cpupid_match_pid(tsk, cpupid))
1998
		goto no_join;
1999 2000 2001

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2002
		goto no_join;
2003 2004 2005

	my_grp = p->numa_group;
	if (grp == my_grp)
2006
		goto no_join;
2007 2008 2009 2010 2011 2012

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2013
		goto no_join;
2014 2015 2016 2017 2018

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2019
		goto no_join;
2020

2021 2022 2023 2024 2025 2026 2027
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2028

2029 2030 2031
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2032
	if (join && !get_numa_group(grp))
2033
		goto no_join;
2034 2035 2036 2037 2038 2039

	rcu_read_unlock();

	if (!join)
		return;

2040 2041
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2042

2043
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2044 2045
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2046
	}
2047 2048
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2049 2050 2051 2052 2053

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2054
	spin_unlock_irq(&grp->lock);
2055 2056 2057 2058

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2059 2060 2061 2062 2063
	return;

no_join:
	rcu_read_unlock();
	return;
2064 2065 2066 2067 2068
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2069
	void *numa_faults = p->numa_faults;
2070 2071
	unsigned long flags;
	int i;
2072 2073

	if (grp) {
2074
		spin_lock_irqsave(&grp->lock, flags);
2075
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2076
			grp->faults[i] -= p->numa_faults[i];
2077
		grp->total_faults -= p->total_numa_faults;
2078

2079
		grp->nr_tasks--;
2080
		spin_unlock_irqrestore(&grp->lock, flags);
2081
		RCU_INIT_POINTER(p->numa_group, NULL);
2082 2083 2084
		put_numa_group(grp);
	}

2085
	p->numa_faults = NULL;
2086
	kfree(numa_faults);
2087 2088
}

2089 2090 2091
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2092
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2093 2094
{
	struct task_struct *p = current;
2095
	bool migrated = flags & TNF_MIGRATED;
2096
	int cpu_node = task_node(current);
2097
	int local = !!(flags & TNF_FAULT_LOCAL);
2098
	int priv;
2099

2100
	if (!static_branch_likely(&sched_numa_balancing))
2101 2102
		return;

2103 2104 2105 2106
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2107
	/* Allocate buffer to track faults on a per-node basis */
2108 2109
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2110
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2111

2112 2113
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2114
			return;
2115

2116
		p->total_numa_faults = 0;
2117
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2118
	}
2119

2120 2121 2122 2123 2124 2125 2126 2127
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2128
		if (!priv && !(flags & TNF_NO_GROUP))
2129
			task_numa_group(p, last_cpupid, flags, &priv);
2130 2131
	}

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
	if (!priv && !local && p->numa_group &&
			node_isset(cpu_node, p->numa_group->active_nodes) &&
			node_isset(mem_node, p->numa_group->active_nodes))
		local = 1;

2143
	task_numa_placement(p);
2144

2145 2146 2147 2148 2149
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2150 2151
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2152 2153
	if (migrated)
		p->numa_pages_migrated += pages;
2154 2155
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2156

2157 2158
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2159
	p->numa_faults_locality[local] += pages;
2160 2161
}

2162 2163
static void reset_ptenuma_scan(struct task_struct *p)
{
2164 2165 2166 2167 2168 2169 2170 2171
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2172
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2173 2174 2175
	p->mm->numa_scan_offset = 0;
}

2176 2177 2178 2179 2180 2181 2182 2183 2184
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2185
	u64 runtime = p->se.sum_exec_runtime;
2186
	struct vm_area_struct *vma;
2187
	unsigned long start, end;
2188
	unsigned long nr_pte_updates = 0;
2189
	long pages, virtpages;
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2205
	if (!mm->numa_next_scan) {
2206 2207
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2208 2209
	}

2210 2211 2212 2213 2214 2215 2216
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2217 2218 2219 2220
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2221

2222
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2223 2224 2225
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2226 2227 2228 2229 2230 2231
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2232 2233 2234
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2235
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2236 2237
	if (!pages)
		return;
2238

2239

2240
	down_read(&mm->mmap_sem);
2241
	vma = find_vma(mm, start);
2242 2243
	if (!vma) {
		reset_ptenuma_scan(p);
2244
		start = 0;
2245 2246
		vma = mm->mmap;
	}
2247
	for (; vma; vma = vma->vm_next) {
2248
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2249
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2250
			continue;
2251
		}
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2263 2264 2265 2266 2267 2268
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2269

2270 2271 2272 2273
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2274
			nr_pte_updates = change_prot_numa(vma, start, end);
2275 2276

			/*
2277 2278 2279 2280 2281 2282
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2283 2284 2285
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2286
			virtpages -= (end - start) >> PAGE_SHIFT;
2287

2288
			start = end;
2289
			if (pages <= 0 || virtpages <= 0)
2290
				goto out;
2291 2292

			cond_resched();
2293
		} while (end != vma->vm_end);
2294
	}
2295

2296
out:
2297
	/*
P
Peter Zijlstra 已提交
2298 2299 2300 2301
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2302 2303
	 */
	if (vma)
2304
		mm->numa_scan_offset = start;
2305 2306 2307
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2344
	if (now > curr->node_stamp + period) {
2345
		if (!curr->node_stamp)
2346
			curr->numa_scan_period = task_scan_min(curr);
2347
		curr->node_stamp += period;
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2359 2360 2361 2362 2363 2364 2365 2366

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2367 2368
#endif /* CONFIG_NUMA_BALANCING */

2369 2370 2371 2372
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2373
	if (!parent_entity(se))
2374
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2375
#ifdef CONFIG_SMP
2376 2377 2378 2379 2380 2381
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2382
#endif
2383 2384 2385 2386 2387 2388 2389
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2390
	if (!parent_entity(se))
2391
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2392 2393
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2394
		list_del_init(&se->group_node);
2395
	}
2396 2397 2398
	cfs_rq->nr_running--;
}

2399 2400
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2401 2402 2403 2404 2405
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
2406 2407 2408
	 * Use this CPU's real-time load instead of the last load contribution
	 * as the updating of the contribution is delayed, and we will use the
	 * the real-time load to calc the share. See update_tg_load_avg().
2409
	 */
2410
	tg_weight = atomic_long_read(&tg->load_avg);
2411
	tg_weight -= cfs_rq->tg_load_avg_contrib;
2412
	tg_weight += cfs_rq->load.weight;
2413 2414 2415 2416

	return tg_weight;
}

2417
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2418
{
2419
	long tg_weight, load, shares;
2420

2421
	tg_weight = calc_tg_weight(tg, cfs_rq);
2422
	load = cfs_rq->load.weight;
2423 2424

	shares = (tg->shares * load);
2425 2426
	if (tg_weight)
		shares /= tg_weight;
2427 2428 2429 2430 2431 2432 2433 2434 2435

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2436
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2437 2438 2439 2440
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2441 2442 2443
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2444 2445 2446 2447
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2448
		account_entity_dequeue(cfs_rq, se);
2449
	}
P
Peter Zijlstra 已提交
2450 2451 2452 2453 2454 2455 2456

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2457 2458
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2459
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2460 2461 2462
{
	struct task_group *tg;
	struct sched_entity *se;
2463
	long shares;
P
Peter Zijlstra 已提交
2464 2465 2466

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2467
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2468
		return;
2469 2470 2471 2472
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2473
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2474 2475 2476 2477

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2478
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2479 2480 2481 2482
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2483
#ifdef CONFIG_SMP
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2504 2505 2506 2507 2508 2509
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2522 2523
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2524 2525 2526 2527 2528 2529
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2530 2531
	}

2532 2533
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2562 2563
}

2564 2565 2566 2567
#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
#error "load tracking assumes 2^10 as unit"
#endif

2568
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2569

2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2598 2599
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2600
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2601
{
2602
	u64 delta, scaled_delta, periods;
2603
	u32 contrib;
2604
	unsigned int delta_w, scaled_delta_w, decayed = 0;
2605
	unsigned long scale_freq, scale_cpu;
2606

2607
	delta = now - sa->last_update_time;
2608 2609 2610 2611 2612
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2613
		sa->last_update_time = now;
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2624
	sa->last_update_time = now;
2625

2626 2627 2628
	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

2629
	/* delta_w is the amount already accumulated against our next period */
2630
	delta_w = sa->period_contrib;
2631 2632 2633
	if (delta + delta_w >= 1024) {
		decayed = 1;

2634 2635 2636
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2637 2638 2639 2640 2641 2642
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2643
		scaled_delta_w = cap_scale(delta_w, scale_freq);
2644
		if (weight) {
2645 2646 2647 2648 2649
			sa->load_sum += weight * scaled_delta_w;
			if (cfs_rq) {
				cfs_rq->runnable_load_sum +=
						weight * scaled_delta_w;
			}
2650
		}
2651
		if (running)
2652
			sa->util_sum += scaled_delta_w * scale_cpu;
2653 2654 2655 2656 2657 2658 2659

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2660
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2661 2662 2663 2664
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2665
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2666 2667

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2668
		contrib = __compute_runnable_contrib(periods);
2669
		contrib = cap_scale(contrib, scale_freq);
2670
		if (weight) {
2671
			sa->load_sum += weight * contrib;
2672 2673 2674
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2675
		if (running)
2676
			sa->util_sum += contrib * scale_cpu;
2677 2678 2679
	}

	/* Remainder of delta accrued against u_0` */
2680
	scaled_delta = cap_scale(delta, scale_freq);
2681
	if (weight) {
2682
		sa->load_sum += weight * scaled_delta;
2683
		if (cfs_rq)
2684
			cfs_rq->runnable_load_sum += weight * scaled_delta;
2685
	}
2686
	if (running)
2687
		sa->util_sum += scaled_delta * scale_cpu;
2688

2689
	sa->period_contrib += delta;
2690

2691 2692
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2693 2694 2695 2696
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2697
		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2698
	}
2699

2700
	return decayed;
2701 2702
}

2703
#ifdef CONFIG_FAIR_GROUP_SCHED
2704
/*
2705 2706
 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
 * and effective_load (which is not done because it is too costly).
2707
 */
2708
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2709
{
2710
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2711

2712 2713 2714 2715 2716 2717
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

2718 2719 2720
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2721
	}
2722
}
2723

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
	if (se->avg.last_update_time && prev) {
		u64 p_last_update_time;
		u64 n_last_update_time;

#ifndef CONFIG_64BIT
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
#else
		p_last_update_time = prev->avg.last_update_time;
		n_last_update_time = next->avg.last_update_time;
#endif
		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
				  &se->avg, 0, 0, NULL);
		se->avg.last_update_time = n_last_update_time;
	}
}
2770
#else /* CONFIG_FAIR_GROUP_SCHED */
2771
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2772
#endif /* CONFIG_FAIR_GROUP_SCHED */
2773

2774
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2775

2776 2777
/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2778
{
2779
	struct sched_avg *sa = &cfs_rq->avg;
2780
	int decayed, removed = 0;
2781

2782
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2783
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2784 2785
		sa->load_avg = max_t(long, sa->load_avg - r, 0);
		sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2786
		removed = 1;
2787
	}
2788

2789 2790 2791
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
		sa->util_avg = max_t(long, sa->util_avg - r, 0);
2792
		sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2793
	}
2794

2795
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2796
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2797

2798 2799 2800 2801
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
2802

2803
	return decayed || removed;
2804 2805
}

2806 2807
/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct sched_entity *se, int update_tg)
2808
{
2809
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2810
	u64 now = cfs_rq_clock_task(cfs_rq);
2811
	int cpu = cpu_of(rq_of(cfs_rq));
2812

2813
	/*
2814 2815
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
2816
	 */
2817
	__update_load_avg(now, cpu, &se->avg,
2818 2819
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);
2820

2821 2822
	if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
		update_tg_load_avg(cfs_rq, 0);
2823 2824
}

2825 2826
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2827 2828 2829
	if (!sched_feat(ATTACH_AGE_LOAD))
		goto skip_aging;

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
	/*
	 * If we got migrated (either between CPUs or between cgroups) we'll
	 * have aged the average right before clearing @last_update_time.
	 */
	if (se->avg.last_update_time) {
		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
				  &se->avg, 0, 0, NULL);

		/*
		 * XXX: we could have just aged the entire load away if we've been
		 * absent from the fair class for too long.
		 */
	}

2844
skip_aging:
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
}

static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

	cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
	cfs_rq->avg.load_sum = max_t(s64,  cfs_rq->avg.load_sum - se->avg.load_sum, 0);
	cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
	cfs_rq->avg.util_sum = max_t(s32,  cfs_rq->avg.util_sum - se->avg.util_sum, 0);
}

2864 2865 2866
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2867
{
2868 2869
	struct sched_avg *sa = &se->avg;
	u64 now = cfs_rq_clock_task(cfs_rq);
2870
	int migrated, decayed;
2871

2872 2873
	migrated = !sa->last_update_time;
	if (!migrated) {
2874
		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2875 2876
			se->on_rq * scale_load_down(se->load.weight),
			cfs_rq->curr == se, NULL);
2877
	}
2878

2879
	decayed = update_cfs_rq_load_avg(now, cfs_rq);
2880

2881 2882 2883
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

2884 2885
	if (migrated)
		attach_entity_load_avg(cfs_rq, se);
2886

2887 2888
	if (decayed || migrated)
		update_tg_load_avg(cfs_rq, 0);
2889 2890
}

2891 2892 2893 2894 2895 2896 2897 2898 2899
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_avg(se, 1);

	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
2900
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2901 2902
}

2903
/*
2904 2905
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
2906
 */
2907
void remove_entity_load_avg(struct sched_entity *se)
2908
{
2909 2910 2911 2912 2913
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

#ifndef CONFIG_64BIT
	u64 last_update_time_copy;
2914

2915 2916 2917 2918 2919 2920 2921 2922 2923
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
#else
	last_update_time = cfs_rq->avg.last_update_time;
#endif

2924
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2925 2926
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2927
}
2928

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

2939 2940
static int idle_balance(struct rq *this_rq);

2941 2942
#else /* CONFIG_SMP */

2943 2944 2945
static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2946 2947
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2948
static inline void remove_entity_load_avg(struct sched_entity *se) {}
2949

2950 2951 2952 2953 2954
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

2955 2956 2957 2958 2959
static inline int idle_balance(struct rq *rq)
{
	return 0;
}

2960
#endif /* CONFIG_SMP */
2961

2962
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2963 2964
{
#ifdef CONFIG_SCHEDSTATS
2965 2966 2967 2968 2969
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2970
	if (se->statistics.sleep_start) {
2971
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2972 2973 2974 2975

		if ((s64)delta < 0)
			delta = 0;

2976 2977
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2978

2979
		se->statistics.sleep_start = 0;
2980
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2981

2982
		if (tsk) {
2983
			account_scheduler_latency(tsk, delta >> 10, 1);
2984 2985
			trace_sched_stat_sleep(tsk, delta);
		}
2986
	}
2987
	if (se->statistics.block_start) {
2988
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2989 2990 2991 2992

		if ((s64)delta < 0)
			delta = 0;

2993 2994
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2995

2996
		se->statistics.block_start = 0;
2997
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2998

2999
		if (tsk) {
3000
			if (tsk->in_iowait) {
3001 3002
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
3003
				trace_sched_stat_iowait(tsk, delta);
3004 3005
			}

3006 3007
			trace_sched_stat_blocked(tsk, delta);

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
3019
		}
3020 3021 3022 3023
	}
#endif
}

P
Peter Zijlstra 已提交
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

3037 3038 3039
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3040
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3041

3042 3043 3044 3045 3046 3047
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3048
	if (initial && sched_feat(START_DEBIT))
3049
		vruntime += sched_vslice(cfs_rq, se);
3050

3051
	/* sleeps up to a single latency don't count. */
3052
	if (!initial) {
3053
		unsigned long thresh = sysctl_sched_latency;
3054

3055 3056 3057 3058 3059 3060
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3061

3062
		vruntime -= thresh;
3063 3064
	}

3065
	/* ensure we never gain time by being placed backwards. */
3066
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3067 3068
}

3069 3070
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3071
static void
3072
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3073
{
3074 3075
	/*
	 * Update the normalized vruntime before updating min_vruntime
3076
	 * through calling update_curr().
3077
	 */
3078
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3079 3080
		se->vruntime += cfs_rq->min_vruntime;

3081
	/*
3082
	 * Update run-time statistics of the 'current'.
3083
	 */
3084
	update_curr(cfs_rq);
3085
	enqueue_entity_load_avg(cfs_rq, se);
3086 3087
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
3088

3089
	if (flags & ENQUEUE_WAKEUP) {
3090
		place_entity(cfs_rq, se, 0);
3091
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
3092
	}
3093

3094
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
3095
	check_spread(cfs_rq, se);
3096 3097
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3098
	se->on_rq = 1;
3099

3100
	if (cfs_rq->nr_running == 1) {
3101
		list_add_leaf_cfs_rq(cfs_rq);
3102 3103
		check_enqueue_throttle(cfs_rq);
	}
3104 3105
}

3106
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3107
{
3108 3109
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3110
		if (cfs_rq->last != se)
3111
			break;
3112 3113

		cfs_rq->last = NULL;
3114 3115
	}
}
P
Peter Zijlstra 已提交
3116

3117 3118 3119 3120
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3121
		if (cfs_rq->next != se)
3122
			break;
3123 3124

		cfs_rq->next = NULL;
3125
	}
P
Peter Zijlstra 已提交
3126 3127
}

3128 3129 3130 3131
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3132
		if (cfs_rq->skip != se)
3133
			break;
3134 3135

		cfs_rq->skip = NULL;
3136 3137 3138
	}
}

P
Peter Zijlstra 已提交
3139 3140
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3141 3142 3143 3144 3145
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3146 3147 3148

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3149 3150
}

3151
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3152

3153
static void
3154
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3155
{
3156 3157 3158 3159
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3160
	dequeue_entity_load_avg(cfs_rq, se);
3161

3162
	update_stats_dequeue(cfs_rq, se);
3163
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
3164
#ifdef CONFIG_SCHEDSTATS
3165 3166 3167 3168
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
3169
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3170
			if (tsk->state & TASK_UNINTERRUPTIBLE)
3171
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3172
		}
3173
#endif
P
Peter Zijlstra 已提交
3174 3175
	}

P
Peter Zijlstra 已提交
3176
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3177

3178
	if (se != cfs_rq->curr)
3179
		__dequeue_entity(cfs_rq, se);
3180
	se->on_rq = 0;
3181
	account_entity_dequeue(cfs_rq, se);
3182 3183 3184 3185 3186 3187

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
3188
	if (!(flags & DEQUEUE_SLEEP))
3189
		se->vruntime -= cfs_rq->min_vruntime;
3190

3191 3192 3193
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3194
	update_min_vruntime(cfs_rq);
3195
	update_cfs_shares(cfs_rq);
3196 3197 3198 3199 3200
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3201
static void
I
Ingo Molnar 已提交
3202
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3203
{
3204
	unsigned long ideal_runtime, delta_exec;
3205 3206
	struct sched_entity *se;
	s64 delta;
3207

P
Peter Zijlstra 已提交
3208
	ideal_runtime = sched_slice(cfs_rq, curr);
3209
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3210
	if (delta_exec > ideal_runtime) {
3211
		resched_curr(rq_of(cfs_rq));
3212 3213 3214 3215 3216
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3228 3229
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3230

3231 3232
	if (delta < 0)
		return;
3233

3234
	if (delta > ideal_runtime)
3235
		resched_curr(rq_of(cfs_rq));
3236 3237
}

3238
static void
3239
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3240
{
3241 3242 3243 3244 3245 3246 3247 3248 3249
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
3250
		update_load_avg(se, 1);
3251 3252
	}

3253
	update_stats_curr_start(cfs_rq, se);
3254
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
3255 3256 3257 3258 3259 3260
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3261
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3262
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
3263 3264 3265
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
3266
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3267 3268
}

3269 3270 3271
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3272 3273 3274 3275 3276 3277 3278
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3279 3280
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3281
{
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3293

3294 3295 3296 3297 3298
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3309 3310 3311
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3312

3313 3314 3315 3316 3317 3318
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3319 3320 3321 3322 3323 3324
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3325
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3326 3327

	return se;
3328 3329
}

3330
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3331

3332
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3333 3334 3335 3336 3337 3338
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3339
		update_curr(cfs_rq);
3340

3341 3342 3343
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
3344
	check_spread(cfs_rq, prev);
3345
	if (prev->on_rq) {
3346
		update_stats_wait_start(cfs_rq, prev);
3347 3348
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3349
		/* in !on_rq case, update occurred at dequeue */
3350
		update_load_avg(prev, 0);
3351
	}
3352
	cfs_rq->curr = NULL;
3353 3354
}

P
Peter Zijlstra 已提交
3355 3356
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3357 3358
{
	/*
3359
	 * Update run-time statistics of the 'current'.
3360
	 */
3361
	update_curr(cfs_rq);
3362

3363 3364 3365
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3366
	update_load_avg(curr, 1);
3367
	update_cfs_shares(cfs_rq);
3368

P
Peter Zijlstra 已提交
3369 3370 3371 3372 3373
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3374
	if (queued) {
3375
		resched_curr(rq_of(cfs_rq));
3376 3377
		return;
	}
P
Peter Zijlstra 已提交
3378 3379 3380 3381 3382 3383 3384 3385
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3386
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3387
		check_preempt_tick(cfs_rq, curr);
3388 3389
}

3390 3391 3392 3393 3394 3395

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3396 3397

#ifdef HAVE_JUMP_LABEL
3398
static struct static_key __cfs_bandwidth_used;
3399 3400 3401

static inline bool cfs_bandwidth_used(void)
{
3402
	return static_key_false(&__cfs_bandwidth_used);
3403 3404
}

3405
void cfs_bandwidth_usage_inc(void)
3406
{
3407 3408 3409 3410 3411 3412
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3413 3414 3415 3416 3417 3418 3419
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3420 3421
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3422 3423
#endif /* HAVE_JUMP_LABEL */

3424 3425 3426 3427 3428 3429 3430 3431
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3432 3433 3434 3435 3436 3437

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3438 3439 3440 3441 3442 3443 3444
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3445
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3457 3458 3459 3460 3461
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3462 3463 3464 3465 3466 3467
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3468
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3469 3470
}

3471 3472
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3473 3474 3475
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3476
	u64 amount = 0, min_amount, expires;
3477 3478 3479 3480 3481 3482 3483

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3484
	else {
P
Peter Zijlstra 已提交
3485
		start_cfs_bandwidth(cfs_b);
3486 3487 3488 3489 3490 3491

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3492
	}
P
Paul Turner 已提交
3493
	expires = cfs_b->runtime_expires;
3494 3495 3496
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3497 3498 3499 3500 3501 3502 3503
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3504 3505

	return cfs_rq->runtime_remaining > 0;
3506 3507
}

P
Paul Turner 已提交
3508 3509 3510 3511 3512
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3513
{
P
Paul Turner 已提交
3514 3515 3516
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3517
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3518 3519
		return;

P
Paul Turner 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3529 3530 3531
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3532 3533
	 */

3534
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3535 3536 3537 3538 3539 3540 3541 3542
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3543
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3544 3545
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3546
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3547 3548 3549
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3550 3551
		return;

3552 3553 3554 3555 3556
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3557
		resched_curr(rq_of(cfs_rq));
3558 3559
}

3560
static __always_inline
3561
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3562
{
3563
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3564 3565 3566 3567 3568
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3569 3570
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3571
	return cfs_bandwidth_used() && cfs_rq->throttled;
3572 3573
}

3574 3575 3576
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3577
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3606
		/* adjust cfs_rq_clock_task() */
3607
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3608
					     cfs_rq->throttled_clock_task;
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3620 3621
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3622
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3623 3624 3625 3626 3627
	cfs_rq->throttle_count++;

	return 0;
}

3628
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3629 3630 3631 3632 3633
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
3634
	bool empty;
3635 3636 3637

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3638
	/* freeze hierarchy runnable averages while throttled */
3639 3640 3641
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3659
		sub_nr_running(rq, task_delta);
3660 3661

	cfs_rq->throttled = 1;
3662
	cfs_rq->throttled_clock = rq_clock(rq);
3663
	raw_spin_lock(&cfs_b->lock);
3664
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3665

3666 3667 3668 3669 3670
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3671 3672 3673 3674 3675 3676 3677 3678

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

3679 3680 3681
	raw_spin_unlock(&cfs_b->lock);
}

3682
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3683 3684 3685 3686 3687 3688 3689
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3690
	se = cfs_rq->tg->se[cpu_of(rq)];
3691 3692

	cfs_rq->throttled = 0;
3693 3694 3695

	update_rq_clock(rq);

3696
	raw_spin_lock(&cfs_b->lock);
3697
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3698 3699 3700
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3701 3702 3703
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
3722
		add_nr_running(rq, task_delta);
3723 3724 3725

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
3726
		resched_curr(rq);
3727 3728 3729 3730 3731 3732
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
3733 3734
	u64 runtime;
	u64 starting_runtime = remaining;
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

3765
	return starting_runtime - remaining;
3766 3767
}

3768 3769 3770 3771 3772 3773 3774 3775
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3776
	u64 runtime, runtime_expires;
3777
	int throttled;
3778 3779 3780

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
3781
		goto out_deactivate;
3782

3783
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3784
	cfs_b->nr_periods += overrun;
3785

3786 3787 3788 3789 3790 3791
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
3792 3793 3794

	__refill_cfs_bandwidth_runtime(cfs_b);

3795 3796 3797
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
3798
		return 0;
3799 3800
	}

3801 3802 3803
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3804 3805 3806
	runtime_expires = cfs_b->runtime_expires;

	/*
3807 3808 3809 3810 3811
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
3812
	 */
3813 3814
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
3815 3816 3817 3818 3819 3820 3821
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3822 3823

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3824
	}
3825

3826 3827 3828 3829 3830 3831 3832
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3833

3834 3835 3836 3837
	return 0;

out_deactivate:
	return 1;
3838
}
3839

3840 3841 3842 3843 3844 3845 3846
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3847 3848 3849 3850
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3851
 * hrtimer base being cleared by hrtimer_start. In the case of
3852 3853
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
3879 3880 3881
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3911 3912 3913
	if (!cfs_bandwidth_used())
		return;

3914
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3930 3931 3932
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3933
		return;
3934
	}
3935

3936
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3937
		runtime = cfs_b->runtime;
3938

3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
3949
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3950 3951 3952
	raw_spin_unlock(&cfs_b->lock);
}

3953 3954 3955 3956 3957 3958 3959
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3960 3961 3962
	if (!cfs_bandwidth_used())
		return;

3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
3978
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3979
{
3980
	if (!cfs_bandwidth_used())
3981
		return false;
3982

3983
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3984
		return false;
3985 3986 3987 3988 3989 3990

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
3991
		return true;
3992 3993

	throttle_cfs_rq(cfs_rq);
3994
	return true;
3995
}
3996 3997 3998 3999 4000

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4001

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4014
	raw_spin_lock(&cfs_b->lock);
4015
	for (;;) {
P
Peter Zijlstra 已提交
4016
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4017 4018 4019 4020 4021
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4022 4023
	if (idle)
		cfs_b->period_active = 0;
4024
	raw_spin_unlock(&cfs_b->lock);
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4037
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4049
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4050
{
P
Peter Zijlstra 已提交
4051
	lockdep_assert_held(&cfs_b->lock);
4052

P
Peter Zijlstra 已提交
4053 4054 4055 4056 4057
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4058 4059 4060 4061
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4062 4063 4064 4065
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4066 4067 4068 4069
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4083
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4095
		cfs_rq->runtime_remaining = 1;
4096 4097 4098 4099 4100 4101
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4102 4103 4104 4105 4106 4107
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4108 4109
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4110
	return rq_clock_task(rq_of(cfs_rq));
4111 4112
}

4113
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4114
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4115
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4116
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4117 4118 4119 4120 4121

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4133 4134 4135 4136 4137

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4138 4139
#endif

4140 4141 4142 4143 4144
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4145
static inline void update_runtime_enabled(struct rq *rq) {}
4146
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4147 4148 4149

#endif /* CONFIG_CFS_BANDWIDTH */

4150 4151 4152 4153
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4154 4155 4156 4157 4158 4159 4160 4161
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

4162
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
4163 4164 4165 4166 4167 4168
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4169
				resched_curr(rq);
P
Peter Zijlstra 已提交
4170 4171
			return;
		}
4172
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4173 4174
	}
}
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4185
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4186 4187 4188 4189 4190
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4191
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4192 4193 4194 4195
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4196 4197 4198 4199

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4200 4201
#endif

4202 4203 4204 4205 4206
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4207
static void
4208
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4209 4210
{
	struct cfs_rq *cfs_rq;
4211
	struct sched_entity *se = &p->se;
4212 4213

	for_each_sched_entity(se) {
4214
		if (se->on_rq)
4215 4216
			break;
		cfs_rq = cfs_rq_of(se);
4217
		enqueue_entity(cfs_rq, se, flags);
4218 4219 4220 4221 4222 4223 4224 4225 4226

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4227
		cfs_rq->h_nr_running++;
4228

4229
		flags = ENQUEUE_WAKEUP;
4230
	}
P
Peter Zijlstra 已提交
4231

P
Peter Zijlstra 已提交
4232
	for_each_sched_entity(se) {
4233
		cfs_rq = cfs_rq_of(se);
4234
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4235

4236 4237 4238
		if (cfs_rq_throttled(cfs_rq))
			break;

4239
		update_load_avg(se, 1);
4240
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4241 4242
	}

Y
Yuyang Du 已提交
4243
	if (!se)
4244
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4245

4246
	hrtick_update(rq);
4247 4248
}

4249 4250
static void set_next_buddy(struct sched_entity *se);

4251 4252 4253 4254 4255
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4256
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4257 4258
{
	struct cfs_rq *cfs_rq;
4259
	struct sched_entity *se = &p->se;
4260
	int task_sleep = flags & DEQUEUE_SLEEP;
4261 4262 4263

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4264
		dequeue_entity(cfs_rq, se, flags);
4265 4266 4267 4268 4269 4270 4271 4272 4273

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4274
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4275

4276
		/* Don't dequeue parent if it has other entities besides us */
4277 4278 4279 4280 4281 4282 4283
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
4284 4285 4286

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
4287
			break;
4288
		}
4289
		flags |= DEQUEUE_SLEEP;
4290
	}
P
Peter Zijlstra 已提交
4291

P
Peter Zijlstra 已提交
4292
	for_each_sched_entity(se) {
4293
		cfs_rq = cfs_rq_of(se);
4294
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4295

4296 4297 4298
		if (cfs_rq_throttled(cfs_rq))
			break;

4299
		update_load_avg(se, 1);
4300
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4301 4302
	}

Y
Yuyang Du 已提交
4303
	if (!se)
4304
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4305

4306
	hrtick_update(rq);
4307 4308
}

4309
#ifdef CONFIG_SMP
4310 4311 4312 4313 4314 4315

/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4316
 * The exact cpuload calculated at every tick would be:
4317
 *
4318 4319 4320 4321 4322 4323 4324
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4325 4326 4327
 *
 * decay_load_missed() below does efficient calculation of
 *
4328 4329 4330 4331 4332 4333
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4334
 *
4335
 * The calculation is approximated on a 128 point scale.
4336 4337
 */
#define DEGRADE_SHIFT		7
4338 4339 4340 4341 4342 4343 4344 4345 4346

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

4377 4378 4379 4380 4381 4382 4383
/**
 * __update_cpu_load - update the rq->cpu_load[] statistics
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 * @active: !0 for NOHZ_FULL
 *
4384
 * Update rq->cpu_load[] statistics. This function is usually called every
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
 * term. See the @active paramter.
4412 4413
 */
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4414
			      unsigned long pending_updates, int active)
4415
{
4416
	unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

4428
		old_load = this_rq->cpu_load[i] - tickless_load;
4429
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4430
		old_load += tickless_load;
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

4446 4447 4448 4449 4450 4451
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
#ifdef CONFIG_NO_HZ_COMMON
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
static void update_idle_cpu_load(struct rq *this_rq)
{
4472
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4473
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
	unsigned long pending_updates;

	/*
	 * bail if there's load or we're actually up-to-date.
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

4485
	__update_cpu_load(this_rq, load, pending_updates, 0);
4486 4487 4488 4489 4490
}

/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
4491
void update_cpu_load_nohz(int active)
4492 4493
{
	struct rq *this_rq = this_rq();
4494
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4495
	unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
4506 4507 4508
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
4509
		 */
4510
		__update_cpu_load(this_rq, load, pending_updates, active);
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

/*
 * Called from scheduler_tick()
 */
void update_cpu_load_active(struct rq *this_rq)
{
4521
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4522 4523 4524 4525
	/*
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
	 */
	this_rq->last_load_update_tick = jiffies;
4526
	__update_cpu_load(this_rq, load, 1, 1);
4527 4528
}

4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4562
static unsigned long capacity_of(int cpu)
4563
{
4564
	return cpu_rq(cpu)->cpu_capacity;
4565 4566
}

4567 4568 4569 4570 4571
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

4572 4573 4574
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4575
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4576
	unsigned long load_avg = weighted_cpuload(cpu);
4577 4578

	if (nr_running)
4579
		return load_avg / nr_running;
4580 4581 4582 4583

	return 0;
}

4584 4585 4586 4587 4588 4589 4590
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
4591
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4592
		current->wakee_flips >>= 1;
4593 4594 4595 4596 4597 4598 4599 4600
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4601

4602
static void task_waking_fair(struct task_struct *p)
4603 4604 4605
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4606 4607 4608 4609
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4610

4611 4612 4613 4614 4615 4616 4617 4618
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4619

4620
	se->vruntime -= min_vruntime;
4621
	record_wakee(p);
4622 4623
}

4624
#ifdef CONFIG_FAIR_GROUP_SCHED
4625 4626 4627 4628 4629 4630
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4674
 */
P
Peter Zijlstra 已提交
4675
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4676
{
P
Peter Zijlstra 已提交
4677
	struct sched_entity *se = tg->se[cpu];
4678

4679
	if (!tg->parent)	/* the trivial, non-cgroup case */
4680 4681
		return wl;

P
Peter Zijlstra 已提交
4682
	for_each_sched_entity(se) {
4683
		long w, W;
P
Peter Zijlstra 已提交
4684

4685
		tg = se->my_q->tg;
4686

4687 4688 4689 4690
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4691

4692 4693 4694
		/*
		 * w = rw_i + @wl
		 */
4695
		w = cfs_rq_load_avg(se->my_q) + wl;
4696

4697 4698 4699 4700
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
4701
			wl = (w * (long)tg->shares) / W;
4702 4703
		else
			wl = tg->shares;
4704

4705 4706 4707 4708 4709
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4710 4711
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4712 4713 4714 4715

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4716
		wl -= se->avg.load_avg;
4717 4718 4719 4720 4721 4722 4723 4724

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4725 4726
		wg = 0;
	}
4727

P
Peter Zijlstra 已提交
4728
	return wl;
4729 4730
}
#else
P
Peter Zijlstra 已提交
4731

4732
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4733
{
4734
	return wl;
4735
}
P
Peter Zijlstra 已提交
4736

4737 4738
#endif

M
Mike Galbraith 已提交
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
 * A waker of many should wake a different task than the one last awakened
 * at a frequency roughly N times higher than one of its wakees.  In order
 * to determine whether we should let the load spread vs consolodating to
 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.  With
 * both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.  Waker/wakee
 * being client/server, worker/dispatcher, interrupt source or whatever is
 * irrelevant, spread criteria is apparent partner count exceeds socket size.
 */
4751 4752
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
4753 4754
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
4755
	int factor = this_cpu_read(sd_llc_size);
4756

M
Mike Galbraith 已提交
4757 4758 4759 4760 4761
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
4762 4763
}

4764
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4765
{
4766
	s64 this_load, load;
4767
	s64 this_eff_load, prev_eff_load;
4768 4769
	int idx, this_cpu, prev_cpu;
	struct task_group *tg;
4770
	unsigned long weight;
4771
	int balanced;
4772

4773 4774 4775 4776 4777
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4778

4779 4780 4781 4782 4783
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4784 4785
	if (sync) {
		tg = task_group(current);
4786
		weight = current->se.avg.load_avg;
4787

4788
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4789 4790
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4791

4792
	tg = task_group(p);
4793
	weight = p->se.avg.load_avg;
4794

4795 4796
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4797 4798 4799
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4800 4801 4802 4803
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4804 4805
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
4806

4807 4808
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
4809

4810
	if (this_load > 0) {
4811 4812 4813 4814
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4815
	}
4816

4817
	balanced = this_eff_load <= prev_eff_load;
4818

4819
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4820

4821 4822
	if (!balanced)
		return 0;
4823

4824 4825 4826 4827
	schedstat_inc(sd, ttwu_move_affine);
	schedstat_inc(p, se.statistics.nr_wakeups_affine);

	return 1;
4828 4829
}

4830 4831 4832 4833 4834
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4835
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4836
		  int this_cpu, int sd_flag)
4837
{
4838
	struct sched_group *idlest = NULL, *group = sd->groups;
4839
	unsigned long min_load = ULONG_MAX, this_load = 0;
4840
	int load_idx = sd->forkexec_idx;
4841
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4842

4843 4844 4845
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4846 4847 4848 4849
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4850

4851 4852
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4853
					tsk_cpus_allowed(p)))
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

4872
		/* Adjust by relative CPU capacity of the group */
4873
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
4895 4896 4897 4898
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
4899 4900 4901
	int i;

	/* Traverse only the allowed CPUs */
4902
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
4925
		} else if (shallowest_idle_cpu == -1) {
4926 4927 4928 4929 4930
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
4931 4932 4933
		}
	}

4934
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4935
}
4936

4937 4938 4939
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4940
static int select_idle_sibling(struct task_struct *p, int target)
4941
{
4942
	struct sched_domain *sd;
4943
	struct sched_group *sg;
4944
	int i = task_cpu(p);
4945

4946 4947
	if (idle_cpu(target))
		return target;
4948 4949

	/*
4950
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4951
	 */
4952 4953
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4954 4955

	/*
4956
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4957
	 */
4958
	sd = rcu_dereference(per_cpu(sd_llc, target));
4959
	for_each_lower_domain(sd) {
4960 4961 4962 4963 4964 4965 4966
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4967
				if (i == target || !idle_cpu(i))
4968 4969
					goto next;
			}
4970

4971 4972 4973 4974 4975 4976 4977 4978
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4979 4980
	return target;
}
4981

4982
/*
4983
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
4984
 * tasks. The unit of the return value must be the one of capacity so we can
4985 4986
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5007
 */
5008
static int cpu_util(int cpu)
5009
{
5010
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5011 5012
	unsigned long capacity = capacity_orig_of(cpu);

5013
	return (util >= capacity) ? capacity : util;
5014
}
5015

5016
/*
5017 5018 5019
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5020
 *
5021 5022
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5023
 *
5024
 * Returns the target cpu number.
5025 5026 5027
 *
 * preempt must be disabled.
 */
5028
static int
5029
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5030
{
5031
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5032
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5033
	int new_cpu = prev_cpu;
5034
	int want_affine = 0;
5035
	int sync = wake_flags & WF_SYNC;
5036

5037
	if (sd_flag & SD_BALANCE_WAKE)
M
Mike Galbraith 已提交
5038
		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5039

5040
	rcu_read_lock();
5041
	for_each_domain(cpu, tmp) {
5042
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
5043
			break;
5044

5045
		/*
5046 5047
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
5048
		 */
5049 5050 5051
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
5052
			break;
5053
		}
5054

5055
		if (tmp->flags & sd_flag)
5056
			sd = tmp;
M
Mike Galbraith 已提交
5057 5058
		else if (!want_affine)
			break;
5059 5060
	}

M
Mike Galbraith 已提交
5061 5062 5063 5064
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
			new_cpu = cpu;
5065
	}
5066

M
Mike Galbraith 已提交
5067 5068 5069 5070 5071
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
			new_cpu = select_idle_sibling(p, new_cpu);

	} else while (sd) {
5072
		struct sched_group *group;
5073
		int weight;
5074

5075
		if (!(sd->flags & sd_flag)) {
5076 5077 5078
			sd = sd->child;
			continue;
		}
5079

5080
		group = find_idlest_group(sd, p, cpu, sd_flag);
5081 5082 5083 5084
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
5085

5086
		new_cpu = find_idlest_cpu(group, p, cpu);
5087 5088 5089 5090
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
5091
		}
5092 5093 5094

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
5095
		weight = sd->span_weight;
5096 5097
		sd = NULL;
		for_each_domain(cpu, tmp) {
5098
			if (weight <= tmp->span_weight)
5099
				break;
5100
			if (tmp->flags & sd_flag)
5101 5102 5103
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
5104
	}
5105
	rcu_read_unlock();
5106

5107
	return new_cpu;
5108
}
5109 5110 5111 5112

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
5113
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5114
 */
5115
static void migrate_task_rq_fair(struct task_struct *p)
5116
{
5117
	/*
5118 5119 5120 5121 5122
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
5123
	 */
5124 5125 5126 5127
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
5128 5129

	/* We have migrated, no longer consider this task hot */
5130
	p->se.exec_start = 0;
5131
}
5132 5133 5134 5135 5136

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
5137 5138
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
5139 5140
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5141 5142 5143 5144
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
5145 5146
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
5147 5148 5149 5150 5151 5152 5153 5154 5155
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
5156
	 */
5157
	return calc_delta_fair(gran, se);
5158 5159
}

5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
5182
	gran = wakeup_gran(curr, se);
5183 5184 5185 5186 5187 5188
	if (vdiff > gran)
		return 1;

	return 0;
}

5189 5190
static void set_last_buddy(struct sched_entity *se)
{
5191 5192 5193 5194 5195
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
5196 5197 5198 5199
}

static void set_next_buddy(struct sched_entity *se)
{
5200 5201 5202 5203 5204
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
5205 5206
}

5207 5208
static void set_skip_buddy(struct sched_entity *se)
{
5209 5210
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
5211 5212
}

5213 5214 5215
/*
 * Preempt the current task with a newly woken task if needed:
 */
5216
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5217 5218
{
	struct task_struct *curr = rq->curr;
5219
	struct sched_entity *se = &curr->se, *pse = &p->se;
5220
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5221
	int scale = cfs_rq->nr_running >= sched_nr_latency;
5222
	int next_buddy_marked = 0;
5223

I
Ingo Molnar 已提交
5224 5225 5226
	if (unlikely(se == pse))
		return;

5227
	/*
5228
	 * This is possible from callers such as attach_tasks(), in which we
5229 5230 5231 5232 5233 5234 5235
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

5236
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
5237
		set_next_buddy(pse);
5238 5239
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
5240

5241 5242 5243
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
5244 5245 5246 5247 5248 5249
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
5250 5251 5252 5253
	 */
	if (test_tsk_need_resched(curr))
		return;

5254 5255 5256 5257 5258
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

5259
	/*
5260 5261
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
5262
	 */
5263
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5264
		return;
5265

5266
	find_matching_se(&se, &pse);
5267
	update_curr(cfs_rq_of(se));
5268
	BUG_ON(!pse);
5269 5270 5271 5272 5273 5274 5275
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
5276
		goto preempt;
5277
	}
5278

5279
	return;
5280

5281
preempt:
5282
	resched_curr(rq);
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
5297 5298
}

5299 5300
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5301 5302 5303
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
5304
	struct task_struct *p;
5305
	int new_tasks;
5306

5307
again:
5308 5309
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
5310
		goto idle;
5311

5312
	if (prev->sched_class != &fair_sched_class)
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
5332 5333 5334 5335 5336
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
5337

5338 5339 5340 5341 5342 5343 5344 5345 5346
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
5387

5388
	if (!cfs_rq->nr_running)
5389
		goto idle;
5390

5391
	put_prev_task(rq, prev);
5392

5393
	do {
5394
		se = pick_next_entity(cfs_rq, NULL);
5395
		set_next_entity(cfs_rq, se);
5396 5397 5398
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
5399
	p = task_of(se);
5400

5401 5402
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
5403 5404

	return p;
5405 5406

idle:
5407 5408 5409 5410 5411 5412 5413
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	lockdep_unpin_lock(&rq->lock);
5414
	new_tasks = idle_balance(rq);
5415
	lockdep_pin_lock(&rq->lock);
5416 5417 5418 5419 5420
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
5421
	if (new_tasks < 0)
5422 5423
		return RETRY_TASK;

5424
	if (new_tasks > 0)
5425 5426 5427
		goto again;

	return NULL;
5428 5429 5430 5431 5432
}

/*
 * Account for a descheduled task:
 */
5433
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5434 5435 5436 5437 5438 5439
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5440
		put_prev_entity(cfs_rq, se);
5441 5442 5443
	}
}

5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
5469 5470 5471 5472 5473
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
5474
		rq_clock_skip_update(rq, true);
5475 5476 5477 5478 5479
	}

	set_skip_buddy(se);
}

5480 5481 5482 5483
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

5484 5485
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

5496
#ifdef CONFIG_SMP
5497
/**************************************************
P
Peter Zijlstra 已提交
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
5521
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
5522 5523 5524 5525 5526 5527
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5528
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5614

5615 5616
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5617 5618
enum fbq_type { regular, remote, all };

5619
#define LBF_ALL_PINNED	0x01
5620
#define LBF_NEED_BREAK	0x02
5621 5622
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5623 5624 5625 5626 5627

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5628
	int			src_cpu;
5629 5630 5631 5632

	int			dst_cpu;
	struct rq		*dst_rq;

5633 5634
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5635
	enum cpu_idle_type	idle;
5636
	long			imbalance;
5637 5638 5639
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5640
	unsigned int		flags;
5641 5642 5643 5644

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5645 5646

	enum fbq_type		fbq_type;
5647
	struct list_head	tasks;
5648 5649
};

5650 5651 5652
/*
 * Is this task likely cache-hot:
 */
5653
static int task_hot(struct task_struct *p, struct lb_env *env)
5654 5655 5656
{
	s64 delta;

5657 5658
	lockdep_assert_held(&env->src_rq->lock);

5659 5660 5661 5662 5663 5664 5665 5666 5667
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
5668
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5669 5670 5671 5672 5673 5674 5675 5676 5677
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

5678
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5679 5680 5681 5682

	return delta < (s64)sysctl_sched_migration_cost;
}

5683
#ifdef CONFIG_NUMA_BALANCING
5684
/*
5685 5686 5687
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
5688
 */
5689
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5690
{
5691
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5692
	unsigned long src_faults, dst_faults;
5693 5694
	int src_nid, dst_nid;

5695
	if (!static_branch_likely(&sched_numa_balancing))
5696 5697
		return -1;

5698
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5699
		return -1;
5700 5701 5702 5703

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5704
	if (src_nid == dst_nid)
5705
		return -1;
5706

5707 5708 5709 5710 5711 5712 5713
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
5714

5715 5716
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
5717
		return 0;
5718

5719 5720 5721 5722 5723 5724
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
5725 5726
	}

5727
	return dst_faults < src_faults;
5728 5729
}

5730
#else
5731
static inline int migrate_degrades_locality(struct task_struct *p,
5732 5733
					     struct lb_env *env)
{
5734
	return -1;
5735
}
5736 5737
#endif

5738 5739 5740 5741
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5742
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5743
{
5744
	int tsk_cache_hot;
5745 5746 5747

	lockdep_assert_held(&env->src_rq->lock);

5748 5749
	/*
	 * We do not migrate tasks that are:
5750
	 * 1) throttled_lb_pair, or
5751
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5752 5753
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5754
	 */
5755 5756 5757
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5758
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5759
		int cpu;
5760

5761
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5762

5763 5764
		env->flags |= LBF_SOME_PINNED;

5765 5766 5767 5768 5769 5770 5771 5772
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5773
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5774 5775
			return 0;

5776 5777 5778
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5779
				env->flags |= LBF_DST_PINNED;
5780 5781 5782
				env->new_dst_cpu = cpu;
				break;
			}
5783
		}
5784

5785 5786
		return 0;
	}
5787 5788

	/* Record that we found atleast one task that could run on dst_cpu */
5789
	env->flags &= ~LBF_ALL_PINNED;
5790

5791
	if (task_running(env->src_rq, p)) {
5792
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5793 5794 5795 5796 5797
		return 0;
	}

	/*
	 * Aggressive migration if:
5798 5799 5800
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5801
	 */
5802 5803 5804
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
5805

5806
	if (tsk_cache_hot <= 0 ||
5807
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5808
		if (tsk_cache_hot == 1) {
5809 5810 5811
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
5812 5813 5814
		return 1;
	}

Z
Zhang Hang 已提交
5815 5816
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5817 5818
}

5819
/*
5820 5821 5822 5823 5824 5825 5826
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
5827
	deactivate_task(env->src_rq, p, 0);
5828 5829 5830
	set_task_cpu(p, env->dst_cpu);
}

5831
/*
5832
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5833 5834
 * part of active balancing operations within "domain".
 *
5835
 * Returns a task if successful and NULL otherwise.
5836
 */
5837
static struct task_struct *detach_one_task(struct lb_env *env)
5838 5839 5840
{
	struct task_struct *p, *n;

5841 5842
	lockdep_assert_held(&env->src_rq->lock);

5843 5844 5845
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5846

5847
		detach_task(p, env);
5848

5849
		/*
5850
		 * Right now, this is only the second place where
5851
		 * lb_gained[env->idle] is updated (other is detach_tasks)
5852
		 * so we can safely collect stats here rather than
5853
		 * inside detach_tasks().
5854 5855
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
5856
		return p;
5857
	}
5858
	return NULL;
5859 5860
}

5861 5862
static const unsigned int sched_nr_migrate_break = 32;

5863
/*
5864 5865
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
5866
 *
5867
 * Returns number of detached tasks if successful and 0 otherwise.
5868
 */
5869
static int detach_tasks(struct lb_env *env)
5870
{
5871 5872
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5873
	unsigned long load;
5874 5875 5876
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
5877

5878
	if (env->imbalance <= 0)
5879
		return 0;
5880

5881
	while (!list_empty(tasks)) {
5882 5883 5884 5885 5886 5887 5888
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

5889
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5890

5891 5892
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5893
		if (env->loop > env->loop_max)
5894
			break;
5895 5896

		/* take a breather every nr_migrate tasks */
5897
		if (env->loop > env->loop_break) {
5898
			env->loop_break += sched_nr_migrate_break;
5899
			env->flags |= LBF_NEED_BREAK;
5900
			break;
5901
		}
5902

5903
		if (!can_migrate_task(p, env))
5904 5905 5906
			goto next;

		load = task_h_load(p);
5907

5908
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5909 5910
			goto next;

5911
		if ((load / 2) > env->imbalance)
5912
			goto next;
5913

5914 5915 5916 5917
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
5918
		env->imbalance -= load;
5919 5920

#ifdef CONFIG_PREEMPT
5921 5922
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
5923
		 * kernels will stop after the first task is detached to minimize
5924 5925
		 * the critical section.
		 */
5926
		if (env->idle == CPU_NEWLY_IDLE)
5927
			break;
5928 5929
#endif

5930 5931 5932 5933
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5934
		if (env->imbalance <= 0)
5935
			break;
5936 5937 5938

		continue;
next:
5939
		list_move_tail(&p->se.group_node, tasks);
5940
	}
5941

5942
	/*
5943 5944 5945
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
5946
	 */
5947
	schedstat_add(env->sd, lb_gained[env->idle], detached);
5948

5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	activate_task(rq, p, 0);
5961
	p->on_rq = TASK_ON_RQ_QUEUED;
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
5990

5991 5992 5993 5994
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
5995 5996
}

P
Peter Zijlstra 已提交
5997
#ifdef CONFIG_FAIR_GROUP_SCHED
5998
static void update_blocked_averages(int cpu)
5999 6000
{
	struct rq *rq = cpu_rq(cpu);
6001 6002
	struct cfs_rq *cfs_rq;
	unsigned long flags;
6003

6004 6005
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6006

6007 6008 6009 6010
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6011
	for_each_leaf_cfs_rq(rq, cfs_rq) {
6012 6013 6014
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
6015

6016 6017 6018
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
			update_tg_load_avg(cfs_rq, 0);
	}
6019
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6020 6021
}

6022
/*
6023
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6024 6025 6026
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
6027
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6028
{
6029 6030
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6031
	unsigned long now = jiffies;
6032
	unsigned long load;
6033

6034
	if (cfs_rq->last_h_load_update == now)
6035 6036
		return;

6037 6038 6039 6040 6041 6042 6043
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
6044

6045
	if (!se) {
6046
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6047 6048 6049 6050 6051
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
6052 6053
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
6054 6055 6056 6057
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
6058 6059
}

6060
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
6061
{
6062
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
6063

6064
	update_cfs_rq_h_load(cfs_rq);
6065
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6066
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
6067 6068
}
#else
6069
static inline void update_blocked_averages(int cpu)
6070
{
6071 6072 6073 6074 6075 6076 6077 6078
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6079 6080
}

6081
static unsigned long task_h_load(struct task_struct *p)
6082
{
6083
	return p->se.avg.load_avg;
6084
}
P
Peter Zijlstra 已提交
6085
#endif
6086 6087

/********** Helpers for find_busiest_group ************************/
6088 6089 6090 6091 6092 6093 6094

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

6095 6096 6097 6098 6099 6100 6101
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
6102
	unsigned long load_per_task;
6103
	unsigned long group_capacity;
6104
	unsigned long group_util; /* Total utilization of the group */
6105 6106 6107
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
6108
	enum group_type group_type;
6109
	int group_no_capacity;
6110 6111 6112 6113
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
6114 6115
};

J
Joonsoo Kim 已提交
6116 6117 6118 6119 6120 6121 6122 6123
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
6124
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
6125 6126 6127
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6128
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
6129 6130
};

6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
6143
		.total_capacity = 0UL,
6144 6145
		.busiest_stat = {
			.avg_load = 0UL,
6146 6147
			.sum_nr_running = 0,
			.group_type = group_other,
6148 6149 6150 6151
		},
	};
}

6152 6153 6154
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
6155
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6156 6157
 *
 * Return: The load index.
6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

6180
static unsigned long scale_rt_capacity(int cpu)
6181 6182
{
	struct rq *rq = cpu_rq(cpu);
6183
	u64 total, used, age_stamp, avg;
6184
	s64 delta;
6185

6186 6187 6188 6189
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
6190 6191
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
6192
	delta = __rq_clock_broken(rq) - age_stamp;
6193

6194 6195 6196 6197
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
6198

6199
	used = div_u64(avg, total);
6200

6201 6202
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
6203

6204
	return 1;
6205 6206
}

6207
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6208
{
6209
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6210 6211
	struct sched_group *sdg = sd->groups;

6212
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6213

6214
	capacity *= scale_rt_capacity(cpu);
6215
	capacity >>= SCHED_CAPACITY_SHIFT;
6216

6217 6218
	if (!capacity)
		capacity = 1;
6219

6220 6221
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
6222 6223
}

6224
void update_group_capacity(struct sched_domain *sd, int cpu)
6225 6226 6227
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
6228
	unsigned long capacity;
6229 6230 6231 6232
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
6233
	sdg->sgc->next_update = jiffies + interval;
6234 6235

	if (!child) {
6236
		update_cpu_capacity(sd, cpu);
6237 6238 6239
		return;
	}

6240
	capacity = 0;
6241

P
Peter Zijlstra 已提交
6242 6243 6244 6245 6246 6247
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

6248
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6249
			struct sched_group_capacity *sgc;
6250
			struct rq *rq = cpu_rq(cpu);
6251

6252
			/*
6253
			 * build_sched_domains() -> init_sched_groups_capacity()
6254 6255 6256
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
6257 6258
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
6259
			 *
6260
			 * This avoids capacity from being 0 and
6261 6262 6263
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
6264
				capacity += capacity_of(cpu);
6265 6266
				continue;
			}
6267

6268 6269
			sgc = rq->sd->groups->sgc;
			capacity += sgc->capacity;
6270
		}
P
Peter Zijlstra 已提交
6271 6272 6273 6274 6275 6276 6277 6278
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
6279
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
6280 6281 6282
			group = group->next;
		} while (group != child->groups);
	}
6283

6284
	sdg->sgc->capacity = capacity;
6285 6286
}

6287
/*
6288 6289 6290
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
6291 6292
 */
static inline int
6293
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6294
{
6295 6296
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
6297 6298
}

6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
6315 6316
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
6317 6318
 *
 * When this is so detected; this group becomes a candidate for busiest; see
6319
 * update_sd_pick_busiest(). And calculate_imbalance() and
6320
 * find_busiest_group() avoid some of the usual balance conditions to allow it
6321 6322 6323 6324 6325 6326 6327
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

6328
static inline int sg_imbalanced(struct sched_group *group)
6329
{
6330
	return group->sgc->imbalance;
6331 6332
}

6333
/*
6334 6335 6336
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
6337 6338
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
6339 6340 6341 6342 6343
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
6344
 */
6345 6346
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6347
{
6348 6349
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
6350

6351
	if ((sgs->group_capacity * 100) >
6352
			(sgs->group_util * env->sd->imbalance_pct))
6353
		return true;
6354

6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
6371

6372
	if ((sgs->group_capacity * 100) <
6373
			(sgs->group_util * env->sd->imbalance_pct))
6374
		return true;
6375

6376
	return false;
6377 6378
}

6379 6380 6381
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
6382
{
6383
	if (sgs->group_no_capacity)
6384 6385 6386 6387 6388 6389 6390 6391
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

6392 6393
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6394
 * @env: The load balancing environment.
6395 6396 6397 6398
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
6399
 * @overload: Indicate more than one runnable task for any CPU.
6400
 */
6401 6402
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
6403 6404
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
6405
{
6406
	unsigned long load;
6407
	int i, nr_running;
6408

6409 6410
	memset(sgs, 0, sizeof(*sgs));

6411
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6412 6413 6414
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
6415
		if (local_group)
6416
			load = target_load(i, load_idx);
6417
		else
6418 6419 6420
			load = source_load(i, load_idx);

		sgs->group_load += load;
6421
		sgs->group_util += cpu_util(i);
6422
		sgs->sum_nr_running += rq->cfs.h_nr_running;
6423

6424 6425
		nr_running = rq->nr_running;
		if (nr_running > 1)
6426 6427
			*overload = true;

6428 6429 6430 6431
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
6432
		sgs->sum_weighted_load += weighted_cpuload(i);
6433 6434 6435 6436
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
6437
			sgs->idle_cpus++;
6438 6439
	}

6440 6441
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
6442
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6443

6444
	if (sgs->sum_nr_running)
6445
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6446

6447
	sgs->group_weight = group->group_weight;
6448

6449
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6450
	sgs->group_type = group_classify(group, sgs);
6451 6452
}

6453 6454
/**
 * update_sd_pick_busiest - return 1 on busiest group
6455
 * @env: The load balancing environment.
6456 6457
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
6458
 * @sgs: sched_group statistics
6459 6460 6461
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
6462 6463 6464
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
6465
 */
6466
static bool update_sd_pick_busiest(struct lb_env *env,
6467 6468
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
6469
				   struct sg_lb_stats *sgs)
6470
{
6471
	struct sg_lb_stats *busiest = &sds->busiest_stat;
6472

6473
	if (sgs->group_type > busiest->group_type)
6474 6475
		return true;

6476 6477 6478 6479 6480 6481 6482 6483
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
6484 6485 6486 6487 6488 6489 6490
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
6491
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6532
/**
6533
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6534
 * @env: The load balancing environment.
6535 6536
 * @sds: variable to hold the statistics for this sched_domain.
 */
6537
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6538
{
6539 6540
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6541
	struct sg_lb_stats tmp_sgs;
6542
	int load_idx, prefer_sibling = 0;
6543
	bool overload = false;
6544 6545 6546 6547

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6548
	load_idx = get_sd_load_idx(env->sd, env->idle);
6549 6550

	do {
J
Joonsoo Kim 已提交
6551
		struct sg_lb_stats *sgs = &tmp_sgs;
6552 6553
		int local_group;

6554
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6555 6556 6557
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6558 6559

			if (env->idle != CPU_NEWLY_IDLE ||
6560 6561
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6562
		}
6563

6564 6565
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6566

6567 6568 6569
		if (local_group)
			goto next_group;

6570 6571
		/*
		 * In case the child domain prefers tasks go to siblings
6572
		 * first, lower the sg capacity so that we'll try
6573 6574
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6575 6576 6577 6578
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
6579
		 */
6580
		if (prefer_sibling && sds->local &&
6581 6582 6583
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
6584
			sgs->group_type = group_classify(sg, sgs);
6585
		}
6586

6587
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6588
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6589
			sds->busiest_stat = *sgs;
6590 6591
		}

6592 6593 6594
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6595
		sds->total_capacity += sgs->group_capacity;
6596

6597
		sg = sg->next;
6598
	} while (sg != env->sd->groups);
6599 6600 6601

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6602 6603 6604 6605 6606 6607 6608

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6628
 * Return: 1 when packing is required and a task should be moved to
6629 6630
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6631
 * @env: The load balancing environment.
6632 6633
 * @sds: Statistics of the sched_domain which is to be packed
 */
6634
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6635 6636 6637
{
	int busiest_cpu;

6638
	if (!(env->sd->flags & SD_ASYM_PACKING))
6639 6640 6641 6642 6643 6644
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6645
	if (env->dst_cpu > busiest_cpu)
6646 6647
		return 0;

6648
	env->imbalance = DIV_ROUND_CLOSEST(
6649
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6650
		SCHED_CAPACITY_SCALE);
6651

6652
	return 1;
6653 6654 6655 6656 6657 6658
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6659
 * @env: The load balancing environment.
6660 6661
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6662 6663
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6664
{
6665
	unsigned long tmp, capa_now = 0, capa_move = 0;
6666
	unsigned int imbn = 2;
6667
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6668
	struct sg_lb_stats *local, *busiest;
6669

J
Joonsoo Kim 已提交
6670 6671
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6672

J
Joonsoo Kim 已提交
6673 6674 6675 6676
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6677

J
Joonsoo Kim 已提交
6678
	scaled_busy_load_per_task =
6679
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6680
		busiest->group_capacity;
J
Joonsoo Kim 已提交
6681

6682 6683
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6684
		env->imbalance = busiest->load_per_task;
6685 6686 6687 6688 6689
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
6690
	 * however we may be able to increase total CPU capacity used by
6691 6692 6693
	 * moving them.
	 */

6694
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
6695
			min(busiest->load_per_task, busiest->avg_load);
6696
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
6697
			min(local->load_per_task, local->avg_load);
6698
	capa_now /= SCHED_CAPACITY_SCALE;
6699 6700

	/* Amount of load we'd subtract */
6701
	if (busiest->avg_load > scaled_busy_load_per_task) {
6702
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
6703
			    min(busiest->load_per_task,
6704
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
6705
	}
6706 6707

	/* Amount of load we'd add */
6708
	if (busiest->avg_load * busiest->group_capacity <
6709
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6710 6711
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
6712
	} else {
6713
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6714
		      local->group_capacity;
J
Joonsoo Kim 已提交
6715
	}
6716
	capa_move += local->group_capacity *
6717
		    min(local->load_per_task, local->avg_load + tmp);
6718
	capa_move /= SCHED_CAPACITY_SCALE;
6719 6720

	/* Move if we gain throughput */
6721
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
6722
		env->imbalance = busiest->load_per_task;
6723 6724 6725 6726 6727
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
6728
 * @env: load balance environment
6729 6730
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
6731
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6732
{
6733
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
6734 6735 6736 6737
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6738

6739
	if (busiest->group_type == group_imbalanced) {
6740 6741 6742 6743
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
6744 6745
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
6746 6747
	}

6748 6749 6750
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
6751
	 * its cpu_capacity, while calculating max_load..)
6752
	 */
6753 6754
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6755 6756
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6757 6758
	}

6759 6760 6761 6762 6763
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
6764 6765 6766 6767 6768 6769
		load_above_capacity = busiest->sum_nr_running *
					SCHED_LOAD_SCALE;
		if (load_above_capacity > busiest->group_capacity)
			load_above_capacity -= busiest->group_capacity;
		else
			load_above_capacity = ~0UL;
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6780
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6781 6782

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6783
	env->imbalance = min(
6784 6785
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
6786
	) / SCHED_CAPACITY_SCALE;
6787 6788 6789

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6790
	 * there is no guarantee that any tasks will be moved so we'll have
6791 6792 6793
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6794
	if (env->imbalance < busiest->load_per_task)
6795
		return fix_small_imbalance(env, sds);
6796
}
6797

6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6810
 * @env: The load balancing environment.
6811
 *
6812
 * Return:	- The busiest group if imbalance exists.
6813 6814 6815 6816
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6817
static struct sched_group *find_busiest_group(struct lb_env *env)
6818
{
J
Joonsoo Kim 已提交
6819
	struct sg_lb_stats *local, *busiest;
6820 6821
	struct sd_lb_stats sds;

6822
	init_sd_lb_stats(&sds);
6823 6824 6825 6826 6827

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6828
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6829 6830
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6831

6832
	/* ASYM feature bypasses nice load balance check */
6833 6834
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6835 6836
		return sds.busiest;

6837
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6838
	if (!sds.busiest || busiest->sum_nr_running == 0)
6839 6840
		goto out_balanced;

6841 6842
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
6843

P
Peter Zijlstra 已提交
6844 6845
	/*
	 * If the busiest group is imbalanced the below checks don't
6846
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6847 6848
	 * isn't true due to cpus_allowed constraints and the like.
	 */
6849
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
6850 6851
		goto force_balance;

6852
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6853 6854
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
6855 6856
		goto force_balance;

6857
	/*
6858
	 * If the local group is busier than the selected busiest group
6859 6860
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
6861
	if (local->avg_load >= busiest->avg_load)
6862 6863
		goto out_balanced;

6864 6865 6866 6867
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
6868
	if (local->avg_load >= sds.avg_load)
6869 6870
		goto out_balanced;

6871
	if (env->idle == CPU_IDLE) {
6872
		/*
6873 6874 6875 6876 6877
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
6878
		 */
6879 6880
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6881
			goto out_balanced;
6882 6883 6884 6885 6886
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6887 6888
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6889
			goto out_balanced;
6890
	}
6891

6892
force_balance:
6893
	/* Looks like there is an imbalance. Compute it */
6894
	calculate_imbalance(env, &sds);
6895 6896 6897
	return sds.busiest;

out_balanced:
6898
	env->imbalance = 0;
6899 6900 6901 6902 6903 6904
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6905
static struct rq *find_busiest_queue(struct lb_env *env,
6906
				     struct sched_group *group)
6907 6908
{
	struct rq *busiest = NULL, *rq;
6909
	unsigned long busiest_load = 0, busiest_capacity = 1;
6910 6911
	int i;

6912
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6913
		unsigned long capacity, wl;
6914 6915 6916 6917
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6918

6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

6941
		capacity = capacity_of(i);
6942

6943
		wl = weighted_cpuload(i);
6944

6945 6946
		/*
		 * When comparing with imbalance, use weighted_cpuload()
6947
		 * which is not scaled with the cpu capacity.
6948
		 */
6949 6950 6951

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
6952 6953
			continue;

6954 6955
		/*
		 * For the load comparisons with the other cpu's, consider
6956 6957 6958
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
6959
		 *
6960
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6961
		 * multiplication to rid ourselves of the division works out
6962 6963
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
6964
		 */
6965
		if (wl * busiest_capacity > busiest_load * capacity) {
6966
			busiest_load = wl;
6967
			busiest_capacity = capacity;
6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6982
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6983

6984
static int need_active_balance(struct lb_env *env)
6985
{
6986 6987 6988
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6989 6990 6991 6992 6993 6994

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6995
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6996
			return 1;
6997 6998
	}

6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

7012 7013 7014
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

7015 7016
static int active_load_balance_cpu_stop(void *data);

7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
7048
	return balance_cpu == env->dst_cpu;
7049 7050
}

7051 7052 7053 7054 7055 7056
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
7057
			int *continue_balancing)
7058
{
7059
	int ld_moved, cur_ld_moved, active_balance = 0;
7060
	struct sched_domain *sd_parent = sd->parent;
7061 7062 7063
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
7064
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7065

7066 7067
	struct lb_env env = {
		.sd		= sd,
7068 7069
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
7070
		.dst_grpmask    = sched_group_cpus(sd->groups),
7071
		.idle		= idle,
7072
		.loop_break	= sched_nr_migrate_break,
7073
		.cpus		= cpus,
7074
		.fbq_type	= all,
7075
		.tasks		= LIST_HEAD_INIT(env.tasks),
7076 7077
	};

7078 7079 7080 7081
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
7082
	if (idle == CPU_NEWLY_IDLE)
7083 7084
		env.dst_grpmask = NULL;

7085 7086 7087 7088 7089
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
7090 7091
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
7092
		goto out_balanced;
7093
	}
7094

7095
	group = find_busiest_group(&env);
7096 7097 7098 7099 7100
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

7101
	busiest = find_busiest_queue(&env, group);
7102 7103 7104 7105 7106
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

7107
	BUG_ON(busiest == env.dst_rq);
7108

7109
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7110

7111 7112 7113
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

7114 7115 7116 7117 7118 7119 7120 7121
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
7122
		env.flags |= LBF_ALL_PINNED;
7123
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7124

7125
more_balance:
7126
		raw_spin_lock_irqsave(&busiest->lock, flags);
7127 7128 7129 7130 7131

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
7132
		cur_ld_moved = detach_tasks(&env);
7133 7134

		/*
7135 7136 7137 7138 7139
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
7140
		 */
7141 7142 7143 7144 7145 7146 7147 7148

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

7149
		local_irq_restore(flags);
7150

7151 7152 7153 7154 7155
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
7175
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7176

7177 7178 7179
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

7180
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7181
			env.dst_cpu	 = env.new_dst_cpu;
7182
			env.flags	&= ~LBF_DST_PINNED;
7183 7184
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
7185

7186 7187 7188 7189 7190 7191
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
7192

7193 7194 7195 7196
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
7197
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7198

7199
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7200 7201 7202
				*group_imbalance = 1;
		}

7203
		/* All tasks on this runqueue were pinned by CPU affinity */
7204
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7205
			cpumask_clear_cpu(cpu_of(busiest), cpus);
7206 7207 7208
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
7209
				goto redo;
7210
			}
7211
			goto out_all_pinned;
7212 7213 7214 7215 7216
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
7217 7218 7219 7220 7221 7222 7223 7224
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
7225

7226
		if (need_active_balance(&env)) {
7227 7228
			raw_spin_lock_irqsave(&busiest->lock, flags);

7229 7230 7231
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
7232 7233
			 */
			if (!cpumask_test_cpu(this_cpu,
7234
					tsk_cpus_allowed(busiest->curr))) {
7235 7236
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
7237
				env.flags |= LBF_ALL_PINNED;
7238 7239 7240
				goto out_one_pinned;
			}

7241 7242 7243 7244 7245
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
7246 7247 7248 7249 7250 7251
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7252

7253
			if (active_balance) {
7254 7255 7256
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
7257
			}
7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
7276
		 * detach_tasks).
7277 7278 7279 7280 7281 7282 7283 7284
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
7302 7303 7304 7305 7306 7307
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
7308
	if (((env.flags & LBF_ALL_PINNED) &&
7309
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7310 7311 7312
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

7313
	ld_moved = 0;
7314 7315 7316 7317
out:
	return ld_moved;
}

7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

7345 7346 7347 7348
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
7349
static int idle_balance(struct rq *this_rq)
7350
{
7351 7352
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
7353 7354
	struct sched_domain *sd;
	int pulled_task = 0;
7355
	u64 curr_cost = 0;
7356

7357 7358 7359 7360 7361 7362
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

7363 7364
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
7365 7366 7367 7368 7369 7370
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

7371
		goto out;
7372
	}
7373

7374 7375
	raw_spin_unlock(&this_rq->lock);

7376
	update_blocked_averages(this_cpu);
7377
	rcu_read_lock();
7378
	for_each_domain(this_cpu, sd) {
7379
		int continue_balancing = 1;
7380
		u64 t0, domain_cost;
7381 7382 7383 7384

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7385 7386
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
7387
			break;
7388
		}
7389

7390
		if (sd->flags & SD_BALANCE_NEWIDLE) {
7391 7392
			t0 = sched_clock_cpu(this_cpu);

7393
			pulled_task = load_balance(this_cpu, this_rq,
7394 7395
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
7396 7397 7398 7399 7400 7401

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
7402
		}
7403

7404
		update_next_balance(sd, 0, &next_balance);
7405 7406 7407 7408 7409 7410

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
7411 7412
			break;
	}
7413
	rcu_read_unlock();
7414 7415 7416

	raw_spin_lock(&this_rq->lock);

7417 7418 7419
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

7420
	/*
7421 7422 7423
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
7424
	 */
7425
	if (this_rq->cfs.h_nr_running && !pulled_task)
7426
		pulled_task = 1;
7427

7428 7429 7430
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
7431
		this_rq->next_balance = next_balance;
7432

7433
	/* Is there a task of a high priority class? */
7434
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7435 7436
		pulled_task = -1;

7437
	if (pulled_task)
7438 7439
		this_rq->idle_stamp = 0;

7440
	return pulled_task;
7441 7442 7443
}

/*
7444 7445 7446 7447
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
7448
 */
7449
static int active_load_balance_cpu_stop(void *data)
7450
{
7451 7452
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
7453
	int target_cpu = busiest_rq->push_cpu;
7454
	struct rq *target_rq = cpu_rq(target_cpu);
7455
	struct sched_domain *sd;
7456
	struct task_struct *p = NULL;
7457 7458 7459 7460 7461 7462 7463

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
7464 7465 7466

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
7467
		goto out_unlock;
7468 7469 7470 7471 7472 7473 7474 7475 7476

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
7477
	rcu_read_lock();
7478 7479 7480 7481 7482 7483 7484
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
7485 7486
		struct lb_env env = {
			.sd		= sd,
7487 7488 7489 7490
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
7491 7492 7493
			.idle		= CPU_IDLE,
		};

7494 7495
		schedstat_inc(sd, alb_count);

7496 7497
		p = detach_one_task(&env);
		if (p)
7498 7499 7500 7501
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
7502
	rcu_read_unlock();
7503 7504
out_unlock:
	busiest_rq->active_balance = 0;
7505 7506 7507 7508 7509 7510 7511
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

7512
	return 0;
7513 7514
}

7515 7516 7517 7518 7519
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

7520
#ifdef CONFIG_NO_HZ_COMMON
7521 7522 7523 7524 7525 7526
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
7527
static struct {
7528
	cpumask_var_t idle_cpus_mask;
7529
	atomic_t nr_cpus;
7530 7531
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
7532

7533
static inline int find_new_ilb(void)
7534
{
7535
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7536

7537 7538 7539 7540
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7541 7542
}

7543 7544 7545 7546 7547
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7548
static void nohz_balancer_kick(void)
7549 7550 7551 7552 7553
{
	int ilb_cpu;

	nohz.next_balance++;

7554
	ilb_cpu = find_new_ilb();
7555

7556 7557
	if (ilb_cpu >= nr_cpu_ids)
		return;
7558

7559
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7560 7561 7562 7563 7564 7565 7566 7567
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7568 7569 7570
	return;
}

7571
static inline void nohz_balance_exit_idle(int cpu)
7572 7573
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7574 7575 7576 7577 7578 7579 7580
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
7581 7582 7583 7584
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

7585 7586 7587
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
7588
	int cpu = smp_processor_id();
7589 7590

	rcu_read_lock();
7591
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7592 7593 7594 7595 7596

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7597
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7598
unlock:
7599 7600 7601 7602 7603 7604
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7605
	int cpu = smp_processor_id();
7606 7607

	rcu_read_lock();
7608
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7609 7610 7611 7612 7613

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7614
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7615
unlock:
7616 7617 7618
	rcu_read_unlock();
}

7619
/*
7620
 * This routine will record that the cpu is going idle with tick stopped.
7621
 * This info will be used in performing idle load balancing in the future.
7622
 */
7623
void nohz_balance_enter_idle(int cpu)
7624
{
7625 7626 7627 7628 7629 7630
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

7631 7632
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
7633

7634 7635 7636 7637 7638 7639
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

7640 7641 7642
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7643
}
7644

7645
static int sched_ilb_notifier(struct notifier_block *nfb,
7646 7647 7648 7649
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
7650
		nohz_balance_exit_idle(smp_processor_id());
7651 7652 7653 7654 7655
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
7656 7657 7658 7659
#endif

static DEFINE_SPINLOCK(balancing);

7660 7661 7662 7663
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
7664
void update_max_interval(void)
7665 7666 7667 7668
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

7669 7670 7671 7672
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7673
 * Balancing parameters are set up in init_sched_domains.
7674
 */
7675
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7676
{
7677
	int continue_balancing = 1;
7678
	int cpu = rq->cpu;
7679
	unsigned long interval;
7680
	struct sched_domain *sd;
7681 7682 7683
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7684 7685
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7686

7687
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7688

7689
	rcu_read_lock();
7690
	for_each_domain(cpu, sd) {
7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7703 7704 7705
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

7717
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7718 7719 7720 7721 7722 7723 7724 7725

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7726
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7727
				/*
7728
				 * The LBF_DST_PINNED logic could have changed
7729 7730
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
7731
				 */
7732
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7733 7734
			}
			sd->last_balance = jiffies;
7735
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7736 7737 7738 7739 7740 7741 7742 7743
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
7744 7745
	}
	if (need_decay) {
7746
		/*
7747 7748
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
7749
		 */
7750 7751
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
7752
	}
7753
	rcu_read_unlock();
7754 7755 7756 7757 7758 7759

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
7760
	if (likely(update_next_balance)) {
7761
		rq->next_balance = next_balance;
7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
7776 7777
}

7778
#ifdef CONFIG_NO_HZ_COMMON
7779
/*
7780
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7781 7782
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
7783
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7784
{
7785
	int this_cpu = this_rq->cpu;
7786 7787
	struct rq *rq;
	int balance_cpu;
7788 7789 7790
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7791

7792 7793 7794
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
7795 7796

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7797
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7798 7799 7800 7801 7802 7803 7804
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
7805
		if (need_resched())
7806 7807
			break;

V
Vincent Guittot 已提交
7808 7809
		rq = cpu_rq(balance_cpu);

7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
			update_idle_cpu_load(rq);
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
7821

7822 7823 7824 7825
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
7826
	}
7827 7828 7829 7830 7831 7832 7833 7834

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
7835 7836
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7837 7838 7839
}

/*
7840
 * Current heuristic for kicking the idle load balancer in the presence
7841
 * of an idle cpu in the system.
7842
 *   - This rq has more than one task.
7843 7844 7845 7846
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
7847 7848
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
7849
 */
7850
static inline bool nohz_kick_needed(struct rq *rq)
7851 7852
{
	unsigned long now = jiffies;
7853
	struct sched_domain *sd;
7854
	struct sched_group_capacity *sgc;
7855
	int nr_busy, cpu = rq->cpu;
7856
	bool kick = false;
7857

7858
	if (unlikely(rq->idle_balance))
7859
		return false;
7860

7861 7862 7863 7864
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
7865
	set_cpu_sd_state_busy();
7866
	nohz_balance_exit_idle(cpu);
7867 7868 7869 7870 7871 7872

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
7873
		return false;
7874 7875

	if (time_before(now, nohz.next_balance))
7876
		return false;
7877

7878
	if (rq->nr_running >= 2)
7879
		return true;
7880

7881
	rcu_read_lock();
7882 7883
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
	if (sd) {
7884 7885
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7886

7887 7888 7889 7890 7891
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

7892
	}
7893

7894 7895 7896 7897 7898 7899 7900 7901
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
7902

7903
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7904
	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7905 7906 7907 7908
				  sched_domain_span(sd)) < cpu)) {
		kick = true;
		goto unlock;
	}
7909

7910
unlock:
7911
	rcu_read_unlock();
7912
	return kick;
7913 7914
}
#else
7915
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7916 7917 7918 7919 7920 7921
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
7922 7923
static void run_rebalance_domains(struct softirq_action *h)
{
7924
	struct rq *this_rq = this_rq();
7925
	enum cpu_idle_type idle = this_rq->idle_balance ?
7926 7927 7928
						CPU_IDLE : CPU_NOT_IDLE;

	/*
7929
	 * If this cpu has a pending nohz_balance_kick, then do the
7930
	 * balancing on behalf of the other idle cpus whose ticks are
7931 7932 7933 7934
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
7935
	 */
7936
	nohz_idle_balance(this_rq, idle);
7937
	rebalance_domains(this_rq, idle);
7938 7939 7940 7941 7942
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
7943
void trigger_load_balance(struct rq *rq)
7944 7945
{
	/* Don't need to rebalance while attached to NULL domain */
7946 7947 7948 7949
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
7950
		raise_softirq(SCHED_SOFTIRQ);
7951
#ifdef CONFIG_NO_HZ_COMMON
7952
	if (nohz_kick_needed(rq))
7953
		nohz_balancer_kick();
7954
#endif
7955 7956
}

7957 7958 7959
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
7960 7961

	update_runtime_enabled(rq);
7962 7963 7964 7965 7966
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
7967 7968 7969

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
7970 7971
}

7972
#endif /* CONFIG_SMP */
7973

7974 7975 7976
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
7977
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7978 7979 7980 7981 7982 7983
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
7984
		entity_tick(cfs_rq, se, queued);
7985
	}
7986

7987
	if (static_branch_unlikely(&sched_numa_balancing))
7988
		task_tick_numa(rq, curr);
7989 7990 7991
}

/*
P
Peter Zijlstra 已提交
7992 7993 7994
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
7995
 */
P
Peter Zijlstra 已提交
7996
static void task_fork_fair(struct task_struct *p)
7997
{
7998 7999
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
8000
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
8001 8002 8003
	struct rq *rq = this_rq();
	unsigned long flags;

8004
	raw_spin_lock_irqsave(&rq->lock, flags);
8005

8006 8007
	update_rq_clock(rq);

8008 8009 8010
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

8011 8012 8013 8014 8015 8016 8017 8018 8019
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
8020

8021
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
8022

8023 8024
	if (curr)
		se->vruntime = curr->vruntime;
8025
	place_entity(cfs_rq, se, 1);
8026

P
Peter Zijlstra 已提交
8027
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
8028
		/*
8029 8030 8031
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
8032
		swap(curr->vruntime, se->vruntime);
8033
		resched_curr(rq);
8034
	}
8035

8036 8037
	se->vruntime -= cfs_rq->min_vruntime;

8038
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8039 8040
}

8041 8042 8043 8044
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
8045 8046
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8047
{
8048
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
8049 8050
		return;

8051 8052 8053 8054 8055
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
8056
	if (rq->curr == p) {
8057
		if (p->prio > oldprio)
8058
			resched_curr(rq);
8059
	} else
8060
		check_preempt_curr(rq, p, 0);
8061 8062
}

8063
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
8064 8065 8066 8067
{
	struct sched_entity *se = &p->se;

	/*
8068 8069 8070 8071 8072 8073 8074 8075 8076 8077
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
8078
	 *
8079 8080 8081 8082
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
8083
	 */
8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
P
Peter Zijlstra 已提交
8096 8097 8098 8099 8100 8101 8102
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
8103

8104
	/* Catch up with the cfs_rq and remove our load when we leave */
8105
	detach_entity_load_avg(cfs_rq, se);
P
Peter Zijlstra 已提交
8106 8107
}

8108
static void attach_task_cfs_rq(struct task_struct *p)
8109
{
8110
	struct sched_entity *se = &p->se;
8111
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8112 8113

#ifdef CONFIG_FAIR_GROUP_SCHED
8114 8115 8116 8117 8118 8119
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
8120

8121
	/* Synchronize task with its cfs_rq */
8122 8123 8124 8125 8126
	attach_entity_load_avg(cfs_rq, se);

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
8127

8128 8129 8130 8131 8132 8133 8134 8135
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
8136

8137
	if (task_on_rq_queued(p)) {
8138
		/*
8139 8140 8141
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
8142
		 */
8143 8144 8145 8146
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
8147
	}
8148 8149
}

8150 8151 8152 8153 8154 8155 8156 8157 8158
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

8159 8160 8161 8162 8163 8164 8165
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
8166 8167
}

8168 8169 8170 8171 8172 8173 8174
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
8175
#ifdef CONFIG_SMP
8176 8177
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8178
#endif
8179 8180
}

P
Peter Zijlstra 已提交
8181
#ifdef CONFIG_FAIR_GROUP_SCHED
8182
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
8183
{
8184
	detach_task_cfs_rq(p);
8185
	set_task_rq(p, task_cpu(p));
8186 8187 8188 8189 8190

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
8191
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
8192
}
8193 8194 8195 8196 8197 8198 8199 8200 8201 8202

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
8203 8204 8205
		if (tg->se) {
			if (tg->se[i])
				remove_entity_load_avg(tg->se[i]);
8206
			kfree(tg->se[i]);
8207
		}
8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8244
		init_entity_runnable_average(se);
8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
8289
	if (!parent) {
8290
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
8291 8292
		se->depth = 0;
	} else {
8293
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
8294 8295
		se->depth = parent->depth + 1;
	}
8296 8297

	se->my_q = cfs_rq;
8298 8299
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
8330 8331 8332

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
8333
		for_each_sched_entity(se)
8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
8355

8356
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8357 8358 8359 8360 8361 8362 8363 8364 8365
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
8366
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8367 8368 8369 8370

	return rr_interval;
}

8371 8372 8373
/*
 * All the scheduling class methods:
 */
8374
const struct sched_class fair_sched_class = {
8375
	.next			= &idle_sched_class,
8376 8377 8378
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
8379
	.yield_to_task		= yield_to_task_fair,
8380

I
Ingo Molnar 已提交
8381
	.check_preempt_curr	= check_preempt_wakeup,
8382 8383 8384 8385

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

8386
#ifdef CONFIG_SMP
L
Li Zefan 已提交
8387
	.select_task_rq		= select_task_rq_fair,
8388
	.migrate_task_rq	= migrate_task_rq_fair,
8389

8390 8391
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
8392 8393

	.task_waking		= task_waking_fair,
8394
	.task_dead		= task_dead_fair,
8395
	.set_cpus_allowed	= set_cpus_allowed_common,
8396
#endif
8397

8398
	.set_curr_task          = set_curr_task_fair,
8399
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
8400
	.task_fork		= task_fork_fair,
8401 8402

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
8403
	.switched_from		= switched_from_fair,
8404
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
8405

8406 8407
	.get_rr_interval	= get_rr_interval_fair,

8408 8409
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
8410
#ifdef CONFIG_FAIR_GROUP_SCHED
8411
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
8412
#endif
8413 8414 8415
};

#ifdef CONFIG_SCHED_DEBUG
8416
void print_cfs_stats(struct seq_file *m, int cpu)
8417 8418 8419
{
	struct cfs_rq *cfs_rq;

8420
	rcu_read_lock();
8421
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8422
		print_cfs_rq(m, cpu, cfs_rq);
8423
	rcu_read_unlock();
8424
}
8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
8446 8447 8448 8449 8450 8451

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

8452
#ifdef CONFIG_NO_HZ_COMMON
8453
	nohz.next_balance = jiffies;
8454
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8455
	cpu_notifier(sched_ilb_notifier, 0);
8456 8457 8458 8459
#endif
#endif /* SMP */

}