fair.c 217.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

135 136 137 138 139 140 141 142 143
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
144
static unsigned int get_update_sysctl_factor(void)
145
{
146
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

182
#define WMULT_CONST	(~0U)
183 184
#define WMULT_SHIFT	32

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
201 202

/*
203 204 205 206 207 208 209 210 211 212
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213
 */
214
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215
{
216 217
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
218

219
	__update_inv_weight(lw);
220

221 222 223 224 225
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
226 227
	}

228 229
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
230

231 232 233 234
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
235

236
	return mul_u64_u32_shr(delta_exec, fact, shift);
237 238 239 240
}


const struct sched_class fair_sched_class;
241

242 243 244 245
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

246
#ifdef CONFIG_FAIR_GROUP_SCHED
247

248
/* cpu runqueue to which this cfs_rq is attached */
249 250
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
251
	return cfs_rq->rq;
252 253
}

254 255
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
256

257 258 259 260 261 262 263 264
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

286 287 288
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302
		}
303 304 305 306 307 308 309 310 311 312 313 314 315

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
316 317 318 319 320
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
321
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
322 323 324
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
325
		return se->cfs_rq;
P
Peter Zijlstra 已提交
326

P
Peter Zijlstra 已提交
327
	return NULL;
P
Peter Zijlstra 已提交
328 329 330 331 332 333 334
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

335 336 337 338 339 340 341 342 343 344 345 346 347
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
348 349
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

367 368 369 370 371 372
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
373

374 375 376
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
377 378 379 380
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
381 382
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
383

P
Peter Zijlstra 已提交
384
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385
{
P
Peter Zijlstra 已提交
386
	return &task_rq(p)->cfs;
387 388
}

P
Peter Zijlstra 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

403 404 405 406 407 408 409 410
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
411 412 413 414 415 416 417 418
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

419 420 421 422 423
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
424 425
#endif	/* CONFIG_FAIR_GROUP_SCHED */

426
static __always_inline
427
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428 429 430 431 432

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

433
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434
{
435
	s64 delta = (s64)(vruntime - max_vruntime);
436
	if (delta > 0)
437
		max_vruntime = vruntime;
438

439
	return max_vruntime;
440 441
}

442
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

451 452 453 454 455 456
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

457 458 459 460 461 462 463 464 465 466 467 468
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
469
		if (!cfs_rq->curr)
470 471 472 473 474
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

475
	/* ensure we never gain time by being placed backwards. */
476
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 478 479 480
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
481 482
}

483 484 485
/*
 * Enqueue an entity into the rb-tree:
 */
486
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
503
		if (entity_before(se, entry)) {
504 505 506 507 508 509 510 511 512 513 514
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
515
	if (leftmost)
I
Ingo Molnar 已提交
516
		cfs_rq->rb_leftmost = &se->run_node;
517 518 519 520 521

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

522
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523
{
P
Peter Zijlstra 已提交
524 525 526 527 528 529
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
530

531 532 533
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

534
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535
{
536 537 538 539 540 541
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
542 543
}

544 545 546 547 548 549 550 551 552 553 554
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
555
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556
{
557
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558

559 560
	if (!last)
		return NULL;
561 562

	return rb_entry(last, struct sched_entity, run_node);
563 564
}

565 566 567 568
/**************************************************************
 * Scheduling class statistics methods:
 */

569
int sched_proc_update_handler(struct ctl_table *table, int write,
570
		void __user *buffer, size_t *lenp,
571 572
		loff_t *ppos)
{
573
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574
	unsigned int factor = get_update_sysctl_factor();
575 576 577 578 579 580 581

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

582 583 584 585 586 587 588
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

589 590 591
	return 0;
}
#endif
592

593
/*
594
 * delta /= w
595
 */
596
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597
{
598
	if (unlikely(se->load.weight != NICE_0_LOAD))
599
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600 601 602 603

	return delta;
}

604 605 606
/*
 * The idea is to set a period in which each task runs once.
 *
607
 * When there are too many tasks (sched_nr_latency) we have to stretch
608 609 610 611
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
612 613
static u64 __sched_period(unsigned long nr_running)
{
614 615 616 617
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
618 619
}

620 621 622 623
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
624
 * s = p*P[w/rw]
625
 */
P
Peter Zijlstra 已提交
626
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627
{
M
Mike Galbraith 已提交
628
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629

M
Mike Galbraith 已提交
630
	for_each_sched_entity(se) {
L
Lin Ming 已提交
631
		struct load_weight *load;
632
		struct load_weight lw;
L
Lin Ming 已提交
633 634 635

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
636

M
Mike Galbraith 已提交
637
		if (unlikely(!se->on_rq)) {
638
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
639 640 641 642

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
643
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
644 645
	}
	return slice;
646 647
}

648
/*
A
Andrei Epure 已提交
649
 * We calculate the vruntime slice of a to-be-inserted task.
650
 *
651
 * vs = s/w
652
 */
653
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
654
{
655
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 657
}

658
#ifdef CONFIG_SMP
659
static int select_idle_sibling(struct task_struct *p, int cpu);
660 661
static unsigned long task_h_load(struct task_struct *p);

662 663 664 665 666 667 668
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
669

670 671
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
672
{
673
	struct sched_avg *sa = &se->avg;
674

675 676 677 678 679 680 681
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
682
	sa->load_avg = scale_load_down(se->load.weight);
683 684 685 686
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
	sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
	sa->util_sum = LOAD_AVG_MAX;
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
687
}
688 689 690

static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
691
#else
692
void init_entity_runnable_average(struct sched_entity *se)
693 694 695 696
{
}
#endif

697
/*
698
 * Update the current task's runtime statistics.
699
 */
700
static void update_curr(struct cfs_rq *cfs_rq)
701
{
702
	struct sched_entity *curr = cfs_rq->curr;
703
	u64 now = rq_clock_task(rq_of(cfs_rq));
704
	u64 delta_exec;
705 706 707 708

	if (unlikely(!curr))
		return;

709 710
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
711
		return;
712

I
Ingo Molnar 已提交
713
	curr->exec_start = now;
714

715 716 717 718 719 720 721 722 723
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

724 725 726
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

727
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
728
		cpuacct_charge(curtask, delta_exec);
729
		account_group_exec_runtime(curtask, delta_exec);
730
	}
731 732

	account_cfs_rq_runtime(cfs_rq, delta_exec);
733 734
}

735 736 737 738 739
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

740
static inline void
741
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
742
{
743
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
744 745 746 747 748
}

/*
 * Task is being enqueued - update stats:
 */
749
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
750 751 752 753 754
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
755
	if (se != cfs_rq->curr)
756
		update_stats_wait_start(cfs_rq, se);
757 758 759
}

static void
760
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
761
{
762
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
763
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
764 765
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
766
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
767 768 769
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
770
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
771 772
	}
#endif
773
	schedstat_set(se->statistics.wait_start, 0);
774 775 776
}

static inline void
777
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
778 779 780 781 782
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
783
	if (se != cfs_rq->curr)
784
		update_stats_wait_end(cfs_rq, se);
785 786 787 788 789 790
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
791
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
792 793 794 795
{
	/*
	 * We are starting a new run period:
	 */
796
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
797 798 799 800 801 802
}

/**************************************************
 * Scheduling class queueing methods:
 */

803 804
#ifdef CONFIG_NUMA_BALANCING
/*
805 806 807
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
808
 */
809 810
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
811 812 813

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
814

815 816 817
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
842
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
843 844 845
	unsigned int scan, floor;
	unsigned int windows = 1;

846 847
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

864 865 866 867 868 869 870 871 872 873 874 875
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

876 877 878 879 880
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
881
	pid_t gid;
882 883

	struct rcu_head rcu;
884
	nodemask_t active_nodes;
885
	unsigned long total_faults;
886 887 888 889 890
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
891
	unsigned long *faults_cpu;
892
	unsigned long faults[0];
893 894
};

895 896 897 898 899 900 901 902 903
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

904 905 906 907 908
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

909 910 911 912 913 914 915
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
916
{
917
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
918 919 920 921
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
922
	if (!p->numa_faults)
923 924
		return 0;

925 926
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
927 928
}

929 930 931 932 933
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

934 935
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
936 937
}

938 939
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
940 941
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
942 943
}

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1009 1010 1011 1012 1013 1014
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1015 1016
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1017
{
1018
	unsigned long faults, total_faults;
1019

1020
	if (!p->numa_faults)
1021 1022 1023 1024 1025 1026 1027
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1028
	faults = task_faults(p, nid);
1029 1030
	faults += score_nearby_nodes(p, nid, dist, true);

1031
	return 1000 * faults / total_faults;
1032 1033
}

1034 1035
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1036
{
1037 1038 1039 1040 1041 1042 1043 1044
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1045 1046
		return 0;

1047
	faults = group_faults(p, nid);
1048 1049
	faults += score_nearby_nodes(p, nid, dist, false);

1050
	return 1000 * faults / total_faults;
1051 1052
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Do not migrate if the destination is not a node that
	 * is actively used by this numa group.
	 */
	if (!node_isset(dst_nid, ng->active_nodes))
		return false;

	/*
	 * Source is a node that is not actively used by this
	 * numa group, while the destination is. Migrate.
	 */
	if (!node_isset(src_nid, ng->active_nodes))
		return true;

	/*
	 * Both source and destination are nodes in active
	 * use by this numa group. Maximize memory bandwidth
	 * by migrating from more heavily used groups, to less
	 * heavily used ones, spreading the load around.
	 * Use a 1/4 hysteresis to avoid spurious page movement.
	 */
	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}

1116
static unsigned long weighted_cpuload(const int cpu);
1117 1118
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1119
static unsigned long capacity_of(int cpu);
1120 1121
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1122
/* Cached statistics for all CPUs within a node */
1123
struct numa_stats {
1124
	unsigned long nr_running;
1125
	unsigned long load;
1126 1127

	/* Total compute capacity of CPUs on a node */
1128
	unsigned long compute_capacity;
1129 1130

	/* Approximate capacity in terms of runnable tasks on a node */
1131
	unsigned long task_capacity;
1132
	int has_free_capacity;
1133
};
1134

1135 1136 1137 1138 1139
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1140 1141
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1142 1143 1144 1145 1146 1147 1148

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1149
		ns->compute_capacity += capacity_of(cpu);
1150 1151

		cpus++;
1152 1153
	}

1154 1155 1156 1157 1158
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1159 1160
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1161 1162 1163 1164
	 */
	if (!cpus)
		return;

1165 1166 1167 1168 1169 1170
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1171
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1172 1173
}

1174 1175
struct task_numa_env {
	struct task_struct *p;
1176

1177 1178
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1179

1180
	struct numa_stats src_stats, dst_stats;
1181

1182
	int imbalance_pct;
1183
	int dist;
1184 1185 1186

	struct task_struct *best_task;
	long best_imp;
1187 1188 1189
	int best_cpu;
};

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1203
static bool load_too_imbalanced(long src_load, long dst_load,
1204 1205
				struct task_numa_env *env)
{
1206 1207
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1219 1220

	/* We care about the slope of the imbalance, not the direction. */
1221 1222
	if (dst_load < src_load)
		swap(dst_load, src_load);
1223 1224

	/* Is the difference below the threshold? */
1225 1226
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1227 1228 1229 1230 1231
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1232
	 * Compare it with the old imbalance.
1233
	 */
1234
	orig_src_load = env->src_stats.load;
1235
	orig_dst_load = env->dst_stats.load;
1236

1237 1238
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1239

1240 1241 1242 1243 1244
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1245 1246
}

1247 1248 1249 1250 1251 1252
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1253 1254
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1255 1256 1257 1258
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1259
	long src_load, dst_load;
1260
	long load;
1261
	long imp = env->p->numa_group ? groupimp : taskimp;
1262
	long moveimp = imp;
1263
	int dist = env->dist;
1264 1265

	rcu_read_lock();
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

	raw_spin_lock_irq(&dst_rq->lock);
	cur = dst_rq->curr;
	/*
	 * No need to move the exiting task, and this ensures that ->curr
	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
	 * is safe under RCU read lock.
	 * Note that rcu_read_lock() itself can't protect from the final
	 * put_task_struct() after the last schedule().
	 */
	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1277
		cur = NULL;
1278
	raw_spin_unlock_irq(&dst_rq->lock);
1279

1280 1281 1282 1283 1284 1285 1286
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1299 1300
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1301
		 * in any group then look only at task weights.
1302
		 */
1303
		if (cur->numa_group == env->p->numa_group) {
1304 1305
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1306 1307 1308 1309 1310 1311
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1312
		} else {
1313 1314 1315 1316 1317 1318
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1319 1320
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1321
			else
1322 1323
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1324
		}
1325 1326
	}

1327
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1328 1329 1330 1331
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1332
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1333
		    !env->dst_stats.has_free_capacity)
1334 1335 1336 1337 1338 1339
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1340 1341
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1342 1343 1344 1345 1346 1347
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1348 1349 1350
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1369
	if (cur) {
1370 1371 1372
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1373 1374
	}

1375
	if (load_too_imbalanced(src_load, dst_load, env))
1376 1377
		goto unlock;

1378 1379 1380 1381 1382 1383 1384
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur)
		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);

1385 1386 1387 1388 1389 1390
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1391 1392
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1393 1394 1395 1396 1397 1398 1399 1400 1401
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1402
		task_numa_compare(env, taskimp, groupimp);
1403 1404 1405
	}
}

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1423 1424 1425
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1426 1427 1428 1429 1430
		return true;

	return false;
}

1431 1432 1433 1434
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1435

1436
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1437
		.src_nid = task_node(p),
1438 1439 1440 1441 1442 1443

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1444 1445
	};
	struct sched_domain *sd;
1446
	unsigned long taskweight, groupweight;
1447
	int nid, ret, dist;
1448
	long taskimp, groupimp;
1449

1450
	/*
1451 1452 1453 1454 1455 1456
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1457 1458
	 */
	rcu_read_lock();
1459
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1460 1461
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1462 1463
	rcu_read_unlock();

1464 1465 1466 1467 1468 1469 1470
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1471
		p->numa_preferred_nid = task_node(p);
1472 1473 1474
		return -EINVAL;
	}

1475
	env.dst_nid = p->numa_preferred_nid;
1476 1477 1478 1479 1480 1481
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1482
	update_numa_stats(&env.dst_stats, env.dst_nid);
1483

1484
	/* Try to find a spot on the preferred nid. */
1485 1486
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1487

1488 1489 1490 1491 1492 1493 1494 1495 1496
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
	if (env.best_cpu == -1 || (p->numa_group &&
			nodes_weight(p->numa_group->active_nodes) > 1)) {
1497 1498 1499
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1500

1501
			dist = node_distance(env.src_nid, env.dst_nid);
1502 1503 1504 1505 1506
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1507

1508
			/* Only consider nodes where both task and groups benefit */
1509 1510
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1511
			if (taskimp < 0 && groupimp < 0)
1512 1513
				continue;

1514
			env.dist = dist;
1515 1516
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1517 1518
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1519 1520 1521
		}
	}

1522 1523 1524 1525 1526 1527 1528 1529
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	if (p->numa_group) {
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

		if (node_isset(nid, p->numa_group->active_nodes))
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1543

1544 1545 1546 1547 1548 1549
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1550
	if (env.best_task == NULL) {
1551 1552 1553
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1554 1555 1556 1557
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1558 1559
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1560 1561
	put_task_struct(env.best_task);
	return ret;
1562 1563
}

1564 1565 1566
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1567 1568
	unsigned long interval = HZ;

1569
	/* This task has no NUMA fault statistics yet */
1570
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1571 1572
		return;

1573
	/* Periodically retry migrating the task to the preferred node */
1574 1575
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1576 1577

	/* Success if task is already running on preferred CPU */
1578
	if (task_node(p) == p->numa_preferred_nid)
1579 1580 1581
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1582
	task_numa_migrate(p);
1583 1584
}

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1617 1618 1619
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1620 1621 1622
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1623 1624
 */
#define NUMA_PERIOD_SLOTS 10
1625
#define NUMA_PERIOD_THRESHOLD 7
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1646 1647 1648
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1649
	 */
1650
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1684
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1685 1686 1687 1688 1689 1690 1691 1692
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1711 1712
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1713 1714 1715 1716 1717 1718 1719 1720
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
1768
		nodemask_t max_group = NODE_MASK_NONE;
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
1802 1803
		if (!max_faults)
			break;
1804 1805 1806 1807 1808
		nodes = max_group;
	}
	return nid;
}

1809 1810
static void task_numa_placement(struct task_struct *p)
{
1811 1812
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1813
	unsigned long fault_types[2] = { 0, 0 };
1814 1815
	unsigned long total_faults;
	u64 runtime, period;
1816
	spinlock_t *group_lock = NULL;
1817

1818 1819 1820 1821 1822
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
1823
	seq = READ_ONCE(p->mm->numa_scan_seq);
1824 1825 1826
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1827
	p->numa_scan_period_max = task_scan_max(p);
1828

1829 1830 1831 1832
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1833 1834 1835
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1836
		spin_lock_irq(group_lock);
1837 1838
	}

1839 1840
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1841 1842
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1843
		unsigned long faults = 0, group_faults = 0;
1844
		int priv;
1845

1846
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1847
			long diff, f_diff, f_weight;
1848

1849 1850 1851 1852
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1853

1854
			/* Decay existing window, copy faults since last scan */
1855 1856 1857
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
1858

1859 1860 1861 1862 1863 1864 1865 1866
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
1867
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1868
				   (total_faults + 1);
1869 1870
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
1871

1872 1873 1874
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
1875
			p->total_numa_faults += diff;
1876
			if (p->numa_group) {
1877 1878 1879 1880 1881 1882 1883 1884 1885
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
1886
				p->numa_group->total_faults += diff;
1887
				group_faults += p->numa_group->faults[mem_idx];
1888
			}
1889 1890
		}

1891 1892 1893 1894
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1895 1896 1897 1898 1899 1900 1901

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1902 1903
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1904
	if (p->numa_group) {
1905
		update_numa_active_node_mask(p->numa_group);
1906
		spin_unlock_irq(group_lock);
1907
		max_nid = preferred_group_nid(p, max_group_nid);
1908 1909
	}

1910 1911 1912 1913 1914 1915 1916
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
1917
	}
1918 1919
}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1931 1932
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1933 1934 1935 1936 1937 1938 1939 1940 1941
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1942
				    4*nr_node_ids*sizeof(unsigned long);
1943 1944 1945 1946 1947 1948 1949

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
1950
		grp->gid = p->pid;
1951
		/* Second half of the array tracks nids where faults happen */
1952 1953
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
1954

1955 1956
		node_set(task_node(current), grp->active_nodes);

1957
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1958
			grp->faults[i] = p->numa_faults[i];
1959

1960
		grp->total_faults = p->total_numa_faults;
1961

1962 1963 1964 1965 1966
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
1967
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
1968 1969

	if (!cpupid_match_pid(tsk, cpupid))
1970
		goto no_join;
1971 1972 1973

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1974
		goto no_join;
1975 1976 1977

	my_grp = p->numa_group;
	if (grp == my_grp)
1978
		goto no_join;
1979 1980 1981 1982 1983 1984

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1985
		goto no_join;
1986 1987 1988 1989 1990

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1991
		goto no_join;
1992

1993 1994 1995 1996 1997 1998 1999
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2000

2001 2002 2003
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2004
	if (join && !get_numa_group(grp))
2005
		goto no_join;
2006 2007 2008 2009 2010 2011

	rcu_read_unlock();

	if (!join)
		return;

2012 2013
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2014

2015
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2016 2017
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2018
	}
2019 2020
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2021 2022 2023 2024 2025

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2026
	spin_unlock_irq(&grp->lock);
2027 2028 2029 2030

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2031 2032 2033 2034 2035
	return;

no_join:
	rcu_read_unlock();
	return;
2036 2037 2038 2039 2040
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2041
	void *numa_faults = p->numa_faults;
2042 2043
	unsigned long flags;
	int i;
2044 2045

	if (grp) {
2046
		spin_lock_irqsave(&grp->lock, flags);
2047
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2048
			grp->faults[i] -= p->numa_faults[i];
2049
		grp->total_faults -= p->total_numa_faults;
2050

2051
		grp->nr_tasks--;
2052
		spin_unlock_irqrestore(&grp->lock, flags);
2053
		RCU_INIT_POINTER(p->numa_group, NULL);
2054 2055 2056
		put_numa_group(grp);
	}

2057
	p->numa_faults = NULL;
2058
	kfree(numa_faults);
2059 2060
}

2061 2062 2063
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2064
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2065 2066
{
	struct task_struct *p = current;
2067
	bool migrated = flags & TNF_MIGRATED;
2068
	int cpu_node = task_node(current);
2069
	int local = !!(flags & TNF_FAULT_LOCAL);
2070
	int priv;
2071

2072
	if (!numabalancing_enabled)
2073 2074
		return;

2075 2076 2077 2078
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2079
	/* Allocate buffer to track faults on a per-node basis */
2080 2081
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2082
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2083

2084 2085
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2086
			return;
2087

2088
		p->total_numa_faults = 0;
2089
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2090
	}
2091

2092 2093 2094 2095 2096 2097 2098 2099
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2100
		if (!priv && !(flags & TNF_NO_GROUP))
2101
			task_numa_group(p, last_cpupid, flags, &priv);
2102 2103
	}

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
	if (!priv && !local && p->numa_group &&
			node_isset(cpu_node, p->numa_group->active_nodes) &&
			node_isset(mem_node, p->numa_group->active_nodes))
		local = 1;

2115
	task_numa_placement(p);
2116

2117 2118 2119 2120 2121
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2122 2123
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2124 2125
	if (migrated)
		p->numa_pages_migrated += pages;
2126 2127
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2128

2129 2130
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2131
	p->numa_faults_locality[local] += pages;
2132 2133
}

2134 2135
static void reset_ptenuma_scan(struct task_struct *p)
{
2136 2137 2138 2139 2140 2141 2142 2143
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2144
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2145 2146 2147
	p->mm->numa_scan_offset = 0;
}

2148 2149 2150 2151 2152 2153 2154 2155 2156
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2157
	struct vm_area_struct *vma;
2158
	unsigned long start, end;
2159
	unsigned long nr_pte_updates = 0;
2160
	long pages;
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2176
	if (!mm->numa_next_scan) {
2177 2178
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2179 2180
	}

2181 2182 2183 2184 2185 2186 2187
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2188 2189 2190 2191
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2192

2193
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2194 2195 2196
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2197 2198 2199 2200 2201 2202
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2203 2204 2205 2206 2207
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
2208

2209
	down_read(&mm->mmap_sem);
2210
	vma = find_vma(mm, start);
2211 2212
	if (!vma) {
		reset_ptenuma_scan(p);
2213
		start = 0;
2214 2215
		vma = mm->mmap;
	}
2216
	for (; vma; vma = vma->vm_next) {
2217
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2218
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2219
			continue;
2220
		}
2221

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2232 2233 2234 2235 2236 2237
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2238

2239 2240 2241 2242
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2243 2244 2245 2246 2247 2248 2249 2250 2251
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2252

2253 2254 2255
			start = end;
			if (pages <= 0)
				goto out;
2256 2257

			cond_resched();
2258
		} while (end != vma->vm_end);
2259
	}
2260

2261
out:
2262
	/*
P
Peter Zijlstra 已提交
2263 2264 2265 2266
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2267 2268
	 */
	if (vma)
2269
		mm->numa_scan_offset = start;
2270 2271 2272
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
2299
		if (!curr->node_stamp)
2300
			curr->numa_scan_period = task_scan_min(curr);
2301
		curr->node_stamp += period;
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2313 2314 2315 2316 2317 2318 2319 2320

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2321 2322
#endif /* CONFIG_NUMA_BALANCING */

2323 2324 2325 2326
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2327
	if (!parent_entity(se))
2328
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2329
#ifdef CONFIG_SMP
2330 2331 2332 2333 2334 2335
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2336
#endif
2337 2338 2339 2340 2341 2342 2343
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2344
	if (!parent_entity(se))
2345
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2346 2347
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2348
		list_del_init(&se->group_node);
2349
	}
2350 2351 2352
	cfs_rq->nr_running--;
}

2353 2354
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2355 2356 2357 2358 2359
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
2360 2361 2362
	 * Use this CPU's real-time load instead of the last load contribution
	 * as the updating of the contribution is delayed, and we will use the
	 * the real-time load to calc the share. See update_tg_load_avg().
2363
	 */
2364
	tg_weight = atomic_long_read(&tg->load_avg);
2365
	tg_weight -= cfs_rq->tg_load_avg_contrib;
2366
	tg_weight += cfs_rq_load_avg(cfs_rq);
2367 2368 2369 2370

	return tg_weight;
}

2371
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2372
{
2373
	long tg_weight, load, shares;
2374

2375
	tg_weight = calc_tg_weight(tg, cfs_rq);
2376
	load = cfs_rq_load_avg(cfs_rq);
2377 2378

	shares = (tg->shares * load);
2379 2380
	if (tg_weight)
		shares /= tg_weight;
2381 2382 2383 2384 2385 2386 2387 2388 2389

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2390
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2391 2392 2393 2394
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2395 2396 2397
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2398 2399 2400 2401
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2402
		account_entity_dequeue(cfs_rq, se);
2403
	}
P
Peter Zijlstra 已提交
2404 2405 2406 2407 2408 2409 2410

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2411 2412
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2413
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2414 2415 2416
{
	struct task_group *tg;
	struct sched_entity *se;
2417
	long shares;
P
Peter Zijlstra 已提交
2418 2419 2420

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2421
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2422
		return;
2423 2424 2425 2426
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2427
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2428 2429 2430 2431

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2432
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2433 2434 2435 2436
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2437
#ifdef CONFIG_SMP
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2458 2459 2460 2461 2462 2463
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2476 2477
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2478 2479 2480 2481 2482 2483
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2484 2485
	}

2486 2487
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2546 2547
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2548
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2549
{
2550
	u64 delta, periods;
2551
	u32 contrib;
2552
	int delta_w, decayed = 0;
2553
	unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
2554

2555
	delta = now - sa->last_update_time;
2556 2557 2558 2559 2560
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2561
		sa->last_update_time = now;
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2572
	sa->last_update_time = now;
2573 2574

	/* delta_w is the amount already accumulated against our next period */
2575
	delta_w = sa->period_contrib;
2576 2577 2578
	if (delta + delta_w >= 1024) {
		decayed = 1;

2579 2580 2581
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2582 2583 2584 2585 2586 2587
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2588
		if (weight) {
2589
			sa->load_sum += weight * delta_w;
2590 2591 2592
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * delta_w;
		}
2593
		if (running)
2594
			sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT;
2595 2596 2597 2598 2599 2600 2601

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2602
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2603 2604 2605 2606
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2607
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2608 2609

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2610
		contrib = __compute_runnable_contrib(periods);
2611
		if (weight) {
2612
			sa->load_sum += weight * contrib;
2613 2614 2615
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2616
		if (running)
2617
			sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT;
2618 2619 2620
	}

	/* Remainder of delta accrued against u_0` */
2621
	if (weight) {
2622
		sa->load_sum += weight * delta;
2623 2624 2625
		if (cfs_rq)
			cfs_rq->runnable_load_sum += weight * delta;
	}
2626
	if (running)
2627
		sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT;
2628

2629
	sa->period_contrib += delta;
2630

2631 2632
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2633 2634 2635 2636
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2637 2638
		sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX;
	}
2639

2640
	return decayed;
2641 2642
}

2643
#ifdef CONFIG_FAIR_GROUP_SCHED
2644
/*
2645 2646
 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
 * and effective_load (which is not done because it is too costly).
2647
 */
2648
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2649
{
2650
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2651

2652 2653 2654
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2655
	}
2656
}
2657

2658
#else /* CONFIG_FAIR_GROUP_SCHED */
2659
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2660
#endif /* CONFIG_FAIR_GROUP_SCHED */
2661

2662
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2663

2664 2665
/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2666
{
2667
	struct sched_avg *sa = &cfs_rq->avg;
2668
	int decayed;
2669

2670 2671 2672 2673
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
		sa->load_avg = max_t(long, sa->load_avg - r, 0);
		sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2674
	}
2675

2676 2677 2678 2679 2680 2681
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
		sa->util_avg = max_t(long, sa->util_avg - r, 0);
		sa->util_sum = max_t(s32, sa->util_sum -
			((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0);
	}
2682

2683
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2684
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2685

2686 2687 2688 2689
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
2690

2691
	return decayed;
2692 2693
}

2694 2695
/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct sched_entity *se, int update_tg)
2696
{
2697
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2698
	u64 now = cfs_rq_clock_task(cfs_rq);
2699
	int cpu = cpu_of(rq_of(cfs_rq));
2700

2701
	/*
2702 2703
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
2704
	 */
2705
	__update_load_avg(now, cpu, &se->avg,
2706 2707
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);
2708

2709 2710
	if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
		update_tg_load_avg(cfs_rq, 0);
2711 2712
}

2713 2714
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2715 2716 2717
	if (!sched_feat(ATTACH_AGE_LOAD))
		goto skip_aging;

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
	/*
	 * If we got migrated (either between CPUs or between cgroups) we'll
	 * have aged the average right before clearing @last_update_time.
	 */
	if (se->avg.last_update_time) {
		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
				  &se->avg, 0, 0, NULL);

		/*
		 * XXX: we could have just aged the entire load away if we've been
		 * absent from the fair class for too long.
		 */
	}

2732
skip_aging:
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
}

static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

	cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
	cfs_rq->avg.load_sum = max_t(s64,  cfs_rq->avg.load_sum - se->avg.load_sum, 0);
	cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
	cfs_rq->avg.util_sum = max_t(s32,  cfs_rq->avg.util_sum - se->avg.util_sum, 0);
}

2752 2753 2754
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2755
{
2756 2757
	struct sched_avg *sa = &se->avg;
	u64 now = cfs_rq_clock_task(cfs_rq);
2758
	int migrated, decayed;
2759

2760 2761
	migrated = !sa->last_update_time;
	if (!migrated) {
2762
		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2763 2764
			se->on_rq * scale_load_down(se->load.weight),
			cfs_rq->curr == se, NULL);
2765
	}
2766

2767
	decayed = update_cfs_rq_load_avg(now, cfs_rq);
2768

2769 2770 2771
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

2772 2773
	if (migrated)
		attach_entity_load_avg(cfs_rq, se);
2774

2775 2776
	if (decayed || migrated)
		update_tg_load_avg(cfs_rq, 0);
2777 2778
}

2779 2780 2781 2782 2783 2784 2785 2786 2787
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_avg(se, 1);

	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
2788
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2789 2790
}

2791
/*
2792 2793
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
2794
 */
2795
void remove_entity_load_avg(struct sched_entity *se)
2796
{
2797 2798 2799 2800 2801
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

#ifndef CONFIG_64BIT
	u64 last_update_time_copy;
2802

2803 2804 2805 2806 2807 2808 2809 2810 2811
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
#else
	last_update_time = cfs_rq->avg.last_update_time;
#endif

2812
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2813 2814
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2815
}
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
}

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

2845 2846
static int idle_balance(struct rq *this_rq);

2847 2848
#else /* CONFIG_SMP */

2849 2850 2851
static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2852 2853
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2854
static inline void remove_entity_load_avg(struct sched_entity *se) {}
2855

2856 2857 2858 2859 2860
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

2861 2862 2863 2864 2865
static inline int idle_balance(struct rq *rq)
{
	return 0;
}

2866
#endif /* CONFIG_SMP */
2867

2868
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2869 2870
{
#ifdef CONFIG_SCHEDSTATS
2871 2872 2873 2874 2875
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2876
	if (se->statistics.sleep_start) {
2877
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2878 2879 2880 2881

		if ((s64)delta < 0)
			delta = 0;

2882 2883
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2884

2885
		se->statistics.sleep_start = 0;
2886
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2887

2888
		if (tsk) {
2889
			account_scheduler_latency(tsk, delta >> 10, 1);
2890 2891
			trace_sched_stat_sleep(tsk, delta);
		}
2892
	}
2893
	if (se->statistics.block_start) {
2894
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2895 2896 2897 2898

		if ((s64)delta < 0)
			delta = 0;

2899 2900
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2901

2902
		se->statistics.block_start = 0;
2903
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2904

2905
		if (tsk) {
2906
			if (tsk->in_iowait) {
2907 2908
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2909
				trace_sched_stat_iowait(tsk, delta);
2910 2911
			}

2912 2913
			trace_sched_stat_blocked(tsk, delta);

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2925
		}
2926 2927 2928 2929
	}
#endif
}

P
Peter Zijlstra 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2943 2944 2945
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2946
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2947

2948 2949 2950 2951 2952 2953
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2954
	if (initial && sched_feat(START_DEBIT))
2955
		vruntime += sched_vslice(cfs_rq, se);
2956

2957
	/* sleeps up to a single latency don't count. */
2958
	if (!initial) {
2959
		unsigned long thresh = sysctl_sched_latency;
2960

2961 2962 2963 2964 2965 2966
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2967

2968
		vruntime -= thresh;
2969 2970
	}

2971
	/* ensure we never gain time by being placed backwards. */
2972
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2973 2974
}

2975 2976
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2977
static void
2978
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2979
{
2980 2981
	/*
	 * Update the normalized vruntime before updating min_vruntime
2982
	 * through calling update_curr().
2983
	 */
2984
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2985 2986
		se->vruntime += cfs_rq->min_vruntime;

2987
	/*
2988
	 * Update run-time statistics of the 'current'.
2989
	 */
2990
	update_curr(cfs_rq);
2991
	enqueue_entity_load_avg(cfs_rq, se);
2992 2993
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
2994

2995
	if (flags & ENQUEUE_WAKEUP) {
2996
		place_entity(cfs_rq, se, 0);
2997
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
2998
	}
2999

3000
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
3001
	check_spread(cfs_rq, se);
3002 3003
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3004
	se->on_rq = 1;
3005

3006
	if (cfs_rq->nr_running == 1) {
3007
		list_add_leaf_cfs_rq(cfs_rq);
3008 3009
		check_enqueue_throttle(cfs_rq);
	}
3010 3011
}

3012
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3013
{
3014 3015
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3016
		if (cfs_rq->last != se)
3017
			break;
3018 3019

		cfs_rq->last = NULL;
3020 3021
	}
}
P
Peter Zijlstra 已提交
3022

3023 3024 3025 3026
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3027
		if (cfs_rq->next != se)
3028
			break;
3029 3030

		cfs_rq->next = NULL;
3031
	}
P
Peter Zijlstra 已提交
3032 3033
}

3034 3035 3036 3037
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3038
		if (cfs_rq->skip != se)
3039
			break;
3040 3041

		cfs_rq->skip = NULL;
3042 3043 3044
	}
}

P
Peter Zijlstra 已提交
3045 3046
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3047 3048 3049 3050 3051
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3052 3053 3054

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3055 3056
}

3057
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3058

3059
static void
3060
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3061
{
3062 3063 3064 3065
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3066
	dequeue_entity_load_avg(cfs_rq, se);
3067

3068
	update_stats_dequeue(cfs_rq, se);
3069
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
3070
#ifdef CONFIG_SCHEDSTATS
3071 3072 3073 3074
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
3075
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3076
			if (tsk->state & TASK_UNINTERRUPTIBLE)
3077
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3078
		}
3079
#endif
P
Peter Zijlstra 已提交
3080 3081
	}

P
Peter Zijlstra 已提交
3082
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3083

3084
	if (se != cfs_rq->curr)
3085
		__dequeue_entity(cfs_rq, se);
3086
	se->on_rq = 0;
3087
	account_entity_dequeue(cfs_rq, se);
3088 3089 3090 3091 3092 3093

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
3094
	if (!(flags & DEQUEUE_SLEEP))
3095
		se->vruntime -= cfs_rq->min_vruntime;
3096

3097 3098 3099
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3100
	update_min_vruntime(cfs_rq);
3101
	update_cfs_shares(cfs_rq);
3102 3103 3104 3105 3106
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3107
static void
I
Ingo Molnar 已提交
3108
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3109
{
3110
	unsigned long ideal_runtime, delta_exec;
3111 3112
	struct sched_entity *se;
	s64 delta;
3113

P
Peter Zijlstra 已提交
3114
	ideal_runtime = sched_slice(cfs_rq, curr);
3115
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3116
	if (delta_exec > ideal_runtime) {
3117
		resched_curr(rq_of(cfs_rq));
3118 3119 3120 3121 3122
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3134 3135
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3136

3137 3138
	if (delta < 0)
		return;
3139

3140
	if (delta > ideal_runtime)
3141
		resched_curr(rq_of(cfs_rq));
3142 3143
}

3144
static void
3145
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3146
{
3147 3148 3149 3150 3151 3152 3153 3154 3155
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
3156
		update_load_avg(se, 1);
3157 3158
	}

3159
	update_stats_curr_start(cfs_rq, se);
3160
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
3161 3162 3163 3164 3165 3166
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3167
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3168
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
3169 3170 3171
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
3172
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3173 3174
}

3175 3176 3177
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3178 3179 3180 3181 3182 3183 3184
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3185 3186
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3187
{
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3199

3200 3201 3202 3203 3204
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3215 3216 3217
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3218

3219 3220 3221 3222 3223 3224
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3225 3226 3227 3228 3229 3230
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3231
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3232 3233

	return se;
3234 3235
}

3236
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3237

3238
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3239 3240 3241 3242 3243 3244
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3245
		update_curr(cfs_rq);
3246

3247 3248 3249
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
3250
	check_spread(cfs_rq, prev);
3251
	if (prev->on_rq) {
3252
		update_stats_wait_start(cfs_rq, prev);
3253 3254
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3255
		/* in !on_rq case, update occurred at dequeue */
3256
		update_load_avg(prev, 0);
3257
	}
3258
	cfs_rq->curr = NULL;
3259 3260
}

P
Peter Zijlstra 已提交
3261 3262
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3263 3264
{
	/*
3265
	 * Update run-time statistics of the 'current'.
3266
	 */
3267
	update_curr(cfs_rq);
3268

3269 3270 3271
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3272
	update_load_avg(curr, 1);
3273
	update_cfs_shares(cfs_rq);
3274

P
Peter Zijlstra 已提交
3275 3276 3277 3278 3279
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3280
	if (queued) {
3281
		resched_curr(rq_of(cfs_rq));
3282 3283
		return;
	}
P
Peter Zijlstra 已提交
3284 3285 3286 3287 3288 3289 3290 3291
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3292
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3293
		check_preempt_tick(cfs_rq, curr);
3294 3295
}

3296 3297 3298 3299 3300 3301

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3302 3303

#ifdef HAVE_JUMP_LABEL
3304
static struct static_key __cfs_bandwidth_used;
3305 3306 3307

static inline bool cfs_bandwidth_used(void)
{
3308
	return static_key_false(&__cfs_bandwidth_used);
3309 3310
}

3311
void cfs_bandwidth_usage_inc(void)
3312
{
3313 3314 3315 3316 3317 3318
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3319 3320 3321 3322 3323 3324 3325
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3326 3327
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3328 3329
#endif /* HAVE_JUMP_LABEL */

3330 3331 3332 3333 3334 3335 3336 3337
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3338 3339 3340 3341 3342 3343

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3344 3345 3346 3347 3348 3349 3350
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3351
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3363 3364 3365 3366 3367
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3368 3369 3370 3371 3372 3373
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3374
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3375 3376
}

3377 3378
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3379 3380 3381
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3382
	u64 amount = 0, min_amount, expires;
3383 3384 3385 3386 3387 3388 3389

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3390
	else {
P
Peter Zijlstra 已提交
3391
		start_cfs_bandwidth(cfs_b);
3392 3393 3394 3395 3396 3397

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3398
	}
P
Paul Turner 已提交
3399
	expires = cfs_b->runtime_expires;
3400 3401 3402
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3403 3404 3405 3406 3407 3408 3409
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3410 3411

	return cfs_rq->runtime_remaining > 0;
3412 3413
}

P
Paul Turner 已提交
3414 3415 3416 3417 3418
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3419
{
P
Paul Turner 已提交
3420 3421 3422
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3423
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3424 3425
		return;

P
Paul Turner 已提交
3426 3427 3428 3429 3430 3431 3432 3433 3434
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3435 3436 3437
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3438 3439
	 */

3440
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3441 3442 3443 3444 3445 3446 3447 3448
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3449
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3450 3451
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3452
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3453 3454 3455
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3456 3457
		return;

3458 3459 3460 3461 3462
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3463
		resched_curr(rq_of(cfs_rq));
3464 3465
}

3466
static __always_inline
3467
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3468
{
3469
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3470 3471 3472 3473 3474
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3475 3476
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3477
	return cfs_bandwidth_used() && cfs_rq->throttled;
3478 3479
}

3480 3481 3482
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3483
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3512
		/* adjust cfs_rq_clock_task() */
3513
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3514
					     cfs_rq->throttled_clock_task;
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3526 3527
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3528
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3529 3530 3531 3532 3533
	cfs_rq->throttle_count++;

	return 0;
}

3534
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3535 3536 3537 3538 3539
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
3540
	bool empty;
3541 3542 3543

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3544
	/* freeze hierarchy runnable averages while throttled */
3545 3546 3547
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3565
		sub_nr_running(rq, task_delta);
3566 3567

	cfs_rq->throttled = 1;
3568
	cfs_rq->throttled_clock = rq_clock(rq);
3569
	raw_spin_lock(&cfs_b->lock);
3570
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3571

3572 3573 3574 3575 3576
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3577 3578 3579 3580 3581 3582 3583 3584

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

3585 3586 3587
	raw_spin_unlock(&cfs_b->lock);
}

3588
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3589 3590 3591 3592 3593 3594 3595
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3596
	se = cfs_rq->tg->se[cpu_of(rq)];
3597 3598

	cfs_rq->throttled = 0;
3599 3600 3601

	update_rq_clock(rq);

3602
	raw_spin_lock(&cfs_b->lock);
3603
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3604 3605 3606
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3607 3608 3609
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
3628
		add_nr_running(rq, task_delta);
3629 3630 3631

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
3632
		resched_curr(rq);
3633 3634 3635 3636 3637 3638
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
3639 3640
	u64 runtime;
	u64 starting_runtime = remaining;
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

3671
	return starting_runtime - remaining;
3672 3673
}

3674 3675 3676 3677 3678 3679 3680 3681
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3682
	u64 runtime, runtime_expires;
3683
	int throttled;
3684 3685 3686

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
3687
		goto out_deactivate;
3688

3689
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3690
	cfs_b->nr_periods += overrun;
3691

3692 3693 3694 3695 3696 3697
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
3698 3699 3700

	__refill_cfs_bandwidth_runtime(cfs_b);

3701 3702 3703
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
3704
		return 0;
3705 3706
	}

3707 3708 3709
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3710 3711 3712
	runtime_expires = cfs_b->runtime_expires;

	/*
3713 3714 3715 3716 3717
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
3718
	 */
3719 3720
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
3721 3722 3723 3724 3725 3726 3727
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3728 3729

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3730
	}
3731

3732 3733 3734 3735 3736 3737 3738
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3739

3740 3741 3742 3743
	return 0;

out_deactivate:
	return 1;
3744
}
3745

3746 3747 3748 3749 3750 3751 3752
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3753 3754 3755 3756
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3757
 * hrtimer base being cleared by hrtimer_start. In the case of
3758 3759
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
3785 3786 3787
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3817 3818 3819
	if (!cfs_bandwidth_used())
		return;

3820
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3836 3837 3838
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3839
		return;
3840
	}
3841

3842
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3843
		runtime = cfs_b->runtime;
3844

3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
3855
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3856 3857 3858
	raw_spin_unlock(&cfs_b->lock);
}

3859 3860 3861 3862 3863 3864 3865
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3866 3867 3868
	if (!cfs_bandwidth_used())
		return;

3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
3884
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3885
{
3886
	if (!cfs_bandwidth_used())
3887
		return false;
3888

3889
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3890
		return false;
3891 3892 3893 3894 3895 3896

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
3897
		return true;
3898 3899

	throttle_cfs_rq(cfs_rq);
3900
	return true;
3901
}
3902 3903 3904 3905 3906

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
3907

3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

3920
	raw_spin_lock(&cfs_b->lock);
3921
	for (;;) {
P
Peter Zijlstra 已提交
3922
		overrun = hrtimer_forward_now(timer, cfs_b->period);
3923 3924 3925 3926 3927
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
3928 3929
	if (idle)
		cfs_b->period_active = 0;
3930
	raw_spin_unlock(&cfs_b->lock);
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3943
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
3955
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3956
{
P
Peter Zijlstra 已提交
3957
	lockdep_assert_held(&cfs_b->lock);
3958

P
Peter Zijlstra 已提交
3959 3960 3961 3962 3963
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
3964 3965 3966 3967
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
3968 3969 3970 3971
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

3972 3973 3974 3975
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

3989
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4001
		cfs_rq->runtime_remaining = 1;
4002 4003 4004 4005 4006 4007
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4008 4009 4010 4011 4012 4013
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4014 4015
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4016
	return rq_clock_task(rq_of(cfs_rq));
4017 4018
}

4019
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4020
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4021
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4022
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4023 4024 4025 4026 4027

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4039 4040 4041 4042 4043

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4044 4045
#endif

4046 4047 4048 4049 4050
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4051
static inline void update_runtime_enabled(struct rq *rq) {}
4052
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4053 4054 4055

#endif /* CONFIG_CFS_BANDWIDTH */

4056 4057 4058 4059
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4060 4061 4062 4063 4064 4065 4066 4067
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

4068
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
4069 4070 4071 4072 4073 4074
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4075
				resched_curr(rq);
P
Peter Zijlstra 已提交
4076 4077
			return;
		}
4078
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4079 4080
	}
}
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4091
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4092 4093 4094 4095 4096
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4097
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4098 4099 4100 4101
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4102 4103 4104 4105

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4106 4107
#endif

4108 4109 4110 4111 4112
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4113
static void
4114
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4115 4116
{
	struct cfs_rq *cfs_rq;
4117
	struct sched_entity *se = &p->se;
4118 4119

	for_each_sched_entity(se) {
4120
		if (se->on_rq)
4121 4122
			break;
		cfs_rq = cfs_rq_of(se);
4123
		enqueue_entity(cfs_rq, se, flags);
4124 4125 4126 4127 4128 4129 4130 4131 4132

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4133
		cfs_rq->h_nr_running++;
4134

4135
		flags = ENQUEUE_WAKEUP;
4136
	}
P
Peter Zijlstra 已提交
4137

P
Peter Zijlstra 已提交
4138
	for_each_sched_entity(se) {
4139
		cfs_rq = cfs_rq_of(se);
4140
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4141

4142 4143 4144
		if (cfs_rq_throttled(cfs_rq))
			break;

4145
		update_load_avg(se, 1);
4146
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4147 4148
	}

Y
Yuyang Du 已提交
4149
	if (!se)
4150
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4151

4152
	hrtick_update(rq);
4153 4154
}

4155 4156
static void set_next_buddy(struct sched_entity *se);

4157 4158 4159 4160 4161
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4162
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4163 4164
{
	struct cfs_rq *cfs_rq;
4165
	struct sched_entity *se = &p->se;
4166
	int task_sleep = flags & DEQUEUE_SLEEP;
4167 4168 4169

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4170
		dequeue_entity(cfs_rq, se, flags);
4171 4172 4173 4174 4175 4176 4177 4178 4179

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4180
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4181

4182
		/* Don't dequeue parent if it has other entities besides us */
4183 4184 4185 4186 4187 4188 4189
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
4190 4191 4192

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
4193
			break;
4194
		}
4195
		flags |= DEQUEUE_SLEEP;
4196
	}
P
Peter Zijlstra 已提交
4197

P
Peter Zijlstra 已提交
4198
	for_each_sched_entity(se) {
4199
		cfs_rq = cfs_rq_of(se);
4200
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4201

4202 4203 4204
		if (cfs_rq_throttled(cfs_rq))
			break;

4205
		update_load_avg(se, 1);
4206
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4207 4208
	}

Y
Yuyang Du 已提交
4209
	if (!se)
4210
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4211

4212
	hrtick_update(rq);
4213 4214
}

4215
#ifdef CONFIG_SMP
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323

/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

/*
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
 */
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
			      unsigned long pending_updates)
{
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

4324 4325 4326 4327 4328 4329
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
#ifdef CONFIG_NO_HZ_COMMON
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
static void update_idle_cpu_load(struct rq *this_rq)
{
4350
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4351
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
	unsigned long pending_updates;

	/*
	 * bail if there's load or we're actually up-to-date.
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

	__update_cpu_load(this_rq, load, pending_updates);
}

/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
void update_cpu_load_nohz(void)
{
	struct rq *this_rq = this_rq();
4372
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * We were idle, this means load 0, the current load might be
		 * !0 due to remote wakeups and the sort.
		 */
		__update_cpu_load(this_rq, 0, pending_updates);
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

/*
 * Called from scheduler_tick()
 */
void update_cpu_load_active(struct rq *this_rq)
{
4397
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4398 4399 4400 4401 4402 4403 4404
	/*
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
	 */
	this_rq->last_load_update_tick = jiffies;
	__update_cpu_load(this_rq, load, 1);
}

4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4438
static unsigned long capacity_of(int cpu)
4439
{
4440
	return cpu_rq(cpu)->cpu_capacity;
4441 4442
}

4443 4444 4445 4446 4447
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

4448 4449 4450
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4451
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4452
	unsigned long load_avg = weighted_cpuload(cpu);
4453 4454

	if (nr_running)
4455
		return load_avg / nr_running;
4456 4457 4458 4459

	return 0;
}

4460 4461 4462 4463 4464 4465 4466
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
4467
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4468
		current->wakee_flips >>= 1;
4469 4470 4471 4472 4473 4474 4475 4476
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4477

4478
static void task_waking_fair(struct task_struct *p)
4479 4480 4481
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4482 4483 4484 4485
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4486

4487 4488 4489 4490 4491 4492 4493 4494
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4495

4496
	se->vruntime -= min_vruntime;
4497
	record_wakee(p);
4498 4499
}

4500
#ifdef CONFIG_FAIR_GROUP_SCHED
4501 4502 4503 4504 4505 4506
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4550
 */
P
Peter Zijlstra 已提交
4551
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4552
{
P
Peter Zijlstra 已提交
4553
	struct sched_entity *se = tg->se[cpu];
4554

4555
	if (!tg->parent)	/* the trivial, non-cgroup case */
4556 4557
		return wl;

P
Peter Zijlstra 已提交
4558
	for_each_sched_entity(se) {
4559
		long w, W;
P
Peter Zijlstra 已提交
4560

4561
		tg = se->my_q->tg;
4562

4563 4564 4565 4566
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4567

4568 4569 4570
		/*
		 * w = rw_i + @wl
		 */
4571
		w = cfs_rq_load_avg(se->my_q) + wl;
4572

4573 4574 4575 4576
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
4577
			wl = (w * (long)tg->shares) / W;
4578 4579
		else
			wl = tg->shares;
4580

4581 4582 4583 4584 4585
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4586 4587
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4588 4589 4590 4591

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4592
		wl -= se->avg.load_avg;
4593 4594 4595 4596 4597 4598 4599 4600

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4601 4602
		wg = 0;
	}
4603

P
Peter Zijlstra 已提交
4604
	return wl;
4605 4606
}
#else
P
Peter Zijlstra 已提交
4607

4608
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4609
{
4610
	return wl;
4611
}
P
Peter Zijlstra 已提交
4612

4613 4614
#endif

M
Mike Galbraith 已提交
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
 * A waker of many should wake a different task than the one last awakened
 * at a frequency roughly N times higher than one of its wakees.  In order
 * to determine whether we should let the load spread vs consolodating to
 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.  With
 * both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.  Waker/wakee
 * being client/server, worker/dispatcher, interrupt source or whatever is
 * irrelevant, spread criteria is apparent partner count exceeds socket size.
 */
4627 4628
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
4629 4630
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
4631
	int factor = this_cpu_read(sd_llc_size);
4632

M
Mike Galbraith 已提交
4633 4634 4635 4636 4637
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
4638 4639
}

4640
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4641
{
4642
	s64 this_load, load;
4643
	s64 this_eff_load, prev_eff_load;
4644 4645
	int idx, this_cpu, prev_cpu;
	struct task_group *tg;
4646
	unsigned long weight;
4647
	int balanced;
4648

4649 4650 4651 4652 4653
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4654

4655 4656 4657 4658 4659
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4660 4661
	if (sync) {
		tg = task_group(current);
4662
		weight = current->se.avg.load_avg;
4663

4664
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4665 4666
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4667

4668
	tg = task_group(p);
4669
	weight = p->se.avg.load_avg;
4670

4671 4672
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4673 4674 4675
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4676 4677 4678 4679
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4680 4681
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
4682

4683 4684
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
4685

4686
	if (this_load > 0) {
4687 4688 4689 4690
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4691
	}
4692

4693
	balanced = this_eff_load <= prev_eff_load;
4694

4695
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4696

4697 4698
	if (!balanced)
		return 0;
4699

4700 4701 4702 4703
	schedstat_inc(sd, ttwu_move_affine);
	schedstat_inc(p, se.statistics.nr_wakeups_affine);

	return 1;
4704 4705
}

4706 4707 4708 4709 4710
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4711
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4712
		  int this_cpu, int sd_flag)
4713
{
4714
	struct sched_group *idlest = NULL, *group = sd->groups;
4715
	unsigned long min_load = ULONG_MAX, this_load = 0;
4716
	int load_idx = sd->forkexec_idx;
4717
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4718

4719 4720 4721
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4722 4723 4724 4725
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4726

4727 4728
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4729
					tsk_cpus_allowed(p)))
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

4748
		/* Adjust by relative CPU capacity of the group */
4749
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
4771 4772 4773 4774
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
4775 4776 4777
	int i;

	/* Traverse only the allowed CPUs */
4778
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
4801
		} else if (shallowest_idle_cpu == -1) {
4802 4803 4804 4805 4806
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
4807 4808 4809
		}
	}

4810
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4811
}
4812

4813 4814 4815
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4816
static int select_idle_sibling(struct task_struct *p, int target)
4817
{
4818
	struct sched_domain *sd;
4819
	struct sched_group *sg;
4820
	int i = task_cpu(p);
4821

4822 4823
	if (idle_cpu(target))
		return target;
4824 4825

	/*
4826
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4827
	 */
4828 4829
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4830 4831

	/*
4832
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4833
	 */
4834
	sd = rcu_dereference(per_cpu(sd_llc, target));
4835
	for_each_lower_domain(sd) {
4836 4837 4838 4839 4840 4841 4842
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4843
				if (i == target || !idle_cpu(i))
4844 4845
					goto next;
			}
4846

4847 4848 4849 4850 4851 4852 4853 4854
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4855 4856
	return target;
}
4857 4858 4859 4860 4861
/*
 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
 * tasks. The unit of the return value must be the one of capacity so we can
 * compare the usage with the capacity of the CPU that is available for CFS
 * task (ie cpu_capacity).
4862
 * cfs.avg.util_avg is the sum of running time of runnable tasks on a
4863 4864 4865
 * CPU. It represents the amount of utilization of a CPU in the range
 * [0..SCHED_LOAD_SCALE].  The usage of a CPU can't be higher than the full
 * capacity of the CPU because it's about the running time on this CPU.
4866 4867
 * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE
 * because of unfortunate rounding in util_avg or just
4868 4869 4870 4871 4872 4873 4874 4875
 * after migrating tasks until the average stabilizes with the new running
 * time. So we need to check that the usage stays into the range
 * [0..cpu_capacity_orig] and cap if necessary.
 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
 */
static int get_cpu_usage(int cpu)
{
4876
	unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg;
4877 4878 4879 4880 4881 4882 4883
	unsigned long capacity = capacity_orig_of(cpu);

	if (usage >= SCHED_LOAD_SCALE)
		return capacity;

	return (usage * capacity) >> SCHED_LOAD_SHIFT;
}
4884

4885
/*
4886 4887 4888
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4889
 *
4890 4891
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4892
 *
4893
 * Returns the target cpu number.
4894 4895 4896
 *
 * preempt must be disabled.
 */
4897
static int
4898
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4899
{
4900
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4901
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
4902
	int new_cpu = prev_cpu;
4903
	int want_affine = 0;
4904
	int sync = wake_flags & WF_SYNC;
4905

4906
	if (sd_flag & SD_BALANCE_WAKE)
M
Mike Galbraith 已提交
4907
		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4908

4909
	rcu_read_lock();
4910
	for_each_domain(cpu, tmp) {
4911
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
4912
			break;
4913

4914
		/*
4915 4916
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4917
		 */
4918 4919 4920
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4921
			break;
4922
		}
4923

4924
		if (tmp->flags & sd_flag)
4925
			sd = tmp;
M
Mike Galbraith 已提交
4926 4927
		else if (!want_affine)
			break;
4928 4929
	}

M
Mike Galbraith 已提交
4930 4931 4932 4933
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
			new_cpu = cpu;
4934
	}
4935

M
Mike Galbraith 已提交
4936 4937 4938 4939 4940
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
			new_cpu = select_idle_sibling(p, new_cpu);

	} else while (sd) {
4941
		struct sched_group *group;
4942
		int weight;
4943

4944
		if (!(sd->flags & sd_flag)) {
4945 4946 4947
			sd = sd->child;
			continue;
		}
4948

4949
		group = find_idlest_group(sd, p, cpu, sd_flag);
4950 4951 4952 4953
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4954

4955
		new_cpu = find_idlest_cpu(group, p, cpu);
4956 4957 4958 4959
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4960
		}
4961 4962 4963

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4964
		weight = sd->span_weight;
4965 4966
		sd = NULL;
		for_each_domain(cpu, tmp) {
4967
			if (weight <= tmp->span_weight)
4968
				break;
4969
			if (tmp->flags & sd_flag)
4970 4971 4972
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4973
	}
4974
	rcu_read_unlock();
4975

4976
	return new_cpu;
4977
}
4978 4979 4980 4981 4982 4983 4984

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
4985
static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4986
{
4987
	/*
4988 4989 4990 4991 4992
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
4993
	 */
4994 4995 4996 4997
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
4998 4999

	/* We have migrated, no longer consider this task hot */
5000
	p->se.exec_start = 0;
5001
}
5002 5003 5004 5005 5006

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
5007 5008
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
5009 5010
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5011 5012 5013 5014
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
5015 5016
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
5017 5018 5019 5020 5021 5022 5023 5024 5025
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
5026
	 */
5027
	return calc_delta_fair(gran, se);
5028 5029
}

5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
5052
	gran = wakeup_gran(curr, se);
5053 5054 5055 5056 5057 5058
	if (vdiff > gran)
		return 1;

	return 0;
}

5059 5060
static void set_last_buddy(struct sched_entity *se)
{
5061 5062 5063 5064 5065
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
5066 5067 5068 5069
}

static void set_next_buddy(struct sched_entity *se)
{
5070 5071 5072 5073 5074
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
5075 5076
}

5077 5078
static void set_skip_buddy(struct sched_entity *se)
{
5079 5080
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
5081 5082
}

5083 5084 5085
/*
 * Preempt the current task with a newly woken task if needed:
 */
5086
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5087 5088
{
	struct task_struct *curr = rq->curr;
5089
	struct sched_entity *se = &curr->se, *pse = &p->se;
5090
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5091
	int scale = cfs_rq->nr_running >= sched_nr_latency;
5092
	int next_buddy_marked = 0;
5093

I
Ingo Molnar 已提交
5094 5095 5096
	if (unlikely(se == pse))
		return;

5097
	/*
5098
	 * This is possible from callers such as attach_tasks(), in which we
5099 5100 5101 5102 5103 5104 5105
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

5106
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
5107
		set_next_buddy(pse);
5108 5109
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
5110

5111 5112 5113
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
5114 5115 5116 5117 5118 5119
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
5120 5121 5122 5123
	 */
	if (test_tsk_need_resched(curr))
		return;

5124 5125 5126 5127 5128
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

5129
	/*
5130 5131
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
5132
	 */
5133
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5134
		return;
5135

5136
	find_matching_se(&se, &pse);
5137
	update_curr(cfs_rq_of(se));
5138
	BUG_ON(!pse);
5139 5140 5141 5142 5143 5144 5145
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
5146
		goto preempt;
5147
	}
5148

5149
	return;
5150

5151
preempt:
5152
	resched_curr(rq);
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
5167 5168
}

5169 5170
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5171 5172 5173
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
5174
	struct task_struct *p;
5175
	int new_tasks;
5176

5177
again:
5178 5179
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
5180
		goto idle;
5181

5182
	if (prev->sched_class != &fair_sched_class)
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
5202 5203 5204 5205 5206
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
5207

5208 5209 5210 5211 5212 5213 5214 5215 5216
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
5257

5258
	if (!cfs_rq->nr_running)
5259
		goto idle;
5260

5261
	put_prev_task(rq, prev);
5262

5263
	do {
5264
		se = pick_next_entity(cfs_rq, NULL);
5265
		set_next_entity(cfs_rq, se);
5266 5267 5268
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
5269
	p = task_of(se);
5270

5271 5272
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
5273 5274

	return p;
5275 5276

idle:
5277 5278 5279 5280 5281 5282 5283
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	lockdep_unpin_lock(&rq->lock);
5284
	new_tasks = idle_balance(rq);
5285
	lockdep_pin_lock(&rq->lock);
5286 5287 5288 5289 5290
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
5291
	if (new_tasks < 0)
5292 5293
		return RETRY_TASK;

5294
	if (new_tasks > 0)
5295 5296 5297
		goto again;

	return NULL;
5298 5299 5300 5301 5302
}

/*
 * Account for a descheduled task:
 */
5303
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5304 5305 5306 5307 5308 5309
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5310
		put_prev_entity(cfs_rq, se);
5311 5312 5313
	}
}

5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
5339 5340 5341 5342 5343
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
5344
		rq_clock_skip_update(rq, true);
5345 5346 5347 5348 5349
	}

	set_skip_buddy(se);
}

5350 5351 5352 5353
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

5354 5355
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

5366
#ifdef CONFIG_SMP
5367
/**************************************************
P
Peter Zijlstra 已提交
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
5391
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
5392 5393 5394 5395 5396 5397
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5398
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5484

5485 5486
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5487 5488
enum fbq_type { regular, remote, all };

5489
#define LBF_ALL_PINNED	0x01
5490
#define LBF_NEED_BREAK	0x02
5491 5492
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5493 5494 5495 5496 5497

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5498
	int			src_cpu;
5499 5500 5501 5502

	int			dst_cpu;
	struct rq		*dst_rq;

5503 5504
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5505
	enum cpu_idle_type	idle;
5506
	long			imbalance;
5507 5508 5509
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5510
	unsigned int		flags;
5511 5512 5513 5514

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5515 5516

	enum fbq_type		fbq_type;
5517
	struct list_head	tasks;
5518 5519
};

5520 5521 5522
/*
 * Is this task likely cache-hot:
 */
5523
static int task_hot(struct task_struct *p, struct lb_env *env)
5524 5525 5526
{
	s64 delta;

5527 5528
	lockdep_assert_held(&env->src_rq->lock);

5529 5530 5531 5532 5533 5534 5535 5536 5537
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
5538
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5539 5540 5541 5542 5543 5544 5545 5546 5547
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

5548
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5549 5550 5551 5552

	return delta < (s64)sysctl_sched_migration_cost;
}

5553
#ifdef CONFIG_NUMA_BALANCING
5554
/*
5555 5556 5557
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
5558
 */
5559
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5560
{
5561
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5562
	unsigned long src_faults, dst_faults;
5563 5564
	int src_nid, dst_nid;

5565
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5566 5567 5568 5569
		return -1;

	if (!sched_feat(NUMA))
		return -1;
5570 5571 5572 5573

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5574
	if (src_nid == dst_nid)
5575
		return -1;
5576

5577 5578 5579 5580 5581 5582 5583
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
5584

5585 5586
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
5587
		return 0;
5588

5589 5590 5591 5592 5593 5594
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
5595 5596
	}

5597
	return dst_faults < src_faults;
5598 5599
}

5600
#else
5601
static inline int migrate_degrades_locality(struct task_struct *p,
5602 5603
					     struct lb_env *env)
{
5604
	return -1;
5605
}
5606 5607
#endif

5608 5609 5610 5611
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5612
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5613
{
5614
	int tsk_cache_hot;
5615 5616 5617

	lockdep_assert_held(&env->src_rq->lock);

5618 5619
	/*
	 * We do not migrate tasks that are:
5620
	 * 1) throttled_lb_pair, or
5621
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5622 5623
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5624
	 */
5625 5626 5627
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5628
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5629
		int cpu;
5630

5631
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5632

5633 5634
		env->flags |= LBF_SOME_PINNED;

5635 5636 5637 5638 5639 5640 5641 5642
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5643
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5644 5645
			return 0;

5646 5647 5648
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5649
				env->flags |= LBF_DST_PINNED;
5650 5651 5652
				env->new_dst_cpu = cpu;
				break;
			}
5653
		}
5654

5655 5656
		return 0;
	}
5657 5658

	/* Record that we found atleast one task that could run on dst_cpu */
5659
	env->flags &= ~LBF_ALL_PINNED;
5660

5661
	if (task_running(env->src_rq, p)) {
5662
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5663 5664 5665 5666 5667
		return 0;
	}

	/*
	 * Aggressive migration if:
5668 5669 5670
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5671
	 */
5672 5673 5674
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
5675

5676
	if (tsk_cache_hot <= 0 ||
5677
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5678
		if (tsk_cache_hot == 1) {
5679 5680 5681
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
5682 5683 5684
		return 1;
	}

Z
Zhang Hang 已提交
5685 5686
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5687 5688
}

5689
/*
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	deactivate_task(env->src_rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, env->dst_cpu);
}

5701
/*
5702
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5703 5704
 * part of active balancing operations within "domain".
 *
5705
 * Returns a task if successful and NULL otherwise.
5706
 */
5707
static struct task_struct *detach_one_task(struct lb_env *env)
5708 5709 5710
{
	struct task_struct *p, *n;

5711 5712
	lockdep_assert_held(&env->src_rq->lock);

5713 5714 5715
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5716

5717
		detach_task(p, env);
5718

5719
		/*
5720
		 * Right now, this is only the second place where
5721
		 * lb_gained[env->idle] is updated (other is detach_tasks)
5722
		 * so we can safely collect stats here rather than
5723
		 * inside detach_tasks().
5724 5725
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
5726
		return p;
5727
	}
5728
	return NULL;
5729 5730
}

5731 5732
static const unsigned int sched_nr_migrate_break = 32;

5733
/*
5734 5735
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
5736
 *
5737
 * Returns number of detached tasks if successful and 0 otherwise.
5738
 */
5739
static int detach_tasks(struct lb_env *env)
5740
{
5741 5742
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5743
	unsigned long load;
5744 5745 5746
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
5747

5748
	if (env->imbalance <= 0)
5749
		return 0;
5750

5751
	while (!list_empty(tasks)) {
5752 5753 5754 5755 5756 5757 5758
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

5759
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5760

5761 5762
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5763
		if (env->loop > env->loop_max)
5764
			break;
5765 5766

		/* take a breather every nr_migrate tasks */
5767
		if (env->loop > env->loop_break) {
5768
			env->loop_break += sched_nr_migrate_break;
5769
			env->flags |= LBF_NEED_BREAK;
5770
			break;
5771
		}
5772

5773
		if (!can_migrate_task(p, env))
5774 5775 5776
			goto next;

		load = task_h_load(p);
5777

5778
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5779 5780
			goto next;

5781
		if ((load / 2) > env->imbalance)
5782
			goto next;
5783

5784 5785 5786 5787
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
5788
		env->imbalance -= load;
5789 5790

#ifdef CONFIG_PREEMPT
5791 5792
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
5793
		 * kernels will stop after the first task is detached to minimize
5794 5795
		 * the critical section.
		 */
5796
		if (env->idle == CPU_NEWLY_IDLE)
5797
			break;
5798 5799
#endif

5800 5801 5802 5803
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5804
		if (env->imbalance <= 0)
5805
			break;
5806 5807 5808

		continue;
next:
5809
		list_move_tail(&p->se.group_node, tasks);
5810
	}
5811

5812
	/*
5813 5814 5815
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
5816
	 */
5817
	schedstat_add(env->sd, lb_gained[env->idle], detached);
5818

5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	p->on_rq = TASK_ON_RQ_QUEUED;
	activate_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
5860

5861 5862 5863 5864
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
5865 5866
}

P
Peter Zijlstra 已提交
5867
#ifdef CONFIG_FAIR_GROUP_SCHED
5868
static void update_blocked_averages(int cpu)
5869 5870
{
	struct rq *rq = cpu_rq(cpu);
5871 5872
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5873

5874 5875
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5876

5877 5878 5879 5880
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5881
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5882 5883 5884
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
5885

5886 5887 5888
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
			update_tg_load_avg(cfs_rq, 0);
	}
5889
	raw_spin_unlock_irqrestore(&rq->lock, flags);
5890 5891
}

5892
/*
5893
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5894 5895 5896
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5897
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5898
{
5899 5900
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5901
	unsigned long now = jiffies;
5902
	unsigned long load;
5903

5904
	if (cfs_rq->last_h_load_update == now)
5905 5906
		return;

5907 5908 5909 5910 5911 5912 5913
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5914

5915
	if (!se) {
5916
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
5917 5918 5919 5920 5921
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
5922 5923
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
5924 5925 5926 5927
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5928 5929
}

5930
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5931
{
5932
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5933

5934
	update_cfs_rq_h_load(cfs_rq);
5935
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
5936
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
5937 5938
}
#else
5939
static inline void update_blocked_averages(int cpu)
5940
{
5941 5942 5943 5944 5945 5946 5947 5948
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
5949 5950
}

5951
static unsigned long task_h_load(struct task_struct *p)
5952
{
5953
	return p->se.avg.load_avg;
5954
}
P
Peter Zijlstra 已提交
5955
#endif
5956 5957

/********** Helpers for find_busiest_group ************************/
5958 5959 5960 5961 5962 5963 5964

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

5965 5966 5967 5968 5969 5970 5971
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5972
	unsigned long load_per_task;
5973
	unsigned long group_capacity;
5974
	unsigned long group_usage; /* Total usage of the group */
5975 5976 5977
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
5978
	enum group_type group_type;
5979
	int group_no_capacity;
5980 5981 5982 5983
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
5984 5985
};

J
Joonsoo Kim 已提交
5986 5987 5988 5989 5990 5991 5992 5993
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
5994
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
5995 5996 5997
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5998
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5999 6000
};

6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
6013
		.total_capacity = 0UL,
6014 6015
		.busiest_stat = {
			.avg_load = 0UL,
6016 6017
			.sum_nr_running = 0,
			.group_type = group_other,
6018 6019 6020 6021
		},
	};
}

6022 6023 6024
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
6025
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6026 6027
 *
 * Return: The load index.
6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

6050
static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6051
{
6052 6053
	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
		return sd->smt_gain / sd->span_weight;
6054

6055
	return SCHED_CAPACITY_SCALE;
6056 6057
}

6058
unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6059
{
6060
	return default_scale_cpu_capacity(sd, cpu);
6061 6062
}

6063
static unsigned long scale_rt_capacity(int cpu)
6064 6065
{
	struct rq *rq = cpu_rq(cpu);
6066
	u64 total, used, age_stamp, avg;
6067
	s64 delta;
6068

6069 6070 6071 6072
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
6073 6074
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
6075
	delta = __rq_clock_broken(rq) - age_stamp;
6076

6077 6078 6079 6080
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
6081

6082
	used = div_u64(avg, total);
6083

6084 6085
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
6086

6087
	return 1;
6088 6089
}

6090
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6091
{
6092
	unsigned long capacity = SCHED_CAPACITY_SCALE;
6093 6094
	struct sched_group *sdg = sd->groups;

6095 6096 6097 6098
	if (sched_feat(ARCH_CAPACITY))
		capacity *= arch_scale_cpu_capacity(sd, cpu);
	else
		capacity *= default_scale_cpu_capacity(sd, cpu);
6099

6100
	capacity >>= SCHED_CAPACITY_SHIFT;
6101

6102
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6103

6104
	capacity *= scale_rt_capacity(cpu);
6105
	capacity >>= SCHED_CAPACITY_SHIFT;
6106

6107 6108
	if (!capacity)
		capacity = 1;
6109

6110 6111
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
6112 6113
}

6114
void update_group_capacity(struct sched_domain *sd, int cpu)
6115 6116 6117
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
6118
	unsigned long capacity;
6119 6120 6121 6122
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
6123
	sdg->sgc->next_update = jiffies + interval;
6124 6125

	if (!child) {
6126
		update_cpu_capacity(sd, cpu);
6127 6128 6129
		return;
	}

6130
	capacity = 0;
6131

P
Peter Zijlstra 已提交
6132 6133 6134 6135 6136 6137
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

6138
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6139
			struct sched_group_capacity *sgc;
6140
			struct rq *rq = cpu_rq(cpu);
6141

6142
			/*
6143
			 * build_sched_domains() -> init_sched_groups_capacity()
6144 6145 6146
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
6147 6148
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
6149
			 *
6150
			 * This avoids capacity from being 0 and
6151 6152 6153
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
6154
				capacity += capacity_of(cpu);
6155 6156
				continue;
			}
6157

6158 6159
			sgc = rq->sd->groups->sgc;
			capacity += sgc->capacity;
6160
		}
P
Peter Zijlstra 已提交
6161 6162 6163 6164 6165 6166 6167 6168
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
6169
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
6170 6171 6172
			group = group->next;
		} while (group != child->groups);
	}
6173

6174
	sdg->sgc->capacity = capacity;
6175 6176
}

6177
/*
6178 6179 6180
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
6181 6182
 */
static inline int
6183
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6184
{
6185 6186
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
6187 6188
}

6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
6205 6206
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
6207 6208
 *
 * When this is so detected; this group becomes a candidate for busiest; see
6209
 * update_sd_pick_busiest(). And calculate_imbalance() and
6210
 * find_busiest_group() avoid some of the usual balance conditions to allow it
6211 6212 6213 6214 6215 6216 6217
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

6218
static inline int sg_imbalanced(struct sched_group *group)
6219
{
6220
	return group->sgc->imbalance;
6221 6222
}

6223
/*
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
 * smaller than the number of CPUs or if the usage is lower than the available
 * capacity for CFS tasks.
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
6234
 */
6235 6236
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6237
{
6238 6239
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
6240

6241 6242 6243
	if ((sgs->group_capacity * 100) >
			(sgs->group_usage * env->sd->imbalance_pct))
		return true;
6244

6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
6261

6262 6263 6264
	if ((sgs->group_capacity * 100) <
			(sgs->group_usage * env->sd->imbalance_pct))
		return true;
6265

6266
	return false;
6267 6268
}

6269 6270 6271
static enum group_type group_classify(struct lb_env *env,
		struct sched_group *group,
		struct sg_lb_stats *sgs)
6272
{
6273
	if (sgs->group_no_capacity)
6274 6275 6276 6277 6278 6279 6280 6281
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

6282 6283
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6284
 * @env: The load balancing environment.
6285 6286 6287 6288
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
6289
 * @overload: Indicate more than one runnable task for any CPU.
6290
 */
6291 6292
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
6293 6294
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
6295
{
6296
	unsigned long load;
6297
	int i;
6298

6299 6300
	memset(sgs, 0, sizeof(*sgs));

6301
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6302 6303 6304
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
6305
		if (local_group)
6306
			load = target_load(i, load_idx);
6307
		else
6308 6309 6310
			load = source_load(i, load_idx);

		sgs->group_load += load;
6311
		sgs->group_usage += get_cpu_usage(i);
6312
		sgs->sum_nr_running += rq->cfs.h_nr_running;
6313 6314 6315 6316

		if (rq->nr_running > 1)
			*overload = true;

6317 6318 6319 6320
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
6321
		sgs->sum_weighted_load += weighted_cpuload(i);
6322 6323
		if (idle_cpu(i))
			sgs->idle_cpus++;
6324 6325
	}

6326 6327
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
6328
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6329

6330
	if (sgs->sum_nr_running)
6331
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6332

6333
	sgs->group_weight = group->group_weight;
6334

6335 6336
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
	sgs->group_type = group_classify(env, group, sgs);
6337 6338
}

6339 6340
/**
 * update_sd_pick_busiest - return 1 on busiest group
6341
 * @env: The load balancing environment.
6342 6343
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
6344
 * @sgs: sched_group statistics
6345 6346 6347
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
6348 6349 6350
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
6351
 */
6352
static bool update_sd_pick_busiest(struct lb_env *env,
6353 6354
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
6355
				   struct sg_lb_stats *sgs)
6356
{
6357
	struct sg_lb_stats *busiest = &sds->busiest_stat;
6358

6359
	if (sgs->group_type > busiest->group_type)
6360 6361
		return true;

6362 6363 6364 6365 6366 6367 6368 6369
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
6370 6371 6372 6373 6374 6375 6376
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
6377
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6378 6379 6380 6381 6382 6383 6384 6385 6386 6387
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6418
/**
6419
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6420
 * @env: The load balancing environment.
6421 6422
 * @sds: variable to hold the statistics for this sched_domain.
 */
6423
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6424
{
6425 6426
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6427
	struct sg_lb_stats tmp_sgs;
6428
	int load_idx, prefer_sibling = 0;
6429
	bool overload = false;
6430 6431 6432 6433

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6434
	load_idx = get_sd_load_idx(env->sd, env->idle);
6435 6436

	do {
J
Joonsoo Kim 已提交
6437
		struct sg_lb_stats *sgs = &tmp_sgs;
6438 6439
		int local_group;

6440
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6441 6442 6443
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6444 6445

			if (env->idle != CPU_NEWLY_IDLE ||
6446 6447
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6448
		}
6449

6450 6451
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6452

6453 6454 6455
		if (local_group)
			goto next_group;

6456 6457
		/*
		 * In case the child domain prefers tasks go to siblings
6458
		 * first, lower the sg capacity so that we'll try
6459 6460
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6461 6462 6463 6464
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
6465
		 */
6466
		if (prefer_sibling && sds->local &&
6467 6468 6469 6470
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
			sgs->group_type = group_overloaded;
6471
		}
6472

6473
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6474
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6475
			sds->busiest_stat = *sgs;
6476 6477
		}

6478 6479 6480
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6481
		sds->total_capacity += sgs->group_capacity;
6482

6483
		sg = sg->next;
6484
	} while (sg != env->sd->groups);
6485 6486 6487

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6488 6489 6490 6491 6492 6493 6494

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6514
 * Return: 1 when packing is required and a task should be moved to
6515 6516
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6517
 * @env: The load balancing environment.
6518 6519
 * @sds: Statistics of the sched_domain which is to be packed
 */
6520
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6521 6522 6523
{
	int busiest_cpu;

6524
	if (!(env->sd->flags & SD_ASYM_PACKING))
6525 6526 6527 6528 6529 6530
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6531
	if (env->dst_cpu > busiest_cpu)
6532 6533
		return 0;

6534
	env->imbalance = DIV_ROUND_CLOSEST(
6535
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6536
		SCHED_CAPACITY_SCALE);
6537

6538
	return 1;
6539 6540 6541 6542 6543 6544
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6545
 * @env: The load balancing environment.
6546 6547
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6548 6549
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6550
{
6551
	unsigned long tmp, capa_now = 0, capa_move = 0;
6552
	unsigned int imbn = 2;
6553
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6554
	struct sg_lb_stats *local, *busiest;
6555

J
Joonsoo Kim 已提交
6556 6557
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6558

J
Joonsoo Kim 已提交
6559 6560 6561 6562
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6563

J
Joonsoo Kim 已提交
6564
	scaled_busy_load_per_task =
6565
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6566
		busiest->group_capacity;
J
Joonsoo Kim 已提交
6567

6568 6569
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6570
		env->imbalance = busiest->load_per_task;
6571 6572 6573 6574 6575
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
6576
	 * however we may be able to increase total CPU capacity used by
6577 6578 6579
	 * moving them.
	 */

6580
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
6581
			min(busiest->load_per_task, busiest->avg_load);
6582
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
6583
			min(local->load_per_task, local->avg_load);
6584
	capa_now /= SCHED_CAPACITY_SCALE;
6585 6586

	/* Amount of load we'd subtract */
6587
	if (busiest->avg_load > scaled_busy_load_per_task) {
6588
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
6589
			    min(busiest->load_per_task,
6590
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
6591
	}
6592 6593

	/* Amount of load we'd add */
6594
	if (busiest->avg_load * busiest->group_capacity <
6595
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6596 6597
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
6598
	} else {
6599
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6600
		      local->group_capacity;
J
Joonsoo Kim 已提交
6601
	}
6602
	capa_move += local->group_capacity *
6603
		    min(local->load_per_task, local->avg_load + tmp);
6604
	capa_move /= SCHED_CAPACITY_SCALE;
6605 6606

	/* Move if we gain throughput */
6607
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
6608
		env->imbalance = busiest->load_per_task;
6609 6610 6611 6612 6613
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
6614
 * @env: load balance environment
6615 6616
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
6617
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6618
{
6619
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
6620 6621 6622 6623
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6624

6625
	if (busiest->group_type == group_imbalanced) {
6626 6627 6628 6629
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
6630 6631
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
6632 6633
	}

6634 6635 6636
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
6637
	 * its cpu_capacity, while calculating max_load..)
6638
	 */
6639 6640
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6641 6642
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6643 6644
	}

6645 6646 6647 6648 6649
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
6650 6651 6652 6653 6654 6655
		load_above_capacity = busiest->sum_nr_running *
					SCHED_LOAD_SCALE;
		if (load_above_capacity > busiest->group_capacity)
			load_above_capacity -= busiest->group_capacity;
		else
			load_above_capacity = ~0UL;
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6666
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6667 6668

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6669
	env->imbalance = min(
6670 6671
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
6672
	) / SCHED_CAPACITY_SCALE;
6673 6674 6675

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6676
	 * there is no guarantee that any tasks will be moved so we'll have
6677 6678 6679
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6680
	if (env->imbalance < busiest->load_per_task)
6681
		return fix_small_imbalance(env, sds);
6682
}
6683

6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6696
 * @env: The load balancing environment.
6697
 *
6698
 * Return:	- The busiest group if imbalance exists.
6699 6700 6701 6702
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6703
static struct sched_group *find_busiest_group(struct lb_env *env)
6704
{
J
Joonsoo Kim 已提交
6705
	struct sg_lb_stats *local, *busiest;
6706 6707
	struct sd_lb_stats sds;

6708
	init_sd_lb_stats(&sds);
6709 6710 6711 6712 6713

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6714
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6715 6716
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6717

6718
	/* ASYM feature bypasses nice load balance check */
6719 6720
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6721 6722
		return sds.busiest;

6723
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6724
	if (!sds.busiest || busiest->sum_nr_running == 0)
6725 6726
		goto out_balanced;

6727 6728
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
6729

P
Peter Zijlstra 已提交
6730 6731
	/*
	 * If the busiest group is imbalanced the below checks don't
6732
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6733 6734
	 * isn't true due to cpus_allowed constraints and the like.
	 */
6735
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
6736 6737
		goto force_balance;

6738
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6739 6740
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
6741 6742
		goto force_balance;

6743
	/*
6744
	 * If the local group is busier than the selected busiest group
6745 6746
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
6747
	if (local->avg_load >= busiest->avg_load)
6748 6749
		goto out_balanced;

6750 6751 6752 6753
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
6754
	if (local->avg_load >= sds.avg_load)
6755 6756
		goto out_balanced;

6757
	if (env->idle == CPU_IDLE) {
6758
		/*
6759 6760 6761 6762 6763
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
6764
		 */
6765 6766
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6767
			goto out_balanced;
6768 6769 6770 6771 6772
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6773 6774
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6775
			goto out_balanced;
6776
	}
6777

6778
force_balance:
6779
	/* Looks like there is an imbalance. Compute it */
6780
	calculate_imbalance(env, &sds);
6781 6782 6783
	return sds.busiest;

out_balanced:
6784
	env->imbalance = 0;
6785 6786 6787 6788 6789 6790
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6791
static struct rq *find_busiest_queue(struct lb_env *env,
6792
				     struct sched_group *group)
6793 6794
{
	struct rq *busiest = NULL, *rq;
6795
	unsigned long busiest_load = 0, busiest_capacity = 1;
6796 6797
	int i;

6798
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6799
		unsigned long capacity, wl;
6800 6801 6802 6803
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6804

6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

6827
		capacity = capacity_of(i);
6828

6829
		wl = weighted_cpuload(i);
6830

6831 6832
		/*
		 * When comparing with imbalance, use weighted_cpuload()
6833
		 * which is not scaled with the cpu capacity.
6834
		 */
6835 6836 6837

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
6838 6839
			continue;

6840 6841
		/*
		 * For the load comparisons with the other cpu's, consider
6842 6843 6844
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
6845
		 *
6846
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6847
		 * multiplication to rid ourselves of the division works out
6848 6849
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
6850
		 */
6851
		if (wl * busiest_capacity > busiest_load * capacity) {
6852
			busiest_load = wl;
6853
			busiest_capacity = capacity;
6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6868
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6869

6870
static int need_active_balance(struct lb_env *env)
6871
{
6872 6873 6874
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6875 6876 6877 6878 6879 6880

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6881
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6882
			return 1;
6883 6884
	}

6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

6898 6899 6900
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6901 6902
static int active_load_balance_cpu_stop(void *data);

6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6934
	return balance_cpu == env->dst_cpu;
6935 6936
}

6937 6938 6939 6940 6941 6942
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6943
			int *continue_balancing)
6944
{
6945
	int ld_moved, cur_ld_moved, active_balance = 0;
6946
	struct sched_domain *sd_parent = sd->parent;
6947 6948 6949
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6950
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6951

6952 6953
	struct lb_env env = {
		.sd		= sd,
6954 6955
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6956
		.dst_grpmask    = sched_group_cpus(sd->groups),
6957
		.idle		= idle,
6958
		.loop_break	= sched_nr_migrate_break,
6959
		.cpus		= cpus,
6960
		.fbq_type	= all,
6961
		.tasks		= LIST_HEAD_INIT(env.tasks),
6962 6963
	};

6964 6965 6966 6967
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6968
	if (idle == CPU_NEWLY_IDLE)
6969 6970
		env.dst_grpmask = NULL;

6971 6972 6973 6974 6975
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6976 6977
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6978
		goto out_balanced;
6979
	}
6980

6981
	group = find_busiest_group(&env);
6982 6983 6984 6985 6986
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6987
	busiest = find_busiest_queue(&env, group);
6988 6989 6990 6991 6992
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

6993
	BUG_ON(busiest == env.dst_rq);
6994

6995
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6996

6997 6998 6999
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

7000 7001 7002 7003 7004 7005 7006 7007
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
7008
		env.flags |= LBF_ALL_PINNED;
7009
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7010

7011
more_balance:
7012
		raw_spin_lock_irqsave(&busiest->lock, flags);
7013 7014 7015 7016 7017

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
7018
		cur_ld_moved = detach_tasks(&env);
7019 7020

		/*
7021 7022 7023 7024 7025
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
7026
		 */
7027 7028 7029 7030 7031 7032 7033 7034

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

7035
		local_irq_restore(flags);
7036

7037 7038 7039 7040 7041
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
7061
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7062

7063 7064 7065
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

7066
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7067
			env.dst_cpu	 = env.new_dst_cpu;
7068
			env.flags	&= ~LBF_DST_PINNED;
7069 7070
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
7071

7072 7073 7074 7075 7076 7077
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
7078

7079 7080 7081 7082
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
7083
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7084

7085
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7086 7087 7088
				*group_imbalance = 1;
		}

7089
		/* All tasks on this runqueue were pinned by CPU affinity */
7090
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7091
			cpumask_clear_cpu(cpu_of(busiest), cpus);
7092 7093 7094
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
7095
				goto redo;
7096
			}
7097
			goto out_all_pinned;
7098 7099 7100 7101 7102
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
7103 7104 7105 7106 7107 7108 7109 7110
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
7111

7112
		if (need_active_balance(&env)) {
7113 7114
			raw_spin_lock_irqsave(&busiest->lock, flags);

7115 7116 7117
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
7118 7119
			 */
			if (!cpumask_test_cpu(this_cpu,
7120
					tsk_cpus_allowed(busiest->curr))) {
7121 7122
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
7123
				env.flags |= LBF_ALL_PINNED;
7124 7125 7126
				goto out_one_pinned;
			}

7127 7128 7129 7130 7131
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
7132 7133 7134 7135 7136 7137
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7138

7139
			if (active_balance) {
7140 7141 7142
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
7143
			}
7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
7162
		 * detach_tasks).
7163 7164 7165 7166 7167 7168 7169 7170
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
7188 7189 7190 7191 7192 7193
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
7194
	if (((env.flags & LBF_ALL_PINNED) &&
7195
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7196 7197 7198
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

7199
	ld_moved = 0;
7200 7201 7202 7203
out:
	return ld_moved;
}

7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

7231 7232 7233 7234
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
7235
static int idle_balance(struct rq *this_rq)
7236
{
7237 7238
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
7239 7240
	struct sched_domain *sd;
	int pulled_task = 0;
7241
	u64 curr_cost = 0;
7242

7243
	idle_enter_fair(this_rq);
7244

7245 7246 7247 7248 7249 7250
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

7251 7252
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
7253 7254 7255 7256 7257 7258
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

7259
		goto out;
7260
	}
7261

7262 7263
	raw_spin_unlock(&this_rq->lock);

7264
	update_blocked_averages(this_cpu);
7265
	rcu_read_lock();
7266
	for_each_domain(this_cpu, sd) {
7267
		int continue_balancing = 1;
7268
		u64 t0, domain_cost;
7269 7270 7271 7272

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7273 7274
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
7275
			break;
7276
		}
7277

7278
		if (sd->flags & SD_BALANCE_NEWIDLE) {
7279 7280
			t0 = sched_clock_cpu(this_cpu);

7281
			pulled_task = load_balance(this_cpu, this_rq,
7282 7283
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
7284 7285 7286 7287 7288 7289

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
7290
		}
7291

7292
		update_next_balance(sd, 0, &next_balance);
7293 7294 7295 7296 7297 7298

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
7299 7300
			break;
	}
7301
	rcu_read_unlock();
7302 7303 7304

	raw_spin_lock(&this_rq->lock);

7305 7306 7307
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

7308
	/*
7309 7310 7311
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
7312
	 */
7313
	if (this_rq->cfs.h_nr_running && !pulled_task)
7314
		pulled_task = 1;
7315

7316 7317 7318
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
7319
		this_rq->next_balance = next_balance;
7320

7321
	/* Is there a task of a high priority class? */
7322
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7323 7324 7325 7326
		pulled_task = -1;

	if (pulled_task) {
		idle_exit_fair(this_rq);
7327
		this_rq->idle_stamp = 0;
7328
	}
7329

7330
	return pulled_task;
7331 7332 7333
}

/*
7334 7335 7336 7337
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
7338
 */
7339
static int active_load_balance_cpu_stop(void *data)
7340
{
7341 7342
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
7343
	int target_cpu = busiest_rq->push_cpu;
7344
	struct rq *target_rq = cpu_rq(target_cpu);
7345
	struct sched_domain *sd;
7346
	struct task_struct *p = NULL;
7347 7348 7349 7350 7351 7352 7353

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
7354 7355 7356

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
7357
		goto out_unlock;
7358 7359 7360 7361 7362 7363 7364 7365 7366

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
7367
	rcu_read_lock();
7368 7369 7370 7371 7372 7373 7374
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
7375 7376
		struct lb_env env = {
			.sd		= sd,
7377 7378 7379 7380
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
7381 7382 7383
			.idle		= CPU_IDLE,
		};

7384 7385
		schedstat_inc(sd, alb_count);

7386 7387
		p = detach_one_task(&env);
		if (p)
7388 7389 7390 7391
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
7392
	rcu_read_unlock();
7393 7394
out_unlock:
	busiest_rq->active_balance = 0;
7395 7396 7397 7398 7399 7400 7401
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

7402
	return 0;
7403 7404
}

7405 7406 7407 7408 7409
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

7410
#ifdef CONFIG_NO_HZ_COMMON
7411 7412 7413 7414 7415 7416
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
7417
static struct {
7418
	cpumask_var_t idle_cpus_mask;
7419
	atomic_t nr_cpus;
7420 7421
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
7422

7423
static inline int find_new_ilb(void)
7424
{
7425
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7426

7427 7428 7429 7430
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7431 7432
}

7433 7434 7435 7436 7437
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7438
static void nohz_balancer_kick(void)
7439 7440 7441 7442 7443
{
	int ilb_cpu;

	nohz.next_balance++;

7444
	ilb_cpu = find_new_ilb();
7445

7446 7447
	if (ilb_cpu >= nr_cpu_ids)
		return;
7448

7449
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7450 7451 7452 7453 7454 7455 7456 7457
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7458 7459 7460
	return;
}

7461
static inline void nohz_balance_exit_idle(int cpu)
7462 7463
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7464 7465 7466 7467 7468 7469 7470
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
7471 7472 7473 7474
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

7475 7476 7477
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
7478
	int cpu = smp_processor_id();
7479 7480

	rcu_read_lock();
7481
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7482 7483 7484 7485 7486

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7487
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7488
unlock:
7489 7490 7491 7492 7493 7494
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7495
	int cpu = smp_processor_id();
7496 7497

	rcu_read_lock();
7498
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7499 7500 7501 7502 7503

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7504
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7505
unlock:
7506 7507 7508
	rcu_read_unlock();
}

7509
/*
7510
 * This routine will record that the cpu is going idle with tick stopped.
7511
 * This info will be used in performing idle load balancing in the future.
7512
 */
7513
void nohz_balance_enter_idle(int cpu)
7514
{
7515 7516 7517 7518 7519 7520
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

7521 7522
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
7523

7524 7525 7526 7527 7528 7529
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

7530 7531 7532
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7533
}
7534

7535
static int sched_ilb_notifier(struct notifier_block *nfb,
7536 7537 7538 7539
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
7540
		nohz_balance_exit_idle(smp_processor_id());
7541 7542 7543 7544 7545
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
7546 7547 7548 7549
#endif

static DEFINE_SPINLOCK(balancing);

7550 7551 7552 7553
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
7554
void update_max_interval(void)
7555 7556 7557 7558
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

7559 7560 7561 7562
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7563
 * Balancing parameters are set up in init_sched_domains.
7564
 */
7565
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7566
{
7567
	int continue_balancing = 1;
7568
	int cpu = rq->cpu;
7569
	unsigned long interval;
7570
	struct sched_domain *sd;
7571 7572 7573
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7574 7575
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7576

7577
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7578

7579
	rcu_read_lock();
7580
	for_each_domain(cpu, sd) {
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7593 7594 7595
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

7607
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7608 7609 7610 7611 7612 7613 7614 7615

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7616
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7617
				/*
7618
				 * The LBF_DST_PINNED logic could have changed
7619 7620
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
7621
				 */
7622
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7623 7624
			}
			sd->last_balance = jiffies;
7625
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7626 7627 7628 7629 7630 7631 7632 7633
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
7634 7635
	}
	if (need_decay) {
7636
		/*
7637 7638
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
7639
		 */
7640 7641
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
7642
	}
7643
	rcu_read_unlock();
7644 7645 7646 7647 7648 7649 7650 7651 7652 7653

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

7654
#ifdef CONFIG_NO_HZ_COMMON
7655
/*
7656
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7657 7658
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
7659
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7660
{
7661
	int this_cpu = this_rq->cpu;
7662 7663 7664
	struct rq *rq;
	int balance_cpu;

7665 7666 7667
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
7668 7669

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7670
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7671 7672 7673 7674 7675 7676 7677
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
7678
		if (need_resched())
7679 7680
			break;

V
Vincent Guittot 已提交
7681 7682
		rq = cpu_rq(balance_cpu);

7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
			update_idle_cpu_load(rq);
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
7694 7695 7696 7697 7698

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
7699 7700
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7701 7702 7703
}

/*
7704
 * Current heuristic for kicking the idle load balancer in the presence
7705
 * of an idle cpu in the system.
7706
 *   - This rq has more than one task.
7707 7708 7709 7710
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
7711 7712
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
7713
 */
7714
static inline bool nohz_kick_needed(struct rq *rq)
7715 7716
{
	unsigned long now = jiffies;
7717
	struct sched_domain *sd;
7718
	struct sched_group_capacity *sgc;
7719
	int nr_busy, cpu = rq->cpu;
7720
	bool kick = false;
7721

7722
	if (unlikely(rq->idle_balance))
7723
		return false;
7724

7725 7726 7727 7728
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
7729
	set_cpu_sd_state_busy();
7730
	nohz_balance_exit_idle(cpu);
7731 7732 7733 7734 7735 7736

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
7737
		return false;
7738 7739

	if (time_before(now, nohz.next_balance))
7740
		return false;
7741

7742
	if (rq->nr_running >= 2)
7743
		return true;
7744

7745
	rcu_read_lock();
7746 7747
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
	if (sd) {
7748 7749
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7750

7751 7752 7753 7754 7755
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

7756
	}
7757

7758 7759 7760 7761 7762 7763 7764 7765
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
7766

7767
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7768
	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7769 7770 7771 7772
				  sched_domain_span(sd)) < cpu)) {
		kick = true;
		goto unlock;
	}
7773

7774
unlock:
7775
	rcu_read_unlock();
7776
	return kick;
7777 7778
}
#else
7779
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7780 7781 7782 7783 7784 7785
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
7786 7787
static void run_rebalance_domains(struct softirq_action *h)
{
7788
	struct rq *this_rq = this_rq();
7789
	enum cpu_idle_type idle = this_rq->idle_balance ?
7790 7791 7792
						CPU_IDLE : CPU_NOT_IDLE;

	/*
7793
	 * If this cpu has a pending nohz_balance_kick, then do the
7794
	 * balancing on behalf of the other idle cpus whose ticks are
7795 7796 7797 7798
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
7799
	 */
7800
	nohz_idle_balance(this_rq, idle);
7801
	rebalance_domains(this_rq, idle);
7802 7803 7804 7805 7806
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
7807
void trigger_load_balance(struct rq *rq)
7808 7809
{
	/* Don't need to rebalance while attached to NULL domain */
7810 7811 7812 7813
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
7814
		raise_softirq(SCHED_SOFTIRQ);
7815
#ifdef CONFIG_NO_HZ_COMMON
7816
	if (nohz_kick_needed(rq))
7817
		nohz_balancer_kick();
7818
#endif
7819 7820
}

7821 7822 7823
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
7824 7825

	update_runtime_enabled(rq);
7826 7827 7828 7829 7830
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
7831 7832 7833

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
7834 7835
}

7836
#endif /* CONFIG_SMP */
7837

7838 7839 7840
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
7841
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7842 7843 7844 7845 7846 7847
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
7848
		entity_tick(cfs_rq, se, queued);
7849
	}
7850

7851
	if (numabalancing_enabled)
7852
		task_tick_numa(rq, curr);
7853 7854 7855
}

/*
P
Peter Zijlstra 已提交
7856 7857 7858
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
7859
 */
P
Peter Zijlstra 已提交
7860
static void task_fork_fair(struct task_struct *p)
7861
{
7862 7863
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
7864
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
7865 7866 7867
	struct rq *rq = this_rq();
	unsigned long flags;

7868
	raw_spin_lock_irqsave(&rq->lock, flags);
7869

7870 7871
	update_rq_clock(rq);

7872 7873 7874
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

7875 7876 7877 7878 7879 7880 7881 7882 7883
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
7884

7885
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
7886

7887 7888
	if (curr)
		se->vruntime = curr->vruntime;
7889
	place_entity(cfs_rq, se, 1);
7890

P
Peter Zijlstra 已提交
7891
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
7892
		/*
7893 7894 7895
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
7896
		swap(curr->vruntime, se->vruntime);
7897
		resched_curr(rq);
7898
	}
7899

7900 7901
	se->vruntime -= cfs_rq->min_vruntime;

7902
	raw_spin_unlock_irqrestore(&rq->lock, flags);
7903 7904
}

7905 7906 7907 7908
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
7909 7910
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7911
{
7912
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
7913 7914
		return;

7915 7916 7917 7918 7919
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
7920
	if (rq->curr == p) {
7921
		if (p->prio > oldprio)
7922
			resched_curr(rq);
7923
	} else
7924
		check_preempt_curr(rq, p, 0);
7925 7926
}

P
Peter Zijlstra 已提交
7927 7928 7929 7930 7931 7932
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
7933
	 * Ensure the task's vruntime is normalized, so that when it's
P
Peter Zijlstra 已提交
7934 7935 7936
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
7937 7938
	 * If it's queued, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it's !queued, then only when
P
Peter Zijlstra 已提交
7939 7940
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
7941
	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
P
Peter Zijlstra 已提交
7942 7943 7944 7945 7946 7947 7948
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
7949

7950
	/* Catch up with the cfs_rq and remove our load when we leave */
7951
	detach_entity_load_avg(cfs_rq, se);
P
Peter Zijlstra 已提交
7952 7953 7954
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
7955
{
7956
	struct sched_entity *se = &p->se;
7957 7958

#ifdef CONFIG_FAIR_GROUP_SCHED
7959 7960 7961 7962 7963 7964
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
7965

7966 7967 7968
	/* Synchronize task with its cfs_rq */
	attach_entity_load_avg(cfs_rq_of(&p->se), &p->se);

7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981
	if (!task_on_rq_queued(p)) {

		/*
		 * Ensure the task has a non-normalized vruntime when it is switched
		 * back to the fair class with !queued, so that enqueue_entity() at
		 * wake-up time will do the right thing.
		 *
		 * If it's queued, then the enqueue_entity(.flags=0) makes the task
		 * has non-normalized vruntime, if it's !queued, then it still has
		 * normalized vruntime.
		 */
		if (p->state != TASK_RUNNING)
			se->vruntime += cfs_rq_of(se)->min_vruntime;
P
Peter Zijlstra 已提交
7982
		return;
7983
	}
P
Peter Zijlstra 已提交
7984

7985 7986 7987 7988 7989
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
7990
	if (rq->curr == p)
7991
		resched_curr(rq);
7992
	else
7993
		check_preempt_curr(rq, p, 0);
7994 7995
}

7996 7997 7998 7999 8000 8001 8002 8003 8004
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

8005 8006 8007 8008 8009 8010 8011
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
8012 8013
}

8014 8015 8016 8017 8018 8019 8020
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
8021
#ifdef CONFIG_SMP
8022 8023
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8024
#endif
8025 8026
}

P
Peter Zijlstra 已提交
8027
#ifdef CONFIG_FAIR_GROUP_SCHED
8028
static void task_move_group_fair(struct task_struct *p, int queued)
P
Peter Zijlstra 已提交
8029
{
P
Peter Zijlstra 已提交
8030
	struct sched_entity *se = &p->se;
8031
	struct cfs_rq *cfs_rq;
P
Peter Zijlstra 已提交
8032

8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
8046
	/*
8047
	 * When !queued, vruntime of the task has usually NOT been normalized.
8048 8049 8050 8051
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
8052 8053
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
8054 8055 8056 8057
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
8058 8059
	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
		queued = 1;
8060

8061
	cfs_rq = cfs_rq_of(se);
8062
	if (!queued)
8063 8064 8065 8066
		se->vruntime -= cfs_rq->min_vruntime;

	/* Synchronize task with its prev cfs_rq */
	detach_entity_load_avg(cfs_rq, se);
8067
	set_task_rq(p, task_cpu(p));
8068 8069 8070 8071 8072 8073

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif

P
Peter Zijlstra 已提交
8074
	se->depth = se->parent ? se->parent->depth + 1 : 0;
8075 8076
	cfs_rq = cfs_rq_of(se);
	if (!queued)
P
Peter Zijlstra 已提交
8077
		se->vruntime += cfs_rq->min_vruntime;
8078

8079 8080
	/* Virtually synchronize task with its new cfs_rq */
	attach_entity_load_avg(cfs_rq, se);
P
Peter Zijlstra 已提交
8081
}
8082 8083 8084 8085 8086 8087 8088 8089 8090 8091

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
8092 8093 8094
		if (tg->se) {
			if (tg->se[i])
				remove_entity_load_avg(tg->se[i]);
8095
			kfree(tg->se[i]);
8096
		}
8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8133
		init_entity_runnable_average(se);
8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
8178
	if (!parent) {
8179
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
8180 8181
		se->depth = 0;
	} else {
8182
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
8183 8184
		se->depth = parent->depth + 1;
	}
8185 8186

	se->my_q = cfs_rq;
8187 8188
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
8219 8220 8221

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
8222
		for_each_sched_entity(se)
8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
8244

8245
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8246 8247 8248 8249 8250 8251 8252 8253 8254
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
8255
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8256 8257 8258 8259

	return rr_interval;
}

8260 8261 8262
/*
 * All the scheduling class methods:
 */
8263
const struct sched_class fair_sched_class = {
8264
	.next			= &idle_sched_class,
8265 8266 8267
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
8268
	.yield_to_task		= yield_to_task_fair,
8269

I
Ingo Molnar 已提交
8270
	.check_preempt_curr	= check_preempt_wakeup,
8271 8272 8273 8274

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

8275
#ifdef CONFIG_SMP
L
Li Zefan 已提交
8276
	.select_task_rq		= select_task_rq_fair,
8277
	.migrate_task_rq	= migrate_task_rq_fair,
8278

8279 8280
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
8281 8282

	.task_waking		= task_waking_fair,
8283
	.task_dead		= task_dead_fair,
8284
	.set_cpus_allowed	= set_cpus_allowed_common,
8285
#endif
8286

8287
	.set_curr_task          = set_curr_task_fair,
8288
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
8289
	.task_fork		= task_fork_fair,
8290 8291

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
8292
	.switched_from		= switched_from_fair,
8293
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
8294

8295 8296
	.get_rr_interval	= get_rr_interval_fair,

8297 8298
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
8299
#ifdef CONFIG_FAIR_GROUP_SCHED
8300
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
8301
#endif
8302 8303 8304
};

#ifdef CONFIG_SCHED_DEBUG
8305
void print_cfs_stats(struct seq_file *m, int cpu)
8306 8307 8308
{
	struct cfs_rq *cfs_rq;

8309
	rcu_read_lock();
8310
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8311
		print_cfs_rq(m, cpu, cfs_rq);
8312
	rcu_read_unlock();
8313
}
8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
8335 8336 8337 8338 8339 8340

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

8341
#ifdef CONFIG_NO_HZ_COMMON
8342
	nohz.next_balance = jiffies;
8343
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8344
	cpu_notifier(sched_ilb_notifier, 0);
8345 8346 8347 8348
#endif
#endif /* SMP */

}