fair.c 206.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

182
#define WMULT_CONST	(~0U)
183 184
#define WMULT_SHIFT	32

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
201 202

/*
203 204 205 206 207 208 209 210 211 212
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213
 */
214
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215
{
216 217
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
218

219
	__update_inv_weight(lw);
220

221 222 223 224 225
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
226 227
	}

228 229
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
230

231 232 233 234
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
235

236
	return mul_u64_u32_shr(delta_exec, fact, shift);
237 238 239 240
}


const struct sched_class fair_sched_class;
241

242 243 244 245
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

246
#ifdef CONFIG_FAIR_GROUP_SCHED
247

248
/* cpu runqueue to which this cfs_rq is attached */
249 250
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
251
	return cfs_rq->rq;
252 253
}

254 255
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
256

257 258 259 260 261 262 263 264
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

286 287
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
288

289 290 291
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
292 293 294 295 296 297 298 299 300 301 302 303
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
305
		}
306 307

		cfs_rq->on_list = 1;
308
		/* We should have no load, but we need to update last_decay. */
309
		update_cfs_rq_blocked_load(cfs_rq, 0);
310 311 312 313 314 315 316 317 318 319 320
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
321 322 323 324 325
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
326
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
327 328 329
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
330
		return se->cfs_rq;
P
Peter Zijlstra 已提交
331

P
Peter Zijlstra 已提交
332
	return NULL;
P
Peter Zijlstra 已提交
333 334 335 336 337 338 339
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

340 341 342 343 344 345 346 347 348 349 350 351 352
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
353 354
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

372 373 374 375 376 377
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
378

379 380 381
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
382 383 384 385
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
386 387
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
388

P
Peter Zijlstra 已提交
389
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390
{
P
Peter Zijlstra 已提交
391
	return &task_rq(p)->cfs;
392 393
}

P
Peter Zijlstra 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

408 409 410 411 412 413 414 415
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
416 417 418 419 420 421 422 423
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

424 425 426 427 428
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
429 430
#endif	/* CONFIG_FAIR_GROUP_SCHED */

431
static __always_inline
432
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433 434 435 436 437

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

438
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439
{
440
	s64 delta = (s64)(vruntime - max_vruntime);
441
	if (delta > 0)
442
		max_vruntime = vruntime;
443

444
	return max_vruntime;
445 446
}

447
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
448 449 450 451 452 453 454 455
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

456 457 458 459 460 461
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

462 463 464 465 466 467 468 469 470 471 472 473
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
474
		if (!cfs_rq->curr)
475 476 477 478 479
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

480
	/* ensure we never gain time by being placed backwards. */
481
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 483 484 485
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
486 487
}

488 489 490
/*
 * Enqueue an entity into the rb-tree:
 */
491
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
508
		if (entity_before(se, entry)) {
509 510 511 512 513 514 515 516 517 518 519
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
520
	if (leftmost)
I
Ingo Molnar 已提交
521
		cfs_rq->rb_leftmost = &se->run_node;
522 523 524 525 526

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

527
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528
{
P
Peter Zijlstra 已提交
529 530 531 532 533 534
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
535

536 537 538
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

539
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540
{
541 542 543 544 545 546
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
547 548
}

549 550 551 552 553 554 555 556 557 558 559
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
560
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561
{
562
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563

564 565
	if (!last)
		return NULL;
566 567

	return rb_entry(last, struct sched_entity, run_node);
568 569
}

570 571 572 573
/**************************************************************
 * Scheduling class statistics methods:
 */

574
int sched_proc_update_handler(struct ctl_table *table, int write,
575
		void __user *buffer, size_t *lenp,
576 577
		loff_t *ppos)
{
578
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579
	int factor = get_update_sysctl_factor();
580 581 582 583 584 585 586

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

587 588 589 590 591 592 593
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

594 595 596
	return 0;
}
#endif
597

598
/*
599
 * delta /= w
600
 */
601
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602
{
603
	if (unlikely(se->load.weight != NICE_0_LOAD))
604
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605 606 607 608

	return delta;
}

609 610 611
/*
 * The idea is to set a period in which each task runs once.
 *
612
 * When there are too many tasks (sched_nr_latency) we have to stretch
613 614 615 616
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
617 618 619
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
620
	unsigned long nr_latency = sched_nr_latency;
621 622

	if (unlikely(nr_running > nr_latency)) {
623
		period = sysctl_sched_min_granularity;
624 625 626 627 628 629
		period *= nr_running;
	}

	return period;
}

630 631 632 633
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
634
 * s = p*P[w/rw]
635
 */
P
Peter Zijlstra 已提交
636
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637
{
M
Mike Galbraith 已提交
638
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639

M
Mike Galbraith 已提交
640
	for_each_sched_entity(se) {
L
Lin Ming 已提交
641
		struct load_weight *load;
642
		struct load_weight lw;
L
Lin Ming 已提交
643 644 645

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
646

M
Mike Galbraith 已提交
647
		if (unlikely(!se->on_rq)) {
648
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
649 650 651 652

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
653
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
654 655
	}
	return slice;
656 657
}

658
/*
A
Andrei Epure 已提交
659
 * We calculate the vruntime slice of a to-be-inserted task.
660
 *
661
 * vs = s/w
662
 */
663
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
664
{
665
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 667
}

668
#ifdef CONFIG_SMP
669
static int select_idle_sibling(struct task_struct *p, int cpu);
670 671
static unsigned long task_h_load(struct task_struct *p);

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

691
/*
692
 * Update the current task's runtime statistics.
693
 */
694
static void update_curr(struct cfs_rq *cfs_rq)
695
{
696
	struct sched_entity *curr = cfs_rq->curr;
697
	u64 now = rq_clock_task(rq_of(cfs_rq));
698
	u64 delta_exec;
699 700 701 702

	if (unlikely(!curr))
		return;

703 704
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
705
		return;
706

I
Ingo Molnar 已提交
707
	curr->exec_start = now;
708

709 710 711 712 713 714 715 716 717
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

718 719 720
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

721
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
722
		cpuacct_charge(curtask, delta_exec);
723
		account_group_exec_runtime(curtask, delta_exec);
724
	}
725 726

	account_cfs_rq_runtime(cfs_rq, delta_exec);
727 728 729
}

static inline void
730
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
731
{
732
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
733 734 735 736 737
}

/*
 * Task is being enqueued - update stats:
 */
738
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 740 741 742 743
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
744
	if (se != cfs_rq->curr)
745
		update_stats_wait_start(cfs_rq, se);
746 747 748
}

static void
749
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
750
{
751
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
752
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
753 754
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
755
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
756 757 758
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
759
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
760 761
	}
#endif
762
	schedstat_set(se->statistics.wait_start, 0);
763 764 765
}

static inline void
766
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
767 768 769 770 771
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
772
	if (se != cfs_rq->curr)
773
		update_stats_wait_end(cfs_rq, se);
774 775 776 777 778 779
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
780
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
781 782 783 784
{
	/*
	 * We are starting a new run period:
	 */
785
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
786 787 788 789 790 791
}

/**************************************************
 * Scheduling class queueing methods:
 */

792 793
#ifdef CONFIG_NUMA_BALANCING
/*
794 795 796
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
797
 */
798 799
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
800 801 802

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
803

804 805 806
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
	unsigned int scan, floor;
	unsigned int windows = 1;

	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

852 853 854 855 856 857 858 859 860 861 862 863
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

864 865 866 867 868
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
869
	pid_t gid;
870 871 872
	struct list_head task_list;

	struct rcu_head rcu;
873
	nodemask_t active_nodes;
874
	unsigned long total_faults;
875 876 877 878 879
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
880
	unsigned long *faults_cpu;
881
	unsigned long faults[0];
882 883
};

884 885 886 887 888 889 890 891 892
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

893 894 895 896 897
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

898 899
static inline int task_faults_idx(int nid, int priv)
{
900
	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
901 902 903 904
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
905
	if (!p->numa_faults_memory)
906 907
		return 0;

908 909
	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
		p->numa_faults_memory[task_faults_idx(nid, 1)];
910 911
}

912 913 914 915 916
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

917 918
	return p->numa_group->faults[task_faults_idx(nid, 0)] +
		p->numa_group->faults[task_faults_idx(nid, 1)];
919 920
}

921 922 923 924 925 926
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
	return group->faults_cpu[task_faults_idx(nid, 0)] +
		group->faults_cpu[task_faults_idx(nid, 1)];
}

927 928 929 930 931 932 933 934 935 936
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
static inline unsigned long task_weight(struct task_struct *p, int nid)
{
	unsigned long total_faults;

937
	if (!p->numa_faults_memory)
938 939 940 941 942 943 944 945 946 947 948 949
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

	return 1000 * task_faults(p, nid) / total_faults;
}

static inline unsigned long group_weight(struct task_struct *p, int nid)
{
950
	if (!p->numa_group || !p->numa_group->total_faults)
951 952
		return 0;

953
	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
954 955
}

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Do not migrate if the destination is not a node that
	 * is actively used by this numa group.
	 */
	if (!node_isset(dst_nid, ng->active_nodes))
		return false;

	/*
	 * Source is a node that is not actively used by this
	 * numa group, while the destination is. Migrate.
	 */
	if (!node_isset(src_nid, ng->active_nodes))
		return true;

	/*
	 * Both source and destination are nodes in active
	 * use by this numa group. Maximize memory bandwidth
	 * by migrating from more heavily used groups, to less
	 * heavily used ones, spreading the load around.
	 * Use a 1/4 hysteresis to avoid spurious page movement.
	 */
	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}

1019
static unsigned long weighted_cpuload(const int cpu);
1020 1021
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1022
static unsigned long capacity_of(int cpu);
1023 1024
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1025
/* Cached statistics for all CPUs within a node */
1026
struct numa_stats {
1027
	unsigned long nr_running;
1028
	unsigned long load;
1029 1030

	/* Total compute capacity of CPUs on a node */
1031
	unsigned long compute_capacity;
1032 1033

	/* Approximate capacity in terms of runnable tasks on a node */
1034
	unsigned long task_capacity;
1035
	int has_free_capacity;
1036
};
1037

1038 1039 1040 1041 1042
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1043 1044
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1045 1046 1047 1048 1049 1050 1051

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1052
		ns->compute_capacity += capacity_of(cpu);
1053 1054

		cpus++;
1055 1056
	}

1057 1058 1059 1060 1061
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1062 1063
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1064 1065 1066 1067
	 */
	if (!cpus)
		return;

1068 1069 1070 1071 1072 1073
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1074
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1075 1076
}

1077 1078
struct task_numa_env {
	struct task_struct *p;
1079

1080 1081
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1082

1083
	struct numa_stats src_stats, dst_stats;
1084

1085
	int imbalance_pct;
1086 1087 1088

	struct task_struct *best_task;
	long best_imp;
1089 1090 1091
	int best_cpu;
};

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1105
static bool load_too_imbalanced(long src_load, long dst_load,
1106 1107 1108
				struct task_numa_env *env)
{
	long imb, old_imb;
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	long orig_src_load, orig_dst_load;
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1121 1122 1123 1124 1125 1126

	/* We care about the slope of the imbalance, not the direction. */
	if (dst_load < src_load)
		swap(dst_load, src_load);

	/* Is the difference below the threshold? */
1127 1128
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1129 1130 1131 1132 1133 1134 1135
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
	 * Compare it with the old imbalance.
	 */
1136 1137 1138
	orig_src_load = env->src_stats.load;
	orig_dst_load = env->dst_stats.load;

1139 1140 1141
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);

1142 1143
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;
1144 1145

	/* Would this change make things worse? */
1146
	return (imb > old_imb);
1147 1148
}

1149 1150 1151 1152 1153 1154
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1155 1156
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1157 1158 1159 1160
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1161
	long src_load, dst_load;
1162
	long load;
1163
	long imp = env->p->numa_group ? groupimp : taskimp;
1164
	long moveimp = imp;
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	rcu_read_lock();
	cur = ACCESS_ONCE(dst_rq->curr);
	if (cur->pid == 0) /* idle */
		cur = NULL;

	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1183 1184
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1185
		 * in any group then look only at task weights.
1186
		 */
1187
		if (cur->numa_group == env->p->numa_group) {
1188 1189
			imp = taskimp + task_weight(cur, env->src_nid) -
			      task_weight(cur, env->dst_nid);
1190 1191 1192 1193 1194 1195
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1196
		} else {
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
				imp += group_weight(cur, env->src_nid) -
				       group_weight(cur, env->dst_nid);
			else
				imp += task_weight(cur, env->src_nid) -
				       task_weight(cur, env->dst_nid);
1208
		}
1209 1210
	}

1211
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1212 1213 1214 1215
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1216
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1217
		    !env->dst_stats.has_free_capacity)
1218 1219 1220 1221 1222 1223
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1224 1225
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1226 1227 1228 1229 1230 1231
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1232 1233 1234
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1235

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1253
	if (cur) {
1254 1255 1256
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1257 1258
	}

1259
	if (load_too_imbalanced(src_load, dst_load, env))
1260 1261
		goto unlock;

1262 1263 1264 1265 1266 1267 1268
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur)
		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);

1269 1270 1271 1272 1273 1274
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1275 1276
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1277 1278 1279 1280 1281 1282 1283 1284 1285
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1286
		task_numa_compare(env, taskimp, groupimp);
1287 1288 1289
	}
}

1290 1291 1292 1293
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1294

1295
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1296
		.src_nid = task_node(p),
1297 1298 1299 1300 1301 1302

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1303 1304
	};
	struct sched_domain *sd;
1305
	unsigned long taskweight, groupweight;
1306
	int nid, ret;
1307
	long taskimp, groupimp;
1308

1309
	/*
1310 1311 1312 1313 1314 1315
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1316 1317
	 */
	rcu_read_lock();
1318
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1319 1320
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1321 1322
	rcu_read_unlock();

1323 1324 1325 1326 1327 1328 1329
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1330
		p->numa_preferred_nid = task_node(p);
1331 1332 1333
		return -EINVAL;
	}

1334 1335
	taskweight = task_weight(p, env.src_nid);
	groupweight = group_weight(p, env.src_nid);
1336
	update_numa_stats(&env.src_stats, env.src_nid);
1337
	env.dst_nid = p->numa_preferred_nid;
1338 1339
	taskimp = task_weight(p, env.dst_nid) - taskweight;
	groupimp = group_weight(p, env.dst_nid) - groupweight;
1340
	update_numa_stats(&env.dst_stats, env.dst_nid);
1341

1342 1343
	/* Try to find a spot on the preferred nid. */
	task_numa_find_cpu(&env, taskimp, groupimp);
1344 1345 1346

	/* No space available on the preferred nid. Look elsewhere. */
	if (env.best_cpu == -1) {
1347 1348 1349
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1350

1351
			/* Only consider nodes where both task and groups benefit */
1352 1353 1354
			taskimp = task_weight(p, nid) - taskweight;
			groupimp = group_weight(p, nid) - groupweight;
			if (taskimp < 0 && groupimp < 0)
1355 1356
				continue;

1357 1358
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1359
			task_numa_find_cpu(&env, taskimp, groupimp);
1360 1361 1362
		}
	}

1363 1364 1365 1366 1367 1368 1369 1370
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	if (p->numa_group) {
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

		if (node_isset(nid, p->numa_group->active_nodes))
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1384

1385 1386 1387 1388 1389 1390
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1391
	if (env.best_task == NULL) {
1392 1393 1394
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1395 1396 1397 1398
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1399 1400
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1401 1402
	put_task_struct(env.best_task);
	return ret;
1403 1404
}

1405 1406 1407
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1408 1409
	unsigned long interval = HZ;

1410
	/* This task has no NUMA fault statistics yet */
1411
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1412 1413
		return;

1414
	/* Periodically retry migrating the task to the preferred node */
1415 1416
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1417 1418

	/* Success if task is already running on preferred CPU */
1419
	if (task_node(p) == p->numa_preferred_nid)
1420 1421 1422
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1423
	task_numa_migrate(p);
1424 1425
}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1458 1459 1460
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1461 1462 1463
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1464 1465
 */
#define NUMA_PERIOD_SLOTS 10
1466
#define NUMA_PERIOD_THRESHOLD 7
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
	 * to automatic numa balancing. Scan slower
	 */
	if (local + shared == 0) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
		delta = p->se.avg.runnable_avg_sum;
		*period = p->se.avg.runnable_avg_period;
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1560 1561
static void task_numa_placement(struct task_struct *p)
{
1562 1563
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1564
	unsigned long fault_types[2] = { 0, 0 };
1565 1566
	unsigned long total_faults;
	u64 runtime, period;
1567
	spinlock_t *group_lock = NULL;
1568

1569
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1570 1571 1572
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1573
	p->numa_scan_period_max = task_scan_max(p);
1574

1575 1576 1577 1578
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1579 1580 1581
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1582
		spin_lock_irq(group_lock);
1583 1584
	}

1585 1586
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1587
		unsigned long faults = 0, group_faults = 0;
1588
		int priv, i;
1589

1590
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1591
			long diff, f_diff, f_weight;
1592

1593
			i = task_faults_idx(nid, priv);
1594

1595
			/* Decay existing window, copy faults since last scan */
1596
			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1597 1598
			fault_types[priv] += p->numa_faults_buffer_memory[i];
			p->numa_faults_buffer_memory[i] = 0;
1599

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
				   (total_faults + 1);
1610
			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1611 1612
			p->numa_faults_buffer_cpu[i] = 0;

1613 1614
			p->numa_faults_memory[i] += diff;
			p->numa_faults_cpu[i] += f_diff;
1615
			faults += p->numa_faults_memory[i];
1616
			p->total_numa_faults += diff;
1617 1618
			if (p->numa_group) {
				/* safe because we can only change our own group */
1619
				p->numa_group->faults[i] += diff;
1620
				p->numa_group->faults_cpu[i] += f_diff;
1621 1622
				p->numa_group->total_faults += diff;
				group_faults += p->numa_group->faults[i];
1623
			}
1624 1625
		}

1626 1627 1628 1629
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1630 1631 1632 1633 1634 1635 1636

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1637 1638
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1639
	if (p->numa_group) {
1640
		update_numa_active_node_mask(p->numa_group);
1641
		spin_unlock_irq(group_lock);
1642
		max_nid = max_group_nid;
1643 1644
	}

1645 1646 1647 1648 1649 1650 1651
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
1652
	}
1653 1654
}

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1666 1667
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1668 1669 1670 1671 1672 1673 1674 1675 1676
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1677
				    4*nr_node_ids*sizeof(unsigned long);
1678 1679 1680 1681 1682 1683 1684 1685

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
		INIT_LIST_HEAD(&grp->task_list);
1686
		grp->gid = p->pid;
1687
		/* Second half of the array tracks nids where faults happen */
1688 1689
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
1690

1691 1692
		node_set(task_node(current), grp->active_nodes);

1693
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1694
			grp->faults[i] = p->numa_faults_memory[i];
1695

1696
		grp->total_faults = p->total_numa_faults;
1697

1698 1699 1700 1701 1702 1703 1704 1705 1706
		list_add(&p->numa_entry, &grp->task_list);
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
1707
		goto no_join;
1708 1709 1710

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1711
		goto no_join;
1712 1713 1714

	my_grp = p->numa_group;
	if (grp == my_grp)
1715
		goto no_join;
1716 1717 1718 1719 1720 1721

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1722
		goto no_join;
1723 1724 1725 1726 1727

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1728
		goto no_join;
1729

1730 1731 1732 1733 1734 1735 1736
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
1737

1738 1739 1740
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

1741
	if (join && !get_numa_group(grp))
1742
		goto no_join;
1743 1744 1745 1746 1747 1748

	rcu_read_unlock();

	if (!join)
		return;

1749 1750
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
1751

1752
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1753 1754
		my_grp->faults[i] -= p->numa_faults_memory[i];
		grp->faults[i] += p->numa_faults_memory[i];
1755
	}
1756 1757
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
1758 1759 1760 1761 1762 1763

	list_move(&p->numa_entry, &grp->task_list);
	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
1764
	spin_unlock_irq(&grp->lock);
1765 1766 1767 1768

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
1769 1770 1771 1772 1773
	return;

no_join:
	rcu_read_unlock();
	return;
1774 1775 1776 1777 1778
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
1779
	void *numa_faults = p->numa_faults_memory;
1780 1781
	unsigned long flags;
	int i;
1782 1783

	if (grp) {
1784
		spin_lock_irqsave(&grp->lock, flags);
1785
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1786
			grp->faults[i] -= p->numa_faults_memory[i];
1787
		grp->total_faults -= p->total_numa_faults;
1788

1789 1790
		list_del(&p->numa_entry);
		grp->nr_tasks--;
1791
		spin_unlock_irqrestore(&grp->lock, flags);
1792
		RCU_INIT_POINTER(p->numa_group, NULL);
1793 1794 1795
		put_numa_group(grp);
	}

1796 1797
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1798 1799
	p->numa_faults_cpu= NULL;
	p->numa_faults_buffer_cpu = NULL;
1800
	kfree(numa_faults);
1801 1802
}

1803 1804 1805
/*
 * Got a PROT_NONE fault for a page on @node.
 */
1806
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1807 1808
{
	struct task_struct *p = current;
1809
	bool migrated = flags & TNF_MIGRATED;
1810
	int cpu_node = task_node(current);
1811
	int local = !!(flags & TNF_FAULT_LOCAL);
1812
	int priv;
1813

1814
	if (!numabalancing_enabled)
1815 1816
		return;

1817 1818 1819
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;
1820

1821
	/* Allocate buffer to track faults on a per-node basis */
1822
	if (unlikely(!p->numa_faults_memory)) {
1823 1824
		int size = sizeof(*p->numa_faults_memory) *
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1825

1826
		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1827
		if (!p->numa_faults_memory)
1828
			return;
1829

1830
		BUG_ON(p->numa_faults_buffer_memory);
1831 1832 1833 1834 1835 1836
		/*
		 * The averaged statistics, shared & private, memory & cpu,
		 * occupy the first half of the array. The second half of the
		 * array is for current counters, which are averaged into the
		 * first set by task_numa_placement.
		 */
1837 1838 1839
		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1840
		p->total_numa_faults = 0;
1841
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1842
	}
1843

1844 1845 1846 1847 1848 1849 1850 1851
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
1852
		if (!priv && !(flags & TNF_NO_GROUP))
1853
			task_numa_group(p, last_cpupid, flags, &priv);
1854 1855
	}

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
	if (!priv && !local && p->numa_group &&
			node_isset(cpu_node, p->numa_group->active_nodes) &&
			node_isset(mem_node, p->numa_group->active_nodes))
		local = 1;

1867
	task_numa_placement(p);
1868

1869 1870 1871 1872 1873
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
1874 1875
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
1876 1877 1878
	if (migrated)
		p->numa_pages_migrated += pages;

1879 1880
	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1881
	p->numa_faults_locality[local] += pages;
1882 1883
}

1884 1885 1886 1887 1888 1889
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

1890 1891 1892 1893 1894 1895 1896 1897 1898
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
1899
	struct vm_area_struct *vma;
1900
	unsigned long start, end;
1901
	unsigned long nr_pte_updates = 0;
1902
	long pages;
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

1918
	if (!mm->numa_next_scan) {
1919 1920
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1921 1922
	}

1923 1924 1925 1926 1927 1928 1929
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

1930 1931 1932 1933
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
1934

1935
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1936 1937 1938
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

1939 1940 1941 1942 1943 1944
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

1945 1946 1947 1948 1949
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
1950

1951
	down_read(&mm->mmap_sem);
1952
	vma = find_vma(mm, start);
1953 1954
	if (!vma) {
		reset_ptenuma_scan(p);
1955
		start = 0;
1956 1957
		vma = mm->mmap;
	}
1958
	for (; vma; vma = vma->vm_next) {
1959
		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1960 1961
			continue;

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
1972 1973 1974 1975 1976 1977
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
1978

1979 1980 1981 1982
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
1983 1984 1985 1986 1987 1988 1989 1990 1991
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
1992

1993 1994 1995
			start = end;
			if (pages <= 0)
				goto out;
1996 1997

			cond_resched();
1998
		} while (end != vma->vm_end);
1999
	}
2000

2001
out:
2002
	/*
P
Peter Zijlstra 已提交
2003 2004 2005 2006
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2007 2008
	 */
	if (vma)
2009
		mm->numa_scan_offset = start;
2010 2011 2012
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
2039
		if (!curr->node_stamp)
2040
			curr->numa_scan_period = task_scan_min(curr);
2041
		curr->node_stamp += period;
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2053 2054 2055 2056 2057 2058 2059 2060

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2061 2062
#endif /* CONFIG_NUMA_BALANCING */

2063 2064 2065 2066
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2067
	if (!parent_entity(se))
2068
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2069
#ifdef CONFIG_SMP
2070 2071 2072 2073 2074 2075
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2076
#endif
2077 2078 2079 2080 2081 2082 2083
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2084
	if (!parent_entity(se))
2085
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2086 2087
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2088
		list_del_init(&se->group_node);
2089
	}
2090 2091 2092
	cfs_rq->nr_running--;
}

2093 2094
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2095 2096 2097 2098 2099 2100 2101 2102 2103
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
2104
	tg_weight = atomic_long_read(&tg->load_avg);
2105
	tg_weight -= cfs_rq->tg_load_contrib;
2106 2107 2108 2109 2110
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

2111
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2112
{
2113
	long tg_weight, load, shares;
2114

2115
	tg_weight = calc_tg_weight(tg, cfs_rq);
2116
	load = cfs_rq->load.weight;
2117 2118

	shares = (tg->shares * load);
2119 2120
	if (tg_weight)
		shares /= tg_weight;
2121 2122 2123 2124 2125 2126 2127 2128 2129

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2130
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2131 2132 2133 2134
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2135 2136 2137
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2138 2139 2140 2141
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2142
		account_entity_dequeue(cfs_rq, se);
2143
	}
P
Peter Zijlstra 已提交
2144 2145 2146 2147 2148 2149 2150

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2151 2152
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2153
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2154 2155 2156
{
	struct task_group *tg;
	struct sched_entity *se;
2157
	long shares;
P
Peter Zijlstra 已提交
2158 2159 2160

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2161
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2162
		return;
2163 2164 2165 2166
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2167
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2168 2169 2170 2171

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2172
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2173 2174 2175 2176
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2177
#ifdef CONFIG_SMP
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2206 2207 2208 2209 2210 2211
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2224 2225
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2226 2227 2228 2229 2230 2231
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2232 2233
	}

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
2299 2300
	u64 delta, periods;
	u32 runnable_contrib;
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

2364
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2365
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2366 2367 2368 2369 2370 2371
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
2372
		return 0;
2373 2374 2375

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
2376 2377

	return decays;
2378 2379
}

2380 2381 2382 2383 2384
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
2385
	long tg_contrib;
2386 2387 2388 2389

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

2390 2391 2392
	if (!tg_contrib)
		return;

2393 2394
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
2395 2396 2397
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
2398

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
2410
	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2411 2412 2413 2414 2415 2416 2417 2418 2419
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

2420 2421 2422 2423
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
2424 2425
	int runnable_avg;

2426 2427 2428
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
2429 2430
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
2460
}
2461 2462 2463 2464 2465 2466

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
}
2467
#else /* CONFIG_FAIR_GROUP_SCHED */
2468 2469
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
2470 2471
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
2472
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2473
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2474
#endif /* CONFIG_FAIR_GROUP_SCHED */
2475

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

2486 2487 2488 2489 2490
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

2491 2492 2493
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
2494
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2495 2496
		__update_group_entity_contrib(se);
	}
2497 2498 2499 2500

	return se->avg.load_avg_contrib - old_contrib;
}

2501 2502 2503 2504 2505 2506 2507 2508 2509
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

2510 2511
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

2512
/* Update a sched_entity's runnable average */
2513 2514
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
2515
{
2516 2517
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
2518
	u64 now;
2519

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2530 2531 2532
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
2533 2534 2535 2536

	if (!update_cfs_rq)
		return;

2537 2538
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
2539 2540 2541 2542 2543 2544 2545 2546
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
2547
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2548
{
2549
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2550 2551 2552
	u64 decays;

	decays = now - cfs_rq->last_decay;
2553
	if (!decays && !force_update)
2554 2555
		return;

2556 2557 2558
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2559 2560
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
2561

2562 2563 2564 2565 2566 2567
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
2568 2569

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2570
}
2571

2572 2573
/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2574 2575
						  struct sched_entity *se,
						  int wakeup)
2576
{
2577 2578 2579 2580
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
2581 2582 2583 2584
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
2585 2586
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
2587
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
2603 2604
		wakeup = 0;
	} else {
2605
		__synchronize_entity_decay(se);
2606 2607
	}

2608 2609
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
2610
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2611 2612
		update_entity_load_avg(se, 0);
	}
2613

2614
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2615 2616
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2617 2618
}

2619 2620 2621 2622 2623
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
2624
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2625 2626
						  struct sched_entity *se,
						  int sleep)
2627
{
2628
	update_entity_load_avg(se, 1);
2629 2630
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2631

2632
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2633 2634 2635 2636
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2637
}
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

2659 2660
static int idle_balance(struct rq *this_rq);

2661 2662
#else /* CONFIG_SMP */

2663 2664
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
2665
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2666
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2667 2668
					   struct sched_entity *se,
					   int wakeup) {}
2669
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2670 2671
					   struct sched_entity *se,
					   int sleep) {}
2672 2673
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
2674 2675 2676 2677 2678 2679

static inline int idle_balance(struct rq *rq)
{
	return 0;
}

2680
#endif /* CONFIG_SMP */
2681

2682
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2683 2684
{
#ifdef CONFIG_SCHEDSTATS
2685 2686 2687 2688 2689
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2690
	if (se->statistics.sleep_start) {
2691
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2692 2693 2694 2695

		if ((s64)delta < 0)
			delta = 0;

2696 2697
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2698

2699
		se->statistics.sleep_start = 0;
2700
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2701

2702
		if (tsk) {
2703
			account_scheduler_latency(tsk, delta >> 10, 1);
2704 2705
			trace_sched_stat_sleep(tsk, delta);
		}
2706
	}
2707
	if (se->statistics.block_start) {
2708
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2709 2710 2711 2712

		if ((s64)delta < 0)
			delta = 0;

2713 2714
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2715

2716
		se->statistics.block_start = 0;
2717
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2718

2719
		if (tsk) {
2720
			if (tsk->in_iowait) {
2721 2722
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2723
				trace_sched_stat_iowait(tsk, delta);
2724 2725
			}

2726 2727
			trace_sched_stat_blocked(tsk, delta);

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2739
		}
2740 2741 2742 2743
	}
#endif
}

P
Peter Zijlstra 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2757 2758 2759
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2760
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2761

2762 2763 2764 2765 2766 2767
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2768
	if (initial && sched_feat(START_DEBIT))
2769
		vruntime += sched_vslice(cfs_rq, se);
2770

2771
	/* sleeps up to a single latency don't count. */
2772
	if (!initial) {
2773
		unsigned long thresh = sysctl_sched_latency;
2774

2775 2776 2777 2778 2779 2780
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2781

2782
		vruntime -= thresh;
2783 2784
	}

2785
	/* ensure we never gain time by being placed backwards. */
2786
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2787 2788
}

2789 2790
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2791
static void
2792
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2793
{
2794 2795
	/*
	 * Update the normalized vruntime before updating min_vruntime
2796
	 * through calling update_curr().
2797
	 */
2798
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2799 2800
		se->vruntime += cfs_rq->min_vruntime;

2801
	/*
2802
	 * Update run-time statistics of the 'current'.
2803
	 */
2804
	update_curr(cfs_rq);
2805
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2806 2807
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
2808

2809
	if (flags & ENQUEUE_WAKEUP) {
2810
		place_entity(cfs_rq, se, 0);
2811
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
2812
	}
2813

2814
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
2815
	check_spread(cfs_rq, se);
2816 2817
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
2818
	se->on_rq = 1;
2819

2820
	if (cfs_rq->nr_running == 1) {
2821
		list_add_leaf_cfs_rq(cfs_rq);
2822 2823
		check_enqueue_throttle(cfs_rq);
	}
2824 2825
}

2826
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
2827
{
2828 2829
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2830
		if (cfs_rq->last != se)
2831
			break;
2832 2833

		cfs_rq->last = NULL;
2834 2835
	}
}
P
Peter Zijlstra 已提交
2836

2837 2838 2839 2840
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2841
		if (cfs_rq->next != se)
2842
			break;
2843 2844

		cfs_rq->next = NULL;
2845
	}
P
Peter Zijlstra 已提交
2846 2847
}

2848 2849 2850 2851
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2852
		if (cfs_rq->skip != se)
2853
			break;
2854 2855

		cfs_rq->skip = NULL;
2856 2857 2858
	}
}

P
Peter Zijlstra 已提交
2859 2860
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2861 2862 2863 2864 2865
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
2866 2867 2868

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
2869 2870
}

2871
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2872

2873
static void
2874
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2875
{
2876 2877 2878 2879
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
2880
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2881

2882
	update_stats_dequeue(cfs_rq, se);
2883
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
2884
#ifdef CONFIG_SCHEDSTATS
2885 2886 2887 2888
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
2889
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2890
			if (tsk->state & TASK_UNINTERRUPTIBLE)
2891
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2892
		}
2893
#endif
P
Peter Zijlstra 已提交
2894 2895
	}

P
Peter Zijlstra 已提交
2896
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2897

2898
	if (se != cfs_rq->curr)
2899
		__dequeue_entity(cfs_rq, se);
2900
	se->on_rq = 0;
2901
	account_entity_dequeue(cfs_rq, se);
2902 2903 2904 2905 2906 2907

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
2908
	if (!(flags & DEQUEUE_SLEEP))
2909
		se->vruntime -= cfs_rq->min_vruntime;
2910

2911 2912 2913
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

2914
	update_min_vruntime(cfs_rq);
2915
	update_cfs_shares(cfs_rq);
2916 2917 2918 2919 2920
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
2921
static void
I
Ingo Molnar 已提交
2922
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2923
{
2924
	unsigned long ideal_runtime, delta_exec;
2925 2926
	struct sched_entity *se;
	s64 delta;
2927

P
Peter Zijlstra 已提交
2928
	ideal_runtime = sched_slice(cfs_rq, curr);
2929
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2930
	if (delta_exec > ideal_runtime) {
2931
		resched_curr(rq_of(cfs_rq));
2932 2933 2934 2935 2936
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

2948 2949
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
2950

2951 2952
	if (delta < 0)
		return;
2953

2954
	if (delta > ideal_runtime)
2955
		resched_curr(rq_of(cfs_rq));
2956 2957
}

2958
static void
2959
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2960
{
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

2972
	update_stats_curr_start(cfs_rq, se);
2973
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
2974 2975 2976 2977 2978 2979
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
2980
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2981
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
2982 2983 2984
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
2985
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2986 2987
}

2988 2989 2990
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

2991 2992 2993 2994 2995 2996 2997
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
2998 2999
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3000
{
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3012

3013 3014 3015 3016 3017
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3028 3029 3030
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3031

3032 3033 3034 3035 3036 3037
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3038 3039 3040 3041 3042 3043
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3044
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3045 3046

	return se;
3047 3048
}

3049
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3050

3051
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3052 3053 3054 3055 3056 3057
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3058
		update_curr(cfs_rq);
3059

3060 3061 3062
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
3063
	check_spread(cfs_rq, prev);
3064
	if (prev->on_rq) {
3065
		update_stats_wait_start(cfs_rq, prev);
3066 3067
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3068
		/* in !on_rq case, update occurred at dequeue */
3069
		update_entity_load_avg(prev, 1);
3070
	}
3071
	cfs_rq->curr = NULL;
3072 3073
}

P
Peter Zijlstra 已提交
3074 3075
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3076 3077
{
	/*
3078
	 * Update run-time statistics of the 'current'.
3079
	 */
3080
	update_curr(cfs_rq);
3081

3082 3083 3084
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3085
	update_entity_load_avg(curr, 1);
3086
	update_cfs_rq_blocked_load(cfs_rq, 1);
3087
	update_cfs_shares(cfs_rq);
3088

P
Peter Zijlstra 已提交
3089 3090 3091 3092 3093
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3094
	if (queued) {
3095
		resched_curr(rq_of(cfs_rq));
3096 3097
		return;
	}
P
Peter Zijlstra 已提交
3098 3099 3100 3101 3102 3103 3104 3105
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3106
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3107
		check_preempt_tick(cfs_rq, curr);
3108 3109
}

3110 3111 3112 3113 3114 3115

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3116 3117

#ifdef HAVE_JUMP_LABEL
3118
static struct static_key __cfs_bandwidth_used;
3119 3120 3121

static inline bool cfs_bandwidth_used(void)
{
3122
	return static_key_false(&__cfs_bandwidth_used);
3123 3124
}

3125
void cfs_bandwidth_usage_inc(void)
3126
{
3127 3128 3129 3130 3131 3132
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3133 3134 3135 3136 3137 3138 3139
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3140 3141
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3142 3143
#endif /* HAVE_JUMP_LABEL */

3144 3145 3146 3147 3148 3149 3150 3151
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3152 3153 3154 3155 3156 3157

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3158 3159 3160 3161 3162 3163 3164
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3165
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3177 3178 3179 3180 3181
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3182 3183 3184 3185 3186 3187
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3188
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3189 3190
}

3191 3192
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3193 3194 3195
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3196
	u64 amount = 0, min_amount, expires;
3197 3198 3199 3200 3201 3202 3203

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3204
	else {
P
Paul Turner 已提交
3205 3206 3207 3208 3209 3210 3211 3212
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
3213
			__start_cfs_bandwidth(cfs_b, false);
P
Paul Turner 已提交
3214
		}
3215 3216 3217 3218 3219 3220

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3221
	}
P
Paul Turner 已提交
3222
	expires = cfs_b->runtime_expires;
3223 3224 3225
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3226 3227 3228 3229 3230 3231 3232
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3233 3234

	return cfs_rq->runtime_remaining > 0;
3235 3236
}

P
Paul Turner 已提交
3237 3238 3239 3240 3241
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3242
{
P
Paul Turner 已提交
3243 3244 3245
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3246
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3247 3248
		return;

P
Paul Turner 已提交
3249 3250 3251 3252 3253 3254 3255 3256 3257
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3258 3259 3260
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3261 3262
	 */

3263
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3264 3265 3266 3267 3268 3269 3270 3271
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3272
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3273 3274
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3275
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3276 3277 3278
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3279 3280
		return;

3281 3282 3283 3284 3285
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3286
		resched_curr(rq_of(cfs_rq));
3287 3288
}

3289
static __always_inline
3290
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3291
{
3292
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3293 3294 3295 3296 3297
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3298 3299
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3300
	return cfs_bandwidth_used() && cfs_rq->throttled;
3301 3302
}

3303 3304 3305
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3306
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3335
		/* adjust cfs_rq_clock_task() */
3336
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3337
					     cfs_rq->throttled_clock_task;
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3349 3350
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3351
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3352 3353 3354 3355 3356
	cfs_rq->throttle_count++;

	return 0;
}

3357
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3358 3359 3360 3361 3362 3363 3364 3365
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3366
	/* freeze hierarchy runnable averages while throttled */
3367 3368 3369
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3387
		sub_nr_running(rq, task_delta);
3388 3389

	cfs_rq->throttled = 1;
3390
	cfs_rq->throttled_clock = rq_clock(rq);
3391
	raw_spin_lock(&cfs_b->lock);
3392 3393 3394 3395 3396
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3397
	if (!cfs_b->timer_active)
3398
		__start_cfs_bandwidth(cfs_b, false);
3399 3400 3401
	raw_spin_unlock(&cfs_b->lock);
}

3402
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3403 3404 3405 3406 3407 3408 3409
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3410
	se = cfs_rq->tg->se[cpu_of(rq)];
3411 3412

	cfs_rq->throttled = 0;
3413 3414 3415

	update_rq_clock(rq);

3416
	raw_spin_lock(&cfs_b->lock);
3417
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3418 3419 3420
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3421 3422 3423
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
3442
		add_nr_running(rq, task_delta);
3443 3444 3445

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
3446
		resched_curr(rq);
3447 3448 3449 3450 3451 3452
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
3453 3454
	u64 runtime;
	u64 starting_runtime = remaining;
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

3485
	return starting_runtime - remaining;
3486 3487
}

3488 3489 3490 3491 3492 3493 3494 3495
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3496
	u64 runtime, runtime_expires;
3497
	int throttled;
3498 3499 3500

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
3501
		goto out_deactivate;
3502

3503
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3504
	cfs_b->nr_periods += overrun;
3505

3506 3507 3508 3509 3510 3511
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
3512

3513 3514 3515 3516 3517 3518 3519
	/*
	 * if we have relooped after returning idle once, we need to update our
	 * status as actually running, so that other cpus doing
	 * __start_cfs_bandwidth will stop trying to cancel us.
	 */
	cfs_b->timer_active = 1;

P
Paul Turner 已提交
3520 3521
	__refill_cfs_bandwidth_runtime(cfs_b);

3522 3523 3524
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
3525
		return 0;
3526 3527
	}

3528 3529 3530
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3531 3532 3533
	runtime_expires = cfs_b->runtime_expires;

	/*
3534 3535 3536 3537 3538
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
3539
	 */
3540 3541
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
3542 3543 3544 3545 3546 3547 3548
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3549 3550

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3551
	}
3552

3553 3554 3555 3556 3557 3558 3559
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3560

3561 3562 3563 3564 3565
	return 0;

out_deactivate:
	cfs_b->timer_active = 0;
	return 1;
3566
}
3567

3568 3569 3570 3571 3572 3573 3574
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3575 3576 3577 3578 3579 3580 3581
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3638 3639 3640
	if (!cfs_bandwidth_used())
		return;

3641
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3657 3658 3659
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3660
		return;
3661
	}
3662

3663
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3664
		runtime = cfs_b->runtime;
3665

3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
3676
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3677 3678 3679
	raw_spin_unlock(&cfs_b->lock);
}

3680 3681 3682 3683 3684 3685 3686
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3687 3688 3689
	if (!cfs_bandwidth_used())
		return;

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
3705
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3706
{
3707
	if (!cfs_bandwidth_used())
3708
		return false;
3709

3710
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3711
		return false;
3712 3713 3714 3715 3716 3717

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
3718
		return true;
3719 3720

	throttle_cfs_rq(cfs_rq);
3721
	return true;
3722
}
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

3741
	raw_spin_lock(&cfs_b->lock);
3742 3743 3744 3745 3746 3747 3748 3749 3750
	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
3751
	raw_spin_unlock(&cfs_b->lock);
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
3777
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3778 3779 3780 3781 3782 3783 3784
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
3785 3786 3787
	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3788
		raw_spin_unlock(&cfs_b->lock);
3789
		cpu_relax();
3790 3791
		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
3792
		if (!force && cfs_b->timer_active)
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

3819
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
3831
		cfs_rq->runtime_remaining = 1;
3832 3833 3834 3835 3836 3837
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

3838 3839 3840 3841 3842 3843
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
3844 3845
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
3846
	return rq_clock_task(rq_of(cfs_rq));
3847 3848
}

3849
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3850
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3851
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3852
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3853 3854 3855 3856 3857

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
3869 3870 3871 3872 3873

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3874 3875
#endif

3876 3877 3878 3879 3880
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3881
static inline void update_runtime_enabled(struct rq *rq) {}
3882
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3883 3884 3885

#endif /* CONFIG_CFS_BANDWIDTH */

3886 3887 3888 3889
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
3890 3891 3892 3893 3894 3895 3896 3897
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

3898
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
3899 3900 3901 3902 3903 3904
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
3905
				resched_curr(rq);
P
Peter Zijlstra 已提交
3906 3907
			return;
		}
3908
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
3909 3910
	}
}
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

3921
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3922 3923 3924 3925 3926
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
3927
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
3928 3929 3930 3931
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
3932 3933 3934 3935

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
3936 3937
#endif

3938 3939 3940 3941 3942
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
3943
static void
3944
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3945 3946
{
	struct cfs_rq *cfs_rq;
3947
	struct sched_entity *se = &p->se;
3948 3949

	for_each_sched_entity(se) {
3950
		if (se->on_rq)
3951 3952
			break;
		cfs_rq = cfs_rq_of(se);
3953
		enqueue_entity(cfs_rq, se, flags);
3954 3955 3956 3957 3958 3959 3960 3961 3962

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3963
		cfs_rq->h_nr_running++;
3964

3965
		flags = ENQUEUE_WAKEUP;
3966
	}
P
Peter Zijlstra 已提交
3967

P
Peter Zijlstra 已提交
3968
	for_each_sched_entity(se) {
3969
		cfs_rq = cfs_rq_of(se);
3970
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
3971

3972 3973 3974
		if (cfs_rq_throttled(cfs_rq))
			break;

3975
		update_cfs_shares(cfs_rq);
3976
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3977 3978
	}

3979 3980
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
3981
		add_nr_running(rq, 1);
3982
	}
3983
	hrtick_update(rq);
3984 3985
}

3986 3987
static void set_next_buddy(struct sched_entity *se);

3988 3989 3990 3991 3992
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
3993
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3994 3995
{
	struct cfs_rq *cfs_rq;
3996
	struct sched_entity *se = &p->se;
3997
	int task_sleep = flags & DEQUEUE_SLEEP;
3998 3999 4000

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4001
		dequeue_entity(cfs_rq, se, flags);
4002 4003 4004 4005 4006 4007 4008 4009 4010

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4011
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4012

4013
		/* Don't dequeue parent if it has other entities besides us */
4014 4015 4016 4017 4018 4019 4020
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
4021 4022 4023

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
4024
			break;
4025
		}
4026
		flags |= DEQUEUE_SLEEP;
4027
	}
P
Peter Zijlstra 已提交
4028

P
Peter Zijlstra 已提交
4029
	for_each_sched_entity(se) {
4030
		cfs_rq = cfs_rq_of(se);
4031
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4032

4033 4034 4035
		if (cfs_rq_throttled(cfs_rq))
			break;

4036
		update_cfs_shares(cfs_rq);
4037
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
4038 4039
	}

4040
	if (!se) {
4041
		sub_nr_running(rq, 1);
4042 4043
		update_rq_runnable_avg(rq, 1);
	}
4044
	hrtick_update(rq);
4045 4046
}

4047
#ifdef CONFIG_SMP
4048 4049 4050
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
4051
	return cpu_rq(cpu)->cfs.runnable_load_avg;
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4087
static unsigned long capacity_of(int cpu)
4088
{
4089
	return cpu_rq(cpu)->cpu_capacity;
4090 4091 4092 4093 4094
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4095
	unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4096
	unsigned long load_avg = rq->cfs.runnable_load_avg;
4097 4098

	if (nr_running)
4099
		return load_avg / nr_running;
4100 4101 4102 4103

	return 0;
}

4104 4105 4106 4107 4108 4109 4110
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
4111
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4112
		current->wakee_flips >>= 1;
4113 4114 4115 4116 4117 4118 4119 4120
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4121

4122
static void task_waking_fair(struct task_struct *p)
4123 4124 4125
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4126 4127 4128 4129
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4130

4131 4132 4133 4134 4135 4136 4137 4138
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4139

4140
	se->vruntime -= min_vruntime;
4141
	record_wakee(p);
4142 4143
}

4144
#ifdef CONFIG_FAIR_GROUP_SCHED
4145 4146 4147 4148 4149 4150
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4194
 */
P
Peter Zijlstra 已提交
4195
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4196
{
P
Peter Zijlstra 已提交
4197
	struct sched_entity *se = tg->se[cpu];
4198

4199
	if (!tg->parent)	/* the trivial, non-cgroup case */
4200 4201
		return wl;

P
Peter Zijlstra 已提交
4202
	for_each_sched_entity(se) {
4203
		long w, W;
P
Peter Zijlstra 已提交
4204

4205
		tg = se->my_q->tg;
4206

4207 4208 4209 4210
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4211

4212 4213 4214 4215
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
4216

4217 4218 4219 4220 4221
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
4222 4223
		else
			wl = tg->shares;
4224

4225 4226 4227 4228 4229
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4230 4231
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4232 4233 4234 4235

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4236
		wl -= se->load.weight;
4237 4238 4239 4240 4241 4242 4243 4244

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4245 4246
		wg = 0;
	}
4247

P
Peter Zijlstra 已提交
4248
	return wl;
4249 4250
}
#else
P
Peter Zijlstra 已提交
4251

4252
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4253
{
4254
	return wl;
4255
}
P
Peter Zijlstra 已提交
4256

4257 4258
#endif

4259 4260
static int wake_wide(struct task_struct *p)
{
4261
	int factor = this_cpu_read(sd_llc_size);
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

4281
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4282
{
4283
	s64 this_load, load;
4284
	s64 this_eff_load, prev_eff_load;
4285 4286
	int idx, this_cpu, prev_cpu;
	struct task_group *tg;
4287
	unsigned long weight;
4288
	int balanced;
4289

4290 4291 4292 4293 4294 4295 4296
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

4297 4298 4299 4300 4301
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4302

4303 4304 4305 4306 4307
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4308 4309 4310 4311
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

4312
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4313 4314
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4315

4316 4317
	tg = task_group(p);
	weight = p->se.load.weight;
4318

4319 4320
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4321 4322 4323
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4324 4325 4326 4327
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4328 4329 4330 4331 4332
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);

	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
4333

4334
	if (this_load > 0) {
4335 4336 4337 4338
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4339 4340 4341
	}

	balanced = this_eff_load <= prev_eff_load;
4342

4343
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4344

4345 4346
	if (!balanced)
		return 0;
4347

4348 4349 4350 4351
	schedstat_inc(sd, ttwu_move_affine);
	schedstat_inc(p, se.statistics.nr_wakeups_affine);

	return 1;
4352 4353
}

4354 4355 4356 4357 4358
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4359
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4360
		  int this_cpu, int sd_flag)
4361
{
4362
	struct sched_group *idlest = NULL, *group = sd->groups;
4363
	unsigned long min_load = ULONG_MAX, this_load = 0;
4364
	int load_idx = sd->forkexec_idx;
4365
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4366

4367 4368 4369
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4370 4371 4372 4373
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4374

4375 4376
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4377
					tsk_cpus_allowed(p)))
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

4396
		/* Adjust by relative CPU capacity of the group */
4397
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
4419 4420 4421 4422
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
4423 4424 4425
	int i;

	/* Traverse only the allowed CPUs */
4426
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
		} else {
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
4455 4456 4457
		}
	}

4458
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4459
}
4460

4461 4462 4463
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4464
static int select_idle_sibling(struct task_struct *p, int target)
4465
{
4466
	struct sched_domain *sd;
4467
	struct sched_group *sg;
4468
	int i = task_cpu(p);
4469

4470 4471
	if (idle_cpu(target))
		return target;
4472 4473

	/*
4474
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4475
	 */
4476 4477
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4478 4479

	/*
4480
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4481
	 */
4482
	sd = rcu_dereference(per_cpu(sd_llc, target));
4483
	for_each_lower_domain(sd) {
4484 4485 4486 4487 4488 4489 4490
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4491
				if (i == target || !idle_cpu(i))
4492 4493
					goto next;
			}
4494

4495 4496 4497 4498 4499 4500 4501 4502
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4503 4504 4505
	return target;
}

4506
/*
4507 4508 4509
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4510
 *
4511 4512
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4513
 *
4514
 * Returns the target cpu number.
4515 4516 4517
 *
 * preempt must be disabled.
 */
4518
static int
4519
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4520
{
4521
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4522 4523
	int cpu = smp_processor_id();
	int new_cpu = cpu;
4524
	int want_affine = 0;
4525
	int sync = wake_flags & WF_SYNC;
4526

4527
	if (p->nr_cpus_allowed == 1)
4528 4529
		return prev_cpu;

4530 4531
	if (sd_flag & SD_BALANCE_WAKE)
		want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4532

4533
	rcu_read_lock();
4534
	for_each_domain(cpu, tmp) {
4535 4536 4537
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

4538
		/*
4539 4540
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4541
		 */
4542 4543 4544
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4545
			break;
4546
		}
4547

4548
		if (tmp->flags & sd_flag)
4549 4550 4551
			sd = tmp;
	}

4552 4553
	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
		prev_cpu = cpu;
4554

4555
	if (sd_flag & SD_BALANCE_WAKE) {
4556 4557
		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
4558
	}
4559

4560 4561
	while (sd) {
		struct sched_group *group;
4562
		int weight;
4563

4564
		if (!(sd->flags & sd_flag)) {
4565 4566 4567
			sd = sd->child;
			continue;
		}
4568

4569
		group = find_idlest_group(sd, p, cpu, sd_flag);
4570 4571 4572 4573
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4574

4575
		new_cpu = find_idlest_cpu(group, p, cpu);
4576 4577 4578 4579
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4580
		}
4581 4582 4583

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4584
		weight = sd->span_weight;
4585 4586
		sd = NULL;
		for_each_domain(cpu, tmp) {
4587
			if (weight <= tmp->span_weight)
4588
				break;
4589
			if (tmp->flags & sd_flag)
4590 4591 4592
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4593
	}
4594 4595
unlock:
	rcu_read_unlock();
4596

4597
	return new_cpu;
4598
}
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
4620 4621
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
4622
	}
4623 4624 4625

	/* We have migrated, no longer consider this task hot */
	se->exec_start = 0;
4626
}
4627 4628
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
4629 4630
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4631 4632 4633 4634
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
4635 4636
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
4637 4638 4639 4640 4641 4642 4643 4644 4645
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
4646
	 */
4647
	return calc_delta_fair(gran, se);
4648 4649
}

4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
4672
	gran = wakeup_gran(curr, se);
4673 4674 4675 4676 4677 4678
	if (vdiff > gran)
		return 1;

	return 0;
}

4679 4680
static void set_last_buddy(struct sched_entity *se)
{
4681 4682 4683 4684 4685
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
4686 4687 4688 4689
}

static void set_next_buddy(struct sched_entity *se)
{
4690 4691 4692 4693 4694
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
4695 4696
}

4697 4698
static void set_skip_buddy(struct sched_entity *se)
{
4699 4700
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
4701 4702
}

4703 4704 4705
/*
 * Preempt the current task with a newly woken task if needed:
 */
4706
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4707 4708
{
	struct task_struct *curr = rq->curr;
4709
	struct sched_entity *se = &curr->se, *pse = &p->se;
4710
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4711
	int scale = cfs_rq->nr_running >= sched_nr_latency;
4712
	int next_buddy_marked = 0;
4713

I
Ingo Molnar 已提交
4714 4715 4716
	if (unlikely(se == pse))
		return;

4717
	/*
4718
	 * This is possible from callers such as attach_tasks(), in which we
4719 4720 4721 4722 4723 4724 4725
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

4726
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
4727
		set_next_buddy(pse);
4728 4729
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
4730

4731 4732 4733
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
4734 4735 4736 4737 4738 4739
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
4740 4741 4742 4743
	 */
	if (test_tsk_need_resched(curr))
		return;

4744 4745 4746 4747 4748
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

4749
	/*
4750 4751
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
4752
	 */
4753
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4754
		return;
4755

4756
	find_matching_se(&se, &pse);
4757
	update_curr(cfs_rq_of(se));
4758
	BUG_ON(!pse);
4759 4760 4761 4762 4763 4764 4765
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
4766
		goto preempt;
4767
	}
4768

4769
	return;
4770

4771
preempt:
4772
	resched_curr(rq);
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
4787 4788
}

4789 4790
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4791 4792 4793
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
4794
	struct task_struct *p;
4795
	int new_tasks;
4796

4797
again:
4798 4799
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
4800
		goto idle;
4801

4802
	if (prev->sched_class != &fair_sched_class)
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
		if (curr && curr->on_rq)
			update_curr(cfs_rq);
		else
			curr = NULL;

		/*
		 * This call to check_cfs_rq_runtime() will do the throttle and
		 * dequeue its entity in the parent(s). Therefore the 'simple'
		 * nr_running test will indeed be correct.
		 */
		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
			goto simple;

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
4874

4875
	if (!cfs_rq->nr_running)
4876
		goto idle;
4877

4878
	put_prev_task(rq, prev);
4879

4880
	do {
4881
		se = pick_next_entity(cfs_rq, NULL);
4882
		set_next_entity(cfs_rq, se);
4883 4884 4885
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
4886
	p = task_of(se);
4887

4888 4889
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
4890 4891

	return p;
4892 4893

idle:
4894
	new_tasks = idle_balance(rq);
4895 4896 4897 4898 4899
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
4900
	if (new_tasks < 0)
4901 4902
		return RETRY_TASK;

4903
	if (new_tasks > 0)
4904 4905 4906
		goto again;

	return NULL;
4907 4908 4909 4910 4911
}

/*
 * Account for a descheduled task:
 */
4912
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4913 4914 4915 4916 4917 4918
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4919
		put_prev_entity(cfs_rq, se);
4920 4921 4922
	}
}

4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
4948 4949 4950 4951 4952 4953
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
4954 4955 4956 4957 4958
	}

	set_skip_buddy(se);
}

4959 4960 4961 4962
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

4963 4964
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

4975
#ifdef CONFIG_SMP
4976
/**************************************************
P
Peter Zijlstra 已提交
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
5000
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
5001 5002 5003 5004 5005 5006
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5007
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5093

5094 5095
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5096 5097
enum fbq_type { regular, remote, all };

5098
#define LBF_ALL_PINNED	0x01
5099
#define LBF_NEED_BREAK	0x02
5100 5101
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5102 5103 5104 5105 5106

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5107
	int			src_cpu;
5108 5109 5110 5111

	int			dst_cpu;
	struct rq		*dst_rq;

5112 5113
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5114
	enum cpu_idle_type	idle;
5115
	long			imbalance;
5116 5117 5118
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5119
	unsigned int		flags;
5120 5121 5122 5123

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5124 5125

	enum fbq_type		fbq_type;
5126
	struct list_head	tasks;
5127 5128
};

5129 5130 5131
/*
 * Is this task likely cache-hot:
 */
5132
static int task_hot(struct task_struct *p, struct lb_env *env)
5133 5134 5135
{
	s64 delta;

5136 5137
	lockdep_assert_held(&env->src_rq->lock);

5138 5139 5140 5141 5142 5143 5144 5145 5146
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
5147
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5148 5149 5150 5151 5152 5153 5154 5155 5156
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

5157
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5158 5159 5160 5161

	return delta < (s64)sysctl_sched_migration_cost;
}

5162 5163 5164 5165
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
5166
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5167 5168
	int src_nid, dst_nid;

5169
	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5170 5171 5172 5173 5174 5175 5176
	    !(env->sd->flags & SD_NUMA)) {
		return false;
	}

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5177
	if (src_nid == dst_nid)
5178 5179
		return false;

5180 5181 5182 5183
	if (numa_group) {
		/* Task is already in the group's interleave set. */
		if (node_isset(src_nid, numa_group->active_nodes))
			return false;
5184

5185 5186 5187
		/* Task is moving into the group's interleave set. */
		if (node_isset(dst_nid, numa_group->active_nodes))
			return true;
5188

5189 5190 5191 5192 5193
		return group_faults(p, dst_nid) > group_faults(p, src_nid);
	}

	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
5194 5195
		return true;

5196
	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5197
}
5198 5199 5200 5201


static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
5202
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5203 5204 5205 5206 5207
	int src_nid, dst_nid;

	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
		return false;

5208
	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5209 5210 5211 5212 5213
		return false;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5214
	if (src_nid == dst_nid)
5215 5216
		return false;

5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
	if (numa_group) {
		/* Task is moving within/into the group's interleave set. */
		if (node_isset(dst_nid, numa_group->active_nodes))
			return false;

		/* Task is moving out of the group's interleave set. */
		if (node_isset(src_nid, numa_group->active_nodes))
			return true;

		return group_faults(p, dst_nid) < group_faults(p, src_nid);
	}

5229 5230 5231 5232
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid)
		return true;

5233
	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5234 5235
}

5236 5237 5238 5239 5240 5241
#else
static inline bool migrate_improves_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5242 5243 5244 5245 5246 5247

static inline bool migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5248 5249
#endif

5250 5251 5252 5253
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5254
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5255 5256
{
	int tsk_cache_hot = 0;
5257 5258 5259

	lockdep_assert_held(&env->src_rq->lock);

5260 5261
	/*
	 * We do not migrate tasks that are:
5262
	 * 1) throttled_lb_pair, or
5263
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5264 5265
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5266
	 */
5267 5268 5269
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5270
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5271
		int cpu;
5272

5273
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5274

5275 5276
		env->flags |= LBF_SOME_PINNED;

5277 5278 5279 5280 5281 5282 5283 5284
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5285
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5286 5287
			return 0;

5288 5289 5290
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5291
				env->flags |= LBF_DST_PINNED;
5292 5293 5294
				env->new_dst_cpu = cpu;
				break;
			}
5295
		}
5296

5297 5298
		return 0;
	}
5299 5300

	/* Record that we found atleast one task that could run on dst_cpu */
5301
	env->flags &= ~LBF_ALL_PINNED;
5302

5303
	if (task_running(env->src_rq, p)) {
5304
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5305 5306 5307 5308 5309
		return 0;
	}

	/*
	 * Aggressive migration if:
5310 5311 5312
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5313
	 */
5314
	tsk_cache_hot = task_hot(p, env);
5315 5316
	if (!tsk_cache_hot)
		tsk_cache_hot = migrate_degrades_locality(p, env);
5317

5318 5319
	if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5320 5321 5322 5323
		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
5324 5325 5326
		return 1;
	}

Z
Zhang Hang 已提交
5327 5328
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5329 5330
}

5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
/*
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	deactivate_task(env->src_rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, env->dst_cpu);
}

5343
/*
5344
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5345 5346
 * part of active balancing operations within "domain".
 *
5347
 * Returns a task if successful and NULL otherwise.
5348
 */
5349
static struct task_struct *detach_one_task(struct lb_env *env)
5350 5351 5352
{
	struct task_struct *p, *n;

5353 5354
	lockdep_assert_held(&env->src_rq->lock);

5355 5356 5357
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5358

5359
		detach_task(p, env);
5360

5361
		/*
5362
		 * Right now, this is only the second place where
5363
		 * lb_gained[env->idle] is updated (other is detach_tasks)
5364
		 * so we can safely collect stats here rather than
5365
		 * inside detach_tasks().
5366 5367
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
5368
		return p;
5369
	}
5370 5371 5372
	return NULL;
}

5373 5374
static const unsigned int sched_nr_migrate_break = 32;

5375
/*
5376 5377
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
5378
 *
5379
 * Returns number of detached tasks if successful and 0 otherwise.
5380
 */
5381
static int detach_tasks(struct lb_env *env)
5382
{
5383 5384
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5385
	unsigned long load;
5386 5387 5388
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
5389

5390
	if (env->imbalance <= 0)
5391
		return 0;
5392

5393 5394
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5395

5396 5397
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5398
		if (env->loop > env->loop_max)
5399
			break;
5400 5401

		/* take a breather every nr_migrate tasks */
5402
		if (env->loop > env->loop_break) {
5403
			env->loop_break += sched_nr_migrate_break;
5404
			env->flags |= LBF_NEED_BREAK;
5405
			break;
5406
		}
5407

5408
		if (!can_migrate_task(p, env))
5409 5410 5411
			goto next;

		load = task_h_load(p);
5412

5413
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5414 5415
			goto next;

5416
		if ((load / 2) > env->imbalance)
5417
			goto next;
5418

5419 5420 5421 5422
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
5423
		env->imbalance -= load;
5424 5425

#ifdef CONFIG_PREEMPT
5426 5427
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
5428
		 * kernels will stop after the first task is detached to minimize
5429 5430
		 * the critical section.
		 */
5431
		if (env->idle == CPU_NEWLY_IDLE)
5432
			break;
5433 5434
#endif

5435 5436 5437 5438
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5439
		if (env->imbalance <= 0)
5440
			break;
5441 5442 5443

		continue;
next:
5444
		list_move_tail(&p->se.group_node, tasks);
5445
	}
5446

5447
	/*
5448 5449 5450
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
5451
	 */
5452
	schedstat_add(env->sd, lb_gained[env->idle], detached);
5453

5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	p->on_rq = TASK_ON_RQ_QUEUED;
	activate_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);

		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
5500 5501
}

P
Peter Zijlstra 已提交
5502
#ifdef CONFIG_FAIR_GROUP_SCHED
5503 5504 5505
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
5506
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5507
{
5508 5509
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5510

5511 5512 5513
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
5514

5515
	update_cfs_rq_blocked_load(cfs_rq, 1);
5516

5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
5531
		struct rq *rq = rq_of(cfs_rq);
5532 5533
		update_rq_runnable_avg(rq, rq->nr_running);
	}
5534 5535
}

5536
static void update_blocked_averages(int cpu)
5537 5538
{
	struct rq *rq = cpu_rq(cpu);
5539 5540
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5541

5542 5543
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5544 5545 5546 5547
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5548
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5549 5550 5551 5552 5553 5554
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5555
	}
5556 5557

	raw_spin_unlock_irqrestore(&rq->lock, flags);
5558 5559
}

5560
/*
5561
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5562 5563 5564
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5565
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5566
{
5567 5568
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5569
	unsigned long now = jiffies;
5570
	unsigned long load;
5571

5572
	if (cfs_rq->last_h_load_update == now)
5573 5574
		return;

5575 5576 5577 5578 5579 5580 5581
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5582

5583
	if (!se) {
5584
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5596 5597
}

5598
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5599
{
5600
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5601

5602
	update_cfs_rq_h_load(cfs_rq);
5603 5604
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
5605 5606
}
#else
5607
static inline void update_blocked_averages(int cpu)
5608 5609 5610
{
}

5611
static unsigned long task_h_load(struct task_struct *p)
5612
{
5613
	return p->se.avg.load_avg_contrib;
5614
}
P
Peter Zijlstra 已提交
5615
#endif
5616 5617

/********** Helpers for find_busiest_group ************************/
5618 5619 5620 5621 5622 5623 5624

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

5625 5626 5627 5628 5629 5630 5631
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5632
	unsigned long load_per_task;
5633
	unsigned long group_capacity;
5634
	unsigned int sum_nr_running; /* Nr tasks running in the group */
5635
	unsigned int group_capacity_factor;
5636 5637
	unsigned int idle_cpus;
	unsigned int group_weight;
5638
	enum group_type group_type;
5639
	int group_has_free_capacity;
5640 5641 5642 5643
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
5644 5645
};

J
Joonsoo Kim 已提交
5646 5647 5648 5649 5650 5651 5652 5653
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
5654
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
5655 5656 5657
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5658
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5659 5660
};

5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
5673
		.total_capacity = 0UL,
5674 5675
		.busiest_stat = {
			.avg_load = 0UL,
5676 5677
			.sum_nr_running = 0,
			.group_type = group_other,
5678 5679 5680 5681
		},
	};
}

5682 5683 5684
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
5685
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5686 5687
 *
 * Return: The load index.
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

5710
static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5711
{
5712
	return SCHED_CAPACITY_SCALE;
5713 5714
}

5715
unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5716
{
5717
	return default_scale_capacity(sd, cpu);
5718 5719
}

5720
static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5721
{
5722 5723
	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
		return sd->smt_gain / sd->span_weight;
5724

5725
	return SCHED_CAPACITY_SCALE;
5726 5727
}

5728
unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5729
{
5730
	return default_scale_cpu_capacity(sd, cpu);
5731 5732
}

5733
static unsigned long scale_rt_capacity(int cpu)
5734 5735
{
	struct rq *rq = cpu_rq(cpu);
5736
	u64 total, available, age_stamp, avg;
5737
	s64 delta;
5738

5739 5740 5741 5742 5743 5744 5745
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

5746 5747 5748 5749 5750
	delta = rq_clock(rq) - age_stamp;
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
5751

5752
	if (unlikely(total < avg)) {
5753
		/* Ensures that capacity won't end up being negative */
5754 5755
		available = 0;
	} else {
5756
		available = total - avg;
5757
	}
5758

5759 5760
	if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
		total = SCHED_CAPACITY_SCALE;
5761

5762
	total >>= SCHED_CAPACITY_SHIFT;
5763 5764 5765 5766

	return div_u64(available, total);
}

5767
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5768
{
5769
	unsigned long capacity = SCHED_CAPACITY_SCALE;
5770 5771
	struct sched_group *sdg = sd->groups;

5772 5773 5774 5775
	if (sched_feat(ARCH_CAPACITY))
		capacity *= arch_scale_cpu_capacity(sd, cpu);
	else
		capacity *= default_scale_cpu_capacity(sd, cpu);
5776

5777
	capacity >>= SCHED_CAPACITY_SHIFT;
5778

5779
	sdg->sgc->capacity_orig = capacity;
5780

5781
	if (sched_feat(ARCH_CAPACITY))
5782
		capacity *= arch_scale_freq_capacity(sd, cpu);
5783
	else
5784
		capacity *= default_scale_capacity(sd, cpu);
5785

5786
	capacity >>= SCHED_CAPACITY_SHIFT;
5787

5788
	capacity *= scale_rt_capacity(cpu);
5789
	capacity >>= SCHED_CAPACITY_SHIFT;
5790

5791 5792
	if (!capacity)
		capacity = 1;
5793

5794 5795
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
5796 5797
}

5798
void update_group_capacity(struct sched_domain *sd, int cpu)
5799 5800 5801
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
5802
	unsigned long capacity, capacity_orig;
5803 5804 5805 5806
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
5807
	sdg->sgc->next_update = jiffies + interval;
5808 5809

	if (!child) {
5810
		update_cpu_capacity(sd, cpu);
5811 5812 5813
		return;
	}

5814
	capacity_orig = capacity = 0;
5815

P
Peter Zijlstra 已提交
5816 5817 5818 5819 5820 5821
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

5822
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5823
			struct sched_group_capacity *sgc;
5824
			struct rq *rq = cpu_rq(cpu);
5825

5826
			/*
5827
			 * build_sched_domains() -> init_sched_groups_capacity()
5828 5829 5830
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
5831 5832
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
5833
			 *
5834
			 * This avoids capacity/capacity_orig from being 0 and
5835 5836
			 * causing divide-by-zero issues on boot.
			 *
5837
			 * Runtime updates will correct capacity_orig.
5838 5839
			 */
			if (unlikely(!rq->sd)) {
5840 5841
				capacity_orig += capacity_of(cpu);
				capacity += capacity_of(cpu);
5842 5843
				continue;
			}
5844

5845 5846 5847
			sgc = rq->sd->groups->sgc;
			capacity_orig += sgc->capacity_orig;
			capacity += sgc->capacity;
5848
		}
P
Peter Zijlstra 已提交
5849 5850 5851 5852 5853 5854 5855 5856
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
5857 5858
			capacity_orig += group->sgc->capacity_orig;
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
5859 5860 5861
			group = group->next;
		} while (group != child->groups);
	}
5862

5863 5864
	sdg->sgc->capacity_orig = capacity_orig;
	sdg->sgc->capacity = capacity;
5865 5866
}

5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
5878
	 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
5879
	 */
5880
	if (!(sd->flags & SD_SHARE_CPUCAPACITY))
5881 5882 5883
		return 0;

	/*
5884
	 * If ~90% of the cpu_capacity is still there, we're good.
5885
	 */
5886
	if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
5887 5888 5889 5890 5891
		return 1;

	return 0;
}

5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
5908 5909
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
5910 5911
 *
 * When this is so detected; this group becomes a candidate for busiest; see
5912
 * update_sd_pick_busiest(). And calculate_imbalance() and
5913
 * find_busiest_group() avoid some of the usual balance conditions to allow it
5914 5915 5916 5917 5918 5919 5920
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

5921
static inline int sg_imbalanced(struct sched_group *group)
5922
{
5923
	return group->sgc->imbalance;
5924 5925
}

5926
/*
5927
 * Compute the group capacity factor.
5928
 *
5929
 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
5930
 * first dividing out the smt factor and computing the actual number of cores
5931
 * and limit unit capacity with that.
5932
 */
5933
static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
5934
{
5935
	unsigned int capacity_factor, smt, cpus;
5936
	unsigned int capacity, capacity_orig;
5937

5938 5939
	capacity = group->sgc->capacity;
	capacity_orig = group->sgc->capacity_orig;
5940
	cpus = group->group_weight;
5941

5942
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
5943
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
5944
	capacity_factor = cpus / smt; /* cores */
5945

5946
	capacity_factor = min_t(unsigned,
5947
		capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
5948 5949
	if (!capacity_factor)
		capacity_factor = fix_small_capacity(env->sd, group);
5950

5951
	return capacity_factor;
5952 5953
}

5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
static enum group_type
group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->group_capacity_factor)
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

5966 5967
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5968
 * @env: The load balancing environment.
5969 5970 5971 5972
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
5973
 * @overload: Indicate more than one runnable task for any CPU.
5974
 */
5975 5976
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
5977 5978
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
5979
{
5980
	unsigned long load;
5981
	int i;
5982

5983 5984
	memset(sgs, 0, sizeof(*sgs));

5985
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5986 5987 5988
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
5989
		if (local_group)
5990
			load = target_load(i, load_idx);
5991
		else
5992 5993 5994
			load = source_load(i, load_idx);

		sgs->group_load += load;
5995
		sgs->sum_nr_running += rq->cfs.h_nr_running;
5996 5997 5998 5999

		if (rq->nr_running > 1)
			*overload = true;

6000 6001 6002 6003
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
6004
		sgs->sum_weighted_load += weighted_cpuload(i);
6005 6006
		if (idle_cpu(i))
			sgs->idle_cpus++;
6007 6008
	}

6009 6010
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
6011
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6012

6013
	if (sgs->sum_nr_running)
6014
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6015

6016
	sgs->group_weight = group->group_weight;
6017
	sgs->group_capacity_factor = sg_capacity_factor(env, group);
6018
	sgs->group_type = group_classify(group, sgs);
6019

6020
	if (sgs->group_capacity_factor > sgs->sum_nr_running)
6021
		sgs->group_has_free_capacity = 1;
6022 6023
}

6024 6025
/**
 * update_sd_pick_busiest - return 1 on busiest group
6026
 * @env: The load balancing environment.
6027 6028
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
6029
 * @sgs: sched_group statistics
6030 6031 6032
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
6033 6034 6035
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
6036
 */
6037
static bool update_sd_pick_busiest(struct lb_env *env,
6038 6039
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
6040
				   struct sg_lb_stats *sgs)
6041
{
6042
	struct sg_lb_stats *busiest = &sds->busiest_stat;
6043

6044
	if (sgs->group_type > busiest->group_type)
6045 6046
		return true;

6047 6048 6049 6050 6051 6052 6053 6054
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
6055 6056 6057 6058 6059 6060 6061
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
6062
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6103
/**
6104
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6105
 * @env: The load balancing environment.
6106 6107
 * @sds: variable to hold the statistics for this sched_domain.
 */
6108
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6109
{
6110 6111
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6112
	struct sg_lb_stats tmp_sgs;
6113
	int load_idx, prefer_sibling = 0;
6114
	bool overload = false;
6115 6116 6117 6118

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6119
	load_idx = get_sd_load_idx(env->sd, env->idle);
6120 6121

	do {
J
Joonsoo Kim 已提交
6122
		struct sg_lb_stats *sgs = &tmp_sgs;
6123 6124
		int local_group;

6125
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6126 6127 6128
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6129 6130

			if (env->idle != CPU_NEWLY_IDLE ||
6131 6132
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6133
		}
6134

6135 6136
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6137

6138 6139 6140
		if (local_group)
			goto next_group;

6141 6142
		/*
		 * In case the child domain prefers tasks go to siblings
6143
		 * first, lower the sg capacity factor to one so that we'll try
6144 6145
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6146
		 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6147 6148 6149
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
6150
		 */
6151
		if (prefer_sibling && sds->local &&
6152
		    sds->local_stat.group_has_free_capacity)
6153
			sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6154

6155
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6156
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6157
			sds->busiest_stat = *sgs;
6158 6159
		}

6160 6161 6162
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6163
		sds->total_capacity += sgs->group_capacity;
6164

6165
		sg = sg->next;
6166
	} while (sg != env->sd->groups);
6167 6168 6169

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6170 6171 6172 6173 6174 6175 6176

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6196
 * Return: 1 when packing is required and a task should be moved to
6197 6198
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6199
 * @env: The load balancing environment.
6200 6201
 * @sds: Statistics of the sched_domain which is to be packed
 */
6202
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6203 6204 6205
{
	int busiest_cpu;

6206
	if (!(env->sd->flags & SD_ASYM_PACKING))
6207 6208 6209 6210 6211 6212
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6213
	if (env->dst_cpu > busiest_cpu)
6214 6215
		return 0;

6216
	env->imbalance = DIV_ROUND_CLOSEST(
6217
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6218
		SCHED_CAPACITY_SCALE);
6219

6220
	return 1;
6221 6222 6223 6224 6225 6226
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6227
 * @env: The load balancing environment.
6228 6229
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6230 6231
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6232
{
6233
	unsigned long tmp, capa_now = 0, capa_move = 0;
6234
	unsigned int imbn = 2;
6235
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6236
	struct sg_lb_stats *local, *busiest;
6237

J
Joonsoo Kim 已提交
6238 6239
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6240

J
Joonsoo Kim 已提交
6241 6242 6243 6244
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6245

J
Joonsoo Kim 已提交
6246
	scaled_busy_load_per_task =
6247
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6248
		busiest->group_capacity;
J
Joonsoo Kim 已提交
6249

6250 6251
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6252
		env->imbalance = busiest->load_per_task;
6253 6254 6255 6256 6257
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
6258
	 * however we may be able to increase total CPU capacity used by
6259 6260 6261
	 * moving them.
	 */

6262
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
6263
			min(busiest->load_per_task, busiest->avg_load);
6264
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
6265
			min(local->load_per_task, local->avg_load);
6266
	capa_now /= SCHED_CAPACITY_SCALE;
6267 6268

	/* Amount of load we'd subtract */
6269
	if (busiest->avg_load > scaled_busy_load_per_task) {
6270
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
6271
			    min(busiest->load_per_task,
6272
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
6273
	}
6274 6275

	/* Amount of load we'd add */
6276
	if (busiest->avg_load * busiest->group_capacity <
6277
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6278 6279
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
6280
	} else {
6281
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6282
		      local->group_capacity;
J
Joonsoo Kim 已提交
6283
	}
6284
	capa_move += local->group_capacity *
6285
		    min(local->load_per_task, local->avg_load + tmp);
6286
	capa_move /= SCHED_CAPACITY_SCALE;
6287 6288

	/* Move if we gain throughput */
6289
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
6290
		env->imbalance = busiest->load_per_task;
6291 6292 6293 6294 6295
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
6296
 * @env: load balance environment
6297 6298
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
6299
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6300
{
6301
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
6302 6303 6304 6305
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6306

6307
	if (busiest->group_type == group_imbalanced) {
6308 6309 6310 6311
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
6312 6313
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
6314 6315
	}

6316 6317 6318
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
6319
	 * its cpu_capacity, while calculating max_load..)
6320
	 */
6321 6322
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6323 6324
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6325 6326
	}

6327 6328 6329 6330 6331
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
J
Joonsoo Kim 已提交
6332
		load_above_capacity =
6333
			(busiest->sum_nr_running - busiest->group_capacity_factor);
6334

6335
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6336
		load_above_capacity /= busiest->group_capacity;
6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6347
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6348 6349

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6350
	env->imbalance = min(
6351 6352
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
6353
	) / SCHED_CAPACITY_SCALE;
6354 6355 6356

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6357
	 * there is no guarantee that any tasks will be moved so we'll have
6358 6359 6360
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6361
	if (env->imbalance < busiest->load_per_task)
6362
		return fix_small_imbalance(env, sds);
6363
}
6364

6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6377
 * @env: The load balancing environment.
6378
 *
6379
 * Return:	- The busiest group if imbalance exists.
6380 6381 6382 6383
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6384
static struct sched_group *find_busiest_group(struct lb_env *env)
6385
{
J
Joonsoo Kim 已提交
6386
	struct sg_lb_stats *local, *busiest;
6387 6388
	struct sd_lb_stats sds;

6389
	init_sd_lb_stats(&sds);
6390 6391 6392 6393 6394

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6395
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6396 6397
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6398

6399 6400
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6401 6402
		return sds.busiest;

6403
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6404
	if (!sds.busiest || busiest->sum_nr_running == 0)
6405 6406
		goto out_balanced;

6407 6408
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
6409

P
Peter Zijlstra 已提交
6410 6411
	/*
	 * If the busiest group is imbalanced the below checks don't
6412
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6413 6414
	 * isn't true due to cpus_allowed constraints and the like.
	 */
6415
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
6416 6417
		goto force_balance;

6418
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6419 6420
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
	    !busiest->group_has_free_capacity)
6421 6422
		goto force_balance;

6423
	/*
6424
	 * If the local group is busier than the selected busiest group
6425 6426
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
6427
	if (local->avg_load >= busiest->avg_load)
6428 6429
		goto out_balanced;

6430 6431 6432 6433
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
6434
	if (local->avg_load >= sds.avg_load)
6435 6436
		goto out_balanced;

6437
	if (env->idle == CPU_IDLE) {
6438 6439 6440 6441 6442 6443
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
J
Joonsoo Kim 已提交
6444 6445
		if ((local->idle_cpus < busiest->idle_cpus) &&
		    busiest->sum_nr_running <= busiest->group_weight)
6446
			goto out_balanced;
6447 6448 6449 6450 6451
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6452 6453
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6454
			goto out_balanced;
6455
	}
6456

6457
force_balance:
6458
	/* Looks like there is an imbalance. Compute it */
6459
	calculate_imbalance(env, &sds);
6460 6461 6462
	return sds.busiest;

out_balanced:
6463
	env->imbalance = 0;
6464 6465 6466 6467 6468 6469
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6470
static struct rq *find_busiest_queue(struct lb_env *env,
6471
				     struct sched_group *group)
6472 6473
{
	struct rq *busiest = NULL, *rq;
6474
	unsigned long busiest_load = 0, busiest_capacity = 1;
6475 6476
	int i;

6477
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6478
		unsigned long capacity, capacity_factor, wl;
6479 6480 6481 6482
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6483

6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

6506
		capacity = capacity_of(i);
6507
		capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6508 6509
		if (!capacity_factor)
			capacity_factor = fix_small_capacity(env->sd, group);
6510

6511
		wl = weighted_cpuload(i);
6512

6513 6514
		/*
		 * When comparing with imbalance, use weighted_cpuload()
6515
		 * which is not scaled with the cpu capacity.
6516
		 */
6517
		if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6518 6519
			continue;

6520 6521
		/*
		 * For the load comparisons with the other cpu's, consider
6522 6523 6524
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
6525
		 *
6526
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6527
		 * multiplication to rid ourselves of the division works out
6528 6529
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
6530
		 */
6531
		if (wl * busiest_capacity > busiest_load * capacity) {
6532
			busiest_load = wl;
6533
			busiest_capacity = capacity;
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6548
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6549

6550
static int need_active_balance(struct lb_env *env)
6551
{
6552 6553 6554
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6555 6556 6557 6558 6559 6560

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6561
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6562
			return 1;
6563 6564 6565 6566 6567
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6568 6569
static int active_load_balance_cpu_stop(void *data);

6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6601
	return balance_cpu == env->dst_cpu;
6602 6603
}

6604 6605 6606 6607 6608 6609
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6610
			int *continue_balancing)
6611
{
6612
	int ld_moved, cur_ld_moved, active_balance = 0;
6613
	struct sched_domain *sd_parent = sd->parent;
6614 6615 6616
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6617
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6618

6619 6620
	struct lb_env env = {
		.sd		= sd,
6621 6622
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6623
		.dst_grpmask    = sched_group_cpus(sd->groups),
6624
		.idle		= idle,
6625
		.loop_break	= sched_nr_migrate_break,
6626
		.cpus		= cpus,
6627
		.fbq_type	= all,
6628
		.tasks		= LIST_HEAD_INIT(env.tasks),
6629 6630
	};

6631 6632 6633 6634
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6635
	if (idle == CPU_NEWLY_IDLE)
6636 6637
		env.dst_grpmask = NULL;

6638 6639 6640 6641 6642
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6643 6644
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6645
		goto out_balanced;
6646
	}
6647

6648
	group = find_busiest_group(&env);
6649 6650 6651 6652 6653
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6654
	busiest = find_busiest_queue(&env, group);
6655 6656 6657 6658 6659
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

6660
	BUG_ON(busiest == env.dst_rq);
6661

6662
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6663 6664 6665 6666 6667 6668 6669 6670 6671

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
6672
		env.flags |= LBF_ALL_PINNED;
6673 6674 6675
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6676

6677
more_balance:
6678
		raw_spin_lock_irqsave(&busiest->lock, flags);
6679 6680 6681 6682 6683

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700
		cur_ld_moved = detach_tasks(&env);

		/*
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
		 */

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

6701 6702 6703 6704 6705
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
6706 6707 6708
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

6709 6710 6711 6712 6713
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
6733
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6734

6735 6736 6737
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

6738
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6739
			env.dst_cpu	 = env.new_dst_cpu;
6740
			env.flags	&= ~LBF_DST_PINNED;
6741 6742
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
6743

6744 6745 6746 6747 6748 6749
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
6750

6751 6752 6753 6754
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
6755
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6756

6757
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6758 6759 6760
				*group_imbalance = 1;
		}

6761
		/* All tasks on this runqueue were pinned by CPU affinity */
6762
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6763
			cpumask_clear_cpu(cpu_of(busiest), cpus);
6764 6765 6766
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
6767
				goto redo;
6768
			}
6769
			goto out_all_pinned;
6770 6771 6772 6773 6774
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
6775 6776 6777 6778 6779 6780 6781 6782
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
6783

6784
		if (need_active_balance(&env)) {
6785 6786
			raw_spin_lock_irqsave(&busiest->lock, flags);

6787 6788 6789
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
6790 6791
			 */
			if (!cpumask_test_cpu(this_cpu,
6792
					tsk_cpus_allowed(busiest->curr))) {
6793 6794
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
6795
				env.flags |= LBF_ALL_PINNED;
6796 6797 6798
				goto out_one_pinned;
			}

6799 6800 6801 6802 6803
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
6804 6805 6806 6807 6808 6809
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6810

6811
			if (active_balance) {
6812 6813 6814
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
6815
			}
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
6834
		 * detach_tasks).
6835 6836 6837 6838 6839 6840 6841 6842
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
6860 6861 6862 6863 6864 6865
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
6866
	if (((env.flags & LBF_ALL_PINNED) &&
6867
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6868 6869 6870
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

6871
	ld_moved = 0;
6872 6873 6874 6875
out:
	return ld_moved;
}

6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

6903 6904 6905 6906
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
6907
static int idle_balance(struct rq *this_rq)
6908
{
6909 6910
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
6911 6912
	struct sched_domain *sd;
	int pulled_task = 0;
6913
	u64 curr_cost = 0;
6914

6915
	idle_enter_fair(this_rq);
6916

6917 6918 6919 6920 6921 6922
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

6923 6924
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
6925 6926 6927 6928 6929 6930
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

6931
		goto out;
6932
	}
6933

6934 6935 6936 6937 6938
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

6939
	update_blocked_averages(this_cpu);
6940
	rcu_read_lock();
6941
	for_each_domain(this_cpu, sd) {
6942
		int continue_balancing = 1;
6943
		u64 t0, domain_cost;
6944 6945 6946 6947

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6948 6949
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
6950
			break;
6951
		}
6952

6953
		if (sd->flags & SD_BALANCE_NEWIDLE) {
6954 6955
			t0 = sched_clock_cpu(this_cpu);

6956
			pulled_task = load_balance(this_cpu, this_rq,
6957 6958
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
6959 6960 6961 6962 6963 6964

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
6965
		}
6966

6967
		update_next_balance(sd, 0, &next_balance);
6968 6969 6970 6971 6972 6973

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
6974 6975
			break;
	}
6976
	rcu_read_unlock();
6977 6978 6979

	raw_spin_lock(&this_rq->lock);

6980 6981 6982
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

6983
	/*
6984 6985 6986
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
6987
	 */
6988
	if (this_rq->cfs.h_nr_running && !pulled_task)
6989
		pulled_task = 1;
6990

6991 6992 6993
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
6994
		this_rq->next_balance = next_balance;
6995

6996
	/* Is there a task of a high priority class? */
6997
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
6998 6999 7000 7001
		pulled_task = -1;

	if (pulled_task) {
		idle_exit_fair(this_rq);
7002
		this_rq->idle_stamp = 0;
7003
	}
7004

7005
	return pulled_task;
7006 7007 7008
}

/*
7009 7010 7011 7012
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
7013
 */
7014
static int active_load_balance_cpu_stop(void *data)
7015
{
7016 7017
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
7018
	int target_cpu = busiest_rq->push_cpu;
7019
	struct rq *target_rq = cpu_rq(target_cpu);
7020
	struct sched_domain *sd;
7021
	struct task_struct *p = NULL;
7022 7023 7024 7025 7026 7027 7028

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
7029 7030 7031

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
7032
		goto out_unlock;
7033 7034 7035 7036 7037 7038 7039 7040 7041

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
7042
	rcu_read_lock();
7043 7044 7045 7046 7047 7048 7049
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
7050 7051
		struct lb_env env = {
			.sd		= sd,
7052 7053 7054 7055
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
7056 7057 7058
			.idle		= CPU_IDLE,
		};

7059 7060
		schedstat_inc(sd, alb_count);

7061 7062
		p = detach_one_task(&env);
		if (p)
7063 7064 7065 7066
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
7067
	rcu_read_unlock();
7068 7069
out_unlock:
	busiest_rq->active_balance = 0;
7070 7071 7072 7073 7074 7075 7076
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

7077
	return 0;
7078 7079
}

7080 7081 7082 7083 7084
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

7085
#ifdef CONFIG_NO_HZ_COMMON
7086 7087 7088 7089 7090 7091
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
7092
static struct {
7093
	cpumask_var_t idle_cpus_mask;
7094
	atomic_t nr_cpus;
7095 7096
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
7097

7098
static inline int find_new_ilb(void)
7099
{
7100
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7101

7102 7103 7104 7105
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7106 7107
}

7108 7109 7110 7111 7112
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7113
static void nohz_balancer_kick(void)
7114 7115 7116 7117 7118
{
	int ilb_cpu;

	nohz.next_balance++;

7119
	ilb_cpu = find_new_ilb();
7120

7121 7122
	if (ilb_cpu >= nr_cpu_ids)
		return;
7123

7124
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7125 7126 7127 7128 7129 7130 7131 7132
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7133 7134 7135
	return;
}

7136
static inline void nohz_balance_exit_idle(int cpu)
7137 7138
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7139 7140 7141 7142 7143 7144 7145
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
7146 7147 7148 7149
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

7150 7151 7152
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
7153
	int cpu = smp_processor_id();
7154 7155

	rcu_read_lock();
7156
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7157 7158 7159 7160 7161

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7162
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7163
unlock:
7164 7165 7166 7167 7168 7169
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7170
	int cpu = smp_processor_id();
7171 7172

	rcu_read_lock();
7173
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7174 7175 7176 7177 7178

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7179
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7180
unlock:
7181 7182 7183
	rcu_read_unlock();
}

7184
/*
7185
 * This routine will record that the cpu is going idle with tick stopped.
7186
 * This info will be used in performing idle load balancing in the future.
7187
 */
7188
void nohz_balance_enter_idle(int cpu)
7189
{
7190 7191 7192 7193 7194 7195
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

7196 7197
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
7198

7199 7200 7201 7202 7203 7204
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

7205 7206 7207
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7208
}
7209

7210
static int sched_ilb_notifier(struct notifier_block *nfb,
7211 7212 7213 7214
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
7215
		nohz_balance_exit_idle(smp_processor_id());
7216 7217 7218 7219 7220
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
7221 7222 7223 7224
#endif

static DEFINE_SPINLOCK(balancing);

7225 7226 7227 7228
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
7229
void update_max_interval(void)
7230 7231 7232 7233
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

7234 7235 7236 7237
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7238
 * Balancing parameters are set up in init_sched_domains.
7239
 */
7240
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7241
{
7242
	int continue_balancing = 1;
7243
	int cpu = rq->cpu;
7244
	unsigned long interval;
7245
	struct sched_domain *sd;
7246 7247 7248
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7249 7250
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7251

7252
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7253

7254
	rcu_read_lock();
7255
	for_each_domain(cpu, sd) {
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7268 7269 7270
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

7282
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7283 7284 7285 7286 7287 7288 7289 7290

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7291
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7292
				/*
7293
				 * The LBF_DST_PINNED logic could have changed
7294 7295
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
7296
				 */
7297
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7298 7299
			}
			sd->last_balance = jiffies;
7300
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7301 7302 7303 7304 7305 7306 7307 7308
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
7309 7310
	}
	if (need_decay) {
7311
		/*
7312 7313
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
7314
		 */
7315 7316
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
7317
	}
7318
	rcu_read_unlock();
7319 7320 7321 7322 7323 7324 7325 7326 7327 7328

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

7329
#ifdef CONFIG_NO_HZ_COMMON
7330
/*
7331
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7332 7333
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
7334
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7335
{
7336
	int this_cpu = this_rq->cpu;
7337 7338 7339
	struct rq *rq;
	int balance_cpu;

7340 7341 7342
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
7343 7344

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7345
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7346 7347 7348 7349 7350 7351 7352
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
7353
		if (need_resched())
7354 7355
			break;

V
Vincent Guittot 已提交
7356 7357
		rq = cpu_rq(balance_cpu);

7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
			update_idle_cpu_load(rq);
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
7369 7370 7371 7372 7373

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
7374 7375
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7376 7377 7378
}

/*
7379 7380 7381 7382
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
7383
 *     busy cpu's exceeding the group's capacity.
7384 7385
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
7386
 */
7387
static inline int nohz_kick_needed(struct rq *rq)
7388 7389
{
	unsigned long now = jiffies;
7390
	struct sched_domain *sd;
7391
	struct sched_group_capacity *sgc;
7392
	int nr_busy, cpu = rq->cpu;
7393

7394
	if (unlikely(rq->idle_balance))
7395 7396
		return 0;

7397 7398 7399 7400
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
7401
	set_cpu_sd_state_busy();
7402
	nohz_balance_exit_idle(cpu);
7403 7404 7405 7406 7407 7408 7409

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
7410 7411

	if (time_before(now, nohz.next_balance))
7412 7413
		return 0;

7414 7415
	if (rq->nr_running >= 2)
		goto need_kick;
7416

7417
	rcu_read_lock();
7418
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7419

7420
	if (sd) {
7421 7422
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7423

7424
		if (nr_busy > 1)
7425
			goto need_kick_unlock;
7426
	}
7427 7428 7429 7430 7431 7432 7433

	sd = rcu_dereference(per_cpu(sd_asym, cpu));

	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
				  sched_domain_span(sd)) < cpu))
		goto need_kick_unlock;

7434
	rcu_read_unlock();
7435
	return 0;
7436 7437 7438

need_kick_unlock:
	rcu_read_unlock();
7439 7440
need_kick:
	return 1;
7441 7442
}
#else
7443
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7444 7445 7446 7447 7448 7449
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
7450 7451
static void run_rebalance_domains(struct softirq_action *h)
{
7452
	struct rq *this_rq = this_rq();
7453
	enum cpu_idle_type idle = this_rq->idle_balance ?
7454 7455
						CPU_IDLE : CPU_NOT_IDLE;

7456
	rebalance_domains(this_rq, idle);
7457 7458

	/*
7459
	 * If this cpu has a pending nohz_balance_kick, then do the
7460 7461 7462
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
7463
	nohz_idle_balance(this_rq, idle);
7464 7465 7466 7467 7468
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
7469
void trigger_load_balance(struct rq *rq)
7470 7471
{
	/* Don't need to rebalance while attached to NULL domain */
7472 7473 7474 7475
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
7476
		raise_softirq(SCHED_SOFTIRQ);
7477
#ifdef CONFIG_NO_HZ_COMMON
7478
	if (nohz_kick_needed(rq))
7479
		nohz_balancer_kick();
7480
#endif
7481 7482
}

7483 7484 7485
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
7486 7487

	update_runtime_enabled(rq);
7488 7489 7490 7491 7492
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
7493 7494 7495

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
7496 7497
}

7498
#endif /* CONFIG_SMP */
7499

7500 7501 7502
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
7503
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7504 7505 7506 7507 7508 7509
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
7510
		entity_tick(cfs_rq, se, queued);
7511
	}
7512

7513
	if (numabalancing_enabled)
7514
		task_tick_numa(rq, curr);
7515

7516
	update_rq_runnable_avg(rq, 1);
7517 7518 7519
}

/*
P
Peter Zijlstra 已提交
7520 7521 7522
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
7523
 */
P
Peter Zijlstra 已提交
7524
static void task_fork_fair(struct task_struct *p)
7525
{
7526 7527
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
7528
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
7529 7530 7531
	struct rq *rq = this_rq();
	unsigned long flags;

7532
	raw_spin_lock_irqsave(&rq->lock, flags);
7533

7534 7535
	update_rq_clock(rq);

7536 7537 7538
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

7539 7540 7541 7542 7543 7544 7545 7546 7547
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
7548

7549
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
7550

7551 7552
	if (curr)
		se->vruntime = curr->vruntime;
7553
	place_entity(cfs_rq, se, 1);
7554

P
Peter Zijlstra 已提交
7555
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
7556
		/*
7557 7558 7559
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
7560
		swap(curr->vruntime, se->vruntime);
7561
		resched_curr(rq);
7562
	}
7563

7564 7565
	se->vruntime -= cfs_rq->min_vruntime;

7566
	raw_spin_unlock_irqrestore(&rq->lock, flags);
7567 7568
}

7569 7570 7571 7572
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
7573 7574
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7575
{
7576
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
7577 7578
		return;

7579 7580 7581 7582 7583
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
7584
	if (rq->curr == p) {
7585
		if (p->prio > oldprio)
7586
			resched_curr(rq);
7587
	} else
7588
		check_preempt_curr(rq, p, 0);
7589 7590
}

P
Peter Zijlstra 已提交
7591 7592 7593 7594 7595 7596
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
7597
	 * Ensure the task's vruntime is normalized, so that when it's
P
Peter Zijlstra 已提交
7598 7599 7600
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
7601 7602
	 * If it's queued, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it's !queued, then only when
P
Peter Zijlstra 已提交
7603 7604
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
7605
	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
P
Peter Zijlstra 已提交
7606 7607 7608 7609 7610 7611 7612
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
7613

7614
#ifdef CONFIG_SMP
7615 7616 7617 7618 7619
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
7620 7621 7622
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7623 7624
	}
#endif
P
Peter Zijlstra 已提交
7625 7626
}

7627 7628 7629
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
7630
static void switched_to_fair(struct rq *rq, struct task_struct *p)
7631
{
7632
#ifdef CONFIG_FAIR_GROUP_SCHED
7633
	struct sched_entity *se = &p->se;
7634 7635 7636 7637 7638 7639
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
7640
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
7641 7642
		return;

7643 7644 7645 7646 7647
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
7648
	if (rq->curr == p)
7649
		resched_curr(rq);
7650
	else
7651
		check_preempt_curr(rq, p, 0);
7652 7653
}

7654 7655 7656 7657 7658 7659 7660 7661 7662
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

7663 7664 7665 7666 7667 7668 7669
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
7670 7671
}

7672 7673 7674 7675 7676 7677 7678
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
7679
#ifdef CONFIG_SMP
7680
	atomic64_set(&cfs_rq->decay_counter, 1);
7681
	atomic_long_set(&cfs_rq->removed_load, 0);
7682
#endif
7683 7684
}

P
Peter Zijlstra 已提交
7685
#ifdef CONFIG_FAIR_GROUP_SCHED
7686
static void task_move_group_fair(struct task_struct *p, int queued)
P
Peter Zijlstra 已提交
7687
{
P
Peter Zijlstra 已提交
7688
	struct sched_entity *se = &p->se;
7689
	struct cfs_rq *cfs_rq;
P
Peter Zijlstra 已提交
7690

7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
7704
	/*
7705
	 * When !queued, vruntime of the task has usually NOT been normalized.
7706 7707 7708 7709
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
7710 7711
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
7712 7713 7714 7715
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
7716 7717
	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
		queued = 1;
7718

7719
	if (!queued)
P
Peter Zijlstra 已提交
7720
		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7721
	set_task_rq(p, task_cpu(p));
P
Peter Zijlstra 已提交
7722
	se->depth = se->parent ? se->parent->depth + 1 : 0;
7723
	if (!queued) {
P
Peter Zijlstra 已提交
7724 7725
		cfs_rq = cfs_rq_of(se);
		se->vruntime += cfs_rq->min_vruntime;
7726 7727 7728 7729 7730 7731
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
P
Peter Zijlstra 已提交
7732 7733
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7734 7735
#endif
	}
P
Peter Zijlstra 已提交
7736
}
7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
7829
	if (!parent) {
7830
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
7831 7832
		se->depth = 0;
	} else {
7833
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
7834 7835
		se->depth = parent->depth + 1;
	}
7836 7837

	se->my_q = cfs_rq;
7838 7839
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
7870 7871 7872

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
7873
		for_each_sched_entity(se)
7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
7895

7896
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7897 7898 7899 7900 7901 7902 7903 7904 7905
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
7906
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7907 7908 7909 7910

	return rr_interval;
}

7911 7912 7913
/*
 * All the scheduling class methods:
 */
7914
const struct sched_class fair_sched_class = {
7915
	.next			= &idle_sched_class,
7916 7917 7918
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
7919
	.yield_to_task		= yield_to_task_fair,
7920

I
Ingo Molnar 已提交
7921
	.check_preempt_curr	= check_preempt_wakeup,
7922 7923 7924 7925

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

7926
#ifdef CONFIG_SMP
L
Li Zefan 已提交
7927
	.select_task_rq		= select_task_rq_fair,
7928
	.migrate_task_rq	= migrate_task_rq_fair,
7929

7930 7931
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
7932 7933

	.task_waking		= task_waking_fair,
7934
#endif
7935

7936
	.set_curr_task          = set_curr_task_fair,
7937
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
7938
	.task_fork		= task_fork_fair,
7939 7940

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
7941
	.switched_from		= switched_from_fair,
7942
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
7943

7944 7945
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
7946
#ifdef CONFIG_FAIR_GROUP_SCHED
7947
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
7948
#endif
7949 7950 7951
};

#ifdef CONFIG_SCHED_DEBUG
7952
void print_cfs_stats(struct seq_file *m, int cpu)
7953 7954 7955
{
	struct cfs_rq *cfs_rq;

7956
	rcu_read_lock();
7957
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7958
		print_cfs_rq(m, cpu, cfs_rq);
7959
	rcu_read_unlock();
7960 7961
}
#endif
7962 7963 7964 7965 7966 7967

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

7968
#ifdef CONFIG_NO_HZ_COMMON
7969
	nohz.next_balance = jiffies;
7970
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7971
	cpu_notifier(sched_ilb_notifier, 0);
7972 7973 7974 7975
#endif
#endif /* SMP */

}